DATA BRITTLENESS ESTIMATION WITH SELF-
SUPERVISED FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

To what extent are model predictions sensitive to modifications in training data?
Data attribution approaches have served to answer this question. These ap-
proaches can be used for estimating data brittleness i.e., identifying which subset
of training samples had the highest positive influence on a test sample. However,
these methods come at a high computational cost, are memory intensive, and are
hard to scale to large models or datasets. Current state-of-the-art approaches re-
quire an ensemble of as many as 300,000 models. In this work, we focus on a com-
putationally efficient baseline centered on estimating two types of data brittleness
metrics. Our baseline approach uses the image features from a single pretrained
self-supervised backbone. In contrast to data attribution approaches, our approach
does not explicitly utilize model information and focuses on the data. Our results
show this simple assumption works well, achieving competitive performance with
state-of-the-art attribution approaches on CIFAR-10 and ImageNet, under limited
computational and memory requirements. Our work serves as a simple baseline,
showing that effective data brittleness estimates can be achieved based solely on
knowledge of the training data.

1 INTRODUCTION

The effectiveness of a machine learning system’s performance hinges on the quahty, diversity, and
relevance of the data it is trained on (; ,). In various real-world
machine learning systems, e.g. in healthcare or ﬁnance we often ask questions like, “Which tramlng
samples influenced this prediction?” or “How sensitive is this model’s prediction to changes in the
training data?” Counterfactual insights enable us to assess the impact of hypothetical changes in the
data distribution, which in turn helps us understand the basis of the model’s decisions and how to
change the decision in the event of an error. These questions motivate research on data attribution
methods, focusing on understanding which data points most strongly influence a model’s outputs.

In principle, data attribution can be done perfectly by a brute-force leave-k-out strategy; simply train
the model from scratch many times, removing k data points each time. The user can then examine
the impact of each data point by examining how the corresponding ablated model differs from the
original. Clearly, this procedure is intractable for any realistic problem as there are innumerable
subsets, and training even a single machine learning model can be almost prohibitively expensive.
The goal of data attribution research therefore is to approximate this gold standard metric as closely
as possible while simultaneously using as little computation as possible. As such, the field of data
attribution is all about trade-offs between accuracy, runtime, and memory.

We focus on estimating data brittleness metrics, a counterfactual estimation task for evaluating data
attribution approaches. Concretely, for a test sample, we find the smallest subset of training data
that when removed/mislabeled causes the model to misclassify. State-of- the art data attribution ap-
proaches utilize logits (s), or gradient (s) infor-
mation from an ensemble of models to evaluate these metrics. These technlques require retraining
models on different subsets of data and other compute or memory-intensive strategies for high ef-
ficacy (s s). Thus
attribution approaches qulckly become 1ntractable as datasets become larger (
,) and applications more realistic, such as attribution for large-language models (

;)-

Datamodels (s) m TRAK (s) A Ours
(a) Computational Efficiency (b) Performance
4

L L 04
m _ |
Oo 108 -) T
EY m T 03 4
TE 107 m 2.8
5% 5% 02 ™
g 2 101 - 2 g |
% g Se
& 22 01
2L o0 - g0
= M
n

1071 I I I I 0+ | | |

10t 102 100 10t 10° 0.4 0.6 0.8 1
GPU Wall Clock Time in Minutes Mislabel Support AUC

(+ more efficient) (more accurate —)

Figure 1: Our proposed baseline approach for data brittleness estimation achieves high per-
formance while improving computational efficiency. Fig. (a) shows the wall-clock time on RTX
A6000 GPU on the x-axis and memory requirements in GBs on the y-axis respectively (see Ap-
pendix for details). Figure (b) shows performance on two data brittleness metrics measuring
the method’s accuracy to make counterfactual predictions (details about the metrics are discussed in
Section 2.1.)

Our baseline approach uses the feature space of a single self-supervised model to estimate data
brittleness. We specifically focus on image classification. In contrast to data attribution approaches
that focus on the specific way an algorithm/model behaves (, ; , ,
our approach does not explicitly utilize model information. Thus, our method cannot be directly
utilized to study model-specific behaviors, cons1dered apphcatlons of data attribution methods, like
debugging model biases (,), fairness assessment

R) or 1dent1fy1ng backdoor attacks (R). However, based
on the simple intuition that different models leverage data similarly (,

,), our approach can provide accurate brittleness estimates.

)

We show that our approach can outperform data brittleness estimates from state-of-the-art attribution

approaches under limited compute and storage requirements on the CIFAR-10 dataset, as shown in

fig. 1. Our method easily scales to much larger datasets such as ImageNet, while state-of-the-art

attribution approaches require significantly higher compute or storage (see section 4.3). In contrast

to claims in previous works, our results show that feature representations can serve as a simple,

compute, and storage-efficient baseline for data brittleness metrics (
). Our code is available as supplementary material.

s 5 ’

2 BACKGROUND

We first define our notation and then discuss evaluation metrics used throughout the paper. These
are borrowed from () and ().

Notation: Let S = {z1, 22, . .. 2, } denote a set of training samples. Each sample z; € S represents
z; = (x4, y;), where x; signifies the input image and y; represents the associated ground truth label.
We use z; to denote an arbitrary evaluation sample not present in the training set. For a model trained
on any training subset S’, with converged parameters 6*, we define a model output function on any
sample z as f(z,0*(S’)) € R. For the model output function, we use the correct-class margin (

>

f(2) = (correct class logit) — (highest incorrect logit)

We denote a data attribution approach as a function 7(z,.5) € R™. This function operates on any
sample z and a training set .S, generating a score for each sample within the set S. These scores

highlight the relative positive or negative impact of individual training samples on the classification
of the input sample z.

