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ABSTRACT

In this paper, we study high-dimensional covariance matrix estimation over a
network of interconnected agents, where the data are distributed and may exhibit
heavy-tailed behavior. To address this challenge, we propose a new estimator
that integrates the Huber loss to mitigate outliers with a non-convex regularizer
to promote sparsity. To the best of our knowledge, this is the first framework
that simultaneously accounts for high dimensionality, heavy tails, and distributed
data in covariance estimation. We begin by analyzing a proximal gradient descent
algorithm to solve this non-convex and non-globally Lipschitz smooth problem in
the centralized setting to set the stage for the distributed case. In the distributed
setting, where bandwidth, storage, and privacy constraints preclude agents from
directly sharing raw data, we design a decentralized algorithm aligned with the
centralized one, building on the principle of gradient tracking. We prove that, under
mild conditions, both algorithms converge linearly to the same solution. Moreover,
we establish that the resulting covariance estimates attain the oracle statistical rate
in Frobenius norm, representing the state of the art for high-dimensional covariance
estimation under heavy-tailed distributions. Numerical experiments corroborate
our theoretical findings and demonstrate that the proposed estimator outperforms
existing baselines in both estimation accuracy and robustness.

1 INTRODUCTION

Covariance matrix estimation is a fundamental problem in multivariate data analysis, with wide-
ranging applications in fields such as machine learning (Jolliffe, 2002), biology (Schäfer & Strimmer,
2005), and finance (Markowitz, 1952). In many practical scenarios, the dimension of the covariance
matrix can far exceed the number of samples. For example, in functional genomics, gene expression
microarray studies often involve estimating a covariance matrix for tens of thousands of genes based
on only a few hundred samples (Schäfer & Strimmer, 2005). However, in high-dimensional settings
where d/N → ∞, the sample covariance matrix performs poorly, leading to significant challenges in
downstream tasks (Bai & Yin, 2008). Consequently, accurate estimation of covariance matrices in
high dimensions has become an active and important area of research.

A widely adopted assumption in high-dimensional covariance matrix estimation is sparsity, i.e., most
off-diagonal entries are close to zero, which significantly reduces the number of parameters to estimate
(Bickel & Levina, 2008). This assumption also enhances interpretability in many applications. For
example, in portfolio analysis, once common factors are removed, stocks from unrelated sectors
typically exhibit near-zero marginal correlations (Fan et al., 2013). Sparse covariance estimation has
been extensively studied; see Pourahmadi (2013); Fan et al. (2016); Lam (2020); Wei & Zhao (2023)
for comprehensive overviews. Among existing methods, applying an ℓ1 penalty to promote sparsity
is well established and achieves the minimax optimal statistical rate (Xue et al., 2012; Rothman,
2012). However, while the ℓ1 penalty encourages sparsity, it introduces estimation bias (Fan & Li,
2001; Fan et al., 2016). To address this issue, non-convex penalties such as smoothly clipped absolute
deviation (SCAD) (Fan & Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010) have been
proposed. These methods preserve the sparsity-inducing effect of the ℓ1 penalty for small coefficients
while reducing shrinkage on large coefficients, thereby mitigating bias. Recently, Wei & Zhao (2023)
applies non-convex penalties to sparse covariance estimation and shows that, under (sub-)Gaussian
assumptions, the resulting estimator attains the oracle rate.
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In many modern applications, data are collected independently by multiple agents, such as geograph-
ically dispersed sensors, satellites in different orbits, or institutions across continents (Xia et al.,
2025). Due to communication and storage overhead, privacy concerns, and regulatory constraints,
transmitting distributed data to a central processor can be inefficient or even infeasible (Bertsekas &
Tsitsiklis, 2015; Boyd et al., 2011; Nedić et al., 2018). For example, agents may be unwilling to share
private data in collaborative research among laboratories (Forero et al., 2010), and low-power devices
are often restricted to communicate only with physically nearby neighbors in wireless networks
(Predd et al., 2009). These challenges underscore the need for distributed estimation methods that
enable network-wide analysis while preserving data locality and privacy (Maros & Scutari, 2022; Ji
et al., 2023; Xia et al., 2025). Moreover, many practical datasets may follow heavy-tailed distributions
or contain outliers. For instance, return distributions in finance usually exhibit power-law behavior
(Cont, 2001), and measurement limitations, e.g., in biological imaging, often lead to heavy-tailed
noise (Fan et al., 2021). Consequently, numerous robust estimation methods have been developed
to address these challenges (Huber & Ronchetti, 2011; Maronna et al., 2019). A representative
strategy treats each entry of the covariance matrix as a location parameter and estimates it using
robust techniques such as Huber’s M-estimator (Huber, 1964). Compared to the traditional squared
loss, the Huber loss adopts a quadratic form for small residuals and a linear form for large residuals,
thereby limiting the influence of outliers while maintaining convexity and smoothness.

To address the aforementioned challenges, we study robust sparse covariance matrix estimation
in a distributed setting, where data samples are spread across networked agents and may exhibit
heavy-tailed behavior. Specifically, our main contributions are as follows:

• New problem formulation. We propose a novel covariance matrix estimation problem as
the minimization of a Huber loss combined with a log-determinant barrier and a non-convex
penalty, which is the first framework that simultaneously handles the high-dimensional,
heavy-tailed, and distributed setting in covariance matrix estimation. The resulting problem
is non-convex and non-globally Lipschitz smooth, and the lack of access to data from other
agents further complicates the estimation task in the distributed setting.

• Algorithmic design and convergence analysis. We develop both centralized and decentral-
ized single-loop algorithms for the proposed problem. In the centralized case, we introduce
a proximal gradient method, which serves as the foundation for the distributed setting. In
the decentralized case, we integrate proximal gradient updates with the gradient tracking
scheme (Di Lorenzo & Scutari, 2016). We show that, under mild conditions, both algorithms
converge linearly to the same estimate, and that the convergence rate of the decentralized
algorithm differs from its centralized counterpart only by constant factors.

• Sharp statistical guarantees. We prove that both the decentralized and centralized algo-
rithms attain an oracle statistical rate O(

√
s/N) in Frobenius norm (s is the sparsity level and

N is the sample size), which is the state-of-the-art statistical guarantee for high-dimensional
covariance estimation under heavy-tailed distributions. We validate the theoretical find-
ings through numerical experiments, demonstrating that our method outperforms baseline
methods in terms of both estimation accuracy and robustness.

2 RELATED WORK

Covariance estimation under heavy tails. In the work of Fan et al. (2016), each entry of the
covariance matrix is estimated using Huber’s M-estimator under the assumption of zero-mean data.
For the unknown-mean case, Avella-Medina et al. (2018) apply Huber’s M-estimator elementwise
to estimate the first and second moments separately and then combines them to construct a robust
covariance estimator. To avoid the potential accumulation of errors introduced by separately esti-
mating and combining moments, Ke et al. (2019) propose using pairwise differences to eliminate
the mean effect directly. Under the assumption of finite fourth moments, these Huber-loss-based
estimators are shown to achieve optimal deviation bounds. Beyond Huber-based approaches, several
other elementwise estimators have been developed based on robust location estimation (e.g., trunca-
tion (Ke et al., 2019), median-of-means (Avella-Medina et al., 2018; Ke et al., 2019)), robust scale
estimation (e.g., median absolute deviation (Gnanadesikan & Kettenring, 1972), interquartile range
(Lu et al., 2021)), and combined first- and second-moment estimation (e.g., rank-based methods (Liu
et al., 2012; Xue & Zou, 2012; Avella-Medina et al., 2018)). Furthermore, M–estimators based on
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the Mahalanobis distance with different robust functions (e.g., Tyler’s M–estimator (Tyler, 1987),
Maronna’s M–estimator (Maronna, 1976), the minimum volume ellipsoid estimator (Rousseeuw,
1985), the minimum covariance determinant estimator (Rousseeuw & Driessen, 1999), S–estimator
(Davies, 1987)), and estimators combining projection pursuit with one-dimensional robust scale
estimation (Donoho, 1982; Li & Chen, 1985) have also been considered.

Sparse covariance estimation under heavy tails. Existing robust sparse covariance matrix estima-
tors are generally based on two-stage procedures: they first construct a robust covariance estimate
and then enforce sparsity through hard or soft thresholding. For example, Avella-Medina et al.
(2018) employ Huber’s M-estimator, the mean-of-medians, and rank-based methods to obtain robust
covariance estimates, followed by hard thresholding to induce sparsity, and subsequently projects
the result onto the positive semidefinite cone. Under the finite fourth-moments assumption, both
Huber’s M-estimator and rank-based methods achieve the minimax rate, while the mean-of-medians
further requires finite sixth moments. For Huber’s M-estimator, Li et al. (2023) introduce soft
thresholding combined with a positive-definiteness constraint to simultaneously promote sparsity
and ensure positive definiteness, and further establishes support recovery rates and sign consistency
for compositional data. The work of Goes et al. (2020) combines Tyler’s M-estimator with hard
thresholding and achieves the minimax rate under elliptical distribution assumptions. Similarly, Lu
et al. (2021) use the interquartile range and soft thresholding to construct a robust sparse covariance
estimator and prove the minimax rate under pair-elliptical models. In contrast to these two-stage
procedures, Chen et al. (2018) propose a one-step estimator based on maximizing matrix depth,
which simultaneously achieves robustness and sparsity; however, this approach currently lacks a
polynomial-time algorithm for practical implementation. Notably, none of the existing robust sparse
covariance estimation methods have been shown to attain the oracle statistical rate O(

√
s/N).

Distributed covariance estimation. Research on distributed covariance matrix estimation remains
limited, with most existing efforts focused on precision (inverse covariance) matrix estimation.
When a central server is available, divide-and-conquer approaches have been applied to the debiased
graphical lasso (Nezakati & Pircalabelu, 2023), debiased CLIME (Xu et al., 2016), and D-trace
loss penalized lasso (Wang & Cui, 2021) to obtain high-dimensional precision matrix estimates.
In particular, Xu et al. (2016) and Wang & Cui (2021) incorporate rank-based methods to derive
robust covariance estimates with favorable statistical properties under the trans-elliptical model
and a finite number of agents. The work of Dong & Liu (2024) removes the constraint on the
number of agents by iteratively solving the D-trace loss penalized lasso through communication
with a central server. However, a common limitation of these methods is the lack of guarantees on
positive definiteness, which can lead to invalid covariance estimates. To address this, Xia et al. (2025)
propose a decentralized graphical lasso algorithm that eliminates the need for a central processor
and ensures both linear convergence and positive definiteness. Nonetheless, this method relies on
(sub-)Gaussian assumptions and does not guarantee sparsity in the estimated covariance matrix. Xia
et al. (2024) directly impose an ℓ1 penalty on the covariance matrix under the Gaussian maximum
likelihood framework. However, this method still relies on the (sub-)Gaussian assumption, achieves
only sublinear convergence, and lacks statistical guarantees.

3 PROBLEM FORMULATION

We study the estimation problem where data are distributed across a network of m agents. The
network is modeled as a time-invariant undirected graph G = (V, E), where V = {1, . . . ,m} denotes
the set of agents and E the set of communication links. For each agent i, its neighborhood is defined
as Ni = {j | (i, j) ∈ E} ∪ {i}. The interactions among agents are encoded in a weight matrix
W ∈ Rm×m. We impose the following assumptions on the network.
Assumption 1 (Nedić et al. (2018)). The network G and the weight matrix W satisfy the following
conditions: (a) G is connected; (b) W is compliance with G, i.e., Wij > 0 if j ∈ Ni, otherwise
Wij = 0; (c) W is doubly stochastic, i.e., W = W⊤ and W1 = 1.

Assumption 1 implies that each agent is only allowed to exchange information with its neighbors,
which is standard in the distributed optimization literature and widely adopted in practical applications.
See Cattivelli & Sayed (2009) for representative examples of weight matrices W that satisfy this
assumption. Note that our network setting is allowed to be fully decentralized, as Assumption 1

3
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does not require the presence of a central coordinator. Let ρ = ∥W − J∥2, where J = 1
m11⊤.

Assumption 1 guarantees that ρ ∈ [0, 1) (Sun et al., 2022a). The parameter ρ characterizes the
connectivity of the network G: as ρ → 0, the graph G becomes increasingly connected; as ρ → 1, it
approaches a disconnected topology.

Let x be a zero-mean d-dimensional random vector. We assume that each component xk, for
k = 1, . . . , d, possesses a finite fourth moment. This assumption, which is standard in robust
covariance matrix estimation (Rothman et al., 2009; Avella-Medina et al., 2018; Ke et al., 2019),
accommodates heavy-tailed distributions of x and is formally stated below.

Assumption 2. For all k = 1, . . . , d, we have E
(
|xk|4(1+ν)

)
≤ σ2(1+ν) < +∞, where σ > 0

provides a uniform bound on moments, and ν > 0 determines the order of the moment that is finite.

A commonly used loss function in robust estimation is the Huber loss, formally defined as follows.

Definition 1 (Huber loss (Huber, 1964)). The Huber loss function, denoted as h, is defined as

h (x) =

{
1
2x

2, |x| ≤ a,

a |x| − 1
2a

2, |x| > a,
(1)

where a > 0 is the robustification parameter.

In contrast to the conventional squared loss, the Huber loss down-weights extreme outliers, thereby
offering enhanced robustness. Notably, the Huber loss mediates between the squared and absolute
error loss functions: in the limit as a → +∞, the Huber loss recovers the squared loss, whereas as
a → 0, it approximates the absolute loss.

Let {xj}Nj=1 be N independent and identically distributed observations that are stored over m

agents. We assume the total sample size N is much smaller than the feature dimension d in the high-
dimensional estimation regime. Without loss of generality, we assume that each agent i ∈ {1, . . . ,m}
holds a local subset {xj}j∈Ji

of n observations, where the index sets {Ji}mi=1 are disjoint and satisfy⋃m
i=1 Ji = {1, 2, . . . , N} and |Ji| = n, so that N = mn. We formulate the following optimization

problem for distributed sparse covariance matrix estimation:

minimize
Σ⪰0

1

m

m∑
i=1

Hi (Σ)− τ log det (Σ) + P (Σ) , (2)

where

Hi (Σ) =
1

n

∑
j∈Ji

d∑
k=1

d∑
l=1

h (Σkl − xjkxjl) and P (Σ) =

d∑
k=1

d∑
l=1,l ̸=k

pλ (Σkl) . (3)

Hi is the Huber loss for agent i based on its local dataset, the log-determinant barrier term, with τ > 0,
ensures the solution to be positive definite, and P introduces sparsity on the off-diagonal elements
of Σ with the elementwise penalty function pλ being non-convex and decomposable. Problem 2 is
non-convex due to the penalty P . On the penalty function pλ, we impose the following assumption.

Assumption 3 (Regularity condition on pλ). The elementwise penalty function pλ : R → R can be
decomposed as pλ (x) = λ |x|−q (x), where q is a convex function. Besides, the following conditions
are satisfied: (a) there exists a constant b ≥ 0 such that p′λ (x) = 0 for |x| ≥ bλ; (b) q is symmetric,
i.e., q (x) = q (−x) for any x; (c) q and q′ pass through the origin, i.e., q (0) = q′ (0) = 0; (d) q′ is
bounded, i.e., |q′ (x)| ≤ λ for any x; (e) there exist a constant Lq ≥ 0 such that for any x1 and x2,
we have 0 ≤ (q′ (x1)− q′ (x2))/(x1 − x2) ≤ Lq .

