

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DISTRIBUTED ESTIMATION OF SPARSE COVARIANCE MATRIX UNDER HEAVY-TAILED DATA

Anonymous authors

Paper under double-blind review

## ABSTRACT

In this paper, we study high-dimensional covariance matrix estimation over a network of interconnected agents, where the data are distributed and may exhibit heavy-tailed behavior. To address this challenge, we propose a new estimator that integrates the Huber loss to mitigate outliers with a non-convex regularizer to promote sparsity. To the best of our knowledge, this is the first framework that simultaneously accounts for high dimensionality, heavy tails, and distributed data in covariance estimation. We begin by analyzing a proximal gradient descent algorithm to solve this non-convex and non-globally Lipschitz smooth problem in the centralized setting to set the stage for the distributed case. In the distributed setting, where bandwidth, storage, and privacy constraints preclude agents from directly sharing raw data, we design a decentralized algorithm aligned with the centralized one, building on the principle of gradient tracking. We prove that, under mild conditions, both algorithms converge linearly to the same solution. Moreover, we establish that the resulting covariance estimates attain the oracle statistical rate in Frobenius norm, representing the state of the art for high-dimensional covariance estimation under heavy-tailed distributions. Numerical experiments corroborate our theoretical findings and demonstrate that the proposed estimator outperforms existing baselines in both estimation accuracy and robustness.

## 1 INTRODUCTION

Covariance matrix estimation is a fundamental problem in multivariate data analysis, with wide-ranging applications in fields such as machine learning (Jolliffe, 2002), biology (Schäfer & Strimmer, 2005), and finance (Markowitz, 1952). In many practical scenarios, the dimension of the covariance matrix can far exceed the number of samples. For example, in functional genomics, gene expression microarray studies often involve estimating a covariance matrix for tens of thousands of genes based on only a few hundred samples (Schäfer & Strimmer, 2005). However, in high-dimensional settings where  $d/N \rightarrow \infty$ , the sample covariance matrix performs poorly, leading to significant challenges in downstream tasks (Bai & Yin, 2008). Consequently, accurate estimation of covariance matrices in high dimensions has become an active and important area of research.

A widely adopted assumption in high-dimensional covariance matrix estimation is sparsity, i.e., most off-diagonal entries are close to zero, which significantly reduces the number of parameters to estimate (Bickel & Levina, 2008). This assumption also enhances interpretability in many applications. For example, in portfolio analysis, once common factors are removed, stocks from unrelated sectors typically exhibit near-zero marginal correlations (Fan et al., 2013). Sparse covariance estimation has been extensively studied; see Pourahmadi (2013); Fan et al. (2016); Lam (2020); Wei & Zhao (2023) for comprehensive overviews. Among existing methods, applying an  $\ell_1$  penalty to promote sparsity is well established and achieves the minimax optimal statistical rate (Xue et al., 2012; Rothman, 2012). However, while the  $\ell_1$  penalty encourages sparsity, it introduces estimation bias (Fan & Li, 2001; Fan et al., 2016). To address this issue, non-convex penalties such as smoothly clipped absolute deviation (SCAD) (Fan & Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010) have been proposed. These methods preserve the sparsity-inducing effect of the  $\ell_1$  penalty for small coefficients while reducing shrinkage on large coefficients, thereby mitigating bias. Recently, Wei & Zhao (2023) applies non-convex penalties to sparse covariance estimation and shows that, under (sub-)Gaussian assumptions, the resulting estimator attains the oracle rate.

In many modern applications, data are collected independently by multiple agents, such as geographically dispersed sensors, satellites in different orbits, or institutions across continents (Xia et al., 2025). Due to communication and storage overhead, privacy concerns, and regulatory constraints, transmitting distributed data to a central processor can be inefficient or even infeasible (Bertsekas & Tsitsiklis, 2015; Boyd et al., 2011; Nedić et al., 2018). For example, agents may be unwilling to share private data in collaborative research among laboratories (Forero et al., 2010), and low-power devices are often restricted to communicate only with physically nearby neighbors in wireless networks (Predd et al., 2009). These challenges underscore the need for distributed estimation methods that enable network-wide analysis while preserving data locality and privacy (Maros & Scutari, 2022; Ji et al., 2023; Xia et al., 2025). Moreover, many practical datasets may follow heavy-tailed distributions or contain outliers. For instance, return distributions in finance usually exhibit power-law behavior (Cont, 2001), and measurement limitations, e.g., in biological imaging, often lead to heavy-tailed noise (Fan et al., 2021). Consequently, numerous robust estimation methods have been developed to address these challenges (Huber & Ronchetti, 2011; Maronna et al., 2019). A representative strategy treats each entry of the covariance matrix as a location parameter and estimates it using robust techniques such as Huber’s M-estimator (Huber, 1964). Compared to the traditional squared loss, the Huber loss adopts a quadratic form for small residuals and a linear form for large residuals, thereby limiting the influence of outliers while maintaining convexity and smoothness.

To address the aforementioned challenges, we study robust sparse covariance matrix estimation in a distributed setting, where data samples are spread across networked agents and may exhibit heavy-tailed behavior. Specifically, our main contributions are as follows:

- **New problem formulation.** We propose a novel covariance matrix estimation problem as the minimization of a Huber loss combined with a log-determinant barrier and a non-convex penalty, which is the first framework that simultaneously handles the high-dimensional, heavy-tailed, and distributed setting in covariance matrix estimation. The resulting problem is non-convex and non-globally Lipschitz smooth, and the lack of access to data from other agents further complicates the estimation task in the distributed setting.
- **Algorithmic design and convergence analysis.** We develop both centralized and decentralized single-loop algorithms for the proposed problem. In the centralized case, we introduce a proximal gradient method, which serves as the foundation for the distributed setting. In the decentralized case, we integrate proximal gradient updates with the gradient tracking scheme (Di Lorenzo & Scutari, 2016). We show that, under mild conditions, both algorithms converge linearly to the same estimate, and that the convergence rate of the decentralized algorithm differs from its centralized counterpart only by constant factors.
- **Sharp statistical guarantees.** We prove that both the decentralized and centralized algorithms attain an oracle statistical rate  $O(\sqrt{s/N})$  in Frobenius norm ( $s$  is the sparsity level and  $N$  is the sample size), which is the state-of-the-art statistical guarantee for high-dimensional covariance estimation under heavy-tailed distributions. We validate the theoretical findings through numerical experiments, demonstrating that our method outperforms baseline methods in terms of both estimation accuracy and robustness.

## 2 RELATED WORK

**Covariance estimation under heavy tails.** In the work of Fan et al. (2016), each entry of the covariance matrix is estimated using Huber’s M-estimator under the assumption of zero-mean data. For the unknown-mean case, Avella-Medina et al. (2018) apply Huber’s M-estimator elementwise to estimate the first and second moments separately and then combines them to construct a robust covariance estimator. To avoid the potential accumulation of errors introduced by separately estimating and combining moments, Ke et al. (2019) propose using pairwise differences to eliminate the mean effect directly. Under the assumption of finite fourth moments, these Huber-loss-based estimators are shown to achieve optimal deviation bounds. Beyond Huber-based approaches, several other elementwise estimators have been developed based on robust location estimation (e.g., truncation (Ke et al., 2019), median-of-means (Avella-Medina et al., 2018; Ke et al., 2019)), robust scale estimation (e.g., median absolute deviation (Gnanadesikan & Kettenring, 1972), interquartile range (Lu et al., 2021)), and combined first- and second-moment estimation (e.g., rank-based methods (Liu et al., 2012; Xue & Zou, 2012; Avella-Medina et al., 2018)). Furthermore, M-estimators based on

108 the Mahalanobis distance with different robust functions (e.g., Tyler’s M-estimator (Tyler, 1987),  
 109 Maronna’s M-estimator (Maronna, 1976), the minimum volume ellipsoid estimator (Rousseeuw,  
 110 1985), the minimum covariance determinant estimator (Rousseeuw & Driessen, 1999), S-estimator  
 111 (Davies, 1987)), and estimators combining projection pursuit with one-dimensional robust scale  
 112 estimation (Donoho, 1982; Li & Chen, 1985) have also been considered.  
 113

114 **Sparse covariance estimation under heavy tails.** Existing robust sparse covariance matrix estimators  
 115 are generally based on two-stage procedures: they first construct a robust covariance estimate  
 116 and then enforce sparsity through hard or soft thresholding. For example, Avella-Medina et al.  
 117 (2018) employ Huber’s M-estimator, the mean-of-medians, and rank-based methods to obtain robust  
 118 covariance estimates, followed by hard thresholding to induce sparsity, and subsequently projects  
 119 the result onto the positive semidefinite cone. Under the finite fourth-moments assumption, both  
 120 Huber’s M-estimator and rank-based methods achieve the minimax rate, while the mean-of-medians  
 121 further requires finite sixth moments. For Huber’s M-estimator, Li et al. (2023) introduce soft  
 122 thresholding combined with a positive-definiteness constraint to simultaneously promote sparsity  
 123 and ensure positive definiteness, and further establishes support recovery rates and sign consistency  
 124 for compositional data. The work of Goes et al. (2020) combines Tyler’s M-estimator with hard  
 125 thresholding and achieves the minimax rate under elliptical distribution assumptions. Similarly, Lu  
 126 et al. (2021) use the interquartile range and soft thresholding to construct a robust sparse covariance  
 127 estimator and prove the minimax rate under pair-elliptical models. In contrast to these two-stage  
 128 procedures, Chen et al. (2018) propose a one-step estimator based on maximizing matrix depth,  
 129 which simultaneously achieves robustness and sparsity; however, this approach currently lacks a  
 130 polynomial-time algorithm for practical implementation. Notably, none of the existing robust sparse  
 131 covariance estimation methods have been shown to attain the oracle statistical rate  $O(\sqrt{s/N})$ .  
 132

133 **Distributed covariance estimation.** Research on distributed covariance matrix estimation remains  
 134 limited, with most existing efforts focused on precision (inverse covariance) matrix estimation.  
 135 When a central server is available, divide-and-conquer approaches have been applied to the debiased  
 136 graphical lasso (Nezakati & Pircalabelu, 2023), debiased CLIME (Xu et al., 2016), and D-trace  
 137 loss penalized lasso (Wang & Cui, 2021) to obtain high-dimensional precision matrix estimates.  
 138 In particular, Xu et al. (2016) and Wang & Cui (2021) incorporate rank-based methods to derive  
 139 robust covariance estimates with favorable statistical properties under the trans-elliptical model  
 140 and a finite number of agents. The work of Dong & Liu (2024) removes the constraint on the  
 141 number of agents by iteratively solving the D-trace loss penalized lasso through communication  
 142 with a central server. However, a common limitation of these methods is the lack of guarantees on  
 143 positive definiteness, which can lead to invalid covariance estimates. To address this, Xia et al. (2025)  
 144 propose a decentralized graphical lasso algorithm that eliminates the need for a central processor  
 145 and ensures both linear convergence and positive definiteness. Nonetheless, this method relies on  
 146 (sub-)Gaussian assumptions and does not guarantee sparsity in the estimated covariance matrix. Xia  
 147 et al. (2024) directly impose an  $\ell_1$  penalty on the covariance matrix under the Gaussian maximum  
 148 likelihood framework. However, this method still relies on the (sub-)Gaussian assumption, achieves  
 149 only sublinear convergence, and lacks statistical guarantees.  
 150

### 3 PROBLEM FORMULATION

151 We study the estimation problem where data are distributed across a network of  $m$  agents. The  
 152 network is modeled as a time-invariant undirected graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ , where  $\mathcal{V} = \{1, \dots, m\}$  denotes  
 153 the set of agents and  $\mathcal{E}$  the set of communication links. For each agent  $i$ , its neighborhood is defined  
 154 as  $\mathcal{N}_i = \{j \mid (i, j) \in \mathcal{E}\} \cup \{i\}$ . The interactions among agents are encoded in a weight matrix  
 155  $\mathbf{W} \in \mathbb{R}^{m \times m}$ . We impose the following assumptions on the network.  
 156

157 **Assumption 1** (Nedić et al. (2018)). *The network  $\mathcal{G}$  and the weight matrix  $\mathbf{W}$  satisfy the following  
 158 conditions: (a)  $\mathcal{G}$  is connected; (b)  $\mathbf{W}$  is compliance with  $\mathcal{G}$ , i.e.,  $W_{ij} > 0$  if  $j \in \mathcal{N}_i$ , otherwise  
 159  $W_{ij} = 0$ ; (c)  $\mathbf{W}$  is doubly stochastic, i.e.,  $\mathbf{W} = \mathbf{W}^\top$  and  $\mathbf{W}\mathbf{1} = \mathbf{1}$ .*

160 Assumption 1 implies that each agent is only allowed to exchange information with its neighbors,  
 161 which is standard in the distributed optimization literature and widely adopted in practical applications.  
 162 See Cattivelli & Sayed (2009) for representative examples of weight matrices  $\mathbf{W}$  that satisfy this  
 163 assumption. Note that our network setting is allowed to be fully decentralized, as Assumption 1

162 does not require the presence of a central coordinator. Let  $\rho = \|\mathbf{W} - \mathbf{J}\|_2$ , where  $\mathbf{J} = \frac{1}{m}\mathbf{1}\mathbf{1}^\top$ .  
 163 Assumption 1 guarantees that  $\rho \in [0, 1)$  (Sun et al., 2022a). The parameter  $\rho$  characterizes the  
 164 connectivity of the network  $\mathcal{G}$ : as  $\rho \rightarrow 0$ , the graph  $\mathcal{G}$  becomes increasingly connected; as  $\rho \rightarrow 1$ , it  
 165 approaches a disconnected topology.

166 Let  $\mathbf{x}$  be a zero-mean  $d$ -dimensional random vector. We assume that each component  $x_k$ , for  
 167  $k = 1, \dots, d$ , possesses a finite fourth moment. This assumption, which is standard in robust  
 168 covariance matrix estimation (Rothman et al., 2009; Avella-Medina et al., 2018; Ke et al., 2019),  
 169 accommodates heavy-tailed distributions of  $\mathbf{x}$  and is formally stated below.  
 170

171 **Assumption 2.** For all  $k = 1, \dots, d$ , we have  $\mathbb{E}(|x_k|^{4(1+\nu)}) \leq \sigma^{2(1+\nu)} < +\infty$ , where  $\sigma > 0$   
 172 provides a uniform bound on moments, and  $\nu > 0$  determines the order of the moment that is finite.  
 173

174 A commonly used loss function in robust estimation is the Huber loss, formally defined as follows.

175 **Definition 1** (Huber loss (Huber, 1964)). The Huber loss function, denoted as  $h$ , is defined as  
 176

$$h(x) = \begin{cases} \frac{1}{2}x^2, & |x| \leq a, \\ a|x| - \frac{1}{2}a^2, & |x| > a, \end{cases} \quad (1)$$

177 where  $a > 0$  is the robustification parameter.  
 178

181 In contrast to the conventional squared loss, the Huber loss down-weights extreme outliers, thereby  
 182 offering enhanced robustness. Notably, the Huber loss mediates between the squared and absolute  
 183 error loss functions: in the limit as  $a \rightarrow +\infty$ , the Huber loss recovers the squared loss, whereas as  
 184  $a \rightarrow 0$ , it approximates the absolute loss.

185 Let  $\{\mathbf{x}_j\}_{j=1}^N$  be  $N$  independent and identically distributed observations that are stored over  $m$   
 186 agents. We assume the total sample size  $N$  is much smaller than the feature dimension  $d$  in the high-  
 187 dimensional estimation regime. Without loss of generality, we assume that each agent  $i \in \{1, \dots, m\}$   
 188 holds a local subset  $\{\mathbf{x}_j\}_{j \in \mathcal{J}_i}$  of  $n$  observations, where the index sets  $\{\mathcal{J}_i\}_{i=1}^m$  are disjoint and satisfy  
 189  $\bigcup_{i=1}^m \mathcal{J}_i = \{1, 2, \dots, N\}$  and  $|\mathcal{J}_i| = n$ , so that  $N = mn$ . We formulate the following optimization  
 190 problem for distributed sparse covariance matrix estimation:  
 191

$$\underset{\Sigma \succeq 0}{\text{minimize}} \quad \frac{1}{m} \sum_{i=1}^m \mathcal{H}_i(\Sigma) - \tau \log \det(\Sigma) + \mathcal{P}(\Sigma), \quad (2)$$

192 where  
 193

$$\mathcal{H}_i(\Sigma) = \frac{1}{n} \sum_{j \in \mathcal{J}_i} \sum_{k=1}^d \sum_{l=1}^d h(\Sigma_{kl} - x_{jk}x_{jl}) \quad \text{and} \quad \mathcal{P}(\Sigma) = \sum_{k=1}^d \sum_{l=1, l \neq k}^d p_\lambda(\Sigma_{kl}). \quad (3)$$

194  $\mathcal{H}_i$  is the Huber loss for agent  $i$  based on its local dataset, the log-determinant barrier term, with  $\tau > 0$ ,  
 195 ensures the solution to be positive definite, and  $\mathcal{P}$  introduces sparsity on the off-diagonal elements  
 196 of  $\Sigma$  with the elementwise penalty function  $p_\lambda$  being non-convex and decomposable. Problem 2 is  
 197 non-convex due to the penalty  $\mathcal{P}$ . On the penalty function  $p_\lambda$ , we impose the following assumption.

198 **Assumption 3** (Regularity condition on  $p_\lambda$ ). The elementwise penalty function  $p_\lambda : \mathbb{R} \rightarrow \mathbb{R}$  can be  
 199 decomposed as  $p_\lambda(x) = \lambda|x| - q(x)$ , where  $q$  is a convex function. Besides, the following conditions  
 200 are satisfied: **(a)** there exists a constant  $b \geq 0$  such that  $p'_\lambda(x) = 0$  for  $|x| \geq b\lambda$ ; **(b)**  $q$  is symmetric,  
 201 i.e.,  $q(x) = q(-x)$  for any  $x$ ; **(c)**  $q$  and  $q'$  pass through the origin, i.e.,  $q(0) = q'(0) = 0$ ; **(d)**  $q'$  is  
 202 bounded, i.e.,  $|q'(x)| \leq \lambda$  for any  $x$ ; **(e)** there exist a constant  $L_q \geq 0$  such that for any  $x_1$  and  $x_2$ ,  
 203 we have  $0 \leq (q'(x_1) - q'(x_2))/(x_1 - x_2) \leq L_q$ .  
 204

205 Compared with the commonly used  $\ell_1$  penalty  $\lambda|x|$  (Tibshirani, 1996), the function  $p_\lambda(x)$  in Assumption 3 can be viewed as the  $\ell_1$  norm minus a convex function. This construction reduces the  
 206 penalty on large coefficients, thereby mitigating the estimation bias of  $\ell_1$ , while still preserving its  
 207 sparsity-inducing property. Condition (a) ensures that  $p_\lambda(x)$  remains constant for  $|x| \geq b\lambda$ , and  
 208 condition (e) regulates the curvature of the convex function  $q$  through the parameter  $L_q$ . A number of  
 209 popular sparse regularizers satisfy Assumption 3, including the SCAD penalty (Fan & Li, 2001) and  
 210 MCP (Zhang, 2010).