2.1 EVALUATING ATTRIBUTION METHODS

A core evaluation criterion for the performance of data attr1but10n methods is thelr capacity to pro-
vide accurate counterfactual predictions (, s

,). While these metrics can be computatlonally demandlng, they represent a
stralghtforward yet valuable, proxy for assessing the efficacy of these approaches. In our work,
we focus on one of the approaches presented in Ilyas et al.(,), and Park ef al.(

,) and focus on data brittleness. Data brittleness metrics leverage attribution techniques
to answer the following question: “To what extent are model predictions sensitive to modifications
in the training data?” Hence, these metrics serve as a means of estimating counterfactual scenarios.
To quantify data brittleness, we focus on two distinct types of data support for a test sample z;. We
define these sets below:

Data Removal Support: The smallest subset R,., that when removed from the training set .S, causes
an average training run of the model to misclassify z;.

Data Mislabel Support: The smallest training subset R,,, whose mislabeling causes an average
training run of the model to misclassify z;. For each training sample in R,,,, we change the labels to
the second-highest predicted class for z;.

Intuitively, a better method should be able to find a smaller subset of training samples that can mis-
classify z;. We estimate these metrics over a set of test samples and plot the cumulative distribution
(CDF), which represents the probability that a sample’s label can be flipped as a function of the data
subset size. In fig. |, we compare the Area Under Curve (AUC) of the CDF for the metrics described
above across our approach and other attribution methods.

For a test sample z; and a data attribution approach 7(z,.S), we rank the training samples based
on decreasing order of positive influence on z;. Then, based on the ranking, we iteratively select
and modify a subset of training data. We perform this search, over different subsets to compute
the smallest training subset that can cause z; to be misclassified. Naively, checking all possible
subsets would be computationally expensive. (,) check only subsets with certain
discrete sizes to keep costs manageable. We instead propose to perform a bisection search to
approximate the search for the smallest subset, yielding more accurate results. The bisection search
approximation is supported by the observation that several data attribution approaches are additive
(,). The exact algorithm and details are discussed in appendix

Linear Datamodeling Score (LDS) is another evaluatlon metric used for counterfactual evaluation
of data attribution approaches (, ,). Let {S1, ..., Sm|S; C S} be m
random subsets of the training set .S, each of size « - n for some o € (0, 1). The LDS metric is then
defined as:

LDS(r, 2) = (f(z 0°(S,)) | J € Iml}, {r(=,S) - 1, je[m]})

where p denotes Spearman rank correlation (,), and 15, is the indicator
vector of the subset S; . In other words, LDS compares the Spearman rank correlation on a sample
z¢ from m models trained on different subsets of training data b/w ground truth class margin and
predicted margin from a data attribution approach 7. Note that while LDS metric accounts for both
positive and negative influence in training samples, brittleness metrics only account for positive
influence in training samples. Our baseline makes a simple assumption, that impacts performance
on this metric.

Prior works focused on optimizing performance on LDS (, ; s), and
evaluating data brittleness metrics as a downstream task. However, our results in section 5.1 indicate
that LDS scores do not always correlate with brittleness estimates. We also note that LDS focuses
on counterfactual predictions for arbitrary changes in training data, while data brittleness metrics
serve to quantify counterfactual predictions using fargeted changes to training data.

Other works have also evaluated data attribution methods using alternatives such as Shapley values
or leave-one-out influences (s ; s ; s). These

0.6 -

=== {9 MoCo

—— ESVM MoCo

—— ESVM MoCo (ResNet-18)
£5 Supervised
ESVM Supervised

i)
(5]
=
7
%)
=
Q
4
o
—
1
E
oo
|
@)
[
o
S
<
=
a9

0 _
| | | | | | |
0 200 400 600 800 1,0001,200

Number of Training Samples Removed

Figure 2: Self-supervised features are more effective than supervised and are best compared
using an ESVM. Self-supervised features from MoCo can be used to find smaller data support than
standard supervised features. For a larger fraction of test samples, ESVM distance is more effective
than /5 distance at ranking train images to select smaller data removal support.

approaches however are hard to scale beyond small datasets. An alternate line of work evaluates the
utility of attribution methods for auxiliary tasks such as debugging model biases, active learning, or
1dent1fy1ng mislabeled or poisoned data samples (s ; s ; s

; ,)

2.2 BASELINES

Datamodels (s): In the Datamodeling framework, the end-to-end training and eval-
uation of deep neural networks is approximated with a parametric function. Surprisingly, the work
shows optimizing a linear function is enough to predict model outputs reasonably well, given a train-
ing data subset. By collecting a large dataset of training data subsets and model output pairs, (

,) demonstrate that such a linear mapping can accurately predict the correct class margin
for individual test samples. Among other use-cases, these Datamodels are shown to be effective at
counterfactual predictions and identifying visually similar train-test samples. But Datamodeling is
prohibitively expensive, requiring the training of hundreds of thousands of models (300,000 in the
original work) to accurately make counterfactual predictions. Unfortunately, this limitation makes
Datamodeling intractable for all but small toy problems.

TRAK (,): By approximating models with a kernel machine, Tracing with the
Randomly-projected After Kernels (TRAK) makes progress toward reducing the computational cost
of data attribution. This work uses a randomly-projected gradient information from an ensemble
of models, to compute attribution scores. However, their method stores a high dimensional (from
4096 up to 20480 dimensional) projected gradient for each training and test sample, from a dozen or
more model checkpoints to use as a “feature”, leading to significant storage requirements. For our
experiments, the total storage cost of using TRAK surpassed 400 GBs when using 100 models on
CIFAR-10. Note that while our approach also stores feature embedding for each training sample, it
only uses the penultimate layer of single self-supervised model, and thus our embeddings are much
lower dimensional (128 dimensional for CIFAR-10).

3 OUR APPROACH

Our approach utilizes the penultimate feature space representation of a network to extract features
from a test sample z; and each training sample in S. We approximate attribution scores by measuring
the distance in feature space between z; and each training sample in S. Datamodels and TRAK have
tried using features from an ensemble of supervised models and claimed them to be ineffective for
counterfactual estimation (s ; s). Next, we describe the details of our

approach.