Compared with the commonly used ℓ1 penalty λ|x| (Tibshirani, 1996), the function pλ(x) in As-
sumption 3 can be viewed as the ℓ1 norm minus a convex function. This construction reduces the
penalty on large coefficients, thereby mitigating the estimation bias of ℓ1, while still preserving its
sparsity-inducing property. Condition (a) ensures that pλ(x) remains constant for |x| ≥ bλ, and
condition (e) regulates the curvature of the convex function q through the parameter Lq . A number of
popular sparse regularizers satisfy Assumption 3, including the SCAD penalty (Fan & Li, 2001) and
MCP (Zhang, 2010).
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Since the dataset is stored locally, agent i can only access its own loss function Hi and thus cannot
solve 2 independently. In addition, the objective function is non-convex and non-globally Lipschitz
smooth, which further increases the difficulty of optimization. In this paper, our goal is to design an
algorithm that computes an estimator while avoiding exchange of local data to solve problem 2.

4 WARM-UP: ROBUST SPARSE COVARIANCE MATRIX ESTIMATION

Before introducing the decentralized algorithm for solving problem 2, we first present a centralized
optimization algorithm under the setting where all data are aggregated on a single server, and establish
its theoretical convergence guarantees, which serve as a benchmark for the distributed setting.

Proximal gradient algorithm. According to As-
sumption 3, the regularizer P (Σ) can be writ-
ten as P (Σ) = λ ∥Σ∥1,off − Q (Σ), where

Q (Σ) =
∑d

k=1

∑d
l=1,l ̸=k q (Σkl). Let F (Σ) =

1
m

∑m
i=1 Hi (Σ) − τ log det (Σ) − Q (Σ). A stan-

dard approach for solving problem equation 2 is the
proximal gradient method, as summarized in Algo-
rithm 1. At each iteration t, the estimate is updated
according to

Algorithm 1 Robust Sparse Covariance Ma-
trix Estimation
given Σ(0) ⪰ 0, γ > 0, t = 0
while not converge, do

Σ(t+1) = STλ
γ

(
Σ(t) − 1

γ∇F
(
Σ(t)

))
t = t+ 1

end while
return Σ(t).

Σ(t+1) ∈ arg min
Σ≻0

{
F
(
Σ(t)

)
+
〈
∇F

(
Σ(t)

)
,Σ−Σ(t)

〉
+

γ

2

∥∥∥Σ−Σ(t)
∥∥∥2
F
+ λ ∥Σ∥1,off

}
, (4)

where γ > 0 is the step size. The combination of the positive definiteness constraint and the ℓ1 penalty
in equation 4 precludes a closed-form solution. By relaxing the positive definiteness requirement, the
update reduces to a simple soft-thresholding step: Σ(t+1) = STλ

γ

(
Σ(t) − 1

γ∇F
(
Σ(t)

))
, where

for any matrix X ∈ Rd×d and threshold ω > 0, STω (X) is defined elementwise as [STω (X)]ij =

sign (Xij)max {|Xij | − ω, 0} for i ̸= j, and [STω (X)]ii = Xii for i = j. As we will show in
the next subsection, with an appropriate choice of γ, the iterates Σ(t) remain positive definite for
all t. Consequently, Algorithm 1 eliminates the need for a costly optimization subroutine to solve
equation 4 at each iteration.

Convergence analysis. We now present the convergence guarantee of Algorithm 1.
Theorem 1 (Convergence property of Algorithm 1). Suppose Assumption 3 holds for problem 2.
Define constants r ≥ r > 0 as the two roots of the following equation in variable y:

ay − τ log y + (d− 1)
(
τ − τ log

τ

a

)
− a

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
a2d2 − L

(
Σ(0)

)
= 0,

where L denotes the objective function in problem equation 2, and Σ(0) is any initialization for
Algorithm 1. Denote the condition number κ = L/µ > 1 with L = 1 + 4τr−2 and µ = τ

(
r +

r/2
)−2 − Lq. Suppose that r + r/2 <

√
τ/Lq, then the sequence

{
Σ(t)

}
from Algorithm 1 with

step size parameter γ ≥ max
{
2
(
ad+ τ

√
d/r + 2λd

)
/r, L

}
, satisfies rI ⪯ Σ(t) ⪯ rI for all t,

and the following linear convergence rate holds:∥∥∥Σ(t) − Σ̂
∥∥∥2
F
≤ C1

(
1− 1

C2κ

)t

,

where Σ̂ is the unique minimizer of problem 2 in the set
{
Σ | 0 ⪯ Σ ≺

√
τ/LqI

}
, C1 =∥∥Σ(0) − Σ̂

∥∥2
F

, and C2 = γ/L.

Theorem 1 implies that if the largest eigenvalue of the initialization Σ(0) is smaller than
√

τ/Lq,
then the sequence Σ(t) generated by Algorithm 1 converges linearly to the unique solution Σ̂ of
problem equation 2, with a rate of O (1− 1/(C2κ)). Moreover, with an appropriately chosen step
size γ, the iterates Σ(t) remain positive definite throughout, even without explicitly enforcing the
positive definiteness constraint.

5
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Algorithm 2 Robust Sparse Covariance Matrix Estimation over Networks

given Σ
(0)
i ≻ 0, Y(0)

i = ∇Fi

(
Σ

(0)
i

)
, for i = 1, . . . ,m, W, γ > 0, θ ∈ (0, 1], t = 0

while not converge, each agent i do

Σ
(t+ 1

2 )
i = STλ

γ

(
Σ

(t)
i − 1

γY
(t)
i

)
(Local optimization)

Σ
(t+1)
i =

m∑
j=1

Wij

(
Σ

(t)
j + θ

(
Σ
(t+ 1

2 )
j −Σ

(t)
j

))
(Variable tracking) (6)

Y
(t+1)
i =

m∑
j=1

Wij

(
Y

(t)
j +∇Fj

(
Σ

(t+1)
j

)
−∇Fj

(
Σ

(t)
j

))
(Gradient tracking) (7)

t = t+ 1
end while
return Σ

(t)
i , for i = 1, . . . ,m.

5 ROBUST SPARSE COVARIANCE MATRIX ESTIMATION OVER NETWORKS

In this section, we propose an efficient decentralized algorithm to solve problem equation 2 over a
network, and provide a convergence analysis.

Distributed proximal gradient with tracking algorithm. In a distributed estimation setting, each
agent lacks access to the global objective in problem equation 2 and thus cannot solve it indepen-
dently. To address this challenge, we propose a distributed optimization algorithm, summarized in
Algorithm 2, which extends Algorithm 1 to decentralized networks via a gradient tracking scheme
(Di Lorenzo & Scutari, 2016; Nedic et al., 2017; Xu et al., 2017; Sun et al., 2022b). Algorithm 2
iteratively repeats two stages: local optimization and information mixing, progressively driving each
local copy to approximate the true global information.

LOCAL OPTIMIZATION. For each agent i = 1, . . . ,m, define the local objective function as
Fi (Σ) = Hi (Σ)− τ log det (Σ)−Q (Σ). Let Σi denote the local estimate of Σ and let Yi denote
the local auxiliary variable that aims to asymptotically track the global gradient 1

m

∑m
i=1 ∇Fi (Σi).

Similar to proximal gradient method, the local optimization step for agent i at iteration t is given by

Σ
(t+ 1

2 )
i ∈ arg min

Σi≻0

{
Fi

(
Σ

(t)
i

)
+
〈
Y

(t)
i ,Σi −Σ

(t)
i

〉
+

γ

2

∥∥∥Σi −Σ
(t)
i

∥∥∥2
F
+ λ ∥Σ∥1,off

}
. (5)

Compared to the centralized update in equation 4, the local optimization step in equation 5 replaces
the inaccessible global variable and gradient with locally maintained auxiliary variables. Similar to

Section 4, we solve equation 4 using a soft-thresholding operation: Σ(t+ 1
2 )

i = STλ
γ

(
Σ

(t)
i − 1

γY
(t)
i

)
.

As in the centralized case, we will later show that, with a properly chosen step size 1
γ , the positive

definiteness constraint is automatically satisfied.

INFORMATION MIXING. After local optimization, each agent i collects information from its
neighbors and updates both Σi and Yi according to equation 6 and equation 7, where the weights
Wij are defined in Assumption 1 and θ ∈ (0, 1] is a step size parameter. Under Assumption 1, each
update corresponds to a weighted average of the auxiliary variables received from Ni.

Convergence analysis. We now present the convergence property of Algorithm 2.

Theorem 2 (Convergence property of Algorithm 2). Suppose Assumptions 1 and 3 hold for problem 2.
Define constants r ≥ r > 0 and e > 0, which depend on the object function L and the initialization{
Σ

(0)
i

}m
i=1

; the explicit dependencies are detailed in the proof. Denote the condition number

κ = L/µ > 1 with L = 1 + 4τr−2 and µ = τ
(
r + r/2

)−2 − Lq. Suppose that r + r/2 <
√

τ/Lq

and the network connectivity parameter ρ satisfies ρ ≤
((√

κ2 + (12κ− 2) (κ− 1)−κ
)
/(6κ−1)

)2
,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

then the sequence
{
Σ

(t)
i

}m
i=1

from Algorithm 2 with step size parameters

γ ≥ max

2r−1


√√√√m

(
ad+

√
dτ

r
+ λd

)2

+ e+ λd

 , L+
48L2m

√
ρ

µ (1− ρ)
2

 , (8)

θ ≤ min


(√

L2

16
+ 32Lγ

(
ρ2(1 + ρ2)

(1− ρ2)2
+ 4

ρ4(1 + ρ2)2

(1− ρ2)4

)
+

L

4

)−1

γ, 1

 , (9)

satisfies rI ⪯ Σ
(t)
i ⪯ rI for all i and t, and the following linear convergence rate holds:

m∑
i=1

∥∥∥Σ(t)
i − Σ̂

∥∥∥2
F
≤ C ′

1

(
1− 1

C ′
2κ

)t

, (10)

where Σ̂ is the unique solution of problem 2 in the set
{
Σ | 0 ⪯ Σ ≺

√
τ/LqI

}
, C ′

1 is a constant

related to
{
Σ

(0)
i

}m
i=1

, and C ′
2 = 2γ/((2− ρ) θL).

Theorem 2 implies that the sequences
{
Σ

(t)
i

}
, for all i = 1, . . . ,m, generated by Algorithm 2

converge to Σ̂ and reach consensus with a linear rate. Note that Σ̂ is the unique solution to problem
2 when Σ ≺

√
τ/LqI. Hence, Algorithm 2 can obtain the same solution as Algorithm 1. In the

distributed estimation setting, the linear convergence rate of Algorithm 2 is influenced by the network
connectivity. In particular, as indicated by equation 8, equation 9, and equation 10, a smaller value of
ρ (corresponding to stronger network connectivity) leads to a smaller lower bound on γ and a larger
upper bound on θ, thereby accelerating convergence. Moreover, from the expression of C ′

2, a smaller
ρ directly contributes to a faster convergence rate.

6 STATISTICAL GUARANTEE

In this section, we analyze the statistical estimation performance of Σ̂, the estimator produced by
Algorithms 1 and 2. We assume that the true covariance matrix Σ⋆ ≻ 0 of x is s-sparse; that is, it
contains at most s nonzero entries. Let S = supp (Σ⋆) denote the support of Σ⋆. We establish a
nonasymptotic bound on the estimation error

∥∥Σ̂−Σ⋆
∥∥
F

.
Theorem 3 (Statistical guarantee). Suppose Assumptions 2 and 3 hold for problem 2. Define
K = max

{
σ2, (2σ)

2(1+ν)} and µ0 ∈ (0, 2) and choose parameters satisfying

a = ca

√
KN

log d
, τ ≤ cτ min

{∥∥∥((Σ⋆)
−1
)
S

∥∥∥−1

F

√
s

N
,
∥∥∥(Σ⋆)

−1
∥∥∥−1

max

√
log d

N

}
,

λ = cλ

((√
6 + 2ca +

1

ca

)√
K + cτ

)√
log d

N
, b ≤ λ−1 |Σ⋆

kl| , ∀ (k, l) ∈ S, Lq ≤ cqµ0√
s
,

where ca > 0, cτ > 0, cλ > 1, and cq ∈ (0,
√
s) are universal constants. If the sample size satisfies

N > max

{
(log d)

1+ 1
ν

c
2(1+ 1

ν )
a K

,
16cN log d

(2− µ0)
2 ,

38cλ

µ0ca
√
K

((√
6 + 2ca +

1

ca

)√
K + cτ

)√
s log d

}
,

where cN > max{1, 1/((2− µ0)c
2
a)} is a universal constant, then with high probability,∥∥∥Σ̂−Σ⋆

∥∥∥
F
≤ Cs

√
s

N
,

where Cs = (β
√
K + cτ )/(µ0 − Lq) with β >

√
2.

Theorem 3 indicates that, under appropriate conditions, the estimator Σ̂ produced by both Algorithms
1 and 2 achieves the oracle rate Σ⋆ with oracle rate O

(√
s/N

)
in Frobenius norm. The oracle rate

refers to the convergence rate of the estimation error that can be achieved by an estimator when the
true support set S is known in advance (Wainwright, 2019). By combining Theorems 1, 2, and 3,
we conclude that both algorithms converge within O(log(1/ε)/ log(1− 1/κ)) iterations to within an
ε-neighborhood of a statistically optimal estimate, attaining an error of order O(

√
s/N).
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Refined convergence rate. In Theorems 1 and 2, the condition number κ depends on r and r̄. Since
these quantities are affected by the initialization, sample size, and dimension, the exact convergence
rate under high-dimensional settings and varying initializations remains unclear. To address this issue,
we leverage Theorem 3 to refine the convergence rates. The resulting rates, reported in Corollaries 1
and 2, are independent of the initialization and better suited to high-dimensional scenarios.
Corollary 1 (Refined convergence rate for Algorithm 1). Suppose Assumptions 2 and 3 hold for
problem 2, and all the conditions in Theorems 1 and 3 are satisfied. Then, for t > T where
T = max

{
0,
⌈
2 log

(
ch/

√
C1

)
/ log

(
1− 1/(C2κ)

)⌉}
, Algorithm 1 converges with a refined rate

∥∥∥Σ(t) − Σ̂
∥∥∥2
F
≤ C3

(
1− 1

C4κr

)t−T

with high probability, where C3 = C1 (1− 1/(C2κ))
T , C4 = γ/(1 + τc4), and κr =

(1 + 4τc4)/(µ0 − Lq). When λmin (Σ
⋆) − a/2 > 0, we have ch = a

2 − ∥Σ̂ − Σ⋆∥F
and c4 = 1/(λmin (Σ

⋆) − a/2)2; when λmin (Σ
⋆) − a/2 ≤ 0, suppose that Cs

√
s/N <

λmin (Σ
⋆) /(12cr), where cr > 1/12, we have ch = λmin(Σ̂) − (12cr − 1)λmin (Σ

⋆) /12cr and
c4 = 144c2r/ ((12cr − 1)λmin (Σ

⋆))
2.

Corollary 2 (Refined convergence rate for Algorithm 2). Suppose Assumptions 1, 2, and 3 hold
for problem 2, and all the conditions in Theorems 2 and 3 are satisfied. Assume that ρ ≤((√

κ2
r + (12κr − 2) (κr − 1)−κr

)
/(6κr−1)

)2
and γ ≥ 1+τc4+48 (1 + τc4)κm

√
ρ/ (1− ρ)

2.

Then, for t > T where T = max
{
0,
⌈
2 log

(
ch/
√

C ′′
3

)
/ log

(
1− 1/(C ′

2κ)
)⌉}

with C ′′
3 a constant

related to
{
Σ

(0)
i

}m
i=1

, Algorithm 2 converges with∥∥∥Σ(t) − Σ̂
∥∥∥2
F
≤ C ′

3

(
1− 1

C ′
4κr

)t−T

with high probability, where C ′
3 = C ′′

3 (1− 1/(C ′
2κ))

T and C ′
4 = 2γ/((2− ρ) θ(1 + τc4)).