216 Since the dataset is stored locally, agent  $i$  can only access its own loss function  $\mathcal{H}_i$  and thus cannot  
 217 solve 2 independently. In addition, the objective function is non-convex and non-globally Lipschitz  
 218 smooth, which further increases the difficulty of optimization. In this paper, our goal is to design an  
 219 algorithm that computes an estimator while avoiding exchange of local data to solve problem 2.  
 220

## 221 4 WARM-UP: ROBUST SPARSE COVARIANCE MATRIX ESTIMATION

223 Before introducing the decentralized algorithm for solving problem 2, we first present a centralized  
 224 optimization algorithm under the setting where all data are aggregated on a single server, and establish  
 225 its theoretical convergence guarantees, which serve as a benchmark for the distributed setting.  
 226

227 **Proximal gradient algorithm.** According to Assumption 3, the regularizer  $\mathcal{P}(\Sigma)$  can be written as  $\mathcal{P}(\Sigma) = \lambda \|\Sigma\|_{1,\text{off}} - \mathcal{Q}(\Sigma)$ , where  
 228  $\mathcal{Q}(\Sigma) = \sum_{k=1}^d \sum_{l=1, l \neq k}^d q(\Sigma_{kl})$ . Let  $\mathcal{F}(\Sigma) = \frac{1}{m} \sum_{i=1}^m \mathcal{H}_i(\Sigma) - \tau \log \det(\Sigma) - \mathcal{Q}(\Sigma)$ . A standard approach for solving problem equation 2 is the proximal gradient method, as summarized in Algorithm 1. At each iteration  $t$ , the estimate is updated according to

$$236 \Sigma^{(t+1)} \in \arg \min_{\Sigma \succ 0} \left\{ \mathcal{F}(\Sigma^{(t)}) + \langle \nabla \mathcal{F}(\Sigma^{(t)}), \Sigma - \Sigma^{(t)} \rangle + \frac{\gamma}{2} \|\Sigma - \Sigma^{(t)}\|_F^2 + \lambda \|\Sigma\|_{1,\text{off}} \right\}, \quad (4)$$

237 where  $\gamma > 0$  is the step size. The combination of the positive definiteness constraint and the  $\ell_1$  penalty  
 238 in equation 4 precludes a closed-form solution. By relaxing the positive definiteness requirement, the  
 239 update reduces to a simple soft-thresholding step:  $\Sigma^{(t+1)} = \text{ST}_{\frac{\lambda}{\gamma}} \left( \Sigma^{(t)} - \frac{1}{\gamma} \nabla \mathcal{F}(\Sigma^{(t)}) \right)$ , where  
 240 for any matrix  $\mathbf{X} \in \mathbb{R}^{d \times d}$  and threshold  $\omega > 0$ ,  $\text{ST}_\omega(\mathbf{X})$  is defined elementwise as  $[\text{ST}_\omega(\mathbf{X})]_{ij} =$   
 241  $\text{sign}(X_{ij}) \max\{|X_{ij}| - \omega, 0\}$  for  $i \neq j$ , and  $[\text{ST}_\omega(\mathbf{X})]_{ii} = X_{ii}$  for  $i = j$ . As we will show in  
 242 the next subsection, with an appropriate choice of  $\gamma$ , the iterates  $\Sigma^{(t)}$  remain positive definite for  
 243 all  $t$ . Consequently, Algorithm 1 eliminates the need for a costly optimization subroutine to solve  
 244 equation 4 at each iteration.  
 245

246 **Convergence analysis.** We now present the convergence guarantee of Algorithm 1.

247 **Theorem 1** (Convergence property of Algorithm 1). *Suppose Assumption 3 holds for problem 2.  
 248 Define constants  $\bar{r} \geq \underline{r} > 0$  as the two roots of the following equation in variable  $y$ :*

$$249 \quad ay - \tau \log y + (d-1) \left( \tau - \tau \log \frac{\tau}{a} \right) - \frac{a}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2} a^2 d^2 - \mathcal{L}(\Sigma^{(0)}) = 0,$$

250 where  $\mathcal{L}$  denotes the objective function in problem equation 2, and  $\Sigma^{(0)}$  is any initialization for  
 251 Algorithm 1. Denote the condition number  $\kappa = L/\mu > 1$  with  $L = 1 + 4\tau \underline{r}^{-2}$  and  $\mu = \tau(\bar{r} +$   
 252  $\underline{r}/2)^{-2} - L_q$ . Suppose that  $\bar{r} + \underline{r}/2 < \sqrt{\tau/L_q}$ , then the sequence  $\{\Sigma^{(t)}\}$  from Algorithm 1 with  
 253 step size parameter  $\gamma \geq \max \left\{ 2 \left( ad + \tau \sqrt{d}/\underline{r} + 2\lambda d \right) / \underline{r}, L \right\}$ , satisfies  $\underline{r}\mathbf{I} \preceq \Sigma^{(t)} \preceq \bar{r}\mathbf{I}$  for all  $t$ ,  
 254 and the following linear convergence rate holds:

$$255 \quad \|\Sigma^{(t)} - \hat{\Sigma}\|_F^2 \leq C_1 \left( 1 - \frac{1}{C_2 \kappa} \right)^t,$$

256 where  $\hat{\Sigma}$  is the unique minimizer of problem 2 in the set  $\{\Sigma \mid \mathbf{0} \preceq \Sigma \prec \sqrt{\tau/L_q} \mathbf{I}\}$ ,  $C_1 =$   
 257  $\|\Sigma^{(0)} - \hat{\Sigma}\|_F^2$ , and  $C_2 = \gamma/L$ .

258 Theorem 1 implies that if the largest eigenvalue of the initialization  $\Sigma^{(0)}$  is smaller than  $\sqrt{\tau/L_q}$ ,  
 259 then the sequence  $\Sigma^{(t)}$  generated by Algorithm 1 converges linearly to the unique solution  $\hat{\Sigma}$  of  
 260 problem equation 2, with a rate of  $\tilde{O}(1 - 1/(C_2 \kappa))$ . Moreover, with an appropriately chosen step  
 261 size  $\gamma$ , the iterates  $\Sigma^{(t)}$  remain positive definite throughout, even without explicitly enforcing the  
 262 positive definiteness constraint.

---

263 **Algorithm 1** Robust Sparse Covariance Matrix Estimation

---

264 **given**  $\Sigma^{(0)} \succeq \mathbf{0}$ ,  $\gamma > 0$ ,  $t = 0$

265 **while** not converge, **do**

$$266 \quad \Sigma^{(t+1)} = \text{ST}_{\frac{\lambda}{\gamma}} \left( \Sigma^{(t)} - \frac{1}{\gamma} \nabla \mathcal{F}(\Sigma^{(t)}) \right)$$

$$267 \quad t = t + 1$$

268 **end while**

269 **return**  $\Sigma^{(t)}$ .

---

---

**Algorithm 2** Robust Sparse Covariance Matrix Estimation over Networks

---

**given**  $\Sigma_i^{(0)} \succ 0$ ,  $\mathbf{Y}_i^{(0)} = \nabla \mathcal{F}_i(\Sigma_i^{(0)})$ , for  $i = 1, \dots, m$ ,  $\mathbf{W}$ ,  $\gamma > 0$ ,  $\theta \in (0, 1]$ ,  $t = 0$

**while** not converge, each agent  $i$  **do**

(Local optimization)

$$\Sigma_i^{(t+\frac{1}{2})} = \text{ST}_{\frac{\lambda}{\gamma}} \left( \Sigma_i^{(t)} - \frac{1}{\gamma} \mathbf{Y}_i^{(t)} \right)$$

**Variable tracking)** (6)

$$\Sigma_i^{(t+1)} = \sum_{j=1}^m W_{ij} \left( \Sigma_j^{(t)} + \theta \left( \Sigma_j^{(t+\frac{1}{2})} - \Sigma_j^{(t)} \right) \right)$$

**Gradient tracking)** (7)

$$\mathbf{Y}_i^{(t+1)} = \sum_{j=1}^m W_{ij} \left( \mathbf{Y}_j^{(t)} + \nabla \mathcal{F}_j \left( \Sigma_j^{(t+1)} \right) - \nabla \mathcal{F}_j \left( \Sigma_j^{(t)} \right) \right)$$

$t = t + 1$

**end while**

**return**  $\Sigma_i^{(t)}$ , for  $i = 1, \dots, m$ .

## 5 ROBUST SPARSE COVARIANCE MATRIX ESTIMATION OVER NETWORKS

In this section, we propose an efficient decentralized algorithm to solve problem equation 2 over a network, and provide a convergence analysis.

**Distributed proximal gradient with tracking algorithm.** In a distributed estimation setting, each agent lacks access to the global objective in problem equation 2 and thus cannot solve it independently. To address this challenge, we propose a distributed optimization algorithm, summarized in Algorithm 2, which extends Algorithm 1 to decentralized networks via a gradient tracking scheme (Di Lorenzo & Scutari, 2016; Nedic et al., 2017; Xu et al., 2017; Sun et al., 2022b). Algorithm 2 iteratively repeats two stages: local optimization and information mixing, progressively driving each local copy to approximate the true global information.

**LOCAL OPTIMIZATION.** For each agent  $i = 1, \dots, m$ , define the local objective function as  $\mathcal{F}_i(\boldsymbol{\Sigma}) = \mathcal{H}_i(\boldsymbol{\Sigma}) - \tau \log \det(\boldsymbol{\Sigma}) - \mathcal{Q}(\boldsymbol{\Sigma})$ . Let  $\boldsymbol{\Sigma}_i$  denote the local estimate of  $\boldsymbol{\Sigma}$  and let  $\mathbf{Y}_i$  denote the local auxiliary variable that aims to asymptotically track the global gradient  $\frac{1}{m} \sum_{i=1}^m \nabla \mathcal{F}_i(\boldsymbol{\Sigma}_i)$ . Similar to proximal gradient method, the local optimization step for agent  $i$  at iteration  $t$  is given by

$$\boldsymbol{\Sigma}_i^{(t+\frac{1}{2})} \in \arg \min_{\boldsymbol{\Sigma}_i \succ 0} \left\{ \mathcal{F}_i \left( \boldsymbol{\Sigma}_i^{(t)} \right) + \left\langle \mathbf{Y}_i^{(t)}, \boldsymbol{\Sigma}_i - \boldsymbol{\Sigma}_i^{(t)} \right\rangle + \frac{\gamma}{2} \left\| \boldsymbol{\Sigma}_i - \boldsymbol{\Sigma}_i^{(t)} \right\|_F^2 + \lambda \left\| \boldsymbol{\Sigma} \right\|_{1, \text{off}} \right\}. \quad (5)$$

Compared to the centralized update in equation 4, the local optimization step in equation 5 replaces the inaccessible global variable and gradient with locally maintained auxiliary variables. Similar to Section 4, we solve equation 4 using a soft-thresholding operation:  $\Sigma_i^{(t+\frac{1}{2})} = \text{ST}_{\frac{\lambda}{\gamma}} \left( \Sigma_i^{(t)} - \frac{1}{\gamma} \mathbf{Y}_i^{(t)} \right)$ . As in the centralized case, we will later show that, with a properly chosen step size  $\frac{1}{\gamma}$ , the positive definiteness constraint is automatically satisfied.

**INFORMATION MIXING.** After local optimization, each agent  $i$  collects information from its neighbors and updates both  $\Sigma_i$  and  $\mathbf{Y}_i$  according to equation 6 and equation 7, where the weights  $W_{ij}$  are defined in Assumption 1 and  $\theta \in (0, 1]$  is a step size parameter. Under Assumption 1, each update corresponds to a weighted average of the auxiliary variables received from  $\mathcal{N}_i$ .

**Convergence analysis.** We now present the convergence property of Algorithm 2.

**Theorem 2** (Convergence property of Algorithm 2). *Suppose Assumptions 1 and 3 hold for problem 2. Define constants  $\bar{r} \geq \underline{r} > 0$  and  $e > 0$ , which depend on the object function  $\mathcal{L}$  and the initialization  $\{\Sigma_i^{(0)}\}_{i=1}^m$ ; the explicit dependencies are detailed in the proof. Denote the condition number  $\kappa = L/\mu > 1$  with  $L = 1 + 4\tau\underline{r}^{-2}$  and  $\mu = \tau(\bar{r} + \underline{r}/2)^{-2} - L_q$ . Suppose that  $\bar{r} + \underline{r}/2 < \sqrt{\tau/L_q}$  and the network connectivity parameter  $\rho$  satisfies  $\rho \leq ((\sqrt{\kappa^2 + (12\kappa - 2)(\kappa - 1)} - \kappa)/(6(\kappa - 1)))^2$ ,*

324 then the sequence  $\{\Sigma_i^{(t)}\}_{i=1}^m$  from Algorithm 2 with step size parameters  
 325

$$326 \quad \gamma \geq \max \left\{ 2r^{-1} \left( \sqrt{m \left( ad + \frac{\sqrt{d}\tau}{r} + \lambda d \right)^2 + e + \lambda d} \right), L + \frac{48L^2 m \sqrt{\rho}}{\mu (1-\rho)^2} \right\}, \quad (8)$$

$$327 \quad \theta \leq \min \left\{ \left( \sqrt{\frac{L^2}{16} + 32L\gamma \left( \frac{\rho^2(1+\rho^2)}{(1-\rho^2)^2} + 4\frac{\rho^4(1+\rho^2)^2}{(1-\rho^2)^4} \right)} + \frac{L}{4} \right)^{-1} \gamma, 1 \right\}, \quad (9)$$

328 satisfies  $\underline{r}\mathbf{I} \preceq \Sigma_i^{(t)} \preceq \bar{r}\mathbf{I}$  for all  $i$  and  $t$ , and the following linear convergence rate holds:

$$329 \quad \sum_{i=1}^m \|\Sigma_i^{(t)} - \hat{\Sigma}\|_F^2 \leq C'_1 \left( 1 - \frac{1}{C'_2 \kappa} \right)^t, \quad (10)$$

330 where  $\hat{\Sigma}$  is the unique solution of problem 2 in the set  $\{\Sigma \mid \mathbf{0} \preceq \Sigma \prec \sqrt{\tau/L_q}\mathbf{I}\}$ ,  $C'_1$  is a constant  
 331 related to  $\{\Sigma_i^{(0)}\}_{i=1}^m$ , and  $C'_2 = 2\gamma/((2-\rho)\theta L)$ .

332 Theorem 2 implies that the sequences  $\{\Sigma_i^{(t)}\}$ , for all  $i = 1, \dots, m$ , generated by Algorithm 2  
 333 converge to  $\hat{\Sigma}$  and reach consensus with a linear rate. Note that  $\hat{\Sigma}$  is the unique solution to problem  
 334 2 when  $\Sigma \prec \sqrt{\tau/L_q}\mathbf{I}$ . Hence, Algorithm 2 can obtain the same solution as Algorithm 1. In the  
 335 distributed estimation setting, the linear convergence rate of Algorithm 2 is influenced by the network  
 336 connectivity. In particular, as indicated by equation 8, equation 9, and equation 10, a smaller value of  
 337  $\rho$  (corresponding to stronger network connectivity) leads to a smaller lower bound on  $\gamma$  and a larger  
 338 upper bound on  $\theta$ , thereby accelerating convergence. Moreover, from the expression of  $C'_2$ , a smaller  
 339  $\rho$  directly contributes to a faster convergence rate.

## 340 6 STATISTICAL GUARANTEE

341 In this section, we analyze the statistical estimation performance of  $\hat{\Sigma}$ , the estimator produced by  
 342 Algorithms 1 and 2. We assume that the true covariance matrix  $\Sigma^* \succ \mathbf{0}$  of  $\mathbf{x}$  is  $s$ -sparse; that is, it  
 343 contains at most  $s$  nonzero entries. Let  $\mathcal{S} = \text{supp}(\Sigma^*)$  denote the support of  $\Sigma^*$ . We establish a  
 344 nonasymptotic bound on the estimation error  $\|\hat{\Sigma} - \Sigma^*\|_F$ .

345 **Theorem 3** (Statistical guarantee). *Suppose Assumptions 2 and 3 hold for problem 2. Define  
 346  $K = \max\{\sigma^2, (2\sigma)^{2(1+\nu)}\}$  and  $\mu_0 \in (0, 2)$  and choose parameters satisfying*

$$347 \quad a = c_a \sqrt{\frac{KN}{\log d}}, \quad \tau \leq c_\tau \min \left\{ \left\| (\Sigma^*)^{-1} \right\|_S^{-1} \sqrt{\frac{s}{N}}, \left\| (\Sigma^*)^{-1} \right\|_{\max}^{-1} \sqrt{\frac{\log d}{N}} \right\},$$

$$348 \quad \lambda = c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{\log d}{N}}, \quad b \leq \lambda^{-1} |\Sigma_{kl}^*|, \quad \forall (k, l) \in \mathcal{S}, \quad L_q \leq \frac{c_q \mu_0}{\sqrt{s}},$$

349 where  $c_a > 0$ ,  $c_\tau > 0$ ,  $c_\lambda > 1$ , and  $c_q \in (0, \sqrt{s})$  are universal constants. If the sample size satisfies

$$350 \quad N > \max \left\{ \frac{(\log d)^{1+\frac{1}{\nu}}}{c_a^{2(1+\frac{1}{\nu})} K}, \frac{16c_N \log d}{(2-\mu_0)^2}, \frac{38c_\lambda}{\mu_0 c_a \sqrt{K}} \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{s} \log d \right\},$$

351 where  $c_N > \max\{1, 1/((2-\mu_0)c_a^2)\}$  is a universal constant, then with high probability,

$$352 \quad \|\hat{\Sigma} - \Sigma^*\|_F \leq C_s \sqrt{\frac{s}{N}},$$

353 where  $C_s = (\beta \sqrt{K} + c_\tau)/(\mu_0 - L_q)$  with  $\beta > \sqrt{2}$ .