Feature extractor. We find that the learning paradigm used for feature extraction heavily influ-
ences the estimation of data support. For example, embeddings from a ResNet-9 trained using a
self-supervised learning objective (MoCo, (,)) can be used to find smaller support sets
than the same model trained in a supervised manner (See ¢, MoCo vs £5 Supervised in fig. 2). With
the exception of DINO (s) (whose test accuracy on CIFAR-10 was much lower), all
self-supervised feature extractors perform better than their supervised counterpart (see appendix

for evaluation using multiple different feature extractors). We select MoCo as our preferred feature
extractor, as it outperforms other self-supervised approaches in both data removal support and mis-
labeling support scenarios. We find that the ResNet-18 backbone provides better support estimates
than ResNet-9, and hence use it as default for all our experiments. Datamodels and TRAK, only
compared against supervised feature extractors, leading to significantly worse counterfactual esti-
mation.

Distance function When measuring the distance between two embeddings, Euclidean distance (¢3)

is a common choice (s). Cosine distance and Mahalanobis distance
have also been used to measure s1m11ar1ty, but these were found to perform similarly to Euclidean
distances in previous work (s ; s ; ,).

However, we find that measuring distance as distance to the hyperplane of an Exemplar SVM
(ESVM) improves image similarity (,). To compute this, we train a linear
SVM using only the target sample embedding, as a positive sample and treating all other samples as
negative samples. We use the inverse of decision boundary distance, to measure the magnitude of
influence. Hence, samples closest to the decision boundary have a higher influence and vice-versa.
In fig. 2, we show using hyperplane distance to ESVM yields better removal support estimates than
{5 distance.

Sign Estimation Directly using [, or ESVM distance function, cannot identify training samples with
negative influence. Intuitively, to change the prediction of a test sample, we should only remove
samples from its vicinity that share the same class. While this assumption is simplistic, we show
that it works well for estimating data brittleness. For a test sample, z; = (z,y) we simply assign
all training samples with label y, as a positive influence, and negative otherwise i.e. given a target
image of an airplane, only airplane training images have a positive influence. See appendix for
more discussion on this.

4 DATA BRITTLENESS ESTIMATION

We evaluate our approach on popular classification datasets i.e. CIFAR-10 and ImageNet, which
are small enough to allow for some comparison with the more expensive approaches of TRAK and
Datamodels.

4.1 EXPERIMENTAL SETUP

Training Setup: We estimate the approximate data removal and data mislabel support for CIFAR-10
and ImageNet. As computing the data support for even a single validation sample requires training
multiple models, we restrict ourselves to a reasonably small set of validation samples. We use the
same validation samples across all methods. To accelerate the training of these models, we use the
FFCV library (s). We use a similar setup to TRAK (s). Our model
training setup for evaluation is described in detail in Appendix

Baselines and Our Setup: To estimate TRAK scores on CIFAR-10, we train 100 ResNet-9 models
and use a projection dimension of 20480. To estimate scores on ImageNet, we train 4 ResNet-18
models and use a projection dimension of 4096. Computing TRAK scores using 4 models already
requires 160 GB of storage space, hence we refrain from using a larger ensemble of models.

For Datamodels, we download the pre-trained weights optimized using outputs from 300K ResNet-
9 models with 50% random subsets.' We also download the binary masks and margins to train
our own Datamodels on outputs from 10K and 50K ResNet-9 models, using another 10K models
for validation. Since Datamodels are extremely compute-intensive and require training hundreds of
thousands of models, we cannot include them as a baseline on ImageNet.

'https://github.com/MadryLab/datamodels-data

Datamodels (300K models) Datamodels (50K models) Datamodels (10K models)
—— TRAK (100 models) === TRAK (20 models) ~ ===:- TRAK (10 models)
== Qurs (1 model)

1 -

Frac. of CIFAR-10 Misclassified

0 0
0 200 400 600 800 1,0001,200 200 400 600 800 1,000 1,200

Number of Training Samples Removed Number of Training Samples Mislabeled

Figure 3: Our baseline approach uses only a single model and outperforms TRAK and Data-
models using 20 and 10,000 models for data brittleness metrics. We estimate data removal and
data mislabel support for 100 random CIFAR-10 test samples using a ResNet-9 model and plot the
cumulative distribution using our approach and other baselines. The number of models used by each
approach is also shown. For data removal support, using only a single model our proposed approach
outperforms TRAK (Park et al., 2023) using 20 models and Datamodels (Ilyas et al., 2022) using
10,000 models. For data mislabel support, we outperform TRAK using 100 models and perform
equivalent to Datamodels using 300,000 models.

For our baseline approach to train self-supervised models, we use the Lightly library (Susmelj et al.,
2020). We train a ResNet-18 model using MoCo (He et al., 2020) for 800 epochs on CIFAR-10,
using the Lightly benchmark code.” On ImageNet, we download a pre-trained ResNet-50 model
trained using MoCo.” For our approach, we always use a single model. We denote Datamodels
using N models as Datamodels(N), and similarly for TRAK.

4.2 CIFAR-10

In fig. 3, we present the distribution of estimated data removal values for CIFAR-10. Our findings
reveal that employing a single model with a MoCo backbone (He et al., 2020) for data removal
support proves more effective than employing Datamodels with 10K models and TRAK with 20
models. Our approach and Datamodels (10K) identify that 23% samples can be misclassified by
removing fewer than 500 (example-specific) training samples while TRAK (20) can only identify
16%. For support sizes up to 1280 images, our approach identifies 55% of validation samples,
whereas TRAK (20) and Datamodels (10K) can only identify 28% and 31% samples respectively.

In the same figure, we also depict the distribution of estimated data mislabel support for CIFAR-
10. Here, our approach outperforms TRAK (100) and approaches the performance of Datamodels
(300K). Here, our approach identifies 47% of CIFAR-10 validation samples that can be misclassified
by mislabeling less than 30 training samples! In contrast, TRAK (100) performs poorly identifying
only 20% of these samples. DataModels (300K) can identify 50% of validation samples marginally
surpassing our performance.