Corollaries 1 and 2 show that, after T iterations of Algorithms 1 and 2, the convergence rate depends
on the condition number κr, which is solely determined by λmin(Σ

⋆). In both corollaries, ch is
an interval parameter associated with Σ̂ and Σ⋆, while C1 and C ′′

3 are coefficients related to the
initialization distance from Σ̂. Taking Corollary 1 as an example, when ch ≥ √

C1, we have⌈
2 log

(
ch/

√
C1

)
/ log

(
1− 1/(C2κ)

)⌉
≤ 0. This implies that if the initialization is sufficiently close

to Σ̂, the corollaries apply starting from T = 0.

7 NUMERICAL EXPERIMENTS

In this section, we demonstrate the convergence of the proposed algorithms and assess their estimation
performance on synthetic and real data. We choose MCP as the non-convex penalty function pλ,
and set τ = 0.1 and b = 2 as recommended by Wei & Zhao (2023). We set the initialization
Σ

(0)
i = 0.1I so that Σ(0)

i ≺
√
τ/LqI, where Lq = 0.5 for MCP with b = 2. The parameters a and

λ are selected via five-fold cross-validation. The step size parameters γ and θ are tuned to ensure
the convergence of the algorithm. Specifically, we fix θ = 0.1 and set γ = ηk, where η > 1 and
k is the smallest integer ensuring the convergence of the proposed algorithms. We compare the
performance of the proposed methods with two high-dimensional sparse covariance matrix estimators
(PD_MCP (Wei & Zhao, 2023) and NetGGM (Xia et al., 2025)), as well as several robust sparse
covariance estimators (Adaptive Huber (Avella-Medina et al., 2018), Reg_TME (Goes et al., 2020),
PD_gQNE (Lu et al., 2021), and M-COAT (Li et al., 2023)). The hyperparameters for all baseline
methods are selected according to the procedures described in their respective original references.
We consider two d-dimensional sparse covariance matrix models with d = 100: 1) banded structure:
Σ⋆

ij = 1− |i− j| /10 if |i− j| ≤ 10, otherwise Σ⋆
ij = 0; 2) block structure: The indices 1, 2, . . . , d

are partitioned into 10 ordered groups of equal size with Σ⋆
ij = 1 if i = j, Σ⋆

ij = 0.6 if i and j are in
the same group, otherwise Σ⋆

ij = 0. Moreover, To evaluate robustness under different distributions,
we generate data from three models within the Gaussian scale mixture framework: xi = ϕi

√
Σ⋆ζi,

8
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Table 1: Performance Comparison of Estimators Under Different Distributions
Banded structure Adaptive Huber RegTME PD_gQNE M-COAT PD_MCP NetGGM Proposed

Gaussian NMSE 0.2551(0.0028) 0.2501(0.0022) 0.2145(0.0037) 0.2346(0.0041) 0.1591(0.0021) 0.1833(0.0041) 0.1574(0.0024)
F1-Score 0.3065(0.0001) 0.7339(0.0030) 0.4847(0.0023) 0.5944(0.0026) 0.7601(0.0061) 0.3065(0.0001) 0.7627(0.0073)

t
NMSE 0.2873(0.0033) 0.2795(0.0039) 0.2231(0.0037) 0.2793(0.0021) 0.2491(0.0039) 0.4167(0.0332) 0.2139(0.0047)

F1-Score 0.3065(0.0001) 0.7036(0.0040) 0.5249(0.0041) 0.5096(0.0063) 0.7123(0.0028) 0.3065(0.0001) 0.7390(0.0158)

Laplace NMSE 0.2343(0.0027) 0.2429(0.0032) 0.2089(0.0021) 0.2377(0.0031) 0.2539(0.0023) 0.6734(0.0374) 0.1821(0.0026)
F1-Score 0.3065(0.0001) 0.6847(0.0037) 0.6067(0.0034) 0.4953(0.0016) 0.6720(0.0024) 0.3065(0.0001) 0.7042(0.0101)

Block structure Adaptive Huber RegTME PD_gQNE M-COAT PD_MCP NetGGM Proposed

Gaussian NMSE 0.2503(0.0034) 0.2366(0.0022) 0.2336(0.0039) 0.2223(0.0038) 0.1489(0.0019) 0.2310(0.0027) 0.1442(0.0026)
F1-Score 0.1818(0.0001) 0.8231(0.0034) 0.5386(0.0025) 0.6354(0.0038) 0.8117(0.0079) 0.1818(0.0001) 0.8280(0.0083)

t
NMSE 0.2592(0.0038) 0.2562(0.0044) 0.2541(0.0041) 0.2452(0.0158) 0.2689(0.0017) 0.4952(0.0441) 0.1949(0.0050)

F1-Score 0.1818(0.0001) 0.8697(0.0035) 0.4165(0.0048) 0.5395(0.0117) 0.8499(0.0041) 0.1818(0.0001) 0.8829(0.0053)

Laplace NMSE 0.2235(0.0029) 0.2411(0.0021) 0.2331(0.0029) 0.2610(0.0121) 0.2849(0.0027) 0.6811(0.0425) 0.1735(0.0038)
F1-Score 0.1818(0.0001) 0.7818(0.0029) 0.6165(0.0024) 0.5473(0.0023) 0.7614(0.0029) 0.1818(0.0001) 0.7984(0.0023)
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Figure 1: Convergence of the proposed algorithms on different networks.

i = 1, 2, . . . , N , where ζi ∼ N (0, I) and ϕi is a random variable drawn from one of the following
distributions: 1) Gaussian distribution: ϕi ∼ N (0, 1); 2) t distribution: ϕi =

√
5/νi, where νi ∼ χ2

5
and hence xi ∼ t5 (0,Σ). 3) Laplace distribution: ϕi ∼ Laplace(0, 1). A total of N = 50 samples
are drawn and evenly distributed among m = 25 agents. In the distributed setting, we evaluate
the performance of Algorithm 2 over three different connected, time-invariant undirected networks:
two Erdős–Rényi random graphs (Erdős & Rényi, 1959), where each pair of agents is connected
independently with probability p = 0.9, and p = 0.5, respectively; and a line graph, where agent i
is connected to agent i − 1 and agent i + 1 for i = 2, . . . ,m − 1. The weight matrix W for each
network is constructed using the Metropolis rule (Xiao et al., 2005): Wij = 1/(max (di, dj) + 1) if
i ̸= j and (i, j) ∈ E , Wij = 0 if i ̸= j and (i, j) /∈ E , and Wij = 1−∑i ̸=l Wil if i = j, where di
denotes the degree of agent i.

We first compare the estimation performance of the proposed method with several baselines. The
performance is evaluated using the normalized mean squared error (NMSE), defined as NMSE (Σ) =

∥Σ−Σ⋆∥2 / ∥Σ⋆∥2 and the F1-score (Witten et al., 2005). The results, averaged over 100 Monte
Carlo trials, are reported in Table 1. As shown in the table, Algorithm 1 performs comparably to
PD_MCP (Wei & Zhao, 2023) under the Gaussian model and outperforms all baseline methods in the
non-Gaussian settings. These results highlight the superior accuracy and robustness of the proposed
method. Next, we evaluate the convergence behavior of the proposed algorithms. Figure 1 shows
the decrease in variable distances

∥∥Σ(t) − Σ̂
∥∥2
F

and 1
m

∑m
i=1

∥∥Σ(t)
i − Σ̂

∥∥2
F

for Algorithms 1 and 2
over three data generating models, where Σ̂ denotes the final estimate obtained by Algorithm 1. The
results confirm that both algorithms converge linearly to the same optimal solution. Moreover, the
convergence rate of Algorithm 2 improves as the connectivity of the underlying network increases.
To evaluate the effectiveness of our proposed methods, we conducted experiments using the Leukemia
dataset Golub et al. (1999). This dataset contains 72 gene expression profiles: 47 samples from
patients with acute lymphoblastic leukemia (ALL) and 25 samples from patients with acute myeloid
leukemia (AML). Each sample is represented by 7,129 gene expression levels. Following the
approaches outlined in Rothman et al. (2009); Cui et al. (2016); Xia et al. (2025), we first computed
the F statistic for each gene j as follows:

F (xj) =
1

K−1

∑K
l=1 N(l) (x̄j (l)− x̄j)

1
N−K

∑K
l=1 N(l)

(
N(l) − 1

)
σ̂2
(l)

,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 2: Misclassification rates of QDA on
Leukemia dataset using different methods.

Figure 3: Cumulative returns of the GMVP
constructed from different methods.

where K = 2 denotes the number of classes, N(l) is the sample size of class l, x̄ and x̄j(l) represents
the overall mean and the mean of class l. We ranked the genes by their F-statistic and selected the top
75 and the bottom 25 genes, resulting in a total of d = 100 genes. Next, we randomly partitioned
the dataset into 100 different subsets, each containing 35 training samples (from 23 ALL and 12
AML) and 37 test samples (from 24 ALL and 13 AML). In real-world scenarios, such datasets may
be distributed across separate hospitals and cannot be directly shared due to privacy regulations. To
simulate this condition, we distributed the training samples randomly among m = {1, 5, 7} agents
and then estimated the covariance matrices. We incorporated the estimated covariance matrices into
a quadratic discriminant analysis (QDA) model, as described in Hastie et al. (2009), and evaluated
the classification performance based on the misclassification rate. As the estimates obtained by the
RegTME (Goes et al., 2020) do not always guarantee positive definiteness, we present results only
for cases with positive definite estimates. As shown in Figure 2, regardless of the number of agents,
our proposed method consistently achieves the lowest misclassification rate. This indicates that
our decentralized algorithm achieves estimation performance equivalent to the centralized approach
across diverse networks and demonstrates the superior estimation performance of our methodology.

We further conduct experiments on financial time-series data to assess the performance of different
covariance estimators. A standard approach for evaluating the quality of an estimated covariance
matrix is to examine the returns of portfolios constructed from it. In this study, we focus on the global
minimum variance portfolio (GMVP) under a no-short-sales constraint, which is formulated as:

min
ω∈Rd

ω⊤Σω subject to ω⊤1 = 1, ω ≥ 0,

This optimization problem can be efficiently solved using CVX (Grant et al., 2008). We collect
historical monthly stock prices for the components of the S&P 100 Index over a 240-month period,
from December 2002 to December 2022. After excluding stocks with missing data, we obtain
monthly returns for 78 companies (d = 78). We evaluate the estimators using a rolling-window
scheme, where each window consists of 40 months for training and one subsequent month for testing.
Portfolio performance is assessed by comparing the cumulative returns over the test period. Figure 3
shows the cumulative returns of the GMVP based on different covariance estimators, including the
equal-weighted portfolio (EWP, ω = 1/d) as a heuristic baseline. The results indicate that the EWP
yields the lowest cumulative return, confirming its ineffectiveness as a strategy. Moreover, the SCM
method, which does not incorporate regularization, performs substantially worse than regularized
estimators. Among the regularized methods, our proposed approach achieves the highest cumulative
return, demonstrating a clear advantage over competing methods.

8 CONCLUSION

In this paper, we have studied the problem of distributed sparse covariance matrix estimation under
heavy-tailed data. The estimation task has been formulated as a non-convex and non-globally
Lipschitz smooth problem that minimizes a Huber loss function with a log-determinant barrier
and a sparsity-inducing non-convex penalty. We have proposed both centralized and decentralized
algorithms, and established that both methods converge linearly to the same solution, which achieves
the oracle statistical rate in Frobenius norm. Simulation results validated the theoretical guarantees
and demonstrated the superior accuracy and robustness of the proposed estimator.
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A LLM USAGE STATEMENT

During the preparation of this manuscript, we used large language models (LLMs) as a general-
purpose writing and editing aid. LLMs were used to improve clarity, grammar, and structure of the
text, but they did not contribute to the research ideation, experimental design, or scientific content.
No LLM was used to generate new ideas, proofs, or experimental results. All content, including any
text suggested by LLMs, was reviewed and verified by the authors, who take full responsibility for
the final manuscript.

B NOTATION

The following notation is adopted throughout the paper. Standard lowercase or uppercase letters
represent scalars, while boldface lowercase and uppercase letters denote vectors and matrices,
respectively. Aij (or [A]ij) stands for the (i, j)-th entry of matrix A. 1 stands for vector with all
elements equal to one. 0 stands for all zero matrix and I stands for the identity matrix. For a matrix A,
let λmin(A) and λmax(A) denote its smallest and largest eigenvalues, respectively; λk(A) denotes
its k-th largest eigenvalue. ∥A∥F denotes the Frobenius norm, defined as the square root of the sum
of the squares of all elements; ∥A∥1 denotes the sum of the absolute values of all elements; ∥A∥max

denotes the largest absolute value among all elements; ∥A∥2 denotes the induced matrix 2-norm,
i.e., the maximum absolute column sum; and ∥A∥∞ denotes the induced matrix ∞-norm, i.e., the
maximum absolute row sum.

For two functions f(x) and g(x), we use f(x) = O(g(x)) to indicate that there exists a positive
constant M and a constant x0 such that |f(x)| ≤ M |g(x)| for any x ≥ x0. For a function f , ∇f(x)
and denote the Jacobian and the Hessian of f at x, respectively. For a convex function f , ∂f(x)
stands for the subdifferential of f at x. ⊗ stands for the Kronecker product.

Table 2: Summary of main notation used in the paper.

Symbol Description

Dimensions, indices, and sets

d Dimension of the random vector x and covariance matrix Σ.
N Total number of samples.
m Number of agents in the network.
n Local sample size at each agent; N = mn.
Ji Index set of samples stored at agent i, with

⋃m
i=1 Ji = {1, . . . , N}.

S Support set of nonzero entries of Σ⋆.
Sc Complement of S.
s Sparsity level; number of nonzero entries in Σ⋆.
Sd
++ Cone of d× d symmetric positive definite matrices.

Random variables and covariance matrices

x ∈ Rd Zero-mean random vector with covariance Σ⋆.
xk k-th coordinate of x.
{xj}Nj=1 I.i.d. samples of x.
xjk k-th entry of the j-th sample xj .
Σ⋆ True covariance matrix of x.
Σ Generic covariance matrix in Sd

++ (optimization variable).
Σ(t) Iterate of the centralized Algorithm 1 at iteration t.
Σ

(t)
i Local iterate of agent i in the decentralized algorithm at iteration t.

Σ̄(t) Network average Σ̄(t) = 1
m

∑m
i=1 Σ

(t)
i .

Network and communication

G = (V, E) Undirected communication graph of agents.
V = {1, . . . ,m} Node (agent) index set.
E Edge set of G.
Ni Neighborhood of agent i, including i itself.
W = [Wij ] ∈ Rm×m Doubly stochastic weight matrix compliant with G.
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Table 2 (continued)
Symbol Description

J Averaging matrix, J = 1
m
11⊤.

ρ Spectral gap parameter ρ = ∥W − J∥2 ∈ [0, 1).

Objective functions and penalties

Hi(Σ) Local Huber loss at agent i.
H(Σ) Average Huber loss, H(Σ) = 1

m

∑m
i=1 Hi(Σ).

a Robustification parameter in the Huber loss (Definition 1).
P(Σ) Nonconvex sparsity-inducing penalty in problem (2).
pλ(·) Elementwise penalty function with tuning parameter λ > 0.
q(·) Convex function such that pλ(x) = λ|x| − q(x).
λ Regularization parameter controlling sparsity.
b Threshold parameter in the nonconvex penalty (cf. Assumption 3).
τ Log-determinant regularization parameter in problem (2).
Fi(Σ) Smooth part of the local objective at agent i.
F(Σ) Smooth part of the centralized objective, F(Σ) = 1

m

∑m
i=1 Fi(Σ).