354 Theorem 3 indicates that, under appropriate conditions, the estimator  $\hat{\Sigma}$  produced by both Algorithms  
 355 1 and 2 achieves the oracle rate  $\Sigma^*$  with oracle rate  $O(\sqrt{s/N})$  in Frobenius norm. The oracle rate  
 356 refers to the convergence rate of the estimation error that can be achieved by an estimator when the  
 357 true support set  $\mathcal{S}$  is known in advance (Wainwright, 2019). By combining Theorems 1, 2, and 3,  
 358 we conclude that both algorithms converge within  $O(\log(1/\varepsilon)/\log(1-1/\kappa))$  iterations to within an  
 359  $\varepsilon$ -neighborhood of a statistically optimal estimate, attaining an error of order  $O(\sqrt{s/N})$ .

378 **Refined convergence rate.** In Theorems 1 and 2, the condition number  $\kappa$  depends on  $\underline{r}$  and  $\bar{r}$ . Since  
 379 these quantities are affected by the initialization, sample size, and dimension, the exact convergence  
 380 rate under high-dimensional settings and varying initializations remains unclear. To address this issue,  
 381 we leverage Theorem 3 to refine the convergence rates. The resulting rates, reported in Corollaries 1  
 382 and 2, are independent of the initialization and better suited to high-dimensional scenarios.

383 **Corollary 1** (Refined convergence rate for Algorithm 1). *Suppose Assumptions 2 and 3 hold for  
 384 problem 2, and all the conditions in Theorems 1 and 3 are satisfied. Then, for  $t > T$  where  
 385  $T = \max \left\{ 0, \left\lceil 2 \log \left( c_h / \sqrt{C_1} \right) / \log(1 - 1/(C_2 \kappa)) \right\rceil \right\}$ , Algorithm 1 converges with a refined rate*  
 386

$$387 \quad 388 \quad 389 \quad \left\| \boldsymbol{\Sigma}^{(t)} - \widehat{\boldsymbol{\Sigma}} \right\|_F^2 \leq C_3 \left( 1 - \frac{1}{C_4 \kappa_r} \right)^{t-T}$$

390 with high probability, where  $C_3 = C_1 (1 - 1/(C_2 \kappa))^T$ ,  $C_4 = \gamma / (1 + \tau c_4)$ , and  $\kappa_r =$   
 391  $(1 + 4\tau c_4) / (\mu_0 - L_q)$ . When  $\lambda_{\min}(\boldsymbol{\Sigma}^*) - a/2 > 0$ , we have  $c_h = \frac{a}{2} - \|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}^*\|_F$   
 392 and  $c_4 = 1 / (\lambda_{\min}(\boldsymbol{\Sigma}^*) - a/2)^2$ ; when  $\lambda_{\min}(\boldsymbol{\Sigma}^*) - a/2 \leq 0$ , suppose that  $C_s \sqrt{s/N} <$   
 393  $\lambda_{\min}(\boldsymbol{\Sigma}^*) / (12c_r)$ , where  $c_r > 1/12$ , we have  $c_h = \lambda_{\min}(\widehat{\boldsymbol{\Sigma}}) - (12c_r - 1) \lambda_{\min}(\boldsymbol{\Sigma}^*) / 12c_r$  and  
 394  $c_4 = 144c_r^2 / ((12c_r - 1) \lambda_{\min}(\boldsymbol{\Sigma}^*)^2)$ .  
 395

396 **Corollary 2** (Refined convergence rate for Algorithm 2). *Suppose Assumptions 1, 2, and 3 hold  
 397 for problem 2, and all the conditions in Theorems 2 and 3 are satisfied. Assume that  $\rho \leq$   
 398  $((\sqrt{\kappa_r^2 + (12\kappa_r - 2)(\kappa_r - 1)} - \kappa_r) / (6\kappa_r - 1))^2$  and  $\gamma \geq 1 + \tau c_4 + 48(1 + \tau c_4) \kappa m \sqrt{\rho} / (1 - \rho)^2$ .  
 399 Then, for  $t > T$  where  $T = \max \left\{ 0, \left\lceil 2 \log \left( c_h / \sqrt{C_3''} \right) / \log(1 - 1/(C_2' \kappa)) \right\rceil \right\}$  with  $C_3''$  a constant  
 400 related to  $\{\boldsymbol{\Sigma}_i^{(0)}\}_{i=1}^m$ , Algorithm 2 converges with*

$$403 \quad 404 \quad 405 \quad \left\| \boldsymbol{\Sigma}^{(t)} - \widehat{\boldsymbol{\Sigma}} \right\|_F^2 \leq C_3' \left( 1 - \frac{1}{C_4' \kappa_r} \right)^{t-T}$$

406 with high probability, where  $C_3' = C_3'' (1 - 1/(C_2' \kappa))^T$  and  $C_4' = 2\gamma / ((2 - \rho) \theta (1 + \tau c_4))$ .

407 Corollaries 1 and 2 show that, after  $T$  iterations of Algorithms 1 and 2, the convergence rate depends  
 408 on the condition number  $\kappa_r$ , which is solely determined by  $\lambda_{\min}(\boldsymbol{\Sigma}^*)$ . In both corollaries,  $c_h$  is  
 409 an interval parameter associated with  $\widehat{\boldsymbol{\Sigma}}$  and  $\boldsymbol{\Sigma}^*$ , while  $C_1$  and  $C_3''$  are coefficients related to the  
 410 initialization distance from  $\widehat{\boldsymbol{\Sigma}}$ . Taking Corollary 1 as an example, when  $c_h \geq \sqrt{C_1}$ , we have  
 411  $\lceil 2 \log(c_h / \sqrt{C_1}) / \log(1 - 1/(C_2 \kappa)) \rceil \leq 0$ . This implies that if the initialization is sufficiently close  
 412 to  $\widehat{\boldsymbol{\Sigma}}$ , the corollaries apply starting from  $T = 0$ .  
 413

## 414 7 NUMERICAL EXPERIMENTS

415 In this section, we demonstrate the convergence of the proposed algorithms and assess their estimation  
 416 performance on synthetic and real data. We choose MCP as the non-convex penalty function  $p_\lambda$ ,  
 417 and set  $\tau = 0.1$  and  $b = 2$  as recommended by [Wei & Zhao \(2023\)](#). We set the initialization  
 418  $\boldsymbol{\Sigma}_i^{(0)} = 0.1 \mathbf{I}$  so that  $\boldsymbol{\Sigma}_i^{(0)} \prec \sqrt{\tau / L_q} \mathbf{I}$ , where  $L_q = 0.5$  for MCP with  $b = 2$ . The parameters  $a$  and  
 419  $\lambda$  are selected via five-fold cross-validation. The step size parameters  $\gamma$  and  $\theta$  are tuned to ensure  
 420 the convergence of the algorithm. Specifically, we fix  $\theta = 0.1$  and set  $\gamma = \eta^k$ , where  $\eta > 1$  and  
 421  $k$  is the smallest integer ensuring the convergence of the proposed algorithms. We compare the  
 422 performance of the proposed methods with two high-dimensional sparse covariance matrix estimators  
 423 (PD\_MCP ([Wei & Zhao, 2023](#)) and NetGGM ([Xia et al., 2025](#))), as well as several robust sparse  
 424 covariance estimators (Adaptive Huber ([Avella-Medina et al., 2018](#)), Reg\_TME ([Goes et al., 2020](#)),  
 425 PD\_gQNE ([Lu et al., 2021](#)), and M-COAT ([Li et al., 2023](#))). The hyperparameters for all baseline  
 426 methods are selected according to the procedures described in their respective original references.  
 427 We consider two  $d$ -dimensional sparse covariance matrix models with  $d = 100$ : 1) banded structure:  
 428  $\Sigma_{ij}^* = 1 - |i - j| / 10$  if  $|i - j| \leq 10$ , otherwise  $\Sigma_{ij}^* = 0$ ; 2) block structure: The indices  $1, 2, \dots, d$   
 429 are partitioned into 10 ordered groups of equal size with  $\Sigma_{ij}^* = 1$  if  $i = j$ ,  $\Sigma_{ij}^* = 0.6$  if  $i$  and  $j$  are in  
 430 the same group, otherwise  $\Sigma_{ij}^* = 0$ . Moreover, To evaluate robustness under different distributions,  
 431 we generate data from three models within the Gaussian scale mixture framework:  $\mathbf{x}_i = \phi_i \sqrt{\boldsymbol{\Sigma}^*} \zeta_i$ ,

Table 1: Performance Comparison of Estimators Under Different Distributions

| Banded structure | Adaptive Huber | RegTME         | PD_gQNE        | M-COAT         | PD_MCP         | NetGGM         | Proposed       |
|------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Gaussian         | NMSE           | 0.2551(0.0028) | 0.2501(0.0022) | 0.2145(0.0037) | 0.2346(0.0041) | 0.1591(0.0021) | 0.1833(0.0041) |
|                  | F1-Score       | 0.3065(0.0001) | 0.7339(0.0030) | 0.4847(0.0023) | 0.5944(0.0026) | 0.7601(0.0061) | 0.3065(0.0001) |
| t                | NMSE           | 0.2873(0.0033) | 0.2795(0.0039) | 0.2231(0.0037) | 0.2793(0.0021) | 0.2491(0.0039) | 0.4167(0.0332) |
|                  | F1-Score       | 0.3065(0.0001) | 0.7036(0.0040) | 0.5249(0.0041) | 0.5096(0.0063) | 0.7123(0.0028) | 0.3065(0.0001) |
| Laplace          | NMSE           | 0.2343(0.0027) | 0.2429(0.0032) | 0.2089(0.0021) | 0.2377(0.0031) | 0.2539(0.0023) | 0.6734(0.0374) |
|                  | F1-Score       | 0.3065(0.0001) | 0.6847(0.0037) | 0.6067(0.0034) | 0.4953(0.0016) | 0.6720(0.0024) | 0.3065(0.0001) |
| Block structure  | Adaptive Huber | RegTME         | PD_gQNE        | M-COAT         | PD_MCP         | NetGGM         | Proposed       |
| Gaussian         | NMSE           | 0.2503(0.0034) | 0.2366(0.0022) | 0.2336(0.0039) | 0.2223(0.0038) | 0.1489(0.0019) | 0.2310(0.0027) |
|                  | F1-Score       | 0.1818(0.0001) | 0.8231(0.0034) | 0.5386(0.0025) | 0.6354(0.0038) | 0.8117(0.0079) | 0.1818(0.0001) |
| t                | NMSE           | 0.2592(0.0038) | 0.2562(0.0044) | 0.2541(0.0041) | 0.2452(0.0158) | 0.2689(0.0017) | 0.4952(0.0441) |
|                  | F1-Score       | 0.1818(0.0001) | 0.8697(0.0035) | 0.4165(0.0048) | 0.5395(0.0117) | 0.8499(0.0041) | 0.1818(0.0001) |
| Laplace          | NMSE           | 0.2235(0.0029) | 0.2411(0.0021) | 0.2331(0.0029) | 0.2610(0.0121) | 0.2849(0.0027) | 0.6811(0.0425) |
|                  | F1-Score       | 0.1818(0.0001) | 0.7818(0.0029) | 0.6165(0.0024) | 0.5473(0.0023) | 0.7614(0.0029) | 0.1818(0.0001) |



Figure 1: Convergence of the proposed algorithms on different networks.

$i = 1, 2, \dots, N$ , where  $\zeta_i \sim \mathcal{N}(0, \mathbf{I})$  and  $\phi_i$  is a random variable drawn from one of the following distributions: 1) Gaussian distribution:  $\phi_i \sim \mathcal{N}(0, 1)$ ; 2)  $t$  distribution:  $\phi_i = \sqrt{5/\nu_i}$ , where  $\nu_i \sim \chi_5^2$  and hence  $\mathbf{x}_i \sim t_5(\mathbf{0}, \Sigma)$ . 3) Laplace distribution:  $\phi_i \sim \text{Laplace}(0, 1)$ . A total of  $N = 50$  samples are drawn and evenly distributed among  $m = 25$  agents. In the distributed setting, we evaluate the performance of Algorithm 2 over three different connected, time-invariant undirected networks: two Erdős–Rényi random graphs (Erdős & Rényi, 1959), where each pair of agents is connected independently with probability  $p = 0.9$ , and  $p = 0.5$ , respectively; and a line graph, where agent  $i$  is connected to agent  $i - 1$  and agent  $i + 1$  for  $i = 2, \dots, m - 1$ . The weight matrix  $\mathbf{W}$  for each network is constructed using the Metropolis rule (Xiao et al., 2005):  $W_{ij} = 1/(\max(d_i, d_j) + 1)$  if  $i \neq j$  and  $(i, j) \in \mathcal{E}$ ,  $W_{ij} = 0$  if  $i \neq j$  and  $(i, j) \notin \mathcal{E}$ , and  $W_{ii} = 1 - \sum_{l \neq i} W_{il}$  if  $i = j$ , where  $d_i$  denotes the degree of agent  $i$ .

We first compare the estimation performance of the proposed method with several baselines. The performance is evaluated using the normalized mean squared error (NMSE), defined as  $\text{NMSE}(\Sigma) = \|\Sigma - \Sigma^*\|^2 / \|\Sigma^*\|^2$  and the F1-score (Witten et al., 2005). The results, averaged over 100 Monte Carlo trials, are reported in Table 1. As shown in the table, Algorithm 1 performs comparably to PD\_MCP (Wei & Zhao, 2023) under the Gaussian model and outperforms all baseline methods in the non-Gaussian settings. These results highlight the superior accuracy and robustness of the proposed method. Next, we evaluate the convergence behavior of the proposed algorithms. Figure 1 shows the decrease in variable distances  $\|\Sigma^{(t)} - \hat{\Sigma}\|_F^2$  and  $\frac{1}{m} \sum_{i=1}^m \|\Sigma_i^{(t)} - \hat{\Sigma}\|_F^2$  for Algorithms 1 and 2 over three data generating models, where  $\hat{\Sigma}$  denotes the final estimate obtained by Algorithm 1. The results confirm that both algorithms converge linearly to the same optimal solution. Moreover, the convergence rate of Algorithm 2 improves as the connectivity of the underlying network increases. To evaluate the effectiveness of our proposed methods, we conducted experiments using the Leukemia dataset (Golub et al. (1999)). This dataset contains 72 gene expression profiles: 47 samples from patients with acute lymphoblastic leukemia (ALL) and 25 samples from patients with acute myeloid leukemia (AML). Each sample is represented by 7,129 gene expression levels. Following the approaches outlined in Rothman et al. (2009); Cui et al. (2016); Xia et al. (2025), we first computed the  $F$  statistic for each gene  $j$  as follows:

$$F(x_j) = \frac{\frac{1}{K-1} \sum_{l=1}^K N_{(l)} (\bar{x}_j(l) - \bar{x}_j)}{\frac{1}{N-K} \sum_{l=1}^K N_{(l)} (N_{(l)} - 1) \hat{\sigma}_{(l)}^2},$$



Figure 2: Misclassification rates of QDA on Leukemia dataset using different methods.



Figure 3: Cumulative returns of the GMVP constructed from different methods.

where  $K = 2$  denotes the number of classes,  $N_{(l)}$  is the sample size of class  $l$ ,  $\bar{x}$  and  $\bar{x}_{j(l)}$  represents the overall mean and the mean of class  $l$ . We ranked the genes by their F-statistic and selected the top 75 and the bottom 25 genes, resulting in a total of  $d = 100$  genes. Next, we randomly partitioned the dataset into 100 different subsets, each containing 35 training samples (from 23 ALL and 12 AML) and 37 test samples (from 24 ALL and 13 AML). In real-world scenarios, such datasets may be distributed across separate hospitals and cannot be directly shared due to privacy regulations. To simulate this condition, we distributed the training samples randomly among  $m = \{1, 5, 7\}$  agents and then estimated the covariance matrices. We incorporated the estimated covariance matrices into a quadratic discriminant analysis (QDA) model, as described in [Hastie et al. \(2009\)](#), and evaluated the classification performance based on the misclassification rate. As the estimates obtained by the RegTME ([Goes et al., 2020](#)) do not always guarantee positive definiteness, we present results only for cases with positive definite estimates. As shown in Figure 2, regardless of the number of agents, our proposed method consistently achieves the lowest misclassification rate. This indicates that our decentralized algorithm achieves estimation performance equivalent to the centralized approach across diverse networks and demonstrates the superior estimation performance of our methodology.

We further conduct experiments on financial time-series data to assess the performance of different covariance estimators. A standard approach for evaluating the quality of an estimated covariance matrix is to examine the returns of portfolios constructed from it. In this study, we focus on the global minimum variance portfolio (GMVP) under a no-short-sales constraint, which is formulated as:

$$\min_{\omega \in \mathbb{R}^d} \omega^\top \Sigma \omega \quad \text{subject to} \quad \omega^\top \mathbf{1} = 1, \quad \omega \geq \mathbf{0},$$

This optimization problem can be efficiently solved using CVX ([Grant et al., 2008](#)). We collect historical monthly stock prices for the components of the S&P 100 Index over a 240-month period, from December 2002 to December 2022. After excluding stocks with missing data, we obtain monthly returns for 78 companies ( $d = 78$ ). We evaluate the estimators using a rolling-window scheme, where each window consists of 40 months for training and one subsequent month for testing. Portfolio performance is assessed by comparing the cumulative returns over the test period. Figure 3 shows the cumulative returns of the GMVP based on different covariance estimators, including the equal-weighted portfolio (EWP,  $\omega = 1/d$ ) as a heuristic baseline. The results indicate that the EWP yields the lowest cumulative return, confirming its ineffectiveness as a strategy. Moreover, the SCM method, which does not incorporate regularization, performs substantially worse than regularized estimators. Among the regularized methods, our proposed approach achieves the highest cumulative return, demonstrating a clear advantage over competing methods.

## 8 CONCLUSION

In this paper, we have studied the problem of distributed sparse covariance matrix estimation under heavy-tailed data. The estimation task has been formulated as a non-convex and non-globally Lipschitz smooth problem that minimizes a Huber loss function with a log-determinant barrier and a sparsity-inducing non-convex penalty. We have proposed both centralized and decentralized algorithms, and established that both methods converge linearly to the same solution, which achieves the oracle statistical rate in Frobenius norm. Simulation results validated the theoretical guarantees and demonstrated the superior accuracy and robustness of the proposed estimator.