In fig. 4, we further inspect how well our baseline approach works for each validation sample. We
compare the individual estimated support sizes for all 100 samples using our approach versus other
baselines. Our results show that for data removal support, across 16% of validation samples, our
estimated data removal support is smaller than those of Datamodels (50K). For 44% of the samples
our data removal estimates match TRAK and Datamodels (50K). For data mislabel support, our

2https://docs.lightly.ai/self-supervised-learning/getting_started/benchmarks.html
3https://github.com/facebookresearch/moco

m Smaller Equal Greater]

Removal Support Comparison Mislabel Support Comparison

Datamodels (300K) -

Datamodels (50K)

Datamodels (10K)

TRAK (100)

TRAK (20)

TRAK (10)

o

20 40 60 80 100 0O 20 40 60 80 100
Number of Samples Number of Samples

Figure 4: Compared to instances of Datamodels and TRAK, we check whether our data support
estimates are smaller, equal, or larger for all 100 validation samples. For 32 samples, our proposed
method can find smaller data mislabel support compared to Datamodels (300k models). Even for the
data removal case, our approach finds an equivalent support estimate as Datamodels (300k models)
for 14 samples.

approach finds a smaller support estimate than Datamodels and TRAK for 32% and 79% of the
validation samples.

While our baseline approach cannot outperform Datamodels (300K) on data removal, our perfor-
mance on the data mislabel support is nearly the same. Thus, our baseline approach of using a
single self-supervised model can serve as a simple, compute, and storage-efficient alternative to
estimate data brittleness.

4.3 IMAGENET

In fig. 6, we show our results for data removal on ImageNet. Our results show that much more
accurate data brittleness estimates on ImageNet. In contrast, TRAK (1) and TRAK (4) do not scale
well to ImageNet at all and provide much looser data removal estimates. We again emphasize
that even scaling to TRAK with 10 models would require around 400 GB of storage space, by our
estimate. Datamodels would require training tens of thousands of models on ImageNet, hence we
cannot include it as a baseline. This highlights the scalability of our baseline approach where, under
a limited compute and storage budget, a single self-supervised MoCo backbone can provide more
accurate data removal estimates than existing data attribution methods.

4.4 TRANSFER TO A DIFFERENT ARCHITECTURE?

Datamodels and TRAK utilize information tied to the model architecture, such as gradients or logits
from an ensemble of models. Being data attribution methods, Datamodels and TRAK approximate
how training data influences a particular model’s output. Thus, it is not appropriate to use a Data-
model for a ResNet-9 to attribute training data for a MobileNetV2. However, what could we learn
if we tried to do so?

Different neural network architectures are known to exploit similar biases and output similar predic-
tions (Mania et al., 2019; Toneva et al., 2018). In order to better understand the role of architecture
in shaping these biases, we test how well attribution scores from these approaches transfer to other
architectures for estimating data brittleness.

In fig. 5, we compare TRAK, Datamodels, and our attribution scores and evaluate them on a Mo-
bileNetV?2 architecture (Sandler et al., 2018). We also show results across other diverse architectures
in appendix B. As mentioned before, architecture, data augmentation, optimizer, etc. must play roles
of varying importance in data attribution. But by changing the target model architecture, this exper-
iment allows us to isolate and measure the importance of architecture. Comparing fig. 5 to fig. 3, we

Datamodels (300K) Datamodels (50K)
Datamodels (10K) == TRAK (100)

=== TRAK (20) = ====- TRAK (10) = TRAK (4)
—— Ours (1) - - - TRAK (1)
= Qurs (1)
3 1
E.E el
172}
2 e 1
= S
: :
2 :
= Z 05 -
O 2
E E
S s
= | | | | | | | %)
0 200 400 600 800 1,0001,200 & 0 | | \ | -
0 200 400 600 800 1,000

Number of Training Samples Removed
Number of Training Samples Removed

Figure 5: The role of data is large on the coun-

terfactual task of removal support. We evalu-
ate how attribution scores transfer from one ar-
chitecture transfer to another. We use ResNet-
9 scores for TRAK and DataModels and esti-
mate data removal support for MobileNetV2.
For our approach, we use the same ResNet-18
backbone.

Figure 6: Our method yields better upper
bounds on support size compared to TRAK-
4, which requires more storage than the Im-
ageNet dataset itself. We estimate data re-
moval support for 30 random ImageNet valida-
tion samples and plot the CDF of estimates. We
use Resnet-18 for our data removal esimates.

find that DataModels (300K) remains surprisingly effective at estimating small support sets, sug-
gesting that attribution scores for this method could be relying more on non-architectural factors
of the training pipeline. By design, our approach using ResNet-18 predicts accurate data removal
estimates surpassing TRAK (100) and Datamodels (50K). Datamodels with under S0K models and
all TRAK variants decrease in their ability to estimate removal support, suggesting these methods
are slightly more reliant on architectural information than DataModels (300K).

Our baseline approach using ResNet-18 can also be viewed as an ablation on all non-data factors,
given that only data is common between the ResNet-9 training pipeline used in Datamodels and the
MoCo self-supervised training pipeline we use. From this perspective, the strong performance of
our baseline suggests the role of data is large on this counterfactual task of removal support. Our
results also suggest that a much simpler prior can be leveraged to achieve effective data brittleness
estimates.

This experiment also opens new avenues of research focused on understanding precisely how attri-
bution methods score training samples. For instance, one could ablate each factor of the training
pipeline and precisely measure how Datamodels or TRAK is utilizing information about training
augmentations, optimizer, etc. Since our focus is data brittleness estimation, these directions fall
outside our current scope and are deferred for future research.

5 DISCUSSION

5.1 LINEAR DATAMODELING SCORE

For computing the LDS score, we slightly adapt our baseline approach setting scores beyond the
highest top-5% in magnitude to be zero, leading to sparser attribution scores. The sparsity prior has
been shown to be effective in TRAK and Datamodels. In table |, we compare LDS scores using
our baseline approach, TRAK, and Datamodels. Datamodels framework uses tens of thousands of

Models Used LDS Scores

300,000 0.56

Datamodels 50,000 0.43
10,000 0.24

100 0.22

20 0.15

TRAK 10 0.12

5 0.08

Ours 1 0.08

Table 1: We compare LDS scores for our approach with other baselines on CIFAR-10. Our proposed
approach can perform equivalent to TRAK with 5 models.

models, to optimize for predicting the correct class margin. Hence, it achieves high LDS. TRAK also
does well with multiple models. Our baseline shows a relatively low correlation on LDS, equivalent
to TRAK using 5 models. The low correlation with LDS implies that these approaches may not be
estimating training samples with negative or zero influences well, due to our simplistic assumption
of using all samples of non-ground truth class as negative influences.