L(Σ) Centralized objective in (2): H(Σ)− τ log det(Σ) + P(Σ).
Lq Lipschitz constant of q′ in Assumption 3(e).
L Lipschitz constant of ∇F on the invariant set B.
µ Strong convexity parameter of F on the invariant set B.

Algorithmic parameters and distributed notation

γ Proximal step size in Algorithms 1–2.
θ Gradient-tracking parameter in the decentralized algorithm.
Y

(t)
i Local gradient-tracking variable at agent i and iteration t.

Ȳ(t) Network-averaged gradient tracker, Ȳ(t) = 1
m

∑m
i=1 Y

(t)
i .

Σ
(t)
⋄ Stacked local covariances, Σ(t)

⋄ = [Σ
(t)
1 ; . . . ;Σ

(t)
m ].

Y
(t)
⋄ Stacked gradient-tracking variables, Y(t)

⋄ = [Y
(t)
1 ; . . . ;Y

(t)
m ].

E
(t)
Σ Consensus error in covariances, E(t)

Σ = Σ
(t)
⋄ − 1⊗ Σ̄(t).

E
(t)
Y Consensus error in gradient trackers, E(t)

Y = Y
(t)
⋄ − 1⊗ Ȳ(t).

D
(t)
i Local update increment, D(t)

i = Σ
(t+ 1

2
)

i −Σ
(t)
i .

D
(t)
⋄ Stacked update increments, D(t)

⋄ = [D
(t)
1 ; . . . ;D

(t)
m ].

r, r̄ Eigenvalue bounds defining invariant regions for the iterates.
A Compact invariant set A = {Σ ∈ Sd

++ : r I ⪯ Σ ⪯ r̄ I}.
B Enlarged invariant set on which F is strongly convex and Lipschitz smooth.
κ Condition number κ = L/µ of F over B.
κr Refined condition number appearing in the linear-rate bounds (Corollaries 1–

2).
V(·) Potential (Lyapunov) function used in the analysis of the decentralized algo-

rithm.

Statistical quantities

σ > 0 Uniform moment bound in Assumption 2.
ν > 0 Order parameter of the finite moment in Assumption 2.
K Moment bound K = max{σ2, (2σ)2(1+ν)}.
µ0 Local strong convexity parameter in Theorem 3.
ca, cτ , cλ, cq, cN Positive universal constants in Theorem 3.
Cs Constant in the Frobenius error bound of Σb.
c, C,C1, C2, . . . Generic positive constants (values may change from line to line).

Linear algebra and probability notation

Aij or [A]ij (i, j)-th entry of a matrix A.
1 All-ones vector; 0: all-zero matrix; I: identity matrix.
λmin(A), λmax(A) Smallest / largest eigenvalues of a symmetric matrix A.
λk(A) k-th largest eigenvalue of A.
∥A∥F , ∥A∥1, ∥A∥max Frobenius, entrywise ℓ1, and elementwise max norms of A.
∥A∥2, ∥A∥∞ Spectral norm and induced ℓ∞ (row-sum) norm of A.
A ⪯ B Loewner order: B −A is positive semidefinite.
A ≻ 0 / A ⪰ 0 Positive definite / positive semidefinite matrix.
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Table 2 (continued)
Symbol Description

⟨A,B⟩ Matrix inner product trace(A⊤B).
f(x) = O(g(x)) Big-O notation: |f(x)| ≤ Cg(x) for some C > 0.
∇f(x), ∇2f(x) Gradient and Hessian of f at x.
∂f(x) Subdifferential of a convex function f at x.
⊗ Kronecker product.
P(·), E[·] Probability and expectation operators.

C PROOFS OF MAIN THEORETICAL RESULTS

C.1 PROOF OF THEOREM 1

We prove Theorem 1 in the following steps: 1) we show that the objective of problem 2 is coercive,
and hence problem 2 admits a solution; 2) we show that there exists a set A = {Σ | rI ⪯ Σ ⪯ rI},
with constants r ≤ r, such that the sequence {Σ(t)} generated by Algorithm 1 remains within A, and
that the objective function is strong convex and Lipschitz smooth over this set; 3) we establish the
linear convergence of Algorithm 1 based on the aforementioned properties.

C.1.1 EXISTENCE OF SOLUTIONS

We show that the objective function L is coercive over Σ ≻ 0; therefore, problem 2 admits a solution
Σ̂.
Proposition 1. The objective function L is coercive over Σ ≻ 0; that is,

lim
λmin(Σ)→0

L (Σ) = +∞ and lim
λmax(Σ)→+∞

L (Σ) = +∞.

Proof. For x ≥ 0 and some x0 ∈ [0, x], the Lagrange mean-value theorem gives q(x) − q(0) =
q′(x0)x. By (c) and (d) in Assumption 3, it follows that

q(x) ≤
∣∣q′(x0)x

∣∣ ≤ λ|x|,
and hence

p(x) = λ|x| − q(x) ≥ λ|x| − λ|x| = 0.

Therefore, based on Definition 1, we have

L (Σ) ≥ 1

m

m∑
i=1

Hi (Σ)− τ log det (Σ)

=
1

N

N∑
j=1

d∑
k=1

d∑
l=1

h (Σkl − xjkxjl)− τ log det (Σ)

≥ 1

N

N∑
j=1

d∑
k=1

d∑
l=1

a |Σkl − xjkxjl| −
1

2
d2a2 − τ log det (Σ)

≥ 1

N

N∑
j=1

d∑
k=1

d∑
l=1

a |Σkl| − a
1

N

N∑
j=1

d∑
k=1

d∑
l=1

|xjkxjl| −
1

2
d2a2 − τ log det (Σ)

= a ∥Σ∥1 − a
1

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2 − τ log det (Σ) .

Since ∥Σ∥1 ≥∑d
k=1 λk (Σ), we have

L (Σ) ≥
d∑

k=1

(aλk (Σ)− τ log λk (Σ))− a
1

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2.
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When x = τ
a , ax− τ log x reaches its minimum τ − τ log τ

a . Therefore, we have

L (Σ) ≥ aλk (Σ)− τ log λk (Σ) + (d− 1)
(
τ − τ log

τ

a

)
− a

1

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2. (11)

The right side of equation 11 is a convex function with respect to λk (Σ). As λk (Σ) → 0 or
λk (Σ) → +∞, the right side of equation 11 diverges to infinity, and consequently, L → +∞.
Since L is continuous on Σ ≻ 0, by the Weierstrass extreme value theorem, the function attains its
minimum Σ̂.

C.1.2 INVARIANT SET

According to Proposition 1, for any initialization Σ(0), there exist constants r ≥ r > 0 such that the
sublevel set

{
Σ | L (Σ) ≤ L

(
Σ(0)

)}
⊆ A = {Σ | rI ⪯ Σ ⪯ rI}. We then aim to find sufficient

conditions under which, if Σ(t) ∈ A, the next iterate Σ(t+1) ∈ A.

Proposition 2. For Σ(t) ∈ A, if

γ ≥ 2

r

(
ad+ τ

√
d

r
+ 2λd

)
,

we have Σ(t+1) ∈ B, where B = {Σ | (r/2) I ⪯ Σ ⪯ (r + r/2) I}.

Proof. Define U (t) (Σ) = F
(
Σ(t)

)
+
〈
∇F

(
Σ(t)

)
,Σ−Σ(t)

〉
+ γ

2

∥∥Σ−Σ(t)
∥∥2
F

. Since U (t) is
γ-strongly convex and λ ∥Σ∥1,off is convex, for any Φ ∈ ∂λ

∥∥Σ(t)
∥∥
1,off we have

U (t)
(
Σ(t+1)

)
+ λ

∥∥∥Σ(t+1)
∥∥∥
1,off

≥ U (t)
(
Σ(t)

)
+ λ

∥∥∥Σ(t)
∥∥∥
1,off

+
〈
∇U (t)

(
Σ(t)

)
+Φ,Σ(t+1) −Σ(t)

〉
+

γ

2

∥∥∥Σ(t+1) −Σ(t)
∥∥∥2
F

= U (t)
(
Σ(t)

)
+ λ

∥∥∥Σ(t)
∥∥∥
1,off

− 1

2γ

∥∥∥∇U (t)
(
Σ(t)

)
+Φ

∥∥∥2
F

+
γ

2

∥∥∥∥ 1γ (∇U (t)
(
Σ(t)

)
+Φ

)
+Σ(t+1) −Σ(t)

∥∥∥∥2
F

≥ U (t)
(
Σ(t)

)
+ λ

∥∥∥Σ(t)
∥∥∥
1,off

− 1

2γ

∥∥∥∇U (t)
(
Σ(t)

)
+Φ

∥∥∥2
F
. (12)

Meanwhile, according to the first-order optimality condition of equation 4, there exists a Ψ ∈
∂λ
∥∥Σ(t+1)

∥∥
1,off such that〈

∇U (t)
(
Σ(t+1)

)
+Ψ,Σ(t) −Σ(t+1)

〉
≥ 0.

Then similar to equation 12, we have

U (t)
(
Σ(t)

)
+ λ

∥∥∥Σ(t)
∥∥∥
1,off

≥ U (t)
(
Σ(t+1)

)
+ λ

∥∥∥Σ(t+1)
∥∥∥
1,off

+
〈
∇U (t)

(
Σ(t+1)

)
+Ψ,Σ(t) −Σ(t+1)

〉
+

γ

2

∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F

≥ U (t)
(
Σ(t+1)

)
+ λ

∥∥∥Σ(t+1)
∥∥∥
1,off

+
γ

2

∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F
. (13)
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Combining equation 12 and equation 13, we have∥∥∥Σ(t) −Σ(t+1)
∥∥∥
F

≤ 1

γ

∥∥∥∇U (t)
(
Σ(t)

)
+Φ

∥∥∥
F
≤ 1

γ

∥∥∥∇F
(
Σ(t)

)∥∥∥
F
+

1

γ
∥Φ∥F

≤ 1

γ

∥∥∥∥∥ 1

m

m∑
i=1

∇Hi

(
Σ(t)

)∥∥∥∥∥
F

+
τ

γ

∥∥∥∥(Σ(t)
)−1

∥∥∥∥
F

+
1

γ

∥∥∥∇Q
(
Σ(t)

)∥∥∥
F
+

1

γ
∥Φ∥F .

According to Definition 1, we have [∇Hi (Σ)]kl ≤ a and hence
∥∥ 1
m

∑m
i=1 ∇Hi (Σ)

∥∥
F
≤ ad. Since

Σ(t) ∈ A, we have
∥∥∥(Σ(t)

)−1
∥∥∥
F
≤

√
d/r. Due to Assumption 3 (d), we have

∥∥∇Q
(
Σ(t)

)∥∥
F
≤ λd.

As Φ ∈ ∂λ
∥∥Σ(t)

∥∥
1,off, we have ∥Φ∥F ≤ λd. Therefore, we have∥∥∥Σ(t) −Σ(t+1)

∥∥∥
F
≤ 1

γ

(
ad+

τ
√
d

r
+ 2λd

)
.

Since γ ≥ 2
(
ad+ τ

√
d/r + 2λd

)
/r, we have

∥∥Σ(t) −Σ(t+1)
∥∥
F

≤ r/2 and hence Σ(t+1) ∈
B.

Based on Proposition 2, we have Σ(t),Σ(t+1) ∈ B, and hence F is strongly convex and Lipschitz
smooth on B.
Proposition 3. Suppose that r + r/2 <

√
τ/Lq . Then for any Σ1,Σ2 ∈ B, we have

∥∇F (Σ1)−∇F (Σ2)∥F ≤ L ∥Σ1 −Σ2∥F ,

∥∇F (Σ1)−∇F (Σ2)∥F ≥ µ ∥Σ1 −Σ2∥F ,

where L = 1 + 4τr−2 and µ = τ
(
r + r/2

)−2 − Lq .

Proof. Since Σ1 ∈ B, we have

∇2 (−τ log det (Σ1)) = τΣ−1
1 ⊗Σ−1

1 ⪰ τ

(r + r/2)
2 I,

and hence −τ log det (Σ1) is τ
(
r + r/2

)−2
-strongly convex. Then due to the convexity of Huber

loss, Assumption 3 (e), and r + r/2 <
√

τ/Lq , we have

∥∇F (Σ1)−∇F (Σ2)∥F

≥∥∇ (−τ log det (Σ1))−∇ (−τ log det (Σ2))∥F −
∥∥∥∥∥ 1

m

m∑
i=1

∇Hi (Σ1)−
1

m

m∑
i=1

∇Hi (Σ2)

∥∥∥∥∥
F

− ∥∇Q (Σ1)−∇Q (Σ2)∥F

≥
(

τ

(r + r/2)
2 − Lq

)
∥Σ1 −Σ2∥F > 0.

For smoothness, according to Definition 1, we have

h′ (x) =

{
x, |x| ≤ a,

asign (x) , |x| > a,

and it is easy to verify that |h′ (x)− h′ (y)| ≤ |x− y| for any x and y. Moreover, we have

∇2 (−τ log det (Σ1)) = τΣ−1
1 ⊗Σ−1

1 ⪯ 4τ

r2
I.

Due to the convexity of Q and r + r/2 <
√

τ/Lq , we have

0 ≺ ∇2 (−τ log det (Σ1)−Q (Σ1)) = ∇2 (−τ log det (Σ1))−∇2Q (Σ1) ⪯
4τ

r2
I,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and hence,

∥∇F (Σ1)−∇F (Σ2)∥F

≤ 1

m

m∑
i=1

∥∇Hi (Σ1)−∇Hi (Σ2)∥F

+ ∥∇ (−τ log det (Σ1)−Q (Σ1))−∇ (−τ log det (Σ2)−Q (Σ2))∥F
≤
(
1 +

4τ

r2

)
∥Φ−Σ2∥F .

Then based on Propositions 2 and 3, we can prove that for any Σ(t) ∈ A, we have Σ(t+1) ∈ A.
Proposition 4. Based on Propositions 2 and 3, we have

L
(
Σ(t)

)
− L

(
Σ(t+1)

)
≥
(
γ − L

2

)∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F
.

Proof. According to Proposition 3, we have

F
(
Σ(t)

)
−F

(
Σ(t+1)

)
≥
〈
∇F

(
Σ(t)

)
,Σ(t) −Σ(t+1)

〉
− L

2

∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F
. (14)

Due to the first-order optimality condition of equation 4, we have

γΣ(t) −∇F
(
Σ(t)

)
− γΣ(t+1) ∈ ∂λ

∥∥∥Σ(t+1)
∥∥∥
1,off

.

Then according to the definition of subgradient, we have

λ
∥∥∥Σ(t)

∥∥∥
1,off

− λ
∥∥∥Σ(t+1)

∥∥∥
1,off

≥
〈
γΣ(t) −∇F

(
Σ(t)

)
− γΣ(t+1),Σ(t) −Σ(t+1)

〉
=
〈
∇F

(
Σ(t)

)
,Σ(t+1) −Σ(t)

〉
+ γ

∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F
. (15)

Combining equation 14 and equation 15, we have the desired result.

Proposition 4 indicates that L
(
Σ(t)

)
− L

(
Σ(t+1)

)
≥ 0 given Σ(t) ∈ A and γ ≥

max
{

L
2 ,

2
r

(
ad+ τ

√
d
r + 2λd

)}
. Then inducting from Σ(0) gives

{
Σ(t)

}
⊂ A.

C.1.3 LINEAR CONVERGENCE

Finally, we prove the linear convergence result in Theorem 1. According to Proposition 3, the strong
convexity of F with parameter µ implies that

F
(
Σ̂
)
−F

(
Σ(t)

)
−
〈
∇F

(
Σ(t)

)
, Σ̂−Σ(t)

〉
≥ µ

2

∥∥∥Σ̂−Σ(t)
∥∥∥2
F
.