540 ETHICS STATEMENT  
541

542 All authors of this paper have read and agree to adhere to the ICLR Code of Ethics. Our work does not  
543 involve human subjects, sensitive data, or applications that could directly cause harm. The datasets  
544 used in our experiments are publicly available and do not contain personally identifiable information.  
545 We have taken care to ensure that our methodology does not introduce or reinforce unfair bias, and we  
546 discuss potential limitations and societal impacts in the main text. There are no conflicts of interest or  
547 external sponsorships that could influence the results or their interpretation.

548  
549 REPRODUCIBILITY STATEMENT  
550

551 We are committed to ensuring the reproducibility of our results. All experimental details, including  
552 model architectures, parameters, training procedures, and evaluation metrics, are described in the main  
553 paper and appendix. We provide anonymized source code and preprocessing scripts as supplementary  
554 material, where the data and simulation code are available at [https://anonymous.4open.science/r/distributed\\_covariance-4E65](https://anonymous.4open.science/r/distributed_covariance-4E65). The datasets used are publicly accessible,  
555 and we include links and version information in the appendix. For theoretical claims, full proofs and  
556 assumptions are provided in the appendix. We further conduct ablation and sensitivity analyses to  
557 demonstrate the robustness of our approach.

558  
559 REFERENCES  
560

561 Marco Avella-Medina, Heather S Battey, Jianqing Fan, and Qufeng Li. Robust estimation of  
562 high-dimensional covariance and precision matrices. *Biometrika*, 105(2):271–284, 2018.

563 Zhi-Dong Bai and Yong-Qua Yin. Limit of the smallest eigenvalue of a large dimensional sample  
564 covariance matrix. In *Advances In Statistics*, pp. 108–127. World Scientific, 2008.

565 Dimitri Bertsekas and John Tsitsiklis. *Parallel and distributed computation: numerical methods*.  
566 Athena Scientific, 2015.

567 Peter J Bickel and Elizaveta Levina. Covariance regularization by thresholding. *The Annals of  
568 Statistics*, 36(6):2577–2604, 2008.

569 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization  
570 and statistical learning via the alternating direction method of multipliers. *Foundations and Trends®  
571 in Machine learning*, 3(1):1–122, 2011.

572 Federico S Cattivelli and Ali H Sayed. Diffusion LMS strategies for distributed estimation. *IEEE  
573 Transactions on Signal Processing*, 58(3):1035–1048, 2009.

574 Mengjie Chen, Chao Gao, and Zhao Ren. Robust covariance and scatter matrix estimation under  
575 Huber’s contamination model. *The Annals of Statistics*, 46(5):1932–1960, 2018.

576 Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues. *Quantitative  
577 finance*, 1(2):223, 2001.

578 Ying Cui, Chenlei Leng, and Defeng Sun. Sparse estimation of high-dimensional correlation matrices.  
579 *Computational Statistics & Data Analysis*, 93:390–403, 2016.

580 P Laurie Davies. Asymptotic behaviour of  $S$ -estimates of multivariate location parameters and  
581 dispersion matrices. *The Annals of Statistics*, pp. 1269–1292, 1987.

582 Paolo Di Lorenzo and Gesualdo Scutari. NEXT: In-network nonconvex optimization. *IEEE Transac-  
583 tions on Signal and Information Processing over Networks*, 2(2):120–136, 2016.

584 Wei Dong and Hongzhen Liu. Distributed sparse precision matrix estimation via alternating block-  
585 based gradient descent. *Mathematics*, 12(5):646, 2024.

586 David L Donoho. Breakdown properties of multivariate location estimators. Technical report,  
587 Technical report, Harvard University, Boston, 1982.

594 Paul Erdős and Alfréd Rényi. On random graphs. *Publicationes Mathematicae*, 6:290–297, 1959.  
 595

596 Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle  
 597 properties. *Journal of the American statistical Association*, 96(456):1348–1360, 2001.

598 Jianqing Fan, Yuan Liao, and Martina Mincheva. Large covariance estimation by thresholding  
 599 principal orthogonal complements. *Journal of the Royal Statistical Society: Series B (Statistical  
 600 Methodology)*, 75(4):603–680, 2013.  
 601

602 Jianqing Fan, Yuan Liao, and Han Liu. An overview of the estimation of large covariance and  
 603 precision matrices. *The Econometrics Journal*, 19(1):C1–C32, 2016.

604 Jianqing Fan, Weichen Wang, and Ziwei Zhu. A shrinkage principle for heavy-tailed data: High-  
 605 dimensional robust low-rank matrix recovery. *Annals of statistics*, 49(3):1239, 2021.  
 606

607 Pedro A Forero, Alfonso Cano, and Georgios B Giannakis. Consensus-based distributed linear  
 608 support vector machines. In *Proceedings of the 9th ACM/IEEE international conference on  
 609 information processing in sensor networks*, pp. 35–46, 2010.

610 Ramanathan Gnanadesikan and John R Kettenring. Robust estimates, residuals, and outlier detection  
 611 with multiresponse data. *Biometrics*, pp. 81–124, 1972.  
 612

613 John Goes, Gilad Lerman, and Boaz Nadler. Robust sparse covariance estimation by thresholding  
 614 Tyler’s  $M$ -estimator. *The Annals of Statistics*, 48(1):86–110, 2020.

615 Todd R Golub, Donna K Slonim, Pablo Tamayo, Christine Huard, Michelle Gaasenbeek, Jill P  
 616 Mesirov, Hilary Coller, Mignon L Loh, James R Downing, Mark A Caligiuri, et al. Molecular  
 617 classification of cancer: class discovery and class prediction by gene expression monitoring.  
 618 *Science*, 286(5439):531–537, 1999.  
 619

620 Michael Grant, Stephen Boyd, and Yinyu Ye. Cvx: Matlab software for disciplined convex program-  
 621 ming, 2008.

622 Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The elements of  
 623 statistical learning: data mining, inference, and prediction*, volume 2. Springer, 2009.  
 624

625 Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. Fdml: A collaborative machine learning  
 626 framework for distributed features. In *Proceedings of the 25th ACM SIGKDD international  
 627 conference on knowledge discovery & data mining*, pp. 2232–2240, 2019.

628 Peter J Huber. Robust estimation of a location parameter. In *The Annals of Mathematical Statistics*,  
 629 volume 35, pp. 73–101. JSTOR, 1964.  
 630

631 Peter J Huber and Elvezio M Ronchetti. *Robust statistics*. John Wiley & Sons, 2011.

632 Yao Ji, Gesualdo Scutari, Ying Sun, and Harsha Honnappa. Distributed sparse regression via  
 633 penalization. *Journal of Machine Learning Research*, 24(272):1–62, 2023.  
 634

635 Ian T. Jolliffe. *Principal Component Analysis*. Springer Series in Statistics. Springer, New York, NY,  
 636 USA, 2nd edition, 2002.

637 Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, and Wen-Xin Zhou. User-friendly covariance  
 638 estimation for heavy-tailed distributions. *Statistical Science*, 34(3):454–471, 2019.  
 639

640 Clifford Lam. High-dimensional covariance matrix estimation. *Wiley Interdisciplinary reviews:  
 641 computational statistics*, 12(2):e1485, 2020.

642 Danning Li, Arun Srinivasan, Qian Chen, and Lingzhou Xue. Robust covariance matrix estimation for  
 643 high-dimensional compositional data with application to sales data analysis. *Journal of Business  
 644 & Economic Statistics*, 41(4):1090–1100, 2023.  
 645

646 Guoying Li and Zhonglian Chen. Projection-pursuit approach to robust dispersion matrices and  
 647 principal components: primary theory and monte carlo. *Journal of the American Statistical  
 Association*, 80(391):759–766, 1985.

648 Han Liu, Fang Han, Ming Yuan, John Lafferty, and Larry Wasserman. High-dimensional semipara-  
 649 metric Gaussian copula graphical models. *The Annals of Statistics*, 40(4):2293, 2012.  
 650

651 Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and Qiang Yang.  
 652 Fedbcd: A communication-efficient collaborative learning framework for distributed features.  
 653 *IEEE Transactions on Signal Processing*, 70:4277–4290, 2022.

654 Junwei Lu, Fang Han, and Han Liu. Robust scatter matrix estimation for high dimensional distribu-  
 655 tions with heavy tail. *IEEE Transactions on Information Theory*, 67(8):5283–5304, 2021.  
 656

657 Harry M Markowitz. Portfolio selection. *Journal of Finance*, 7(1):77–79, 1952.

658 Ricardo A Maronna, R Douglas Martin, Victor J Yohai, and Matías Salibián-Barrera. *Robust statistics:*  
 659 *theory and methods (with R)*. John Wiley & Sons, 2019.

660 Ricardo Antonio Maronna. Robust  $M$ -estimators of multivariate location and scatter. *The Annals of*  
 661 *Statistics*, pp. 51–67, 1976.

662 Marie Maros and Gesualdo Scutari. DGD<sup>2</sup>: A linearly convergent distributed algorithm for high-  
 663 dimensional statistical recovery. *Advances in Neural Information Processing Systems*, 35:3475–  
 664 3487, 2022.

665 Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed  
 666 optimization over time-varying graphs. *SIAM Journal on Optimization*, 27(4):2597–2633, 2017.

667 Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-  
 668 computation tradeoffs in decentralized optimization. *Proceedings of the IEEE*, 106(5):953–976,  
 669 2018.

670 Ensiyeh Nezakati and Eugen Pircalabelu. Unbalanced distributed estimation and inference for the  
 671 precision matrix in Gaussian graphical models. *Statistics and Computing*, 33(2):47, 2023.

672 Mohsen Pourahmadi. *High-dimensional covariance estimation: with high-dimensional data*. John  
 673 Wiley & Sons, 2013.

674 Joel B Predd, Sanjeev R Kulkarni, and H Vincent Poor. A collaborative training algorithm for  
 675 distributed learning. *IEEE Transactions on Information Theory*, 55(4):1856–1871, 2009.

676 Adam J Rothman. Positive definite estimators of large covariance matrices. *Biometrika*, 99(3):  
 677 733–740, 2012.

678 Adam J Rothman, Elizaveta Levina, and Ji Zhu. Generalized thresholding of large covariance  
 679 matrices. *Journal of the American Statistical Association*, 104(485):177–186, 2009.

680 Peter J Rousseeuw. Multivariate estimation with high breakdown point. *Mathematical statistics and*  
 681 *applications*, 8(283–297):37, 1985.

682 Peter J Rousseeuw and Katrien Van Driessen. A fast algorithm for the minimum covariance determi-  
 683 nant estimator. *Technometrics*, 41(3):212–223, 1999.

684 Juliane Schäfer and Korbinian Strimmer. A shrinkage approach to large-scale covariance matrix  
 685 estimation and implications for functional genomics. *Statistical Applications in Genetics and*  
 686 *Molecular Biology*, 4(1), 2005.

687 Ying Sun, Marie Maros, Gesualdo Scutari, and Guang Cheng. High-dimensional inference over  
 688 networks: Linear convergence and statistical guarantees. *arXiv preprint arXiv:2201.08507*, 2022a.

689 Ying Sun, Gesualdo Scutari, and Amir Daneshmand. Distributed optimization based on gradient  
 690 tracking revisited: Enhancing convergence rate via surrogation. *SIAM Journal on Optimization*, 32  
 691 (2):354–385, 2022b.

692 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical*  
 693 *Society: Series B (Methodological)*, 58(1):267–288, 1996.

702 David E Tyler. A distribution-free  $M$ -estimator of multivariate scatter. *The Annals of Statistics*, pp.  
 703 234–251, 1987.  
 704

705 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-  
 706 bridge university press, 2019.

707 Guan Peng Wang and Heng Jian Cui. Efficient distributed estimation of high-dimensional sparse  
 708 precision matrix for transelliptical graphical models. *Acta Mathematica Sinica, English Series*, 37  
 709 (5):689–706, 2021.

710 Quan Wei and Ziping Zhao. Large covariance matrix estimation with oracle statistical rate via  
 711 Majorization-Minimization. *IEEE Transactions on Signal Processing*, 2023.

712 Ian H Witten, Eibe Frank, Mark A Hall, Christopher J Pal, and Mining Data. Practical machine  
 713 learning tools and techniques. In *Data mining*, volume 2, pp. 403–413. Elsevier Amsterdam, The  
 714 Netherlands, 2005.

715 Wenfu Xia, Ziping Zhao, and Ying Sun. Distributed sparse covariance matrix estimation. In *2024  
 716 IEEE 13rd Sensor Array and Multichannel Signal Processing Workshop (SAM)*, pp. 1–5. IEEE,  
 717 2024.

718 Wenfu Xia, Fengpei Li, Ying Sun, and Ziping Zhao. Covariance selection over networks. In *The  
 719 28th International Conference on Artificial Intelligence and Statistics*, 2025.

720 Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust distributed sensor fusion based on  
 721 average consensus. In *IPSN 2005. Fourth International Symposium on Information Processing in  
 722 Sensor Networks, 2005.*, pp. 63–70. IEEE, 2005.

723 Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Convergence of asynchronous distributed  
 724 gradient methods over stochastic networks. *IEEE Transactions on Automatic Control*, 63(2):  
 725 434–448, 2017.

726 Pan Xu, Lu Tian, and Quanquan Gu. Communication-efficient distributed estimation and inference  
 727 for transelliptical graphical models. *arXiv preprint arXiv:1612.09297*, 2016.

728 Lingzhou Xue and Hui Zou. Regularized rank-based estimation of high-dimensional nonparanormal  
 729 graphical models. *The Annals of Statistics*, 40(5):2541, 2012.

730 Lingzhou Xue, Shiqian Ma, and Hui Zou. Positive-definite  $\ell_1$ -penalized estimation of large covariance  
 731 matrices. *Journal of the American Statistical Association*, 107(500):1480–1491, 2012.

732 Cunhui Zhang. Nearly unbiased variable selection under minimax concave penalty. *The Annals of  
 733 Statistics*, 38(2):894–942, 2010.

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

|     |                                             |           |
|-----|---------------------------------------------|-----------|
| 756 | <b>Contents</b>                             |           |
| 757 |                                             |           |
| 758 |                                             |           |
| 759 | <b>A LLM Usage Statement</b>                | <b>16</b> |
| 760 |                                             |           |
| 761 | <b>B Notation</b>                           | <b>16</b> |
| 762 |                                             |           |
| 763 |                                             |           |
| 764 | <b>C Proofs of Main Theoretical Results</b> | <b>18</b> |
| 765 |                                             |           |
| 766 | C.1 Proof of Theorem 1 . . . . .            | 18        |
| 767 |                                             |           |
| 768 | C.2 Proof of Theorem 2 . . . . .            | 22        |
| 769 |                                             |           |
| 770 | C.3 Proof of Theorem 3 . . . . .            | 34        |
| 771 |                                             |           |
| 772 | C.4 Proof of Corollary 1 . . . . .          | 41        |
| 773 |                                             |           |
| 774 | C.5 Proof of Corollary 2 . . . . .          | 42        |
| 775 |                                             |           |
| 776 | <b>D Discussion</b>                         | <b>43</b> |
| 777 |                                             |           |
| 778 |                                             |           |
| 779 |                                             |           |
| 780 |                                             |           |
| 781 |                                             |           |
| 782 |                                             |           |
| 783 |                                             |           |
| 784 |                                             |           |
| 785 |                                             |           |
| 786 |                                             |           |
| 787 |                                             |           |
| 788 |                                             |           |
| 789 |                                             |           |
| 790 |                                             |           |
| 791 |                                             |           |
| 792 |                                             |           |
| 793 |                                             |           |
| 794 |                                             |           |
| 795 |                                             |           |
| 796 |                                             |           |
| 797 |                                             |           |
| 798 |                                             |           |
| 799 |                                             |           |
| 800 |                                             |           |
| 801 |                                             |           |
| 802 |                                             |           |
| 803 |                                             |           |
| 804 |                                             |           |
| 805 |                                             |           |
| 806 |                                             |           |
| 807 |                                             |           |
| 808 |                                             |           |
| 809 |                                             |           |

810 **A LLM USAGE STATEMENT**  
811

812 During the preparation of this manuscript, we used large language models (LLMs) as a general-  
813 purpose writing and editing aid. LLMs were used to improve clarity, grammar, and structure of the  
814 text, but they did not contribute to the research ideation, experimental design, or scientific content.  
815 No LLM was used to generate new ideas, proofs, or experimental results. All content, including any  
816 text suggested by LLMs, was reviewed and verified by the authors, who take full responsibility for  
817 the final manuscript.

818 **B NOTATION**  
819

820 The following notation is adopted throughout the paper. Standard lowercase or uppercase letters  
821 represent scalars, while boldface lowercase and uppercase letters denote vectors and matrices,  
822 respectively.  $A_{ij}$  (or  $[A]_{ij}$ ) stands for the  $(i, j)$ -th entry of matrix  $\mathbf{A}$ .  $\mathbf{1}$  stands for vector with all  
823 elements equal to one.  $\mathbf{0}$  stands for all zero matrix and  $\mathbf{I}$  stands for the identity matrix. For a matrix  $\mathbf{A}$ ,  
824 let  $\lambda_{\min}(\mathbf{A})$  and  $\lambda_{\max}(\mathbf{A})$  denote its smallest and largest eigenvalues, respectively;  $\lambda_k(\mathbf{A})$  denotes  
825 its  $k$ -th largest eigenvalue.  $\|\mathbf{A}\|_F$  denotes the Frobenius norm, defined as the square root of the sum  
826 of the squares of all elements;  $\|\mathbf{A}\|_1$  denotes the sum of the absolute values of all elements;  $\|\mathbf{A}\|_{\max}$   
827 denotes the largest absolute value among all elements;  $\|\mathbf{A}\|_2$  denotes the induced matrix 2-norm,  
828 i.e., the maximum absolute column sum; and  $\|\mathbf{A}\|_{\infty}$  denotes the induced matrix  $\infty$ -norm, i.e., the  
829 maximum absolute row sum.

830 For two functions  $f(x)$  and  $g(x)$ , we use  $f(x) = O(g(x))$  to indicate that there exists a positive  
831 constant  $M$  and a constant  $x_0$  such that  $|f(x)| \leq M|g(x)|$  for any  $x \geq x_0$ . For a function  $f$ ,  $\nabla f(\mathbf{x})$   
832 and  $\nabla^2 f(\mathbf{x})$  denote the Jacobian and the Hessian of  $f$  at  $\mathbf{x}$ , respectively. For a convex function  $f$ ,  $\partial f(\mathbf{x})$   
833 stands for the subdifferential of  $f$  at  $\mathbf{x}$ .  $\otimes$  stands for the Kronecker product.