A lot of emphasis has been placed on the LDS metric by SOTA attribution methods while it is meant
to serve only as a simple and efficient proxy for evaluating counterfactual scenarios (,
,). However, our results show that low LDS scores do not necessarily im-
ply worse performance on other related counterfactual estimation tasks and suggest that attribution
scores for LDS, and data brittleness estimation may be less correlated than shown in prior works.

5.2 ROLE OF VISUAL SIMILARITY

In fig. 7, we plot the most similar training images according to Datamodels, TRAK, and our method.
Given that our approach relies on comparing MoCo features from the same class as the target image,
it makes sense that the closest training images are visually similar. On the other hand, the most
similar training images found by Datamodels (,) and TRAK (,) show
more variability.

Despite the variability of most similar train images, Datamodels (300K) outperforms all other meth-
ods in the counterfactual estimation tasks, underscoring the importance of modeling additional non-
data factors. Still, our method shows the significance of relying on visually similar training samples,
implying that strong performance can be achieved for data britleness estimation, with much less
explicit knowledge of the learning algorithm.

6 OTHER RELATED WORKS

Data attribution methods should produce accurate counterfactual predictions about model outputs.
Although a counterfactual can be addressed by retraining the model, employing this straightforward
approach becomes impractical when dealing with large models and extensive datasets. To address
this problem, data attribution methods perform various approximations.

The seminal work on data attribution of () proposes attribution via approximate
influence functions. More specifically, () identify training samples most respon-
sible for a given prediction by estimating the effect of removing or slightly modifying a single
training sample. But being a first-order approximation, influence function estimates can vary wildly
with changes to network architecture and training regularization (,). Nevertheless,
approximations of influence functions have also been attempted for multi-billion parameter models

(,)

Measuring empirical influence has also been attempted through the construction of subsets of train-
ing data that include/exclude the target sample (). In a related approach
Tracln (,) and Gradient Aggregated Similarity (GAS) (

;b) estimate the influence of each sample in training set .S on the test example z; by mea-

=]) &

Datamodels (300K) TN\ QD '

Datamodels (50K) é) 9 H mnu
Pw ¥ '

Datamodels (10K)

TRAK (100)

TRAK (20)

TRAK (10)

Ours

Figure 7: Our attribution method consistently selects the most visually similar training images
by design. In each row, we plot the same target test image (Index 31), followed by ten most similar
training images according to each attribution method.

suring the change in loss on z; from gradient updates of mini-batches. Another related line of work
has used Shapley values to ascribe value to data, but since Shapley values often require exponen-
tial time to compute, approximations have been proposed (Ghorbani & Zou, 2019; Jia et al., 2019).
In general, there seems to be a recurring tradeoff: computationally efficient methods tend to be
less reliable, whereas sampling-based approaches are more effective but require a large number of
models.

7 LIMITATIONS

We emphasize that our approach is not meant to serve as a traditional data attribution method since
it only uses information regarding the training data. Our approach relies on the intuition that models
leverage data in similar ways (Zhen et al., 2022; Kornblith et al., 2019). It doesn’t explicitly utilize
information about model architecture, optimizer, or other aspects of training strategy. Since it relies
on visual similarity it may not directly perform well for certain downstream tasks such as debugging
biases specific to the training algorithm (Shah et al., 2023) or identifying backdoors (Khaddaj et al.,
2023). Also, unlike TRAK and Datamodels, it is unclear if utilizing a large ensemble of models
would benefit performance on our evaluation metrics.

8 CONCLUSION

Data attribution approaches are computationally expensive, require an ensemble of models, and can
be prone to inaccuracy. While these approaches exhibit promise and capability, their scalability to
large-scale models remains uncertain. In this work, we present a simpler approach using features
from a single self-supervised model, and evaluate it on two different counterfactual estimation sce-
narios: data removal support and data mislabel support. Our approach scales easily and provides
tractable brittleness estimates on larger datasets such as ImageNet, outperforming other state-of-
the-art methods under manageable compute and storage requirements. By analyzing data support
estimates for each test sample, we find our approach can find smaller support sets in many cases.
By trasferring attribution scores from one model to another, we investigate the importance of ar-
chitecture in existing attribution methods. Additionally, our results highlight that the training data
itself plays an important role in estimating data brittleness, providing valuable insights into data
attribution.

10

REFERENCES

Samyadeep Basu, Phil Pope, and Soheil Feizi. Influence functions in deep learning are fragile. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=xHKVVHGDOEk.

Emily Black and Matt Fredrikson. Leave-one-out unfairness. In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pp. 285-295, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp- 1597-1607. PMLR, 2020.

X Chen, S Xie, and K He. An empirical study of training self-supervised vision transformers. in
2021 ieee. In CVF International Conference on Computer Vision (ICCV), pp. 9620-9629.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2818-2829, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
structure and texture similarity. IEEE transactions on pattern analysis and machine intelligence,

44(5):2567-2581, 2020.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. Advances in Neural Information Processing Systems, 33:2881—
2891, 2020.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
data, 2023.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning.
In International conference on machine learning, pp. 2242-2251. PMLR, 2019.

Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu, Benjamin Lefaudeux,
Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Ishan
Misra. Vissl. https://github.com/facebookresearch/vissl, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271-21284, 2020.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilé Lukositté, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying Large
Language Model Generalization with Influence Functions. arxiv:2308.03296/cs, stat], August
2023. doi: 10.48550/arXiv.2308.03296. URL http://arxiv.org/abs/2308.03296.

Alon Halevy, Peter Norvig, and Fernando Pereira. The unreasonable effectiveness of data. IEEE
intelligent systems, 24(2):8-12, 2009.