Using the Lipschitz smoothness of F with constant L, it follows that

F
(
Σ(t+1)

)
−F

(
Σ(t)

)
−
〈
∇F

(
Σ(t)

)
,Σ(t+1) −Σ(t)

〉
≤ L

2

∥∥∥Σ(t+1) −Σ(t)
∥∥∥2
F
.

Combining the above two inequalities, we obtain

0 ≤ F
(
Σ̂
)
−F

(
Σ(t+1)

)
+

L

2

∥∥∥Σ(t+1) −Σ(t)
∥∥∥2
F
− µ

2

∥∥∥Σ̂−Σ(t)
∥∥∥2
F

−
〈
∇F

(
Σ(t)

)
, Σ̂−Σ(t+1)

〉
. (16)

Applying the first-order optimality condition for equation 4, there exists a Φ ∈ ∂λ
∥∥Σ(t+1)

∥∥
1,off such

that 〈
∇F

(
Σ(t)

)
+ γ

(
Σ(t+1) −Σ(t)

)
+Φ, Σ̂−Σ(t+1)

〉
≥ 0.
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Due to the convexity of λ ∥·∥1,off, we have

λ
∥∥∥Σ̂∥∥∥

1,off
− λ

∥∥∥Σ(t+1)
∥∥∥
1,off

−
〈
Φ, Σ̂−Σ(t+1)

〉
≥ 0.

Summing the two inequalities above, we obtain:

λ
∥∥∥Σ̂∥∥∥

1,off
− λ

∥∥∥Σ(t+1)
∥∥∥
1,off

+
〈
∇F

(
Σ(t)

)
+ γ

(
Σ(t+1) −Σ(t)

)
, Σ̂−Σ(t+1)

〉
≥ 0. (17)

Combining equation 16 and equation 17 leads to

0 ≤ L
(
Σ̂
)
− L

(
Σ(t+1)

)
+

L

2

∥∥∥Σ(t+1) −Σ(t)
∥∥∥2
F
− µ

2

∥∥∥Σ̂−Σ(t)
∥∥∥2
F

+ γ
〈
Σ(t+1) −Σ(t), Σ̂−Σ(t+1)

〉
.

Since Σ̂ is the minimizer of L, we have

0 ≤ L− 2γ

2

∥∥∥Σ(t+1) −Σ(t)
∥∥∥2
F
− µ

2

∥∥∥Σ̂−Σ(t)
∥∥∥2
F
+ γ

〈
Σ(t+1) −Σ(t), Σ̂−Σ(t)

〉
.

Rearranging the above inequality, we get

2
〈
Σ(t+1) −Σ(t),Σ(t) − Σ̂

〉
≤ L− 2γ

γ

∥∥∥Σ(t+1) −Σ(t)
∥∥∥2
F
− µ

γ

∥∥∥Σ̂−Σ(t)
∥∥∥2
F
,

and hence∥∥∥Σ(t+1) − Σ̂
∥∥∥2
F
≤
∥∥∥Σ(t+1) −Σ(t)

∥∥∥2
F
+
∥∥∥Σ(t) − Σ̂

∥∥∥2
F
+ 2

〈
Σ(t+1) −Σ(t),Σ(t) − Σ̂

〉
≤
(
1− µ

γ

)∥∥∥Σ(t) − Σ̂
∥∥∥2
F
.

Backtracking to Σ(0) and using γ = cγL, we can obtain the linear convergence result in Theorem 1.

C.1.4 ON THE COMPUTATION OF r AND r

In the previous proof, we only established the existence of r and r. One way to compute them is, as
stated in Theorem 1, to use the inequality equation 11 obtained based on Proposition 1. Since the
right hand side of the inequality equation 11 is a convex lower bound of the objective function L,
equation equation 1 necessarily admits two positive solutions, and choosing these solutions as r and
r guarantees

{
Σ | L (Σ) ≤ L

(
Σ(0)

)}
⊆ A.

C.2 PROOF OF THEOREM 2

For notational simplicity, we introduce the following compact forms:

Σ
(t)
⋄ =

[
Σ

(t)
1 ;Σ

(t)
2 ; . . . ;Σ(t)

m

]
, E

(t)
Σ = Σ(t) − 1⊗ Σ̄(t),

Y
(t)
⋄ =

[
Y

(t)
1 ;Y

(t)
2 ; . . . ;Y(t)

m

]
, E

(t)
Y = Y(t) − 1⊗ Ȳ(t),

D
(t)
i = Σ

(t+ 1
2 )

i −Σ
(t)
i , D

(t)
⋄ =

[
D

(t)
1 ;D

(t)
2 ; . . . ;D(t)

m

]
.

The overall proof strategy for Theorem 2 parallels that of Theorem 1. Specifically, the analysis hinges
on a potential function V that combines the objective function with the consensus error as follows:

V (Σ⋄,Y⋄) =

m∑
i=1

L (Σi) + c1 ∥EΣ∥2F + c2 ∥EY∥2F , (18)

where Σ⋄ = [Σ1; . . . ;Σm] and Y⋄ = [Y1; . . . ;Ym] are the matrices that stack all the local variables,
EΣ = Σ⋄−1⊗ Σ̄ and EY = Y⋄−1⊗ Ȳ is consensus error, Σ̄ = 1

m

∑m
i=1 Σi, Ȳ = 1

m

∑m
i=1 Yi,

and c1, c2 > 0. Compared to Theorem 1, we first prove the local properties based on V .
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C.2.1 PRELIMINARIES

Proposition 5. The potential function V is coercive for {Σi}mi=1 , i.e.,
limmin{λmin(Σi)}m

i=1→0 V (Σ⋄,Y⋄) = +∞ and limmax{λmax(Σi)}m
i=1→+∞ V (Σ⋄,Y⋄) = +∞.

Meanwhile, we have lim∥EY∥F→+∞ V (Σ⋄,Y⋄) = +∞.

Proof. For Σ⋄, following similar steps of the proof of Proposition 1 and utilizing the non-negative
nature of the consensus error, we have

V (Σ⋄,Y⋄)

≥ 1

m

m∑
i=1

d∑
k=1

(aλk (Σi)− τ log λk (Σi))− a
1

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2 (19)

≥ 1

m
(aλk (Σi)− τ log λk (Σi)) +

(
d− 1

m

)(
τ − τ log

τ

a

)
− a

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2

for any i = 1, . . . ,m, and hence V is coercive. For Y⋄, we have

V (Σ⋄,Y⋄) ≥ b ∥EY∥2F + d
(
τ − τ log

τ

a

)
− a

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2, (20)

and hence V is coercive with respect to EY.

Based on Proposition 5, for any initialization
(
Σ

(0)
⋄ ,Y

(0)
⋄

)
, there exist parameters r ≥ r > 0

and e > 0 such that for any (Σ⋄,Y⋄) ∈
{
(Σ⋄,Y⋄) | V (Σ⋄,Y⋄) ≤ V

(
Σ

(0)
⋄ ,Y

(0)
⋄

)}
, we have

Σ⋄ ∈ A = {Σ⋄ | rI ⪯ Σi ⪯ rI, i = 1, . . . ,m} and ∥EY∥F ≤ √
e. Then we first introduce the

following lemma.

Lemma 1 (Xia et al. (2025)). For a L-smooth function f , we have

f

(
m∑
i=1

aiYi

)
≥

m∑
i=1

aif (Yi)−
L

2

m−1∑
i=1

m∑
j=i+1

aiaj ∥Yi −Yj∥2F ,

where
∑m

i=1 ai = 1 and ai ≥ 0 for all i.

Based on Lemma 1, we can bound the gradient tracking variables Yi for each agent.

Proposition 6. For every
(
Σ

(t)
⋄ ,Y

(t)
⋄

)
generated by Algorithm 2 such that

(
Σ

(t)
⋄ ,Y

(t)
⋄

)
∈{

(Σ⋄,Y⋄) | V (Σ⋄,Y⋄) ≤ V
(
Σ

(0)
⋄ ,Y

(0)
⋄

)}
, we have

∥∥∥Y(t)
i

∥∥∥
F
≤

√√√√m

(
ad+

√
dτ

r
+ dλ

)2

+ e.

Proof. Since Y
(0)
i = ∇Fi

(
Σ

(0)
i

)
for all i = 1, . . . ,m, the update rule for Ȳ can be expressed as

Ȳ(t+1) =
1

m

m∑
i=1

∇Fi

(
Σ

(t+1)
i

)
. (21)
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Applying Lemma 1 and the 2-smooth nature of ∥·∥2F to the above equation leads to

1

m

m∑
i=1

∥∥∥Y(t)
i

∥∥∥2
F
≤
∥∥∥∥∥ 1

m

m∑
i=1

Y
(t)
i

∥∥∥∥∥
2

F

+
1

m2

m−1∑
i=1

m∑
j=i+1

∥∥∥Y(t)
i −Y

(t)
j

∥∥∥2
F

=

∥∥∥∥∥ 1

m

m∑
i=1

∇Fi

(
Σ

(t)
i

)∥∥∥∥∥
2

F

+
1

m2

m−1∑
i=1

m∑
j=i+1

∥∥∥Y(t)
i −Y

(t)
j

∥∥∥2
F

≤ 1

m

m∑
i=1

∥∥∥∇Fi

(
Σ

(t)
i

)∥∥∥2
F
+

1

m

∥∥∥E(t)
Y

∥∥∥2
F

≤ 1

m

m∑
i=1

(∥∥∥∇Li

(
Σ

(t)
i

)∥∥∥
F
+ τ

∥∥∥∥(Σ(t)
i

)−1
∥∥∥∥
F

+
∥∥∥∇Q

(
Σ

(t)
i

)∥∥∥
F

)2

+
1

m

∥∥∥E(t)
Y

∥∥∥2
F
.

According to Definition 1, we have
[
∇Li

(
Σ

(t)
i

)]
kl

≤ a and hence
∥∥∥ 1
m

∑m
i=1 ∇Li

(
Σ

(t)
i

)∥∥∥
F
≤ ad.

Since Σ
(t)
⋄ ∈ A, we have

∥∥∥∥(Σ(t)
i

)−1
∥∥∥∥
F

≤
√
d/r. Due to Assumption 3 (d), we have∥∥∥∇Q

(
Σ

(t)
i

)∥∥∥
F
≤ λd. Then since ∥EY∥F ≤ √

e, we have

∥∥∥Y(t)
i

∥∥∥
F
≤

√√√√ m∑
i=1

∥∥∥Y(t)
i

∥∥∥2
F
≤

√√√√m

(
ad+

√
dτ

r
+ dλ

)2

+ e.

Based on Proposition 6, we can bound Σ
(t+ 1

2 )
⋄ and Σ

(t+1)
⋄ for

(
Σ

(t)
⋄ ,Y

(t)
⋄

)
∈{

(Σ⋄,Y⋄) | V (Σ⋄,Y⋄) ≤ V
(
Σ

(0)
⋄ ,Y

(0)
⋄

)}
.

Proposition 7. Suppose that
(
Σ

(t)
⋄ ,Y

(t)
⋄

)
∈
{
(Σ⋄,Y⋄) | V (Σ⋄,Y⋄) ≤ V

(
Σ

(0)
⋄ ,Y

(0)
⋄

)}
and

γ ≥ 2

r


√√√√m

(
ad+

√
dτ

r
+ dλ

)2

+ e+ λd

 , (22)

we have Σ
(t+ 1

2 )
⋄ ,Σ

(t+1)
⋄ ∈ B, where B = {Σ⋄ | rI/2 ⪯ Σi ⪯ (r + r/2) I, i = 1, . . . ,m}.

Proof. Following similar steps as the proof of Proposition 2, for any i = 1, . . . ,m, we have∥∥∥∥Σ(t+ 1
2 )

i −Σ
(t)
i

∥∥∥∥
F

≤ 1

γ

∥∥∥Y(t)
i

∥∥∥
F
+

1

γ
λd.

Then according to Proposition 6 and equation 22, we have∥∥∥∥Σ(t+ 1
2 )

i −Σ
(t)
i

∥∥∥∥
F

≤ 1

γ

√√√√m

(
ad+

√
dτ

r
+ dλ

)2

+ e+
1

γ
λd ≤ r

2
,

and hence Σ
(t+ 1

2 )
⋄ ,Σ

(t+1)
⋄ ∈ B according to the update rule equation 6.

Based on Proposition 7 and following similar steps in the proof of Proposition 3, we have the
following proposition.
Proposition 8. Suppose that r + r/2 <

√
τ/Lq . Then for any Σ1,Σ2 ∈ B, we have

∥∇F (Σ1)−∇F (Σ2)∥F ≤ L ∥Σ1 −Σ2∥F ,

∥∇F (Σ1)−∇F (Σ2)∥F ≥ µ ∥Σ−Σ2∥F ,

where L = 1 + 4τr−2 and µ = τ
(
r + r/2

)−2 − Lq . Moreover, the local loss function of each agent
i is also L-smooth and µ-strongly convex.
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Proposition 8 is obtained from Proposition 3 with minor modifications and is therefore omitted. Then
based on Proposition 8, we have the following upper bound of the optimality gap.
Proposition 9. Based on Propositions 7 and 8, there holds

m∑
i=1

L
(
Σ

(t+1)
i

)
≤

m∑
i=1

L
(
Σ

(t)
i

)
+

θ

2

(
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2
θ

)−1(
4L2

∥∥∥E(t)
Σ

∥∥∥2
F
+ 2
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Y
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F

)
− θ

(
γ

2
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4
θ

)∥∥∥D(t)
⋄
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F
, (23)

where γ ≥ L.

Proof. Define Σ̃
(t)
i = Σ

(t)
i + θD

(t)
i . Consider the Taylor expansion of F

F
(
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i

)
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)
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)
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(
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i

)
. (24)

Because U is strongly convex with γ and λ ∥·∥1,off is convex, according to the first-order optimality
condition, we have

λ
∥∥∥Σ(t)

i

∥∥∥
1,off

− λ
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2 )

i
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≥
〈
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i ,D
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i

〉
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∥∥∥D(t)
i
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F
. (25)

Using the convexity of λ ∥·∥1,off, we have

λ
∥∥∥Σ̃(t)

i
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= λ
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i
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1,off
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i
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.

(26)
Substituting equation 25 and equation 26 into equation 24, we have

F
(
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(
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i

)
. (27)

According to Proposition 8, we have

∇2F
(
Σ̃

(t)
i

)
⪯ LI. (28)

Substituting equation 28 into equation 27, we have
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which equals to
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Invoking the convexity of L and the doubly stochasticity of W, we can bound
∑m

i=1 L
(
Σ
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i

)
as
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We can now substitute equation 29 into equation 30 and get
m∑
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.

Using Young’s inequality, we have
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where ϵp > 0. Therefore, we have
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and we choose ϵp =
(
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)
. Then, we bound
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in terms of the

consensus errors
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. Recall equation 21, we have
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Recall the Lipschitz smoothness of Fi, i = 1, 2, . . . ,m, we have
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Substituting equation 34 into equation 33, we obtain the desired result equation 23.

Subsequently, we bound the consensus errors with the following lemma from (Sun et al., 2022b).