834  
835 **Table 2: Summary of main notation used in the paper.**

| 836 <b>Symbol</b>                                   | 837 <b>Description</b>                                                                        |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|
| <b>Dimensions, indices, and sets</b>                |                                                                                               |
| 838 $d$                                             | 839 Dimension of the random vector $\mathbf{x}$ and covariance matrix $\Sigma$ .              |
| 840 $N$                                             | 841 Total number of samples.                                                                  |
| 842 $m$                                             | 843 Number of agents in the network.                                                          |
| 844 $n$                                             | 845 Local sample size at each agent; $N = mn$ .                                               |
| 846 $J_i$                                           | 847 Index set of samples stored at agent $i$ , with $\bigcup_{i=1}^m J_i = \{1, \dots, N\}$ . |
| 848 $S$                                             | 849 Support set of nonzero entries of $\Sigma^*$ .                                            |
| $S^c$                                               | 850 Complement of $S$ .                                                                       |
| $s$                                                 | 851 Sparsity level; number of nonzero entries in $\Sigma^*$ .                                 |
| $\mathbb{S}_{++}^d$                                 | 852 Cone of $d \times d$ symmetric positive definite matrices.                                |
| <b>Random variables and covariance matrices</b>     |                                                                                               |
| 853 $\mathbf{x} \in \mathbb{R}^d$                   | 854 Zero-mean random vector with covariance $\Sigma^*$ .                                      |
| 855 $x_k$                                           | 856 $k$ -th coordinate of $\mathbf{x}$ .                                                      |
| 857 $\{\mathbf{x}_j\}_{j=1}^N$                      | 858 I.i.d. samples of $\mathbf{x}$ .                                                          |
| 859 $x_{jk}$                                        | 860 $k$ -th entry of the $j$ -th sample $\mathbf{x}_j$ .                                      |
| $\Sigma^*$                                          | 861 True covariance matrix of $\mathbf{x}$ .                                                  |
| $\Sigma$                                            | 862 Generic covariance matrix in $\mathbb{S}_{++}^d$ (optimization variable).                 |
| $\Sigma^{(t)}$                                      | 863 Iterate of the centralized Algorithm 1 at iteration $t$ .                                 |
| $\Sigma_i^{(t)}$                                    | 864 Local iterate of agent $i$ in the decentralized algorithm at iteration $t$ .              |
| $\bar{\Sigma}^{(t)}$                                | 865 Network average $\bar{\Sigma}^{(t)} = \frac{1}{m} \sum_{i=1}^m \Sigma_i^{(t)}$ .          |
| <b>Network and communication</b>                    |                                                                                               |
| 866 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$      | 867 Undirected communication graph of agents.                                                 |
| 868 $\mathcal{V} = \{1, \dots, m\}$                 | 869 Node (agent) index set.                                                                   |
| $\mathcal{E}$                                       | 870 Edge set of $G$ .                                                                         |
| $N_i$                                               | 871 Neighborhood of agent $i$ , including $i$ itself.                                         |
| $\mathbf{W} = [W_{ij}] \in \mathbb{R}^{m \times m}$ | 872 Doubly stochastic weight matrix compliant with $G$ .                                      |

**Table 2 (continued)**

| Symbol                                                 | Description                                                                                                                                   |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{J}$                                           | Averaging matrix, $J = \frac{1}{m}\mathbf{1}\mathbf{1}^\top$ .                                                                                |
| $\rho$                                                 | Spectral gap parameter $\rho = \ \mathbf{W} - \mathbf{J}\ _2 \in [0, 1)$ .                                                                    |
| <b>Objective functions and penalties</b>               |                                                                                                                                               |
| $\mathcal{H}_i(\Sigma)$                                | Local Huber loss at agent $i$ .                                                                                                               |
| $\mathcal{H}(\Sigma)$                                  | Average Huber loss, $\mathcal{H}(\Sigma) = \frac{1}{m} \sum_{i=1}^m \mathcal{H}_i(\Sigma)$ .                                                  |
| $a$                                                    | Robustification parameter in the Huber loss (Definition 1).                                                                                   |
| $\mathcal{P}(\Sigma)$                                  | Nonconvex sparsity-inducing penalty in problem (2).                                                                                           |
| $p_\lambda(\cdot)$                                     | Elementwise penalty function with tuning parameter $\lambda > 0$ .                                                                            |
| $q(\cdot)$                                             | Convex function such that $p_\lambda(x) = \lambda x  - q(x)$ .                                                                                |
| $\lambda$                                              | Regularization parameter controlling sparsity.                                                                                                |
| $b$                                                    | Threshold parameter in the nonconvex penalty (cf. Assumption 3).                                                                              |
| $\tau$                                                 | Log-determinant regularization parameter in problem (2).                                                                                      |
| $\mathcal{F}_i(\Sigma)$                                | Smooth part of the local objective at agent $i$ .                                                                                             |
| $\mathcal{F}(\Sigma)$                                  | Smooth part of the centralized objective, $\mathcal{F}(\Sigma) = \frac{1}{m} \sum_{i=1}^m \mathcal{F}_i(\Sigma)$ .                            |
| $\mathcal{L}(\Sigma)$                                  | Centralized objective in (2): $\mathcal{H}(\Sigma) - \tau \log \det(\Sigma) + \mathcal{P}(\Sigma)$ .                                          |
| $L_q$                                                  | Lipschitz constant of $q'$ in Assumption 3(e).                                                                                                |
| $L$                                                    | Lipschitz constant of $\nabla F$ on the invariant set $\mathbb{B}$ .                                                                          |
| $\mu$                                                  | Strong convexity parameter of $F$ on the invariant set $\mathbb{B}$ .                                                                         |
| <b>Algorithmic parameters and distributed notation</b> |                                                                                                                                               |
| $\gamma$                                               | Proximal step size in Algorithms 1–2.                                                                                                         |
| $\theta$                                               | Gradient-tracking parameter in the decentralized algorithm.                                                                                   |
| $\mathbf{Y}_i^{(t)}$                                   | Local gradient-tracking variable at agent $i$ and iteration $t$ .                                                                             |
| $\bar{\mathbf{Y}}^{(t)}$                               | Network-averaged gradient tracker, $\bar{\mathbf{Y}}^{(t)} = \frac{1}{m} \sum_{i=1}^m \mathbf{Y}_i^{(t)}$ .                                   |
| $\Sigma_\diamond^{(t)}$                                | Stacked local covariances, $\Sigma_\diamond^{(t)} = [\Sigma_1^{(t)}; \dots; \Sigma_m^{(t)}]$ .                                                |
| $\mathbf{Y}_\diamond^{(t)}$                            | Stacked gradient-tracking variables, $\mathbf{Y}_\diamond^{(t)} = [\mathbf{Y}_1^{(t)}; \dots; \mathbf{Y}_m^{(t)}]$ .                          |
| $\mathbf{E}_\Sigma^{(t)}$                              | Consensus error in covariances, $\mathbf{E}_\Sigma^{(t)} = \Sigma_\diamond^{(t)} - \mathbf{1} \otimes \bar{\Sigma}^{(t)}$ .                   |
| $\mathbf{E}_\mathbf{Y}^{(t)}$                          | Consensus error in gradient trackers, $\mathbf{E}_\mathbf{Y}^{(t)} = \mathbf{Y}_\diamond^{(t)} - \mathbf{1} \otimes \bar{\mathbf{Y}}^{(t)}$ . |
| $\mathbf{D}_i^{(t)}$                                   | Local update increment, $\mathbf{D}_i^{(t)} = \Sigma_i^{(t+\frac{1}{2})} - \Sigma_i^{(t)}$ .                                                  |
| $\mathbf{D}_\diamond^{(t)}$                            | Stacked update increments, $\mathbf{D}_\diamond^{(t)} = [\mathbf{D}_1^{(t)}; \dots; \mathbf{D}_m^{(t)}]$ .                                    |
| $\underline{r}, \bar{r}$                               | Eigenvalue bounds defining invariant regions for the iterates.                                                                                |
| $\mathbb{A}$                                           | Compact invariant set $\mathbb{A} = \{\Sigma \in \mathbb{S}_{++}^d : \underline{r} \mathbf{I} \preceq \Sigma \preceq \bar{r} \mathbf{I}\}$ .  |
| $\mathbb{B}$                                           | Enlarged invariant set on which $F$ is strongly convex and Lipschitz smooth.                                                                  |
| $\kappa$                                               | Condition number $\kappa = L/\mu$ of $F$ over $\mathbb{B}$ .                                                                                  |
| $\kappa_r$                                             | Refined condition number appearing in the linear-rate bounds (Corollaries 1–2).                                                               |
| $\mathcal{V}(\cdot)$                                   | Potential (Lyapunov) function used in the analysis of the decentralized algorithm.                                                            |
| <b>Statistical quantities</b>                          |                                                                                                                                               |
| $\sigma > 0$                                           | Uniform moment bound in Assumption 2.                                                                                                         |
| $\nu > 0$                                              | Order parameter of the finite moment in Assumption 2.                                                                                         |
| $K$                                                    | Moment bound $K = \max\{\sigma^2, (2\sigma)^{2(1+\nu)}\}$ .                                                                                   |
| $\mu_0$                                                | Local strong convexity parameter in Theorem 3.                                                                                                |
| $c_a, c_\tau, c_\lambda, c_q, c_N$                     | Positive universal constants in Theorem 3.                                                                                                    |
| $C_s$                                                  | Constant in the Frobenius error bound of $\Sigma^b$ .                                                                                         |
| $c, C, C_1, C_2, \dots$                                | Generic positive constants (values may change from line to line).                                                                             |
| <b>Linear algebra and probability notation</b>         |                                                                                                                                               |
| $A_{ij}$ or $[A]_{ij}$                                 | $(i, j)$ -th entry of a matrix $A$ .                                                                                                          |
| $\mathbf{1}$                                           | All-ones vector; $\mathbf{0}$ : all-zero matrix; $\mathbf{I}$ : identity matrix.                                                              |
| $\lambda_{\min}(A), \lambda_{\max}(A)$                 | Smallest / largest eigenvalues of a symmetric matrix $A$ .                                                                                    |
| $\lambda_k(A)$                                         | $k$ -th largest eigenvalue of $A$ .                                                                                                           |
| $\ A\ _F, \ A\ _1, \ A\ _{\max}$                       | Frobenius, entrywise $\ell_1$ , and elementwise max norms of $A$ .                                                                            |
| $\ A\ _2, \ A\ _\infty$                                | Spectral norm and induced $\ell_\infty$ (row-sum) norm of $A$ .                                                                               |
| $A \preceq B$                                          | Loewner order: $B - A$ is positive semidefinite.                                                                                              |
| $A \succ 0 / A \succeq 0$                              | Positive definite / positive semidefinite matrix.                                                                                             |

918  
919 **Table 2 (continued)**  
920

| 921 <b>Symbol</b>                | 922 <b>Description</b>                                     |
|----------------------------------|------------------------------------------------------------|
| 923 $\langle A, B \rangle$       | 924 Matrix inner product trace( $A^\top B$ ).              |
| 925 $f(x) = O(g(x))$             | 926 Big-O notation: $ f(x)  \leq Cg(x)$ for some $C > 0$ . |
| 927 $\nabla f(x), \nabla^2 f(x)$ | 928 Gradient and Hessian of $f$ at $x$ .                   |
| 929 $\partial f(x)$              | 930 Subdifferential of a convex function $f$ at $x$ .      |
| 931 $\otimes$                    | 932 Kronecker product.                                     |
| 933 $P(\cdot), E[\cdot]$         | 934 Probability and expectation operators.                 |

935 

## C PROOFS OF MAIN THEORETICAL RESULTS

936 

### C.1 PROOF OF THEOREM 1

937 We prove Theorem 1 in the following steps: 1) we show that the objective of problem 2 is coercive,  
 938 and hence problem 2 admits a solution; 2) we show that there exists a set  $\mathbb{A} = \{\Sigma \mid \underline{r}\mathbf{I} \preceq \Sigma \preceq \bar{r}\mathbf{I}\}$ ,  
 939 with constants  $\underline{r} \leq \bar{r}$ , such that the sequence  $\{\Sigma^{(t)}\}$  generated by Algorithm 1 remains within  $\mathbb{A}$ , and  
 940 that the objective function is strong convex and Lipschitz smooth over this set; 3) we establish the  
 941 linear convergence of Algorithm 1 based on the aforementioned properties.

942 

#### C.1.1 EXISTENCE OF SOLUTIONS

943 We show that the objective function  $\mathcal{L}$  is coercive over  $\Sigma \succ 0$ ; therefore, problem 2 admits a solution  
 944  $\hat{\Sigma}$ .

945 **Proposition 1.** *The objective function  $\mathcal{L}$  is coercive over  $\Sigma \succ 0$ ; that is,*

$$946 \quad \lim_{\lambda_{\min}(\Sigma) \rightarrow 0} \mathcal{L}(\Sigma) = +\infty \quad \text{and} \quad \lim_{\lambda_{\max}(\Sigma) \rightarrow +\infty} \mathcal{L}(\Sigma) = +\infty.$$

947 *Proof.* For  $x \geq 0$  and some  $x_0 \in [0, x]$ , the Lagrange mean-value theorem gives  $q(x) - q(0) =$   
 948  $q'(x_0)x$ . By (c) and (d) in Assumption 3, it follows that

$$949 \quad q(x) \leq |q'(x_0)x| \leq \lambda|x|,$$

950 and hence

$$951 \quad p(x) = \lambda|x| - q(x) \geq \lambda|x| - \lambda|x| = 0.$$

952 Therefore, based on Definition 1, we have

$$\begin{aligned}
 953 \quad \mathcal{L}(\Sigma) &\geq \frac{1}{m} \sum_{i=1}^m \mathcal{H}_i(\Sigma) - \tau \log \det(\Sigma) \\
 954 &= \frac{1}{N} \sum_{j=1}^N \sum_{k=1}^d \sum_{l=1}^d h(\Sigma_{kl} - x_{jk}x_{jl}) - \tau \log \det(\Sigma) \\
 955 &\geq \frac{1}{N} \sum_{j=1}^N \sum_{k=1}^d \sum_{l=1}^d a |\Sigma_{kl} - x_{jk}x_{jl}| - \frac{1}{2} d^2 a^2 - \tau \log \det(\Sigma) \\
 956 &\geq \frac{1}{N} \sum_{j=1}^N \sum_{k=1}^d \sum_{l=1}^d a |\Sigma_{kl}| - a \frac{1}{N} \sum_{j=1}^N \sum_{k=1}^d \sum_{l=1}^d |x_{jk}x_{jl}| - \frac{1}{2} d^2 a^2 - \tau \log \det(\Sigma) \\
 957 &= a \|\Sigma\|_1 - a \frac{1}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2} d^2 a^2 - \tau \log \det(\Sigma).
 \end{aligned}$$

958 Since  $\|\Sigma\|_1 \geq \sum_{k=1}^d \lambda_k(\Sigma)$ , we have

$$959 \quad \mathcal{L}(\Sigma) \geq \sum_{k=1}^d (a \lambda_k(\Sigma) - \tau \log \lambda_k(\Sigma)) - a \frac{1}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2} d^2 a^2.$$

972 When  $x = \frac{\tau}{a}$ ,  $ax - \tau \log x$  reaches its minimum  $\tau - \tau \log \frac{\tau}{a}$ . Therefore, we have  
 973

974  
 975  $\mathcal{L}(\Sigma) \geq a\lambda_k(\Sigma) - \tau \log \lambda_k(\Sigma) + (d-1)\left(\tau - \tau \log \frac{\tau}{a}\right) - a\frac{1}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2}d^2a^2.$  (11)  
 976

977 The right side of equation 11 is a convex function with respect to  $\lambda_k(\Sigma)$ . As  $\lambda_k(\Sigma) \rightarrow 0$  or  
 978  $\lambda_k(\Sigma) \rightarrow +\infty$ , the right side of equation 11 diverges to infinity, and consequently,  $\mathcal{L} \rightarrow +\infty$ .  
 979 Since  $\mathcal{L}$  is continuous on  $\Sigma \succ \mathbf{0}$ , by the Weierstrass extreme value theorem, the function attains its  
 980 minimum  $\widehat{\Sigma}$ .  $\square$   
 981

982  
 983 C.1.2 INVARIANT SET  
 984

985 According to Proposition 1, for any initialization  $\Sigma^{(0)}$ , there exist constants  $\bar{r} \geq \underline{r} > 0$  such that the  
 986 sublevel set  $\{\Sigma \mid \mathcal{L}(\Sigma) \leq \mathcal{L}(\Sigma^{(0)})\} \subseteq \mathbb{A} = \{\Sigma \mid \underline{r}\mathbf{I} \preceq \Sigma \preceq \bar{r}\mathbf{I}\}$ . We then aim to find sufficient  
 987 conditions under which, if  $\Sigma^{(t)} \in \mathbb{A}$ , the next iterate  $\Sigma^{(t+1)} \in \mathbb{A}$ .  
 988

989 **Proposition 2.** For  $\Sigma^{(t)} \in \mathbb{A}$ , if

990  
 991  $\gamma \geq \frac{2}{\underline{r}} \left( ad + \tau \frac{\sqrt{d}}{\underline{r}} + 2\lambda d \right),$   
 992

993 we have  $\Sigma^{(t+1)} \in \mathbb{B}$ , where  $\mathbb{B} = \{\Sigma \mid (\underline{r}/2)\mathbf{I} \preceq \Sigma \preceq (\bar{r} + \underline{r}/2)\mathbf{I}\}$ .  
 994

995  
 996 *Proof.* Define  $\mathcal{U}^{(t)}(\Sigma) = \mathcal{F}(\Sigma^{(t)}) + \langle \nabla \mathcal{F}(\Sigma^{(t)}), \Sigma - \Sigma^{(t)} \rangle + \frac{\gamma}{2} \|\Sigma - \Sigma^{(t)}\|_F^2$ . Since  $\mathcal{U}^{(t)}$  is  
 997  $\gamma$ -strongly convex and  $\lambda \|\Sigma\|_{1,\text{off}}$  is convex, for any  $\Phi \in \partial \lambda \|\Sigma^{(t)}\|_{1,\text{off}}$  we have  
 998