Zayd Hammoudeh and Daniel Lowd. Identifying a training-set attack’s target using renormalized
influence estimation. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1367-1381, 2022a.

11

https://openreview.net/forum?id=xHKVVHGDOEk
https://openreview.net/forum?id=xHKVVHGDOEk
https://github.com/facebookresearch/vissl
http://arxiv.org/abs/2308.03296

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A survey.
arXiv preprint arXiv:2212.04612, 2022b.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of similarity-based ex-
planations. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=9uvhpyQwzM_.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2015.
URL https://api.semanticscholar.org/CorpusID:206594692.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Understanding predictions with data and data with predictions. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 9525-9587. PMLR, 17-23 Jul 2022. URL https:
//proceedings.mlr.press/v162/ilyas22a.html.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Girel, Bo Li,
Ce Zhang, Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the
shapley value. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
1167-1176. PMLR, 2019.

Ruoxi Jia, Fan Wu, Xuehui Sun, Jiacen Xu, David Dao, Bhavya Kailkhura, Ce Zhang, Bo Li, and
Dawn Song. Scalability vs. utility: Do we have to sacrifice one for the other in data importance
quantification? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8239-8247, 2021.

Alaa Khaddaj, Guillaume Leclerc, Aleksandar Makelov, Kristian Georgiev, Hadi Salman, Andrew
Ilyas, and Aleksander Madry. Rethinking backdoor attacks. In ICML, 2023.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pp. 1885-1894. PMLR, 2017.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and Percy S Liang. On the accuracy of influence
functions for measuring group effects. Advances in neural information processing systems, 32,
2019.

Stephen Kokoska and Daniel Zwillinger. CRC standard probability and statistics tables and formu-
lae. Crc Press, 2000.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neu-
ral network representations revisited. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 3519-3529. PMLR, 09-15 Jun 2019. URL https:
//proceedings.mlr.press/v97/kornblithl9a.html.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman, and Alek-
sander Madry. FFCV: Accelerating training by removing data bottlenecks. In Computer Vision
and Pattern Recognition (CVPR),2023. https://github.com/libffcv/ffcv/.commit
XXXXXXX.

12

https://openreview.net/forum?id=9uvhpyQwzM_
https://openreview.net/forum?id=9uvhpyQwzM_
https://api.semanticscholar.org/CorpusID:206594692
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://proceedings.mlr.press/v97/kornblith19a.html
https://github.com/libffcv/ffcv/

Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, and Conghui He. Influence selec-
tion for active learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 9274-9283, 2021.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

Tomasz Malisiewicz, Abhinav Gupta, and Alexei A. Efros. Ensemble of exemplar-svms for object
detection and beyond. In ICCV, 2011.

Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht. Model similarity
mitigates test set overuse. Advances in Neural Information Processing Systems, 32, 2019.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale. In International Conference on Machine Learning (ICML),
2023.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems, 33:
19920-19930, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510-4520, 2018.

Harshay Shah, Sung Min Park, Andrew Ilyas, and Aleksander Madry. Modeldiff: A framework for
comparing learning algorithms. In International Conference on Machine Learning, pp. 30646—
30688. PMLR, 2023.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable ef-
fectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pp. 843-852, 2017.

Igor Susmelj, Matthias Heller, Philipp Wirth, Jeremy Prescott, and Malte Ebner et al. Lightly.
GitHub. Note: https://github.com/lightly-ai/lightly, 2020.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586-595, 2018.

Xingjian Zhen, Zihang Meng, Rudrasis Chakraborty, and Vikas Singh. On the versatile uses of
partial distance correlation in deep learning. In European Conference on Computer Vision, pp.
327-346. Springer, 2022.

13

A APPENDIX

A.1 COMPUTE TIME AND STORAGE REQUIREMENTS

For our compute time estimates, we use NVIDIA RTX A6000 GPUs and 4 CPU cores. We describe
how we estimate the wall-clock time, and storage requirements for each method below -

* Datamodels: We only take into account the storage and compute cost of training models.
The additional cost of estimating datamodels from the trained models, requires solving
linear regression whose computational costs are negligible compared to training the models.
For compute and storage requirement estimates, we train 100 ResNet-9 models on random
50% subsets of CIFAR-10 and extrapolate to estimate the training time and storage required
for 10,000 and 50,000 models shown in fig.

* TRAK: We use the authors’ original code “ to train, and compute the projected gradients
for CIFAR-10 using ResNet-9 Models using a projection dimension of 20480. For stor-
age requirements, we take into account storage used by model weights, and the projected
gradients. The results in fig. |, show the compute and storage using 10, 20 and 100 models.

* Ours: We use Lightly library * benchmark code to train a MoCo model using a ResNet-18
backbone on CIFAR-10 for 800 epochs. The results in fig. | show the wall-clock training
time for the model, and extracting the features from CIFAR-10 and the storage requirements
for model weights.

To calculate the storage requirements, we factor in the storage space necessary for retaining the
trained model weights, as they are essential for computing influence on new validation samples
across all attribution methods.

A.2 TRAINING SETUP

For CIFAR-10 (,), we train ResNet-9 ” and MobileNetV2 (s)
models for 24 epochs using a batch size of 512, momentum of 0.9, label smoothing of 0.1, with a
cyclic learning schedule, with a maximum value of 0.5. The test accuracy for these models without
any modification to training data is above 92%. We randomly selected 100 validation samples, in
a class-balanced manner for our brittleness metrics. We remove or mislabel a maximum of 1280
training samples for each validation sample. Our training setup is similar to ().

For ImageNet (s), we train ResNet-18 (s) models for 16 epochs, using
a batch size of 1024. We train on 160 160 resolution images for the first 11 epochs and increase the
training resolution to 192x 192 for the last 5 epochs. The other hyperparameters are kept the same
as CIFAR-10. These models achieve a top-1 validation accuracy of 67%. We randomly selected
30 validation samples, from a subset of validation samples that are not misclassified by 4 ResNet-
18 models on average. We removed or mislabeled a maximum of 1000 training samples for each
validation sample.