Lemma 2. (Sun et al., 2022b) The disagreements
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and ∥∥∥E(t+1)
Y
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F
≤ ρ
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∥∥∥
F
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F
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Based on Proposition 9 and Lemma 2, we can prove that the potential function V equation 18 is
non-increasing and hence Σ

(t)
⋄ ∈ A for all t.
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Theorem 4. Assume that Assumptions 1 and 3 are satisfied. Based on Proposition 7, when
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Proof. Squaring both sides of inequality equation 35 and utilizing Young’s inequality provides∥∥∥E(t+1)
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Similarly, we have∥∥∥E(t+1)
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(40)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Multiplying
2θL2(4ρ2(1+ϵ−1

d )+1−ρ2(1+ϵd))
(γ−L

2 θ)(1−ρ2(1+ϵd))
2 and add

2θL2(4ρ2(1+ϵ−1
d )+1−ρ2(1+ϵd))

(γ−L
2 θ)(1−ρ2(1+ϵd))

∥∥∥E(t)
Σ

∥∥∥2
F

on both

sides of equation 39 leads to

2θL2
(
4ρ2

(
1 + ϵ−1

d

)
+ 1− ρ2 (1 + ϵd)

)(
γ − L

2 θ
)
(1− ρ2 (1 + ϵd))

2

∥∥∥E(t+1)
Σ

∥∥∥2
F

+
2θL2

(
4ρ2

(
1 + ϵ−1

d

)
+ 1− ρ2 (1 + ϵd)

)(
γ − L

2 θ
)
(1− ρ2 (1 + ϵd))

∥∥∥E(t)
Σ

∥∥∥2
F

≤2θL2
(
4ρ2

(
1 + ϵ−1

d

)
+ 1− ρ2 (1 + ϵd)

)(
γ − L

2 θ
)
(1− ρ2 (1 + ϵd))

2

∥∥∥E(t)
Σ

∥∥∥2
F

+
2θ3L2

(
4ρ2

(
1 + ϵ−1

d

)
+ 1− ρ2 (1 + ϵd)

)
ρ2
(
1 + ϵ−1

d

)(
γ − L

2 θ
)
(1− ρ2 (1 + ϵd))

2

∥∥∥D(t)
⋄

∥∥∥2
F
, (41)

while multiplying
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By summing equation 23, equation 41, and equation 42, using equation 37, and choosing ϵd = 1−ρ2

2ρ2 ,
we obtain the desired result equation 38.

Theorem 4 shows that, inducting from Σ
(0)
⋄ , Σ(t)

⋄ ∈ A for all t, and hence the local variable of each
agent is positive definite.

C.2.2 LINEAR CONVERGENCE

Based on the local properties, we can prove the linear convergence of Algorithm 2. According to
Proposition 8 and Theorem 4, we have
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Adding the two inequalities above leads to
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Due to the first-order optimality condition of equation 5, ∃Φ ∈ ∂λ
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Since λ ∥·∥1,off is convex, we have

λ
∥∥∥Σ̂∥∥∥

1,off
− λ

∥∥∥∥Σ(t+ 1
2 )

i

∥∥∥∥
1,off

−
〈
Φ, Σ̂−Σ

(t+ 1
2 )

i

〉
≥ 0.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Adding the above two inequalities leads to

λ
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i
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〈
Y
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(
D
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i

)
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(t+ 1
2 )

i

〉
≥ 0. (44)

Combining equation 43 and equation 44 gives
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Since Σ̂ is the minimum of L, we have L
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Then we bound
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According to the update rule equation 7, we have

Y
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where ℓ
(t)
ij denotes the (i, j)-th element of matrix (W − J)

t. Therefore, we have
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Moreover, under Assumption 1, we have
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(47)
Similarly, according to the update rule equation 6, we have
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and thus
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≤ L
√
mρt

2ϵ

∥∥∥E(0)
Σ

∥∥∥2
F
+

Lϵ
√
mρt

2

m∑
i=1

∥∥∥∥Σ̂−Σ
(t+ 1

2 )
i

∥∥∥∥2
F

+
Lθ

√
m

2ϵ

t−1∑
s=0

ρt−s
∥∥∥D(s)

⋄

∥∥∥2
F

+
Lθϵ

√
m

2

t−1∑
s=0

ρt−s
m∑
i=1

∥∥∥∥Σ̂−Σ
(t+ 1

2 )
i

∥∥∥∥2
F

≤ L
√
mρt

2ϵ

∥∥∥E(0)
Σ

∥∥∥2
F
+

Lθϵ
√
mρ

1− ρ

m∑
i=1

∥∥∥∥Σ̂−Σ
(t+ 1

2 )
i

∥∥∥∥2
F

+
Lθ

√
m

2ϵ

t−1∑
s=0

ρt−s
∥∥∥D(s)

⋄

∥∥∥2
F
. (51)

Plugging equation 47, equation 49, and equation 51 into equation 46 leads to
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Plugging equation 52 into equation 45, we have(
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Due to the update rule equation 6, we have
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Plugging equation 54 into equation 53 and the fact that
∥∥∥Σ(t)

i − Σ̂
∥∥∥2
F
≤
∥∥∥Σ̃(t−1)

i − Σ̂
∥∥∥2
F

, we have

1

θ

(
1− 6Lϵ

√
mρ

γ (1− ρ)

) m∑
i=1

∥∥∥Σ̃(t)
i − Σ̂

∥∥∥2
F

≤
(
1− µ

γ
+

1− θ

θ

(
1− 6Lϵ

√
mρ

γ (1− ρ)

)) m∑
i=1

∥∥∥Σ(t−1)
i − Σ̂

∥∥∥2
F
−
(
1− L

γ

)∥∥∥D(t)
⋄

∥∥∥2
F

+
4L

√
m

γϵ

t−1∑
s=0

ρt−s
∥∥∥D(s)

⋄

∥∥∥2
F
+

8L
√
m

γϵ

t−1∑
s=0

ρt−s
∥∥∥E(s)

Σ

∥∥∥2
F

+

√
mρt

γϵ

∥∥∥E(0)
Y

∥∥∥2
F
+

2L
√
mρt

γϵ

∥∥∥E(0)
Σ

∥∥∥2
F
. (55)

We then prove the linear convergence based on the following lemmas.
Lemma 3 (Sun et al. (2022a)). For T ≥ 1, ρ ∈ (0, 1), z ∈ (ρ, 1), and a nonnegative sequence
{a(t)}, define

A(T )(z) =
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Lemma 4 (Sun et al. (2022a)). If for all T ≥ 1 and z ∈ (0, 1), a nonnegative sequence {a(t)}
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Then multiplying z−t on both sides and summing from 0 to T , equation 55 becomes
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8L
√
m

γϵ

ρ

z − ρ
E(T ) (z)

+

√
m

γϵ

ρ

z − ρ

∥∥∥E(0)
Y

∥∥∥2
F
+

2L
√
m

γϵ

ρ

z − ρ

∥∥∥E(0)
Σ

∥∥∥2
F
. (56)
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Meanwhile, recall that equation 48, we have∥∥∥E(t)
Σ

∥∥∥2
F
≤ 2ρ2t

∥∥∥E(0)
Σ

∥∥∥2
F
+

2ρ

1− ρ

t−1∑
s=0

ρt−s
∥∥∥D(s)

⋄

∥∥∥2
F
. (57)

Multiplying z−t on both sides and summing from 0 to T , equation 57 becomes

E(T ) (z) ≤ 2
ρ2

z − ρ2

∥∥∥E(0)
Σ

∥∥∥2 + 2ρ

1− ρ

ρ

z − ρ
D(T ) (z) .

Therefore, we have(
z

θ

(
1− 6Lϵ

√
mρ

γ (1− ρ)

)
−
(
1− µ

γ
+

1− θ

θ

(
1− 6Lϵ

√
mρ

γ (1− ρ)

)))(
zV (T ) (z)−

m∑
i=1

∥∥∥Σ̃(0)
i − Σ̂

∥∥∥2
F

)

≤ −
(
1− L

γ
− 4L

√
m

γϵ

ρ

z − ρ
− 16L

√
m

γϵ

2ρ

1− ρ

(
ρ

z − ρ

)2
)
D(T ) (z)

+

(
16L

√
m

γϵ

ρ

z − ρ

ρ2

z − ρ2
+

2L
√
m

γϵ

ρ

z − ρ

)∥∥∥E(0)
Σ

∥∥∥2 + √
m

γϵ

ρ

z − ρ

∥∥∥E(0)
Y

∥∥∥2
F
.

Then we prove that there exists some z ∈ (ρ, 1) such that

z

θ

(
1− 6Lϵ

√
mρ

γ (1− ρ)

)
−
(
1− µ

γ
+

1− θ

θ

(
1− 6Lϵ

√
mρ

γ (1− ρ)

))
> 0, (58)

and

1− L

γ
− 4L

√
m

γϵ

ρ

z − ρ
− 16L

√
m

γϵ

2ρ

1− ρ

(
ρ

z − ρ

)2

> 0, (59)

so that the linear convergence can be obtained using Lemma 4. Here we choose ϵ = µ
L

1−ρ
12

√
m

. Then
equation 58 holds when

z > 1− θ
2− ρ

2 γ
µ − ρ

, (60)

and equation 59 holds when

z >
8ρ2

1− ρ

(√
1 +

µρ (γ − L)

3L2m
− 1

)−1

+ ρ.

Note that equation 60 is satisfied when

z > 1− (2− ρ) θL

2γκ
.

Since γ ≥ L+
48L2m

√
ρ

µ(1−ρ)2
, we have

8ρ2

1− ρ

(√
1 +

µρ (γ − L)

3L2m
− 1

)−1

+ ρ

≤ 8ρ2

1− ρ

(√
1 +

16ρ
√
ρ

(1− ρ)
2 − 1

)−1

+ ρ

=

√
ρ (1− ρ)

2
√
ρ

(
4
√

ρ
√
ρ

1− ρ
+ 2

)
+ ρ

≤ 3ρ+
√
ρ.

Since

ρ ≤
(√

κ2 + (12κ− 2) (κ− 1)− κ

6κ− 1

)2

,
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we have

3ρ+
√
ρ ≤ 1− 2− ρ

2κ
≤ 1− (2− ρ) θL

2γκ
.

Finally, we have
m∑
i=1

∥∥∥Σ(t)
i − Σ̂

∥∥∥2
F
≤ C ′

1

(
1− 1

C ′
2κ

)t

, (61)

where

C ′
1 =

(
192mL2

γµ(1−ρ)
ρ

z−ρ
ρ2

z−ρ2 + 24mL2

γµ(1−ρ)
ρ

z−ρ

)∥∥∥E(0)
Σ

∥∥∥2 + 12mL
γµ(1−ρ)

ρ
z−ρ

∥∥∥E(0)
Y

∥∥∥2
F

z
θ

(
1− ρµ

2γ

)
−
(
1− µ

γ + 1−θ
θ

(
1− ρµ

2γ

)) +

m∑
i=1

∥∥∥Σ̃(0)
i − Σ̂

∥∥∥2
F
,

and
C ′

2 =
2γ

(2− ρ) θL
,

which complete the proof.

C.2.3 ON THE COMPUTATION OF r, r, AND e

In the previous proof, we only established the existence of r, r, and e. Similar to the proof of
Theorem 1, one way to compute them is to use the inequalities equation 19 and equation 20 obtained
in Proposition 5 to derive a bound. Specificaly, we can choose r and r as the solutions of

1

m
(ay − τ log y) =

(
d− 1

m

)(
τ − τ log

τ

a

)
− a

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2 − V

(
Σ

(0)
⋄ ,Y

(0)
⋄

)
,

and e as the solution of

c2y = d
(
τ − τ log

τ

a

)
− a

N

N∑
j=1

∥∥xjx
⊤
j

∥∥
1
− 1

2
d2a2 − V

(
Σ

(0)
⋄ ,Y

(0)
⋄

)
,

with respect to the variables y.

C.3 PROOF OF THEOREM 3

We first characterize the local strong convexity within a neighborhood of Σ⋆ with the following
proposition.

Proposition 10. (Local strong convexity) Suppose Assumption 2 holds. Assume a = ca

√
KN
log d where

ca ≥ 4√
2−µ

√
log d
N and K = max

{
σ2, (2σ)

2(1+ν)}, and N ≥ 16cN log d
(2−µ)2

. Let H = 1
m

∑m
i=1 Hi.

Then for any Σ1,Σ2 ∈
{
Σ | ∥Σ−Σ⋆∥max ≤ a

2

}
, we have

⟨∇H (Σ1)−∇H (Σ2) ,Σ1 −Σ2⟩ ≥
µ0

2
∥Σ1 −Σ2∥2F

with probability at least 1− 2/d2(cN−1), where µ0 ∈ (0, 2).

Proof. Define Dkl =
1
N

∑N
j=1 I

(
|Σ⋆

kl − xjkxjl| ≤ a
2

)
for k, l = 1, . . . , d. Since a = ca

√
KN
log d and

ca ≥ 4√
2−µ0

√
log d
N , we have a ≥ 4

√
K

2−µ0
. By Chebyshev’s inequality, we have

E (Dkl) = P
(
|Σ⋆

kl − xjkxjl| ≤
a

2

)
≥ 1− 4K

a2
≥ 2 + µ0

4
.

Then utilizing the fact that I
(
|Σ⋆

kl − xjkxjl| ≤ a
2

)
∈ {0, 1} and Hoeffding’s inequality, we have

P
(
Dkl ≤

µ0

2

)
≤ P

(
|Dkl − E (Dkl)| ≥

2− µ0

4

)
≤ 2 exp

(
−N (2− µ0)

2

8

)
.
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According to union bound and N ≥ 16cN log d
(2−µ0)

2 , we have

P

(
min
k,l

Dkl ≤
µ0

2

)
≤ 2d2 exp

(
−N (2− µ0)

2

8

)
≤ 2 exp (2 (1− cN ) log d) .

Due to the non-decreasing nature of h′, for each (k, l) we have

(h′ ((Σ1)kl − xjkxjl)− h′ ((Σ2)kl − xjkxjl)) ((Σ1)kl − (Σ2)kl) ≥ 0.

Conditioned on mink,l Dkl ≥ µ0

2 , we have

1

N

N∑
j=1

(h′ ((Σ1)kl − xjkxjl)− h′ ((Σ2)kl − xjkxjl)) ((Σ1)kl − (Σ2)kl)

≥ 1

N

N∑
j=1

I
(
|Σ⋆

kl − xjkxjl| ≤
a

2

)
(h′ ((Σ1)kl − xjkxjl)− h′ ((Σ2)kl − xjkxjl)) ((Σ1)kl − (Σ2)kl)

≥ 1

N

N∑
j=1

I
(
|Σ⋆

kl − xjkxjl| ≤
a

2

)
((Σ1)kl − (Σ2)kl)

2

≥µ0

2
((Σ1)kl − (Σ2)kl)

2
.

Summing over all (k, l) leads to the desired result.

Then we bound ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max by the regularization parameter λ.

Proposition 11. Suppose Assumptions 2 and 3 hold. Assume a = ca

√
KN
log d , τ ≤

cτ

∥∥∥(Σ⋆)
−1
∥∥∥−1

max

√
log d
N , and λ = cλ

((√
6 + 2ca +

1
ca

)√
K + cτ

)√
log d
N . Then we have

∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max ≤ λ

2

with probability at least 1− 2/d.