1000  
 1001 
$$\begin{aligned} & \mathcal{U}^{(t)}(\Sigma^{(t+1)}) + \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}} \\ 1002 & \geq \mathcal{U}^{(t)}(\Sigma^{(t)}) + \lambda \|\Sigma^{(t)}\|_{1,\text{off}} + \langle \nabla \mathcal{U}^{(t)}(\Sigma^{(t)}) + \Phi, \Sigma^{(t+1)} - \Sigma^{(t)} \rangle + \frac{\gamma}{2} \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2 \\ 1003 & = \mathcal{U}^{(t)}(\Sigma^{(t)}) + \lambda \|\Sigma^{(t)}\|_{1,\text{off}} - \frac{1}{2\gamma} \|\nabla \mathcal{U}^{(t)}(\Sigma^{(t)}) + \Phi\|_F^2 \\ 1004 & \quad + \frac{\gamma}{2} \left\| \frac{1}{\gamma} (\nabla \mathcal{U}^{(t)}(\Sigma^{(t)}) + \Phi) + \Sigma^{(t+1)} - \Sigma^{(t)} \right\|_F^2 \\ 1005 & \geq \mathcal{U}^{(t)}(\Sigma^{(t)}) + \lambda \|\Sigma^{(t)}\|_{1,\text{off}} - \frac{1}{2\gamma} \|\nabla \mathcal{U}^{(t)}(\Sigma^{(t)}) + \Phi\|_F^2. \end{aligned} \tag{12}$$
  
 1006  
 1007  
 1008  
 1009  
 1010

1011 Meanwhile, according to the first-order optimality condition of equation 4, there exists a  $\Psi \in$   
 1012  $\partial \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}}$  such that  
 1013

1014  
 1015 
$$\langle \nabla \mathcal{U}^{(t)}(\Sigma^{(t+1)}) + \Psi, \Sigma^{(t)} - \Sigma^{(t+1)} \rangle \geq 0.$$
  
 1016

1017 Then similar to equation 12, we have  
 1018

1019  
 1020 
$$\begin{aligned} & \mathcal{U}^{(t)}(\Sigma^{(t)}) + \lambda \|\Sigma^{(t)}\|_{1,\text{off}} \\ 1021 & \geq \mathcal{U}^{(t)}(\Sigma^{(t+1)}) + \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}} + \langle \nabla \mathcal{U}^{(t)}(\Sigma^{(t+1)}) + \Psi, \Sigma^{(t)} - \Sigma^{(t+1)} \rangle \\ 1022 & \quad + \frac{\gamma}{2} \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2 \\ 1023 & \geq \mathcal{U}^{(t)}(\Sigma^{(t+1)}) + \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}} + \frac{\gamma}{2} \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2. \end{aligned} \tag{13}$$
  
 1024  
 1025

1026 Combining equation 12 and equation 13, we have  
 1027

$$\begin{aligned}
 1028 \quad & \left\| \boldsymbol{\Sigma}^{(t)} - \boldsymbol{\Sigma}^{(t+1)} \right\|_F \\
 1029 \quad & \leq \frac{1}{\gamma} \left\| \nabla \mathcal{U}^{(t)}(\boldsymbol{\Sigma}^{(t)}) + \boldsymbol{\Phi} \right\|_F \leq \frac{1}{\gamma} \left\| \nabla \mathcal{F}(\boldsymbol{\Sigma}^{(t)}) \right\|_F + \frac{1}{\gamma} \|\boldsymbol{\Phi}\|_F \\
 1030 \quad & \leq \frac{1}{\gamma} \left\| \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{H}_i(\boldsymbol{\Sigma}^{(t)}) \right\|_F + \frac{\tau}{\gamma} \left\| (\boldsymbol{\Sigma}^{(t)})^{-1} \right\|_F + \frac{1}{\gamma} \left\| \nabla \mathcal{Q}(\boldsymbol{\Sigma}^{(t)}) \right\|_F + \frac{1}{\gamma} \|\boldsymbol{\Phi}\|_F.
 \end{aligned}
 1031
 1032
 1033
 1034$$

1035 According to Definition 1, we have  $[\nabla \mathcal{H}_i(\boldsymbol{\Sigma})]_{kl} \leq a$  and hence  $\left\| \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{H}_i(\boldsymbol{\Sigma}) \right\|_F \leq ad$ . Since  
 1036  $\boldsymbol{\Sigma}^{(t)} \in \mathbb{A}$ , we have  $\left\| (\boldsymbol{\Sigma}^{(t)})^{-1} \right\|_F \leq \sqrt{d}/\underline{r}$ . Due to Assumption 3 (d), we have  $\left\| \nabla \mathcal{Q}(\boldsymbol{\Sigma}^{(t)}) \right\|_F \leq \lambda d$ .  
 1037 As  $\boldsymbol{\Phi} \in \partial \lambda \|\boldsymbol{\Sigma}^{(t)}\|_{1,\text{off}}$ , we have  $\|\boldsymbol{\Phi}\|_F \leq \lambda d$ . Therefore, we have  
 1038

$$1039 \quad \left\| \boldsymbol{\Sigma}^{(t)} - \boldsymbol{\Sigma}^{(t+1)} \right\|_F \leq \frac{1}{\gamma} \left( ad + \frac{\tau \sqrt{d}}{\underline{r}} + 2\lambda d \right).
 1040
 1041$$

1042 Since  $\gamma \geq 2 \left( ad + \tau \sqrt{d}/\underline{r} + 2\lambda d \right) / \underline{r}$ , we have  $\left\| \boldsymbol{\Sigma}^{(t)} - \boldsymbol{\Sigma}^{(t+1)} \right\|_F \leq \underline{r}/2$  and hence  $\boldsymbol{\Sigma}^{(t+1)} \in \mathbb{B}$ .  
 1043  $\square$   
 1044

1045 Based on Proposition 2, we have  $\boldsymbol{\Sigma}^{(t)}, \boldsymbol{\Sigma}^{(t+1)} \in \mathbb{B}$ , and hence  $\mathcal{F}$  is strongly convex and Lipschitz  
 1046 smooth on  $\mathbb{B}$ .  
 1047

1048 **Proposition 3.** Suppose that  $\bar{r} + \underline{r}/2 < \sqrt{\tau/L_q}$ . Then for any  $\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2 \in \mathbb{B}$ , we have  
 1049

$$\begin{aligned}
 1050 \quad & \left\| \nabla \mathcal{F}(\boldsymbol{\Sigma}_1) - \nabla \mathcal{F}(\boldsymbol{\Sigma}_2) \right\|_F \leq L \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\|_F, \\
 1051 \quad & \left\| \nabla \mathcal{F}(\boldsymbol{\Sigma}_1) - \nabla \mathcal{F}(\boldsymbol{\Sigma}_2) \right\|_F \geq \mu \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\|_F,
 \end{aligned}$$

1052 where  $L = 1 + 4\tau \underline{r}^{-2}$  and  $\mu = \tau(\bar{r} + \underline{r}/2)^{-2} - L_q$ .  
 1053

1054 *Proof.* Since  $\boldsymbol{\Sigma}_1 \in \mathbb{B}$ , we have  
 1055

$$\nabla^2(-\tau \log \det(\boldsymbol{\Sigma}_1)) = \tau \boldsymbol{\Sigma}_1^{-1} \otimes \boldsymbol{\Sigma}_1^{-1} \succeq \frac{\tau}{(\bar{r} + \underline{r}/2)^2} \mathbf{I},$$

1058 and hence  $-\tau \log \det(\boldsymbol{\Sigma}_1)$  is  $\tau(\bar{r} + \underline{r}/2)^{-2}$ -strongly convex. Then due to the convexity of Huber  
 1059 loss, Assumption 3 (e), and  $\bar{r} + \underline{r}/2 < \sqrt{\tau/L_q}$ , we have  
 1060

$$\begin{aligned}
 1061 \quad & \left\| \nabla \mathcal{F}(\boldsymbol{\Sigma}_1) - \nabla \mathcal{F}(\boldsymbol{\Sigma}_2) \right\|_F \\
 1062 \quad & \geq \left\| \nabla(-\tau \log \det(\boldsymbol{\Sigma}_1)) - \nabla(-\tau \log \det(\boldsymbol{\Sigma}_2)) \right\|_F - \left\| \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{H}_i(\boldsymbol{\Sigma}_1) - \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{H}_i(\boldsymbol{\Sigma}_2) \right\|_F \\
 1063 \quad & \quad - \left\| \nabla \mathcal{Q}(\boldsymbol{\Sigma}_1) - \nabla \mathcal{Q}(\boldsymbol{\Sigma}_2) \right\|_F \\
 1064 \quad & \geq \left( \frac{\tau}{(\bar{r} + \underline{r}/2)^2} - L_q \right) \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\|_F > 0.
 \end{aligned}$$

1065 For smoothness, according to Definition 1, we have  
 1066

$$h'(x) = \begin{cases} x, & |x| \leq a, \\ \text{asign}(x), & |x| > a, \end{cases}$$

1067 and it is easy to verify that  $|h'(x) - h'(y)| \leq |x - y|$  for any  $x$  and  $y$ . Moreover, we have  
 1068

$$\nabla^2(-\tau \log \det(\boldsymbol{\Sigma}_1)) = \tau \boldsymbol{\Sigma}_1^{-1} \otimes \boldsymbol{\Sigma}_1^{-1} \preceq \frac{4\tau}{\underline{r}^2} \mathbf{I}.$$

1069 Due to the convexity of  $\mathcal{Q}$  and  $\bar{r} + \underline{r}/2 < \sqrt{\tau/L_q}$ , we have  
 1070

$$1071 \quad \mathbf{0} \prec \nabla^2(-\tau \log \det(\boldsymbol{\Sigma}_1) - \mathcal{Q}(\boldsymbol{\Sigma}_1)) = \nabla^2(-\tau \log \det(\boldsymbol{\Sigma}_1)) - \nabla^2 \mathcal{Q}(\boldsymbol{\Sigma}_1) \preceq \frac{4\tau}{\underline{r}^2} \mathbf{I},$$

1080 and hence,

$$\begin{aligned}
 & \|\nabla \mathcal{F}(\Sigma_1) - \nabla \mathcal{F}(\Sigma_2)\|_F \\
 & \leq \frac{1}{m} \sum_{i=1}^m \|\nabla \mathcal{H}_i(\Sigma_1) - \nabla \mathcal{H}_i(\Sigma_2)\|_F \\
 & \quad + \|\nabla(-\tau \log \det(\Sigma_1) - \mathcal{Q}(\Sigma_1)) - \nabla(-\tau \log \det(\Sigma_2) - \mathcal{Q}(\Sigma_2))\|_F \\
 & \leq \left(1 + \frac{4\tau}{\underline{r}^2}\right) \|\Phi - \Sigma_2\|_F.
 \end{aligned}$$

□

1091 Then based on Propositions 2 and 3, we can prove that for any  $\Sigma^{(t)} \in \mathbb{A}$ , we have  $\Sigma^{(t+1)} \in \mathbb{A}$ .

1093 **Proposition 4.** *Based on Propositions 2 and 3, we have*

$$\mathcal{L}(\Sigma^{(t)}) - \mathcal{L}(\Sigma^{(t+1)}) \geq \left(\gamma - \frac{L}{2}\right) \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2.$$

1097 *Proof.* According to Proposition 3, we have

$$\mathcal{F}(\Sigma^{(t)}) - \mathcal{F}(\Sigma^{(t+1)}) \geq \langle \nabla \mathcal{F}(\Sigma^{(t)}), \Sigma^{(t)} - \Sigma^{(t+1)} \rangle - \frac{L}{2} \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2. \quad (14)$$

1101 Due to the first-order optimality condition of equation 4, we have

$$\gamma \Sigma^{(t)} - \nabla \mathcal{F}(\Sigma^{(t)}) - \gamma \Sigma^{(t+1)} \in \partial \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}}.$$

1104 Then according to the definition of subgradient, we have

$$\begin{aligned}
 \lambda \|\Sigma^{(t)}\|_{1,\text{off}} - \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}} & \geq \langle \gamma \Sigma^{(t)} - \nabla \mathcal{F}(\Sigma^{(t)}), \gamma \Sigma^{(t+1)} - \Sigma^{(t)} \rangle \\
 & = \langle \nabla \mathcal{F}(\Sigma^{(t)}), \Sigma^{(t+1)} - \Sigma^{(t)} \rangle + \gamma \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2. \quad (15)
 \end{aligned}$$

1110 Combining equation 14 and equation 15, we have the desired result. □

1112 Proposition 4 indicates that  $\mathcal{L}(\Sigma^{(t)}) - \mathcal{L}(\Sigma^{(t+1)}) \geq 0$  given  $\Sigma^{(t)} \in \mathbb{A}$  and  $\gamma \geq \max\left\{\frac{L}{2}, \frac{2}{\underline{r}} \left(ad + \tau \frac{\sqrt{d}}{\underline{r}} + 2\lambda d\right)\right\}$ . Then inducting from  $\Sigma^{(0)}$  gives  $\{\Sigma^{(t)}\} \subset \mathbb{A}$ .

### 1116 C.1.3 LINEAR CONVERGENCE

1117 Finally, we prove the linear convergence result in Theorem 1. According to Proposition 3, the strong  
1118 convexity of  $\mathcal{F}$  with parameter  $\mu$  implies that

$$\mathcal{F}(\widehat{\Sigma}) - \mathcal{F}(\Sigma^{(t)}) - \langle \nabla \mathcal{F}(\Sigma^{(t)}), \widehat{\Sigma} - \Sigma^{(t)} \rangle \geq \frac{\mu}{2} \|\widehat{\Sigma} - \Sigma^{(t)}\|_F^2.$$

1122 Using the Lipschitz smoothness of  $\mathcal{F}$  with constant  $L$ , it follows that

$$\mathcal{F}(\Sigma^{(t+1)}) - \mathcal{F}(\Sigma^{(t)}) - \langle \nabla \mathcal{F}(\Sigma^{(t)}), \Sigma^{(t+1)} - \Sigma^{(t)} \rangle \leq \frac{L}{2} \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2.$$

1126 Combining the above two inequalities, we obtain

$$\begin{aligned}
 0 \leq \mathcal{F}(\widehat{\Sigma}) - \mathcal{F}(\Sigma^{(t+1)}) + \frac{L}{2} \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2 - \frac{\mu}{2} \|\widehat{\Sigma} - \Sigma^{(t)}\|_F^2 \\
 - \langle \nabla \mathcal{F}(\Sigma^{(t)}), \widehat{\Sigma} - \Sigma^{(t+1)} \rangle. \quad (16)
 \end{aligned}$$

1131 Applying the first-order optimality condition for equation 4, there exists a  $\Phi \in \partial \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}}$  such  
1132 that

$$\langle \nabla \mathcal{F}(\Sigma^{(t)}) + \gamma (\Sigma^{(t+1)} - \Sigma^{(t)}) + \Phi, \widehat{\Sigma} - \Sigma^{(t+1)} \rangle \geq 0.$$

1134 Due to the convexity of  $\lambda \|\cdot\|_{1,\text{off}}$ , we have  
 1135

$$1136 \quad \lambda \|\widehat{\Sigma}\|_{1,\text{off}} - \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}} - \langle \Phi, \widehat{\Sigma} - \Sigma^{(t+1)} \rangle \geq 0.$$

1138 Summing the two inequalities above, we obtain:  
 1139

$$1140 \quad \lambda \|\widehat{\Sigma}\|_{1,\text{off}} - \lambda \|\Sigma^{(t+1)}\|_{1,\text{off}} + \langle \nabla \mathcal{F}(\Sigma^{(t)}) + \gamma (\Sigma^{(t+1)} - \Sigma^{(t)}), \widehat{\Sigma} - \Sigma^{(t+1)} \rangle \geq 0. \quad (17)$$

1142 Combining equation 16 and equation 17 leads to  
 1143

$$1144 \quad 0 \leq \mathcal{L}(\widehat{\Sigma}) - \mathcal{L}(\Sigma^{(t+1)}) + \frac{L}{2} \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2 - \frac{\mu}{2} \|\widehat{\Sigma} - \Sigma^{(t)}\|_F^2 \\ 1145 \quad + \gamma \langle \Sigma^{(t+1)} - \Sigma^{(t)}, \widehat{\Sigma} - \Sigma^{(t+1)} \rangle.$$

1147 Since  $\widehat{\Sigma}$  is the minimizer of  $\mathcal{L}$ , we have  
 1148

$$1149 \quad 0 \leq \frac{L - 2\gamma}{2} \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2 - \frac{\mu}{2} \|\widehat{\Sigma} - \Sigma^{(t)}\|_F^2 + \gamma \langle \Sigma^{(t+1)} - \Sigma^{(t)}, \widehat{\Sigma} - \Sigma^{(t)} \rangle.$$

1151 Rearranging the above inequality, we get  
 1152

$$1153 \quad 2 \langle \Sigma^{(t+1)} - \Sigma^{(t)}, \Sigma^{(t)} - \widehat{\Sigma} \rangle \leq \frac{L - 2\gamma}{\gamma} \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2 - \frac{\mu}{\gamma} \|\widehat{\Sigma} - \Sigma^{(t)}\|_F^2,$$

1155 and hence  
 1156

$$1157 \quad \|\Sigma^{(t+1)} - \widehat{\Sigma}\|_F^2 \leq \|\Sigma^{(t+1)} - \Sigma^{(t)}\|_F^2 + \|\Sigma^{(t)} - \widehat{\Sigma}\|_F^2 + 2 \langle \Sigma^{(t+1)} - \Sigma^{(t)}, \Sigma^{(t)} - \widehat{\Sigma} \rangle \\ 1158 \quad \leq \left(1 - \frac{\mu}{\gamma}\right) \|\Sigma^{(t)} - \widehat{\Sigma}\|_F^2.$$

1161 Backtracking to  $\Sigma^{(0)}$  and using  $\gamma = c_\gamma L$ , we can obtain the linear convergence result in Theorem 1.  
 1162

#### 1163 C.1.4 ON THE COMPUTATION OF $\bar{r}$ AND $\underline{r}$

1165 In the previous proof, we only established the existence of  $\bar{r}$  and  $\underline{r}$ . One way to compute them is, as  
 1166 stated in Theorem 1, to use the inequality equation 11 obtained based on Proposition 1. Since the  
 1167 right hand side of the inequality equation 11 is a convex lower bound of the objective function  $\mathcal{L}$ ,  
 1168 equation equation 1 necessarily admits two positive solutions, and choosing these solutions as  $\bar{r}$  and  
 1169  $\underline{r}$  guarantees  $\{\Sigma \mid \mathcal{L}(\Sigma) \leq \mathcal{L}(\Sigma^{(0)})\} \subseteq \mathbb{A}$ .  
 1170