A.3 ADDITIONAL SELF-SUPERVISED FEATURES

In addition to utilizing features from MoCo in section 3, we test our choice of distance function
on ResNet-18 features from other self-supervised learning (SSL) methods trained on CIFAR-10. In
particular, we evaluate BYOL (), SimCLR (), and DINO

() at estimating data removal support in fig. 8 and mislabel support in fig. 9. With the exception
of DINO, self-supervised features from BYOL and SimCLR outperform the supervised baseline at
estimating data removal support. Additionally, we see that in all cases using ESVM distance is more
effective than using /5 distance to compare features.

*https://github.com/MadryLab/trak
Shttps://github.com/lightly-ai/lightly
Shttps://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py

14

0.5 -

el
&
& 04- £ Supervised
.é ESVM Supervised
0.3 - - == {5 BYOL
O L 4
= /J 4 —— ESVM BYOL
% 0o ¢, SimCLR
LL . / " .
5 e ESVM SimCLR
= /e /5 DINO
o = 2
g 01 // ESVM DINO
g -
= A
O _

| | | | | |
0 200 400 600 800 1,000 1,200

Number of Training Samples Removed

Figure 8: We estimate data removal support for 100 random CIFAR-10 test samples and plot the
CDF of estimates.

Tl —

{5 Supervised
ESVM Supervised
=== {5 MoCo
—— ESVM MoCo
=== {5 BYOL
—— ESVM BYOL
{5 SimCLR
ESVM SimCLR
{5 DINO
ESVM DINO

Frac. of CIFAR-10 Misclassified

| | | | | |
200 400 600 800 1,000 1,200
Number of Training Samples Mislabeled

Figure 9: We estimate data mislabel support for 100 random CIFAR-10 test samples and plot the
CDF of estimates.

A.3.1 SELF-SUPERVISED IMAGENET FEATURES

We also consider using ImageNet features from MoCo v3 Chen et al. and DINO Caron et al. (2021)
to estimate data removal support in fig. 10. We use publicly available MoCo v3 and DINO check-
points from the viss1 library’s model zoo Goyal et al. (2021). It is worth noting that this approach
places significant emphasis our primary hypothesis, which asserts the importance of visual similar-
ity in data attribution. Utilizing ImageNet features means that the dataset, architecture, and learning
objectives are completely different from the system we are trying to attribute predictions for: a
ResNet-9 trained normally on CIFAR-10. This is in contrast to our main method (ESVM MoCo)
which utilizes a ResNet-18 architecture and the CIFAR-10 dataset.

A.4 ADDITIONAL JUSTIFICATION FOR CHOSEN SUBSET OF TRAIN IMAGES
For a target sample z;, data attribution approaches rank the training samples based on decreasing

order of positive influence on z;. For our method, a design choice was whether to rank training
samples from all classes or from a selected subset of the training data. One reasonable subset was

15

el
(3]
<
2 —— ESVM MoCo
204~ —— ImageNet MoCo v3
E ImageNet DINO
%'
=02
o /
kS =
g
i3
0 _

| | | | | |
0 200 400 600 800 1,000 1,200

Number of Training Samples Removed

Figure 10: ImageNet features from MoCo v3 and DINO are able to perform very well despite using
different architecture (i.e. ViT), dataset (i.e. ImageNet), and learning objectives (i.e. SSL) from the
system that we are trying to attribute predictions for: a ResNet-9 trained normally on CIFAR-10.

to select training samples from the same class as the target test sample. In fig. 11, we show that
selecting from the same class is more effective when estimating britteness scores. We maintain this
choice for all our experiments.

0.3 -
o]
()
<
E —— Same Class
522 0.2 - All
=
%
&
501
G
o
o
s
e
0

| | | | | |
0 200 400 600 800 1,000 1,200

Number of Training Samples Removed

Figure 11: Choosing removal support from all training images is less effective than selecting from
the same class as the target image.

A.5 ADDITIONAL JUSTIFICATION FOR DISTANCE FUNCTION

In section 3, we describe choices for measuring similarity of embeddings: Euclidean distance, cosine
distance, and our selection of Exemplar SVM. However, there are a range of other metrics that have
been evaluated in prior work. By no means have we exhausted the space of possible metrics, but it
relevant to look at recommendations by related work.

16

A.5.1 GRADIENT COSINE SIMILARITY

() define a set of tests that a similarity metric should satisfy and find that gradient
cosine similarity (Grad-Cos) is the only one that passes all tests. Given that Grad-Cos is their overall
recommendation for measuring similarity, we evaluate data removal support on CIFAR-10 in fig.
Note that unlike other methods considered, we do not filter images to be of the same class as the
target because Grad-Cos already provides a higher ranking to images from the same target class.
While we find that Grad-Cos is better than ESVM comparison of supervised features, it still lags
behind our main method (ESVM MoCo) from section 3. Interestingly, in the low data support
regime, where fewer than 200 training samples can be removed to misclassify, Grad-Cos is more
effective than ESVM MoCo.

b
Rk —— ESVM MoCo
2 04~ = Grad-Cos
E ESVM Supervised
:
= 0.2 -
@)
(3
)
g
[
O _

|
0 200 400 600 800 1,000 1,200

Number of Training Samples Removed

Figure 12: While comparing images with Gradient Cosine Similarity (using a supervised ResNet-9)
is better than ESVM on supervised features, it still lags behind our main method (ESVM MoCo).

A.5.2 HUMAN VISUAL SIMILARITY & DREAMSIM

() study perceptual metrics and find that large vision models like OpenCLIP

() and DINO () are more aligned with human perceptual judgements than
other learned metrics like LPIPS () and DISTS (). They further
improve performance of OpenCLIP and DINO by finetuning with LoORA () on a dataset

of human two-alternative forced choice (2AFC) judgments, called NIGHTS. The best approach on
the dataset uses an ensemble of DINO, CLIP, and OpenCLIP features and is called DreamSim.
While the ensemble gets 96.2% accuracy on NIGHTS, only utilizing OpenCLIP (with LoRA) gets
95.5% and is 3x faster. Hence, we use this metric in our data removal support evaluation. Here,
we also select images from the same training class. In fig. 13, for every target image, we select
the closest training images according to DreamSim to remove. Surprisingly, DreamSim does not
improve over our approach using ESVM MoCo.