Proof. For each k, l = 1, . . . , d, we have

|E (h′ (Σ⋆
kl − xjkxjl))|

= |E ((Σ⋆
kl − xjkxjl) I (|Σ⋆

kl − xjkxjl| ≤ a) + asign (Σ⋆
kl − xjkxjl) I (|Σ⋆

kl − xjkxjl| > a))|
= |E (Σ⋆

kl − xjkxjl + (asign (Σ⋆
kl − xjkxjl)− (Σ⋆

kl − xjkxjl)) I (|Σ⋆
kl − xjkxjl| > a))|

= |E (Σ⋆
kl − xjkxjl) + E ((Σ⋆

kl − xjkxjl − asign (Σ⋆
kl − xjkxjl)) I (|Σ⋆

kl − xjkxjl| > a))|
≤ E ((|Σ⋆

kl − xjkxjl| − a) I (|Σ⋆
kl − xjkxjl| > a))

≤ 1

|Σ⋆
kl − xjkxjl|+ a

E
((

(Σ⋆
kl − xjkxjl)

2 − a2
)
I (|Σ⋆

kl − xjkxjl| > a)
)

≤ 1

a
E
(
(Σ⋆

kl − xjkxjl)
2
)

≤ K

a
. (62)

Then since the a = ca

√
KN
log d and N > 16cN log d

(2−µ0)
2 , we have

|h′ (Σ⋆
kl − xjkxjl)− E (h′ (Σ⋆

kl − xjkxjl))| ≤ |h′ (Σ⋆
kl − xjkxjl)|+ |E (h′ (Σ⋆

kl − xjkxjl))|

≤ a+
K

a
≤ 2a.
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Then since h is 1-Lipschitz smooth, for n ≥ 2 we have

E
(
(h′ (Σ⋆

kl − xjkxjl)− E (h′ (Σ⋆
kl − xjkxjl)))

n)
≤ (2a)

n−2
E
(
(h′ (Σ⋆

kl − xjkxjl)− E (h′ (Σ⋆
kl − xjkxjl)))

2
)

= (2a)
n−2

Var (h′ (Σ⋆
kl − xjkxjl))

= (2a)
n−2

inf
u

E
(
(h′ (Σ⋆

kl − xjkxjl)− u)
2
)

≤ (2a)
n−2

E
(
(h′ (Σ⋆

kl − xjkxjl)− h′ (E (Σ⋆
kl − xjkxjl)))

2
)

≤ (2a)
n−2

E
(
(Σ⋆

kl − xjkxjl − E (Σ⋆
kl − xjkxjl))

2
)

= (2a)
n−2

Var (Σ⋆
kl − xjkxjl)

≤ (2a)
n−2

K

≤ n!

2
an−2K.

Then according to the Bernstein’s inequality, we have

P (|h′ (Σ⋆
kl − xjkxjl)− E (h′ (Σ⋆

kl − xjkxjl))| ≥ t) ≤ 2 exp

(
− Nt2

2
(
K + at

3

)) .

Taking t =
√

6σ2 log d
N + a 2 log d

N , we have

P

(
|h′ (Σ⋆

kl − xjkxjl)− E (h′ (Σ⋆
kl − xjkxjl))| ≥

√
6K log d

N
+ a

2 log d

N

)

≤ 2 exp

−
N

(√
6K log d

N + a 2 log d
N

)2

2

(
σ2 + a

3

(√
6K log d

N + a 2 log d
N

))


≤ 2 exp

−

(
6σ2 + 4a

√
6K log d

N + 4a2 log d
N

)
(
6σ2 + 2a

√
6K log d

N + 4a2 log d
N

)3 log d


≤ 2

d3
.

In conjunction with the union bound, we have

P

(
∥∇H (Σ⋆)− E (∇H (Σ⋆))∥max ≥

√
6K log d

N
+ a

2 log d

N

)
≤ 2

d
.

Recall equation 62, we have

P

(
∥∇H (Σ⋆)∥max ≥

√
6K log d

N
+ a

2 log d

N

)

≤P

(
∥∇H (Σ⋆)− E (∇H (Σ⋆))∥max + ∥E (∇H (Σ⋆))∥max ≥

√
6K log d

N
+ a

2 log d

N
+

K

a

)

≤2

d
.

Since τ ≤ cτ

∥∥∥(Σ⋆)
−1
∥∥∥−1

max

√
log d
N , we have

∥∇ (−τ log det (Σ⋆))∥max = τ
∥∥∥(Σ⋆)

−1
∥∥∥
max

≤ cτ

√
log d

N
.
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Combining the two inequalities above, we have

∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max ≤
√

6K log d

N
+ a

2 log d

N
+

K

a
+ cτ

√
log d

N

with probability at least 1 − 2/d. Finally, since a = ca

√
KN
log d and λ =

cλ

((√
6 + 2ca +

1
ca

)√
K + cτ

)√
log d
N , we have the desired result.

Based on Proposition 11, we can further bound
∥∥∥(Σ̂−Σ⋆

)
Sc

∥∥∥
1
.

Proposition 12. Based on Proposition 11 and suppose that there exists a constant rq such that∥∥∥Σ̂−Σ⋆
∥∥∥
max

≤ rq , we have∥∥∥(Σ̂−Σ⋆
)
Sc

∥∥∥
1
≤

2λ+
∥∥∇ ( 1

m

∑m
i=1 Hi (Σ

⋆)− τ log det (Σ⋆)
)∥∥

max
+ Lqrq

λ−
∥∥∇ ( 1

m

∑m
i=1 Hi (Σ⋆)− τ log det (Σ⋆)

)∥∥
max

− Lqrq

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
.

Proof. Due to the first-order optimization condition of equation 2, for Φ ∈ ∂λ
∥∥∥Σ̂∥∥∥

1,off
, we have

0 ≥
〈
∇F

(
Σ̂
)
+Φ, Σ̂−Σ⋆

〉
≥
〈
∇
(
H
(
Σ̂
)
− τ log det

(
Σ̂
))

−∇ (H (Σ⋆)− τ log det (Σ⋆)) , Σ̂−Σ⋆
〉

+
〈
∇ (H (Σ⋆)− τ log det (Σ⋆)) , Σ̂−Σ⋆

〉
−
〈
∇Q

(
Σ̂
)
−∇Q (Σ⋆) , Σ̂−Σ⋆

〉
−
〈
∇Q (Σ⋆) , Σ̂−Σ⋆

〉
+
〈
Φ, Σ̂−Σ⋆

〉
.

Due to the convexity of Huber loss, we have〈
∇
(
H
(
Σ̂
)
− τ log det

(
Σ̂
))

−∇ (H (Σ⋆)− τ log det (Σ⋆)) , Σ̂−Σ⋆
〉
≥ 0.

In addition, we have〈
Φ, Σ̂−Σ⋆

〉
=
〈
ΦSc ,

(
Σ̂−Σ⋆

)
Sc

〉
+
〈
ΦS ,

(
Σ̂−Σ⋆

)
S

〉
=
〈
ΦSc , Σ̂Sc

〉
+
〈
ΦS ,

(
Σ̂−Σ⋆

)
S

〉
= λ

∥∥∥Σ̂Sc

∥∥∥
1
+
〈
ΦS ,

(
Σ̂−Σ⋆

)
S

〉
≥ λ

∥∥∥(Σ̂−Σ⋆
)
Sc

∥∥∥
1
− λ

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
. (63)

According to Assumption 3, we have〈
∇Q (Σ⋆) , Σ̂−Σ⋆

〉
=
〈
∇Q (Σ⋆)S ,

(
Σ̂−Σ⋆

)
S

〉
≤ λ

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
.

Combining the four inequalities above, we have

0 ≥ − ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max

∥∥∥Σ̂−Σ⋆
∥∥∥
1
− Lq

∥∥∥Σ̂−Σ⋆
∥∥∥
max

∥∥∥Σ̂−Σ⋆
∥∥∥
1

+ λ
∥∥∥(Σ̂−Σ⋆

)
Sc

∥∥∥
1
− 2λ

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
.

Decomposing
∥∥∥Σ̂−Σ⋆

∥∥∥
1

into Sc and S, we have

∥∥∥(Σ̂−Σ⋆
)
Sc

∥∥∥
1
≤

2λ+ ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max + Lq

∥∥∥Σ̂−Σ⋆
∥∥∥
max

λ− ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max − Lq

∥∥∥Σ̂−Σ⋆
∥∥∥
max

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
.

Since
∥∥∥Σ̂−Σ⋆

∥∥∥
max

≤ rq , we have the desired result.
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Then we can bound the estimation error
∥∥∥Σ̂−Σ⋆

∥∥∥
F

.

Theorem 5. Suppose that N > 38cλ
µ0ca

√
K

((√
6 + 2ca +

1
ca

)√
K + cτ

)√
s log d, λ =

cλ

((√
6 + 2ca +

1
ca

)√
K + cτ

)√
log d
N , a = ca

√
KN
log d , and Lq ≤ cqµ0√

s
, where ca, cλ, cτ , cq > 0,

and µ0 ∈ (0, 2). Based on Propositions 10, 11, and 12, we have∥∥∥Σ̂−Σ⋆
∥∥∥
F
<

a

2
,

and ∥∥∥Σ̂−Σ⋆
∥∥∥
F
≤ 60

µ0
cλ

((√
6 + 2ca +

1

ca

)√
K + cτ

)√
s log d

N
.

Proof. Based on Propositions 11 and 12, when Lqrq ≤ λ
4 , we have∥∥∥(Σ̂−Σ⋆

)
Sc

∥∥∥
1
≤ 11

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
,

and hence ∥∥∥Σ̂−Σ⋆
∥∥∥
1
≤ 12

√
s
∥∥∥Σ̂−Σ⋆

∥∥∥
F
. (64)

Define η = sup
{
u ∈ (0, 1] | u

∥∥∥Σ̂−Σ⋆
∥∥∥
max

≤ a
2

}
, and Σ̂η = (1− η)Σ⋆ + ηΣ̂. Note that η = 1

if
∥∥∥Σ̂−Σ⋆

∥∥∥
max

≤ a
2 and η ∈ (0, 1) otherwise. Meanwhile, if

∥∥∥Σ̂η −Σ⋆
∥∥∥
max

< a
2 , then Σ̂η = Σ̂.

By convexity of Huber loss, we have〈
∇H

(
Σ̂η

)
−∇H (Σ⋆) , Σ̂η −Σ⋆

〉
≤ η

〈
∇H

(
Σ̂
)
−∇H (Σ⋆) , Σ̂−Σ⋆

〉
. (65)

Since
∥∥∥Σ̂η −Σ⋆

∥∥∥
max

≤ a
2 , according to Proposition 10, we have〈

∇H
(
Σ̂η

)
−∇H (Σ⋆) , Σ̂η −Σ⋆

〉
≥ µ0

2

∥∥∥Σ̂η −Σ⋆
∥∥∥2
F
.

Combining the two inequalities above, we have∥∥∥Σ̂η −Σ⋆
∥∥∥2
F
≤ 2η

µ0

〈
∇H

(
Σ̂
)
−∇H (Σ⋆) , Σ̂−Σ⋆

〉
. (66)

Then we bound the right side of equation 66. For Φ ∈ ∂λ
∥∥∥Σ̂∥∥∥

1,off
, according to the first-order

optimality condition of equation 2, we have〈
∇H

(
Σ̂
)
−∇H (Σ⋆) , Σ̂−Σ⋆

〉
=
〈
∇F

(
Σ̂
)
+Φ, Σ̂−Σ⋆

〉
−
〈
∇ (H (Σ⋆)− τ log det (Σ⋆)) , Σ̂−Σ⋆

〉
−
〈
Φ, Σ̂−Σ⋆

〉
− τ

〈
(Σ⋆)

−1 − Σ̂−1, Σ̂−Σ⋆
〉
+
〈
∇Q

(
Σ̂
)
, Σ̂−Σ⋆

〉
≤−

〈
∇ (H (Σ⋆)− τ log det (Σ⋆)) , Σ̂−Σ⋆

〉
−
〈
Φ, Σ̂−Σ⋆

〉
+
〈
∇Q

(
Σ̂
)
, Σ̂−Σ⋆

〉
.

For the right side of the above inequality, we have

−
〈
∇ (H (Σ⋆)− τ log det (Σ⋆)) , Σ̂−Σ⋆

〉
≤ ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max

∥∥∥Σ̂−Σ⋆
∥∥∥
1
.

Then recall equation 63 and Assumption 3, we have〈
∇H

(
Σ̂
)
−∇H (Σ⋆) , Σ̂−Σ⋆

〉
≤ ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max

∥∥∥Σ̂−Σ⋆
∥∥∥
1

− λ
∥∥∥(Σ̂−Σ⋆

)
Sc

∥∥∥
1
+ λ

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
+ λ

(∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
+
∥∥∥(Σ̂−Σ⋆

)
Sc

∥∥∥
1

)
= ∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max

∥∥∥Σ̂−Σ⋆
∥∥∥
1
+ 2λ

∥∥∥(Σ̂−Σ⋆
)
S

∥∥∥
1
. (67)
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Combining Proposition 11, equation 64, equation 66, and equation 67, we have〈
∇H

(
Σ̂
)
−∇H (Σ⋆) , Σ̂−Σ⋆

〉
≤ 30λ

√
s
∥∥∥Σ̂−Σ⋆

∥∥∥
F
. (68)

Combining equation 66 and equation 68 leads to∥∥∥Σ̂η −Σ⋆
∥∥∥2
F
≤ 60

µ0
λ
√
s
∥∥∥Σ̂η −Σ⋆

∥∥∥
F
.

Since a = ca

√
KN
log d , N > 38cλ

µ0ca
√
K

((√
6 + 2ca +

1
ca

)√
K + cτ

)√
s log d, and λ =

cλ

((√
6 + 2ca +

1
ca

)√
K + cτ

)√
log d
N , we have a

2 > 60
µ0
λ
√
s. Therefore, we have∥∥∥Σ̂η −Σ⋆

∥∥∥
F
< a

2 , and hence Σ̂η = Σ̂, which means that
∥∥∥Σ̂−Σ⋆

∥∥∥
F
< a

2 and

∥∥∥Σ̂−Σ⋆
∥∥∥
F
≤ 60

µ0
cλ

((√
6 + 2ca +

1

ca

)√
K + cτ

)√
s log d

N
.

Moreover, since Lq ≤ cqµ0√
s

, we have Lq

∥∥∥Σ̂−Σ⋆
∥∥∥
max

≤ Lq

∥∥∥Σ̂−Σ⋆
∥∥∥
F

≤ 60
µ0
Lqλ

√
s ≤ λ

4 if

cq ≤ 1
240 , which complete the proof.

Based on Propositions 10, 11, and 12, and Theorem 5, we can finally prove Theorem 3. According
to Theorem 5, we have

∥∥∥Σ̂−Σ⋆
∥∥∥
F

< a
2 . Then recall Proposition 10 and Lq ≤ cqµ0√

s
where

cq ∈ (0,
√
s), we have

F
(
Σ̂
)
−F (Σ⋆)−

〈
∇F (Σ⋆) , Σ̂−Σ⋆

〉
≥ µ0 − Lq

2

∥∥∥Σ̂−Σ⋆
∥∥∥2
F
,

and
F (Σ⋆)−F

(
Σ̂
)
−
〈
∇F

(
Σ̂
)
,Σ⋆ − Σ̂

〉
≥ µ0 − Lq

2

∥∥∥Σ⋆ − Σ̂
∥∥∥2
F
.

Since λ ∥·∥1,off is convex, for Φ ∈ ∂λ
∥∥∥Σ̂∥∥∥

1,off
and Ψ ∈ ∂λ ∥Σ⋆∥1,off, we have

λ
∥∥∥Σ̂∥∥∥

1,off
− λ ∥Σ⋆∥1,off −

〈
Ψ, Σ̂−Σ⋆

〉
≥ 0,

and
λ ∥Σ⋆∥1,off − λ

∥∥∥Σ̂∥∥∥
1,off

−
〈
Φ,Σ⋆ − Σ̂

〉
≥ 0.

According to the first-order optimality condition of equation 2, we have〈
∇F

(
Σ̂
)
+Φ,Σ⋆ − Σ̂

〉
≥ 0.