#### 1171 C.2 PROOF OF THEOREM 2

1172 For notational simplicity, we introduce the following compact forms:  
 1173

$$1174 \quad \Sigma_\diamond^{(t)} = \left[ \Sigma_1^{(t)}; \Sigma_2^{(t)}; \dots; \Sigma_m^{(t)} \right], \quad \mathbf{E}_\Sigma^{(t)} = \Sigma^{(t)} - \mathbf{1} \otimes \bar{\Sigma}^{(t)}, \\ 1175 \quad \mathbf{Y}_\diamond^{(t)} = \left[ \mathbf{Y}_1^{(t)}; \mathbf{Y}_2^{(t)}; \dots; \mathbf{Y}_m^{(t)} \right], \quad \mathbf{E}_\mathbf{Y}^{(t)} = \mathbf{Y}^{(t)} - \mathbf{1} \otimes \bar{\mathbf{Y}}^{(t)}, \\ 1176 \quad \mathbf{D}_i^{(t)} = \Sigma_i^{(t+\frac{1}{2})} - \Sigma_i^{(t)}, \quad \mathbf{D}_\diamond^{(t)} = \left[ \mathbf{D}_1^{(t)}; \mathbf{D}_2^{(t)}; \dots; \mathbf{D}_m^{(t)} \right].$$

1180 The overall proof strategy for Theorem 2 parallels that of Theorem 1. Specifically, the analysis hinges  
 1181 on a potential function  $\mathcal{V}$  that combines the objective function with the consensus error as follows:  
 1182

$$1183 \quad \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) = \sum_{i=1}^m \mathcal{L}(\Sigma_i) + c_1 \|\mathbf{E}_\Sigma\|_F^2 + c_2 \|\mathbf{E}_\mathbf{Y}\|_F^2, \quad (18)$$

1186 where  $\Sigma_\diamond = [\Sigma_1; \dots; \Sigma_m]$  and  $\mathbf{Y}_\diamond = [\mathbf{Y}_1; \dots; \mathbf{Y}_m]$  are the matrices that stack all the local variables,  
 1187  $\mathbf{E}_\Sigma = \Sigma_\diamond - \mathbf{1} \otimes \bar{\Sigma}$  and  $\mathbf{E}_\mathbf{Y} = \mathbf{Y}_\diamond - \mathbf{1} \otimes \bar{\mathbf{Y}}$  is consensus error,  $\bar{\Sigma} = \frac{1}{m} \sum_{i=1}^m \Sigma_i$ ,  $\bar{\mathbf{Y}} = \frac{1}{m} \sum_{i=1}^m \mathbf{Y}_i$ ,  
 1188 and  $c_1, c_2 > 0$ . Compared to Theorem 1, we first prove the local properties based on  $\mathcal{V}$ .  
 1189

1188 C.2.1 PRELIMINARIES  
11891190 **Proposition 5.** *The potential function  $\mathcal{V}$  is coercive for  $\{\Sigma_i\}_{i=1}^m$ , i.e.,*  
1191  $\lim_{\min\{\lambda_{\min}(\Sigma_i)\}_{i=1}^m \rightarrow 0} \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) = +\infty$  *and*  $\lim_{\max\{\lambda_{\max}(\Sigma_i)\}_{i=1}^m \rightarrow +\infty} \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) = +\infty$ .  
1192 *Meanwhile, we have*  $\lim_{\|\mathbf{E}_\mathbf{Y}\|_F \rightarrow +\infty} \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) = +\infty$ .  
11931194  
1195 *Proof.* For  $\Sigma_\diamond$ , following similar steps of the proof of Proposition 1 and utilizing the non-negative  
1196 nature of the consensus error, we have  
1197

1198 
$$\begin{aligned} & \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) \\ 1199 & \geq \frac{1}{m} \sum_{i=1}^m \sum_{k=1}^d (a\lambda_k(\Sigma_i) - \tau \log \lambda_k(\Sigma_i)) - a \frac{1}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2} d^2 a^2 \\ 1200 & \geq \frac{1}{m} (a\lambda_k(\Sigma_i) - \tau \log \lambda_k(\Sigma_i)) + \left(d - \frac{1}{m}\right) \left(\tau - \tau \log \frac{\tau}{a}\right) - \frac{a}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2} d^2 a^2 \end{aligned} \quad (19)$$
  
1201  
1202  
1203  
1204

1205 for any  $i = 1, \dots, m$ , and hence  $\mathcal{V}$  is coercive. For  $\mathbf{Y}_\diamond$ , we have  
1206

1207 
$$\mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) \geq b \|\mathbf{E}_\mathbf{Y}\|_F^2 + d \left(\tau - \tau \log \frac{\tau}{a}\right) - \frac{a}{N} \sum_{j=1}^N \|\mathbf{x}_j \mathbf{x}_j^\top\|_1 - \frac{1}{2} d^2 a^2, \quad (20)$$
  
1208  
1209  
1210

1211 and hence  $\mathcal{V}$  is coercive with respect to  $\mathbf{E}_\mathbf{Y}$ . □  
12121213  
1214 Based on Proposition 5, for any initialization  $(\Sigma_\diamond^{(0)}, \mathbf{Y}_\diamond^{(0)})$ , there exist parameters  $\bar{r} \geq r > 0$   
1215 and  $e > 0$  such that for any  $(\Sigma_\diamond, \mathbf{Y}_\diamond) \in \{(\Sigma_\diamond, \mathbf{Y}_\diamond) \mid \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) \leq \mathcal{V}(\Sigma_\diamond^{(0)}, \mathbf{Y}_\diamond^{(0)})\}$ , we have  
1216  $\Sigma_\diamond \in \mathbb{A} = \{\Sigma_\diamond \mid r\mathbf{I} \preceq \Sigma_i \preceq \bar{r}\mathbf{I}, i = 1, \dots, m\}$  and  $\|\mathbf{E}_\mathbf{Y}\|_F \leq \sqrt{e}$ . Then we first introduce the  
1217 following lemma.  
12181219 **Lemma 1** (Xia et al. (2025)). *For a  $L$ -smooth function  $f$ , we have*  
1220

1221 
$$f \left( \sum_{i=1}^m a_i \mathbf{Y}_i \right) \geq \sum_{i=1}^m a_i f(\mathbf{Y}_i) - \frac{L}{2} \sum_{i=1}^{m-1} \sum_{j=i+1}^m a_i a_j \|\mathbf{Y}_i - \mathbf{Y}_j\|_F^2,$$
  
1222  
1223  
1224

1225 where  $\sum_{i=1}^m a_i = 1$  and  $a_i \geq 0$  for all  $i$ .  
12261227 Based on Lemma 1, we can bound the gradient tracking variables  $\mathbf{Y}_i$  for each agent.  
12281229 **Proposition 6.** *For every  $(\Sigma_\diamond^{(t)}, \mathbf{Y}_\diamond^{(t)})$  generated by Algorithm 2 such that  $(\Sigma_\diamond^{(t)}, \mathbf{Y}_\diamond^{(t)}) \in$   
1230  $\{(\Sigma_\diamond, \mathbf{Y}_\diamond) \mid \mathcal{V}(\Sigma_\diamond, \mathbf{Y}_\diamond) \leq \mathcal{V}(\Sigma_\diamond^{(0)}, \mathbf{Y}_\diamond^{(0)})\}$ , we have*  
1231

1232 
$$\|\mathbf{Y}_i^{(t)}\|_F \leq \sqrt{m \left( ad + \frac{\sqrt{d}\tau}{r} + d\lambda \right)^2 + e}.$$
  
1233  
1234  
1235

1236  
1237 *Proof.* Since  $\mathbf{Y}_i^{(0)} = \nabla \mathcal{F}_i(\Sigma_i^{(0)})$  for all  $i = 1, \dots, m$ , the update rule for  $\bar{\mathbf{Y}}$  can be expressed as  
1238

1239 
$$\bar{\mathbf{Y}}^{(t+1)} = \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{F}_i(\Sigma_i^{(t+1)}). \quad (21)$$
  
1240  
1241

1242 Applying Lemma 1 and the 2-smooth nature of  $\|\cdot\|_F^2$  to the above equation leads to  
1243

$$\begin{aligned}
1244 \quad \frac{1}{m} \sum_{i=1}^m \left\| \mathbf{Y}_i^{(t)} \right\|_F^2 &\leq \left\| \frac{1}{m} \sum_{i=1}^m \mathbf{Y}_i^{(t)} \right\|_F^2 + \frac{1}{m^2} \sum_{i=1}^{m-1} \sum_{j=i+1}^m \left\| \mathbf{Y}_i^{(t)} - \mathbf{Y}_j^{(t)} \right\|_F^2 \\
1245 \quad &= \left\| \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{F}_i \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right\|_F^2 + \frac{1}{m^2} \sum_{i=1}^{m-1} \sum_{j=i+1}^m \left\| \mathbf{Y}_i^{(t)} - \mathbf{Y}_j^{(t)} \right\|_F^2 \\
1246 \quad &\leq \frac{1}{m} \sum_{i=1}^m \left\| \nabla \mathcal{F}_i \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right\|_F^2 + \frac{1}{m} \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2 \\
1247 \quad &\leq \frac{1}{m} \sum_{i=1}^m \left( \left\| \nabla \mathcal{L}_i \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right\|_F + \tau \left\| \left( \boldsymbol{\Sigma}_i^{(t)} \right)^{-1} \right\|_F + \left\| \nabla \mathcal{Q} \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right\|_F \right)^2 + \frac{1}{m} \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2.
\end{aligned}$$

1248 According to Definition 1, we have  $\left[ \nabla \mathcal{L}_i \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right]_{kl} \leq a$  and hence  $\left\| \frac{1}{m} \sum_{i=1}^m \nabla \mathcal{L}_i \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right\|_F \leq ad$ .  
1249

1250 Since  $\boldsymbol{\Sigma}_\diamond^{(t)} \in \mathbb{A}$ , we have  $\left\| \left( \boldsymbol{\Sigma}_i^{(t)} \right)^{-1} \right\|_F \leq \sqrt{d}/\underline{r}$ . Due to Assumption 3 (d), we have  
1251

1252  $\left\| \nabla \mathcal{Q} \left( \boldsymbol{\Sigma}_i^{(t)} \right) \right\|_F \leq \lambda d$ . Then since  $\left\| \mathbf{E}_{\mathbf{Y}} \right\|_F \leq \sqrt{e}$ , we have  
1253

$$1254 \quad \left\| \mathbf{Y}_i^{(t)} \right\|_F \leq \sqrt{\sum_{i=1}^m \left\| \mathbf{Y}_i^{(t)} \right\|_F^2} \leq \sqrt{m \left( ad + \frac{\sqrt{d}\tau}{\underline{r}} + d\lambda \right)^2 + e}.$$

□

1256 Based on Proposition 6, we can bound  $\boldsymbol{\Sigma}_\diamond^{(t+\frac{1}{2})}$  and  $\boldsymbol{\Sigma}_\diamond^{(t+1)}$  for  $\left( \boldsymbol{\Sigma}_\diamond^{(t)}, \mathbf{Y}_\diamond^{(t)} \right) \in$   
1257  $\left\{ \left( \boldsymbol{\Sigma}_\diamond, \mathbf{Y}_\diamond \right) \mid \mathcal{V} \left( \boldsymbol{\Sigma}_\diamond, \mathbf{Y}_\diamond \right) \leq \mathcal{V} \left( \boldsymbol{\Sigma}_\diamond^{(0)}, \mathbf{Y}_\diamond^{(0)} \right) \right\}$ .  
1258

1259 **Proposition 7.** Suppose that  $\left( \boldsymbol{\Sigma}_\diamond^{(t)}, \mathbf{Y}_\diamond^{(t)} \right) \in \left\{ \left( \boldsymbol{\Sigma}_\diamond, \mathbf{Y}_\diamond \right) \mid \mathcal{V} \left( \boldsymbol{\Sigma}_\diamond, \mathbf{Y}_\diamond \right) \leq \mathcal{V} \left( \boldsymbol{\Sigma}_\diamond^{(0)}, \mathbf{Y}_\diamond^{(0)} \right) \right\}$  and  
1260

$$1261 \quad \gamma \geq \frac{2}{\underline{r}} \left( \sqrt{m \left( ad + \frac{\sqrt{d}\tau}{\underline{r}} + d\lambda \right)^2 + e} + \lambda d \right), \quad (22)$$

1262 we have  $\boldsymbol{\Sigma}_\diamond^{(t+\frac{1}{2})}, \boldsymbol{\Sigma}_\diamond^{(t+1)} \in \mathbb{B}$ , where  $\mathbb{B} = \{ \boldsymbol{\Sigma}_\diamond \mid \underline{r}\mathbf{I}/2 \preceq \boldsymbol{\Sigma}_i \preceq (\bar{r} + \underline{r}/2)\mathbf{I}, i = 1, \dots, m \}$ .  
1263

1264 *Proof.* Following similar steps as the proof of Proposition 2, for any  $i = 1, \dots, m$ , we have  
1265

$$1266 \quad \left\| \boldsymbol{\Sigma}_i^{(t+\frac{1}{2})} - \boldsymbol{\Sigma}_i^{(t)} \right\|_F \leq \frac{1}{\gamma} \left\| \mathbf{Y}_i^{(t)} \right\|_F + \frac{1}{\gamma} \lambda d.$$

1267 Then according to Proposition 6 and equation 22, we have  
1268

$$1269 \quad \left\| \boldsymbol{\Sigma}_i^{(t+\frac{1}{2})} - \boldsymbol{\Sigma}_i^{(t)} \right\|_F \leq \frac{1}{\gamma} \sqrt{m \left( ad + \frac{\sqrt{d}\tau}{\underline{r}} + d\lambda \right)^2 + e} + \frac{1}{\gamma} \lambda d \leq \frac{\underline{r}}{2},$$

1270 and hence  $\boldsymbol{\Sigma}_\diamond^{(t+\frac{1}{2})}, \boldsymbol{\Sigma}_\diamond^{(t+1)} \in \mathbb{B}$  according to the update rule equation 6. □  
1271

1272 Based on Proposition 7 and following similar steps in the proof of Proposition 3, we have the  
1273 following proposition.  
1274

1275 **Proposition 8.** Suppose that  $\bar{r} + \underline{r}/2 < \sqrt{\tau/L_q}$ . Then for any  $\boldsymbol{\Sigma}_1, \boldsymbol{\Sigma}_2 \in \mathbb{B}$ , we have  
1276

$$\begin{aligned}
1277 \quad \left\| \nabla \mathcal{F} \left( \boldsymbol{\Sigma}_1 \right) - \nabla \mathcal{F} \left( \boldsymbol{\Sigma}_2 \right) \right\|_F &\leq L \left\| \boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2 \right\|_F, \\
1278 \quad \left\| \nabla \mathcal{F} \left( \boldsymbol{\Sigma}_1 \right) - \nabla \mathcal{F} \left( \boldsymbol{\Sigma}_2 \right) \right\|_F &\geq \mu \left\| \boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2 \right\|_F,
\end{aligned}$$

1279 where  $L = 1 + 4\tau\underline{r}^{-2}$  and  $\mu = \tau \left( \bar{r} + \underline{r}/2 \right)^{-2} - L_q$ . Moreover, the local loss function of each agent  
1280  $i$  is also  $L$ -smooth and  $\mu$ -strongly convex.  
1281

1296 Proposition 8 is obtained from Proposition 3 with minor modifications and is therefore omitted. Then  
1297 based on Proposition 8, we have the following upper bound of the optimality gap.

1298 **Proposition 9.** *Based on Propositions 7 and 8, there holds*

$$1300 \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t+1)}) \leq \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t)}) + \frac{\theta}{2} \left( \gamma - \frac{L}{2} \theta \right)^{-1} \left( 4L^2 \|\mathbf{E}_\Sigma^{(t)}\|_F^2 + 2 \|\mathbf{E}_Y^{(t)}\|_F^2 \right) \\ 1301 - \theta \left( \frac{\gamma}{2} - \frac{L}{4} \theta \right) \|\mathbf{D}_\diamond^{(t)}\|_F^2, \quad (23)$$

1302 where  $\gamma \geq L$ .