A.6 COMPUTING DATA SUPPORT

We use bisection search to estimate data support. The use of bisection search is supported by the
observation that several data attribution approaches are additive (), where the impor-
tance of a subset of training samples is defined as the sum of each of the samples in the subset. To
compute data removal support, we remove M samples (chosen using each attribution method) from
the training data and log whether the resulting model misclassifies the target sample. For data mis-
labeling support, we mislabel M samples (chosen using each attribution method) from the training
data and assign a new label corresponding to the highest incorrect logit.

A detailed summary of our bisection search is in algorithm I. A key step is
CounterfactualTest(f, S, It [: M]) which returns the average classification of Nies indepen-

17

B

< 0.5 -

& —— ESVM MoCo
é 0.4 - —— DreamSim
o

= 0.3 -

=

o

T 0.2~

G

5)

S 0.1

i3

| | | | | |
0 200 400 600 800 1,000 1,200
Number of Training Samples Removed

Figure 13: We use DreamSim (OpenCLIP-ViTB/32) to select data removal support on CIFAR-10.

dent training runs where fy is trained on the subset R = {z;|z; € Sandi ¢ Ly, [0 M]}. In other
words, for computing data removal support, fy is trained on a subset of .S that does not include the
first M indices of I.i,. For computing mislabeling data support, the only difference is that rather
than removing the first M indices of I.,, we relabel those samples with the class of the highest
incorrect-class logit, following [lyas et al. (2022).

Algorithm 1 Bisection Search for Computing Data Support

Input: Target sample, z; = (x4, ;)

Input: Training set, .S, and a list of top k training set indices I, ordered by the attribution method
7(2,9)

Input: Model fy

Input: Search budget, Nyudget

Input: Number of times to test classification, Nyest

Output: Ngupport, size of the smallest training subset & C S such that fy misclassifies z; on
average

1:. L+ 0
H | Lt
M+ H
Cavg < CounterfactualTest(f, S, Inter[: M])
if C,vg > 0.5 then
return -1 > Nsupport 18 larger than &k
end if
: Nsupport «~ M
9: while Nyyqger > 0 do
10: Nbudget — Nbudget -1
11: M+« (L+H)/2
12: Cavg < CounterfactualTest(f, S, e [: M])
13: if Cavg > 0.5 then

AN AN S ol

14: L+ M

15: else

16: H«— M

17 Nsupport < min(M7 Nsupport)
18: end if

19: end while
20: return Ng,pport

18

Table 2: Our baseline approach transfers well across diverse architectures, suggesting the role
of data in counterfactual estimation is large. We evaluate AUC for data removal support when
transferring attribution scores to different architectures. We use attribution scores for TRAK and
DataModels using the ResNet-9 backbone. For our approach, we use the ResNet-18 backbone. The
number of models used by each method is shown in parentheses.

Ours | TRAK | Datamodels | Datamodels
€))] (100) (50K) (300K)
ResNet-9 \ 0.313 \ 0.355 \ 0.381 \ 0.708
ViT 0.478 | 0.251 0.300 0.474
SwinT 0.517 | 0.347 0.303 0.495
MLP-Mixer | 0.506 | 0.315 0.304 0.455
ConvMixer | 0.324 | 0.302 0.337 0.645

For bisection search across all attribution methods, we use a search budget of 7. For the CIFAR-
10 data brittleness metrics, we aggregate predictions over 5 independently trained models. Thus, to
evaluate a single validation sample, we train 35 models (7 budget x 5 models) for a total of 3500 (35
x 100 samples) models for a data brittleness metric. On ImageNet, we don’t aggregate predictions
and only train a single model. Hence, to evaluate a single validation sample on Imagenet, we train
7 models per sample, and a total of 210 models for evaluating a data brittleness metric. Due to the
large training cost on ImageNet, we only show results for data removal support. We explicitly point
out that these costs are incurred only for analysis of these data attribution methods (see section 2).
Our attribution approach is in comparison, extremely cheap to compute.

B TRANSFER TO OTHER DIVERSE ARCHITECTURES

In Table 2, we perform additional experiments on CIFAR-10, transferring the attribution scores to
diverse architectures. We report the AUC for data removal estimates. Data removal estimation
is computationally intensive and can require training thousands of models. Finding fast-to-train,
performant architectures on CIFAR-10 that aren’t convolution-based is difficult. We use the same
evaluation setup, as Section and modify the number of epochs to 50 for all architectures except
ConvMixer. We also change the learning rate schedule for all models except ConvMixer for faster
convergence. ConvMixer gets over 90% accuracy, and other models get 80-85% test accuracy with
the same setup. We don’t include results on MLP-based models, since the architectures we tried,
achieved less than 70% CIFAR-10 test accuracy. Our proposed approach performs well across
diverse architectures, outperforming all approaches including Datamodels with 300K models on
ViT, Swin-Transformers, and MLPMixer. On ConvMixer, our approach performs nearly as well as
Datamodels (50K). These results further suggest there exists an inherent form of data brittleness,
independent of the model architecture and our proposed method can identify it effectively.

19

	Introduction
	Background
	Evaluating Attribution Methods
	Baselines

	Our Approach
	Data Brittleness Estimation
	Experimental Setup
	CIFAR-10
	ImageNet
	Transfer to a different architecture?

	Discussion
	Linear Datamodeling Score
	Role of Visual Similarity

	Other Related Works
	Limitations
	Conclusion
	Appendix
	Compute Time and Storage Requirements
	Training setup
	Additional Self-Supervised Features
	Self-Supervised ImageNet Features

	Additional Justification for Chosen Subset of Train Images
	Additional Justification for Distance Function
	Gradient Cosine Similarity
	Human Visual Similarity & DreamSim

	Computing Data Support

	Transfer to other diverse architectures