Combining the above inequalities, we have

(µ0 − Lq)
∥∥∥Σ̂−Σ⋆

∥∥∥2
F
≤
〈
∇F (Σ⋆) +Ψ,Σ⋆ − Σ̂

〉
≤
∑
k,l

|(∇F (Σ⋆) +Ψ)kl|
∣∣∣(Σ⋆ − Σ̂

)
kl

∣∣∣ . (69)

Then for (k, l) ∈ Sc, according to Assumption 3, we have q′λ (Σ
⋆
kl) = 0. Moreover, according to

Proposition 11, we have

∥∇ (H (Σ⋆)− τ log det (Σ⋆))∥max ≤ λ

2
,

and hence |∇F (Σ⋆)kl| ≤ λ. Then since Ψkl ∈ [−λ, λ], there exists a Ψ such that
|(∇F (Σ⋆) +Ψ)kl| = 0. Therefore, we have∑

(k,l)∈Sc

|(∇F (Σ⋆) +Ψ)kl|
∣∣∣(Σ⋆ − Σ̂

)
kl

∣∣∣ = 0. (70)
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For (k, l) ∈ S, since bλ ≤
∣∣Σ⋆

ij

∣∣, by Assumption 3, we have p′λ (Σ
⋆
kl) = 0. Therefore, we have∑

(k,l)∈S

|(∇F (Σ⋆) +Ψ)kl|
∣∣∣(Σ⋆ − Σ̂

)
kl

∣∣∣
≤

∑
(k,l)∈S

|(∇ (H (Σ⋆)− τ log det (Σ⋆)))kl|
∣∣∣(Σ⋆ − Σ̂

)
kl

∣∣∣
≤ ∥(∇ (H (Σ⋆)− τ log det (Σ⋆)))S∥F

∥∥∥Σ⋆ − Σ̂
∥∥∥
F
. (71)

Then similar to the proof of Proposition 11, we have

|E (h′ (Σ⋆
kl − xjkxjl))|

≤ E ((|Σ⋆
kl − xjkxjl| − a) I (|Σ⋆

kl − xjkxjl| > a))

≤ 1

|Σ⋆
kl − xjkxjl|1+ν

+ a1+ν
E
((

(Σ⋆
kl − xjkxjl)

2(1+ν) − a2(1+ν)
)
I (|Σ⋆

kl − xjkxjl| > a)
)

≤ 1

a1+ν
E
(
(Σ⋆

kl − xjkxjl)
2(1+ν)

)
≤ K

a1+ν
.

In addition, we have

E
(
(h′ (Σ⋆

kl − xjkxjl)− E (h′ (Σ⋆
kl − xjkxjl)))

2
)
≤ Var (Σ⋆

kl − xjkxjl) ≤ K.

Therefore, recall that a = ca

√
KN
log d and N > (log d)1+

1
ν

c
2(1+ 1

ν )
a K

we have

E


 1

N

N∑
j=1

h′ (Σ⋆
kl − xjkxjl)

2


=

 1

N

N∑
j=1

E (h′ (Σ⋆
kl − xjkxjl))

2

+ E


 1

N

N∑
j=1

(h′ (Σ⋆
kl − xjkxjl)− E (h′ (Σ⋆

kl − xjkxjl)))

2


≤ K2

a2(1+ν)
+

K

N

≤ 2K

N
,

and hence

E
(
∥∇H (Σ⋆)S∥F

)
≤ E


√√√√√ ∑

(k,l)∈S

 1

N

N∑
j=1

h′ (Σ⋆
kl − xjkxjl)

2


≤

√√√√√√ ∑
(k,l)∈S

E


 1

N

N∑
j=1

h′ (Σ⋆
kl − xjkxjl)

2


≤
√

2sK

N
.
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According to Markov’s inequality, we have

P

(
∥∇H (Σ⋆)S∥F ≥ β

√
sK

N

)
≤ E

(
∥∇H (Σ⋆)S∥F

)
β
√

sK
N

≤

√
2sK
N

β
√

sK
N

≤
√
2

β
.

Then since τ ≤ cτ

∥∥∥((Σ⋆)
−1
)
S

∥∥∥−1

F

√
s
N , we have

∥(∇ (H (Σ⋆)− τ log det (Σ⋆)))S∥F ≤
(
β
√
K + cτ

)√ s

N
. (72)

with probability at least 1−
√
2

β . Combining equation 71 and equation 72, we have∑
(k,l)∈S

|(∇F (Σ⋆) +Ψ)kl|
∣∣∣(Σ⋆ − Σ̂

)
kl

∣∣∣ ≤ (β√K + cτ

)√ s

N

∥∥∥Σ⋆ − Σ̂
∥∥∥
F
. (73)

Finally, combining equation 69, equation 70, and equation 73, we have the desired result∥∥∥Σ̂−Σ⋆
∥∥∥
F
≤ β

√
K + cτ

µ0 − Lq

√
s

N

with high probability. Specifically, according to union bound of the probability of equation 72 and
the probabilities in Propositions 10 and 11, the final probability is 1−

(
2
d + 2

d2(cN−1) +
√
2

β

)
.

C.4 PROOF OF COROLLARY 1

According to Theorem 5, with high probability we have∥∥∥Σ̂−Σ⋆
∥∥∥
max

≤
∥∥∥Σ̂−Σ⋆

∥∥∥
F
<

a

2
.

Then since T = max
{
0,
⌈
2 log

(
ch/

√
C1

)
/ log

(
1− 1/(C2κ)

)⌉}
and Theorem 1, we have

∥∥∥Σ(t) − Σ̂
∥∥∥
max

≤
∥∥∥Σ(t) − Σ̂

∥∥∥
F
≤
√
C1

(
1− 1

C2κ

)T

<
a

2
−
∥∥∥Σ̂−Σ⋆

∥∥∥
F
≤ a

2
−
∥∥∥Σ̂−Σ⋆

∥∥∥
max

,

and hence with high probability∥∥∥Σ(t) −Σ⋆
∥∥∥
max

≤
∥∥∥Σ(t) − Σ̂

∥∥∥
max

+
∥∥∥Σ̂−Σ⋆

∥∥∥
max

≤ a

2
.

Then recall Proposition 10, we have〈
∇H

(
Σ(t)

)
−∇H

(
Σ̂
)
,Σ(t) − Σ̂

〉
≥ µ0

2

∥∥∥Σ(t) − Σ̂
∥∥∥2
F

with high probability, and hence

F
(
Σ̂
)
−F

(
Σ(t)

)
−
〈
F
(
Σ(t)

)
, Σ̂−Σ(t)

〉
≥ µ0 − Lq

2

∥∥∥Σ(t) − Σ̂
∥∥∥2
F
. (74)

Due to Theorem 1, we have∥∥∥Σ(t+1) − Σ̂
∥∥∥
F
≤
∥∥∥Σ(t) − Σ̂

∥∥∥
F
<

a

2
−
∥∥∥Σ̂−Σ⋆

∥∥∥
F
,

and hence ∥∥∥Σ(t+1) −Σ⋆
∥∥∥
F
≤ a

2
.

According to Weyl’s inequality, we have

λmin

(
Σ(t+1)

)
≥ λmin (Σ

⋆)−
∥∥∥Σ(t+1) −Σ⋆

∥∥∥
2
≥ λmin (Σ

⋆)−
∥∥∥Σ(t+1) −Σ⋆

∥∥∥
F
≥ λmin (Σ

⋆)−a

2
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and
λmin

(
Σ(t)

)
≥ λmin (Σ

⋆)− a

2
.

Therefore, when λmin

(
Σ(t)

)
− a

2 > 0, we have

F
(
Σ(t+1)

)
−F

(
Σ(t)

)
−
〈
F
(
Σ(t)

)
,Σ(t+1) −Σ(t)

〉
≤

1 + τ
(λmin(Σ⋆)−a/2)2

2

∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F
.

(75)
Substituting equation 74 and equation 75 into Section C.1.3, we obtain the desired result.

When λmin

(
Σ(t)

)
− a

2 ≤ 0, according to equation 64, we have∥∥∥Σ̂−Σ⋆
∥∥∥
2
≤
∥∥∥Σ̂−Σ⋆

∥∥∥
1
≤ 12

∥∥∥Σ̂−Σ⋆
∥∥∥
F
.

Then due to Cs

√
s/N < λmin (Σ

⋆) /(12cr) and Theorem 3, we have∥∥∥Σ̂−Σ⋆
∥∥∥
2
≤ 12Cs

√
s

N
<

λmin (Σ
⋆)

12cr
.

Then recall Weyl’s inequality, we have

λmin

(
Σ̂
)
≥ λmin (Σ

⋆)−
∥∥∥Σ̂−Σ⋆

∥∥∥
2
>

12cr − 1

12cr
λmin (Σ

⋆) .

Theorem 3, T = max
{
0,
⌈
2 log

(
ch/

√
C1

)
/ log

(
1− 1/(C2κ)

)⌉}
, and ch = λmin

(
Σ̂
)
−

(12cr − 1)λmin (Σ
⋆) /12cr, we have

λmin

(
Σ(t)

)
≥ λmin

(
Σ̂
)
−
∥∥∥Σ(t) − Σ̂

∥∥∥
2
≥ λmin

(
Σ̂
)
−
∥∥∥Σ(t) − Σ̂

∥∥∥
F
≥ 12cr − 1

12cr
λmin (Σ

⋆) .

Similarly, we have

λmin

(
Σ(t+1)

)
≥ 12cr − 1

12cr
λmin (Σ

⋆) ,

and hence

F
(
Σ(t+1)

)
−F

(
Σ(t)

)
−
〈
F
(
Σ(t)

)
,Σ(t+1) −Σ(t)

〉
≤

1 +
144c2rτ

(12cr−1)2λ2
min(Σ

⋆)

2

∥∥∥Σ(t) −Σ(t+1)
∥∥∥2
F
.

(76)
Substituting equation 74 and equation 76 into Section C.1.3, we obtain the desired result.

C.5 PROOF OF COROLLARY 2

We first show that
∑m

i=1

∥∥∥∥Σ(t+ 1
2 )

i − Σ̂

∥∥∥∥2
F

converges linearly as well.

Corollary 3. Suppose Assumptions 1, 2, and 3 hold, and all conditions in Theorem 2 are satisfied.
Then we have

m∑
i=1

∥∥∥∥Σ(t+ 1
2 )

i − Σ̂

∥∥∥∥2
F

≤ C ′′
1

(
1− 1

C ′
2κ

)t

, (77)

where

C ′′
1 =

(
16L

√
m

γϵ
ρ

z−ρ
ρ2

z−ρ2 + 2L
√
m

γϵ
ρ

z−ρ

)∥∥∥E(0)
Σ

∥∥∥2 + √
m

γϵ
ρ

z−ρ

∥∥∥E(0)
Y

∥∥∥2
F

1− 6Lϵ
√
mρ

γ(1−ρ) −
(
1− µ

γ

)
θ

z−(1−θ)

+

(
1− µ

γ

)
1

z−(1−θ)

∑m
i=1

∥∥∥Σ̃(0)
i − Σ̂

∥∥∥2
F

1− 6Lϵ
√
mρ

γ(1−ρ) −
(
1− µ

γ

)
θ

z−(1−θ)

+

m∑
i=1

∥∥∥∥Σ( 1
2 )

i − Σ̂

∥∥∥∥2
F

.
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Proof. Since equation 54 and the fact that
∥∥∥Σ(t)

i − Σ̂
∥∥∥2
F
≤
∥∥∥Σ̃(t−1)

i − Σ̂
∥∥∥2
F

, we have

m∑
i=1

∥∥∥Σ̃(t)
i − Σ̂

∥∥∥2
F
≤ θ

m∑
i=1

∥∥∥∥Σ(t+ 1
2 )

i − Σ̂

∥∥∥∥2 + (1− θ)

m∑
i=1

∥∥∥Σ̃(t−1)
i − Σ̂

∥∥∥2 . (78)

Multiplying z−ton both sides, summing from 1 to T , and utilizing Lemma 3, we have

V (T ) (z) ≤ θ

z − (1− θ)

T∑
t=1

m∑
i=1

∥∥∥∥Σ(t+ 1
2 )

i − Σ̂

∥∥∥∥2 z−t +
1

z − (1− θ)

m∑
i=1

∥∥∥Σ̃(0)
i − Σ̂

∥∥∥2
F
. (79)

Define

W (T ) (z) =

T∑
t=1

m∑
i=1

∥∥∥∥Σ(t− 1
2 )

i − Σ̂

∥∥∥∥2
F

z−t.

Combining equation 53, equation 79, and the fact that
∥∥∥Σ(t)

i − Σ̂
∥∥∥2
F
≤
∥∥∥Σ̃(t−1)

i − Σ̂
∥∥∥2
F

, multiplying

z−ton both sides, summing from 1 to T , and utilizing Lemma 3, we have(
1− 6Lϵ

√
mρ

γ (1− ρ)
−
(
1− µ

γ

)
θ

z − (1− θ)

)(
zW (T ) (z)−

m∑
i=1

∥∥∥∥Σ( 1
2 )

i − Σ̂

∥∥∥∥2
F

)

≤
(
1− µ

γ

)
1

z − (1− θ)

m∑
i=1

∥∥∥Σ̃(0)
i − Σ̂

∥∥∥2
F
−
(
1− L

γ

)
D(T ) (z)

+
4L

√
m

γϵ

ρ

z − ρ
D(T ) (z) +

8L
√
m

γϵ

ρ

z − ρ
E(T ) (z)

+

√
m

γϵ

ρ

z − ρ

∥∥∥E(0)
Y

∥∥∥2
F
+

2L
√
m

γϵ

ρ

z − ρ

∥∥∥E(0)
Σ

∥∥∥2
F
. (80)

Then following the proof of Theorem 2, we have the desired result.

Corollary 3 shows that the convergence rate of
∑m

i=1

∥∥∥∥Σ(t+ 1
2 )

i − Σ̂

∥∥∥∥2
F

differs from that of∑m
i=1

∥∥∥Σ(t)
i − Σ̂

∥∥∥2
F

with only a constant factor. Therefore, defining C ′′
3 = max{C ′

1, C
′′
3 } and

following similar steps to Section C.4, we can prove Corollary 2.

D DISCUSSION

Zero-mean assumption of x In the previous discussion, we assumed for simplicity that the random
vector x is zero-mean. However, in many practical applications, the mean is unknown. In scenarios
where the mean is unknown, its effect can be removed by constructing a new sample using the
pairwise difference of observations within each local subsample Ji (Maronna et al., 2019). The
proposed algorithms and theoretical guarantees in this paper can be readily extended to this setting
with only minor modifications.

Supporting recovery Table 1 in Section 7 demonstrates that our method achieves both the lowest
NMSE and the highest F1-score among all compared approaches. This suggests that it not only
provides excellent estimation accuracy in terms of the Frobenius norm but also exhibits strong support
recovery capability. Due to space constraints, we have focused on establishing statistical convergence
guarantees under the Frobenius norm in Theorem 3. As part of future work, we plan to develop
formal support recovery guarantees to further characterize the theoretical properties of our estimator.

High-dimensional covariance matrix estimation when features are distributed This paper focuses
on the sample-partitioned setting. However, in many practical applications, feature variables are
distributed across different agents (Hu et al., 2019; Liu et al., 2022). As a direction for future work,
we plan to extend our method to accommodate such feature-distributed scenarios.
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Parameter selection The proposed method involves six parameters, which may introduce tuning
overhead in practical applications. Specifically, a controls robustness to heavy tails and outliers, τ
ensures positive definiteness, b adjusts the bias correction of the non-convex penalty, λ determines the
sparsity level, and γ and θ govern the convergence behavior. In our experiments, the performance is
largely insensitive to τ , and setting it to a small constant is typically sufficient. The parameters γ and
θ can be selected empirically, as described in the main text, or through simple increasing/decreasing
schedules. For b, a commonly recommended choice is b = 3.7 when using SCAD (Fan & Li, 2001).
Therefore, in practice, the most critical parameters to tune are a and λ. In future work, we aim to
develop a more user-friendly robust sparse covariance estimator with fewer tuning parameters.
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