1303 *Proof.* Define  $\tilde{\Sigma}_i^{(t)} = \Sigma_i^{(t)} + \theta \mathbf{D}_i^{(t)}$ . Consider the Taylor expansion of  $\mathcal{F}$

$$1304 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) = \mathcal{F}(\Sigma_i^{(t)}) + \langle \nabla \mathcal{F}(\Sigma_i^{(t)}), \theta \mathbf{D}_i^{(t)} \rangle + \frac{1}{2} \text{vec}(\theta \mathbf{D}_i^{(t)})^\top \nabla^2 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) \text{vec}(\theta \mathbf{D}_i^{(t)}) \\ 1305 = \mathcal{F}(\Sigma_i^{(t)}) + \langle \nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}, \theta \mathbf{D}_i^{(t)} \rangle + \langle \mathbf{Y}_i^{(t)}, \theta \mathbf{D}_i^{(t)} \rangle \\ 1306 + \frac{1}{2} \text{vec}(\theta \mathbf{D}_i^{(t)})^\top \nabla^2 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) \text{vec}(\theta \mathbf{D}_i^{(t)}). \quad (24)$$

1307 Because  $\mathcal{U}$  is strongly convex with  $\gamma$  and  $\lambda \|\cdot\|_{1,\text{off}}$  is convex, according to the first-order optimality  
1308 condition, we have

$$1309 \lambda \|\Sigma_i^{(t)}\|_{1,\text{off}} - \lambda \|\Sigma_i^{(t+\frac{1}{2})}\|_{1,\text{off}} \geq \langle \mathbf{Y}_i^{(t)}, \mathbf{D}_i^{(t)} \rangle + \gamma \|\mathbf{D}_i^{(t)}\|_F^2. \quad (25)$$

1310 Using the convexity of  $\lambda \|\cdot\|_{1,\text{off}}$ , we have

$$1311 \lambda \|\tilde{\Sigma}_i^{(t)}\|_{1,\text{off}} = \lambda \|\theta \Sigma_i^{(t+\frac{1}{2})} + (1-\theta) \Sigma_i^{(t)}\|_{1,\text{off}} \leq \theta \lambda \|\Sigma_i^{(t+\frac{1}{2})}\|_{1,\text{off}} + (1-\theta) \lambda \|\Sigma_i^{(t)}\|_{1,\text{off}}. \quad (26)$$

1312 Substituting equation 25 and equation 26 into equation 24, we have

$$1313 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) \leq \mathcal{F}(\Sigma_i^{(t)}) + \langle \nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}, \theta \mathbf{D}_i^{(t)} \rangle + \lambda \|\Sigma_i^{(t)}\|_{1,\text{off}} - \lambda \|\tilde{\Sigma}_i^{(t)}\|_{1,\text{off}} \\ 1314 - \theta \gamma \|\mathbf{D}_i^{(t)}\|_F^2 + \frac{1}{2} \text{vec}(\theta \mathbf{D}_i^{(t)})^\top \nabla^2 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) \text{vec}(\theta \mathbf{D}_i^{(t)}). \quad (27)$$

1315 According to Proposition 8, we have

$$1316 \nabla^2 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) \preceq L \mathbf{I}. \quad (28)$$

1317 Substituting equation 28 into equation 27, we have

$$1318 \mathcal{F}(\tilde{\Sigma}_i^{(t)}) \leq \mathcal{F}(\Sigma_i^{(t)}) + \langle \nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}, \theta \mathbf{D}_i^{(t)} \rangle + \lambda \|\Sigma_i^{(t)}\|_{1,\text{off}} - \lambda \|\tilde{\Sigma}_i^{(t)}\|_{1,\text{off}} \\ 1319 - \theta \gamma \|\mathbf{D}_i^{(t)}\|_F^2 + \frac{L}{2} \theta^2 \|\mathbf{D}_i^{(t)}\|_F^2 \\ 1320 \leq \mathcal{F}(\Sigma_i^{(t)}) + \lambda \|\Sigma_i^{(t)}\|_{1,\text{off}} - \lambda \|\tilde{\Sigma}_i^{(t)}\|_{1,\text{off}} - \theta \left( \gamma - \frac{L}{2} \theta \right) \|\mathbf{D}_i^{(t)}\|_F^2 \\ 1321 + \theta \|\mathbf{D}_i^{(t)}\|_F \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F,$$

1322 which equals to

$$1323 \mathcal{L}(\tilde{\Sigma}_i^{(t)}) \leq \mathcal{L}(\Sigma_i^{(t)}) - \theta \left( \gamma - \frac{L}{2} \theta \right) \|\mathbf{D}_i^{(t)}\|_F^2 + \theta \|\mathbf{D}_i^{(t)}\|_F \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F. \quad (29)$$

1324 Invoking the convexity of  $\mathcal{L}$  and the doubly stochasticity of  $\mathbf{W}$ , we can bound  $\sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t)})$  as

$$1325 \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t+1)}) = \sum_{i=1}^m \mathcal{L}\left(\sum_{j=1}^m W_{ij} \tilde{\Sigma}_j^{(t)}\right) \leq \sum_{i=1}^m \sum_{j=1}^m W_{ij} \mathcal{L}(\tilde{\Sigma}_j^{(t)}) = \sum_{i=1}^m \mathcal{L}(\tilde{\Sigma}_i^{(t)}). \quad (30)$$

1350 We can now substitute equation 29 into equation 30 and get  
1351

$$1352 \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t+1)}) \leq \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t)}) \\ 1353 + \sum_{i=1}^m \left( \theta \|\mathbf{D}_i^{(t)}\|_F \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F - \theta \left( \gamma - \frac{L}{2} \theta \right) \|\mathbf{D}_i^{(t)}\|_F^2 \right).$$

1357 Using Young's inequality, we have  
1358

$$1359 \theta \|\mathbf{D}_i^{(t)}\|_F \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F \leq \frac{\theta}{2} \epsilon_p \|\mathbf{D}_i^{(t)}\|_F^2 + \frac{\theta}{2} \epsilon_p^{-1} \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F^2, \quad (31)$$

1361 where  $\epsilon_p > 0$ . Therefore, we have  
1362

$$1363 \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t+1)}) \\ 1364 \leq \sum_{i=1}^m \mathcal{L}(\Sigma_i^{(t)}) + \sum_{i=1}^m \left( \frac{\theta}{2} \epsilon_p^{-1} \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F^2 - \theta \left( \gamma - \frac{L}{2} \theta - \frac{1}{2} \epsilon_p \right) \|\mathbf{D}_i^{(t)}\|_F^2 \right) \quad (32)$$

$$1368 = \sum_{i=1}^m U(\Sigma_i^{(t)}) + \frac{\theta}{2} \epsilon_p^{-1} \sum_{i=1}^m \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F^2 - \theta \left( \gamma - \frac{L}{2} \theta - \frac{1}{2} \epsilon_p \right) \|\mathbf{D}_\diamond^{(t)}\|_F^2, \quad (33)$$

1371 and we choose  $\epsilon_p = (\gamma - \frac{L}{2} \theta)$ . Then, we bound  $\sum_{i=1}^m \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F^2$  in terms of the  
1372 consensus errors  $\|\mathbf{E}_\Sigma^{(t)}\|_F^2$  and  $\|\mathbf{E}_\mathbf{Y}^{(t)}\|_F^2$ . Recall equation 21, we have  
1373

$$1376 \sum_{i=1}^m \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F^2 = \sum_{i=1}^m \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \bar{\mathbf{Y}}^{(t)} + \bar{\mathbf{Y}}^{(t)} - \mathbf{Y}_i^{(t)}\|_F^2 \\ 1377 = \sum_{i=1}^m \left\| \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j(\Sigma_i^{(t)}) - \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j(\Sigma_j^{(t)}) + \bar{\mathbf{Y}}^{(t)} - \mathbf{Y}_i^{(t)} \right\|_F^2 \\ 1381 \leq \frac{2}{m} \sum_{i=1}^m \sum_{j=1}^m \|\nabla \mathcal{F}_j(\Sigma_i^{(t)}) - \nabla \mathcal{F}_j(\Sigma_j^{(t)})\|_F^2 + 2 \|\mathbf{E}_\mathbf{Y}^{(t)}\|_F^2.$$

1384 Recall the Lipschitz smoothness of  $\mathcal{F}_i$ ,  $i = 1, 2, \dots, m$ , we have  
1385

$$1386 \sum_{i=1}^m \|\nabla \mathcal{F}(\Sigma_i^{(t)}) - \mathbf{Y}_i^{(t)}\|_F^2 \leq \frac{2}{m} L^2 \sum_{i=1}^m \sum_{j=1}^m \|\Sigma_i^{(t)} - \Sigma_j^{(t)}\|_F^2 + 2 \|\mathbf{E}_\mathbf{Y}^{(t)}\|_F^2 \\ 1389 = 4L^2 \|\mathbf{E}_\Sigma^{(t)}\|_F^2 + 2 \|\mathbf{E}_\mathbf{Y}^{(t)}\|_F^2. \quad (34)$$

1391 Substituting equation 34 into equation 33, we obtain the desired result equation 23.  $\square$   
1392

1393 Subsequently, we bound the consensus errors with the following lemma from (Sun et al., 2022b).  
1394

1395 **Lemma 2.** (Sun et al., 2022b) The disagreements  $\|\mathbf{E}_\Sigma^{(t)}\|_F$  and  $\|\mathbf{E}_\mathbf{Y}^{(t)}\|_F$  are bounded by  
1396

$$1397 \|\mathbf{E}_\Sigma^{(t+1)}\|_F \leq \rho \|\mathbf{E}_\Sigma^{(t)}\|_F + \theta \rho \|\mathbf{D}_\diamond^{(t)}\|_F, \quad (35)$$

1398 and  
1399

$$1400 \|\mathbf{E}_\mathbf{Y}^{(t+1)}\|_F \leq \rho \|\mathbf{E}_\mathbf{Y}^{(t)}\|_F + 2L\rho \|\mathbf{E}_\Sigma^{(t)}\|_F + \theta L\rho \|\mathbf{D}_\diamond^{(t)}\|_F. \quad (36)$$

1402 Based on Proposition 9 and Lemma 2, we can prove that the potential function  $\mathcal{V}$  equation 18 is  
1403 non-increasing and hence  $\Sigma_\diamond^{(t)} \in \mathbb{A}$  for all  $t$ .

1404 **Theorem 4.** Assume that Assumptions 1 and 3 are satisfied. Based on Proposition 7, when  
 1405

$$1406 \quad 1407 \quad 1408 \quad 1409 \quad \gamma \geq \max \left\{ 2\underline{r}^{-1} \left( \sqrt{m \left( ad + \frac{\sqrt{d}\tau}{\underline{r}} + \lambda d \right)^2 + e + \lambda d} \right), L \right\},$$

1410 and  
 1411

$$1412 \quad 1413 \quad 1414 \quad 1415 \quad \theta \leq \min \left\{ \left( \sqrt{\frac{L^2}{16} + 32L\gamma \left( \frac{\rho^2(1+\rho^2)}{(1-\rho^2)^2} + 4\frac{\rho^4(1+\rho^2)^2}{(1-\rho^2)^4} \right)} + \frac{L}{4} \right)^{-1} \gamma, 1 \right\}, \quad (37)$$

1416 for  $\left\{ \Sigma_{\diamond}^{(t)}, \mathbf{Y}_{\diamond}^{(t)} \right\}_k$  obtained by Algorithm 2, we have  
 1417

$$1418 \quad 1419 \quad 1420 \quad 1421 \quad \mathcal{V} \left( \Sigma_{\diamond}^{(t+1)}, \mathbf{Y}_{\diamond}^{(t+1)} \right) \leq \mathcal{V} \left( \Sigma_{\diamond}^{(t)}, \mathbf{Y}_{\diamond}^{(t)} \right) - c_3 \sum_{i=1}^m \left\| \mathbf{D}_i^{(t)} \right\|_F^2, \quad (38)$$

1422 where  
 1423

$$1424 \quad 1425 \quad 1426 \quad 1427 \quad \mathcal{V} \left( \Theta^{(t)}, \mathbf{E}_{\mathbf{Y}}^{(t)} \right) = \sum_{i=1}^m \mathcal{L} \left( \Sigma_i^{(t)} \right) + \frac{2\theta}{(\gamma - \frac{L}{2}\theta)(1-\rho^2)} \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2 \\ 1428 \quad 1429 \quad 1430 \quad + \frac{4\theta L^2(1+3\rho^2)^2}{(\gamma - \frac{L}{2}\theta)(1-\rho^2)^3} \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F^2,$$

1431 and  
 1432

$$1433 \quad 1434 \quad 1435 \quad c_3 = \theta \left( \frac{\gamma}{2} - \frac{L}{4}\theta - \frac{8\theta^2 L^2 \rho^2 (1+\rho^2)}{(\gamma - \frac{L}{2}\theta)(1-\rho^2)^2} - \frac{16\theta^2 L^2 \rho^4 (1+\rho^2)^2}{(\gamma - \frac{L}{2}\theta)(1-\rho^2)^4} \right) \geq 0.$$

1438 *Proof.* Squaring both sides of inequality equation 35 and utilizing Young's inequality provides  
 1439

$$1440 \quad 1441 \quad 1442 \quad 1443 \quad \left\| \mathbf{E}_{\Sigma}^{(t+1)} \right\|_F^2 \leq \rho^2 \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F^2 + \theta^2 \rho^2 \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F^2 + 2\theta \rho^2 \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F \\ 1444 \quad \leq \rho^2 (1 + \epsilon_d) \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F^2 + \theta^2 \rho^2 (1 + \epsilon_d^{-1}) \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F^2. \quad (39)$$

1445 Similarly, we have  
 1446

$$1447 \quad 1448 \quad 1449 \quad 1450 \quad \left\| \mathbf{E}_{\mathbf{Y}}^{(t+1)} \right\|_F^2 \leq \rho^2 \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2 + \left( 2L\rho \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F + \theta L\rho \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F \right)^2 \\ 1451 \quad 1452 \quad 1453 \quad 1454 \quad + 2\rho \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F \left( 2L\rho \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F + \theta L\rho \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F \right) \\ 1455 \quad 1456 \quad 1457 \quad \leq \rho^2 (1 + \epsilon_d) \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2 + L^2 \rho^2 (1 + \epsilon_d^{-1}) \left( 2 \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F + \theta \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F \right)^2 \\ 1458 \quad 1459 \quad 1460 \quad \leq \rho^2 (1 + \epsilon_d) \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2 + 2L^2 \rho^2 (1 + \epsilon_d^{-1}) \left( 4 \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F^2 + \theta^2 \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F^2 \right) \\ 1461 \quad 1462 \quad 1463 \quad = \rho^2 (1 + \epsilon_d) \left\| \mathbf{E}_{\mathbf{Y}}^{(t)} \right\|_F^2 + 8L^2 \rho^2 (1 + \epsilon_d^{-1}) \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F^2 + 2L^2 \rho^2 (1 + \epsilon_d^{-1}) \theta^2 \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F^2. \quad (40)$$

1458 Multiplying  $\frac{2\theta L^2(4\rho^2(1+\epsilon_d^{-1})+1-\rho^2(1+\epsilon_d))}{(\gamma-\frac{L}{2}\theta)(1-\rho^2(1+\epsilon_d))^2}$  and add  $\frac{2\theta L^2(4\rho^2(1+\epsilon_d^{-1})+1-\rho^2(1+\epsilon_d))}{(\gamma-\frac{L}{2}\theta)(1-\rho^2(1+\epsilon_d))} \|\mathbf{E}_{\Sigma}^{(t)}\|_F^2$  on both  
 1459 sides of equation 39 leads to  
 1460

$$\begin{aligned} & \frac{2\theta L^2(4\rho^2(1+\epsilon_d^{-1})+1-\rho^2(1+\epsilon_d))}{(\gamma-\frac{L}{2}\theta)(1-\rho^2(1+\epsilon_d))^2} \|\mathbf{E}_{\Sigma}^{(t+1)}\|_F^2 \\ & + \frac{2\theta L^2(4\rho^2(1+\epsilon_d^{-1})+1-\rho^2(1+\epsilon_d))}{(\gamma-\frac{L}{2}\theta)(1-\rho^2(1+\epsilon_d))} \|\mathbf{E}_{\Sigma}^{(t)}\|_F^2 \\ & \leq \frac{2\theta L^2(4\rho^2(1+\epsilon_d^{-1})+1-\rho^2(1+\epsilon_d))}{(\gamma-\frac{L}{2}\theta)(1-\rho^2(1+\epsilon_d))^2} \|\mathbf{E}_{\Sigma}^{(t)}\|_F^2 \\ & + \frac{2\theta^3 L^2(4\rho^2(1+\epsilon_d^{-1})+1-\rho^2(1+\epsilon_d))\rho^2(1+\epsilon_d^{-1})}{(\gamma-\frac{L}{2}\theta)(1-\rho^2(1+\epsilon_d))^2} \|\mathbf{D}_{\diamond}^{(t)}\|_F^2, \end{aligned} \quad (41)$$

1472 while multiplying  $\frac{\theta(\gamma-\frac{L}{2}\theta)^{-1}}{1-\rho^2(1+\epsilon_d)}$  and add  $\theta(\gamma-\frac{L}{2}\theta)^{-1} \|\mathbf{E}_{\mathbf{Y}}^{(t)}\|_F^2$  on both sides of equation 40 leads to  
 1473

$$\begin{aligned} & \frac{\theta(\gamma-\frac{L}{2}\theta)^{-1}}{1-\rho^2(1+\epsilon_d)} \|\mathbf{E}_{\mathbf{Y}}^{(t+1)}\|_F^2 + \theta\left(\gamma-\frac{L}{2}\theta\right)^{-1} \|\mathbf{E}_{\mathbf{Y}}^{(t)}\|_F^2 \\ & \leq \frac{\theta(\gamma-\frac{L}{2}\theta)^{-1}}{1-\rho^2(1+\epsilon_d)} \|\mathbf{E}_{\mathbf{Y}}^{(t)}\|_F^2 + \frac{8\theta(\gamma-\frac{L}{2}\theta)^{-1}L^2\rho^2(1+\epsilon_d^{-1})}{1-\rho^2(1+\epsilon_d)} \|\mathbf{E}_{\Sigma}^{(t)}\|_F^2 \\ & + \frac{2\theta(\gamma-\frac{L}{2}\theta)^{-1}L^2\rho^2(1+\epsilon_d^{-1})\theta^2}{1-\rho^2(1+\epsilon_d)} \|\mathbf{D}_{\diamond}^{(t)}\|_F^2. \end{aligned} \quad (42)$$

1482 By summing equation 23, equation 41, and equation 42, using equation 37, and choosing  $\epsilon_d = \frac{1-\rho^2}{2\rho^2}$ ,  
 1483 we obtain the desired result equation 38.  $\square$   
 1484

1485 Theorem 4 shows that, inducting from  $\Sigma_{\diamond}^{(0)}, \Sigma_{\diamond}^{(t)} \in \mathbb{A}$  for all  $t$ , and hence the local variable of each  
 1486 agent is positive definite.  
 1487

### C.2.2 LINEAR CONVERGENCE

1490 Based on the local properties, we can prove the linear convergence of Algorithm 2. According to  
 1491 Proposition 8 and Theorem 4, we have  
 1492

$$\mathcal{F}(\widehat{\Sigma}) - \mathcal{F}(\Sigma_i^{(t)}) - \langle \nabla \mathcal{F}(\Sigma_i^{(t)}), \widehat{\Sigma} - \Sigma_i^{(t)} \rangle \geq \frac{\mu}{2} \|\widehat{\Sigma} - \Sigma_i^{(t)}\|_F^2,$$

1493 and

$$\mathcal{F}(\Sigma_i^{(t+\frac{1}{2})}) - \mathcal{F}(\Sigma_i^{(t)}) - \langle \nabla \mathcal{F}(\Sigma_i^{(t)}), \mathbf{D}_i^{(t)} \rangle \leq \frac{L}{2} \|\mathbf{D}_i^{(t)}\|_F^2.$$

1494 Adding the two inequalities above leads to

$$\begin{aligned} 0 & \leq \mathcal{F}(\widehat{\Sigma}) - \mathcal{F}(\Sigma_i^{(t+\frac{1}{2})}) + \frac{L}{2} \|\mathbf{D}_i^{(t)}\|_F^2 - \frac{\mu}{2} \|\widehat{\Sigma} - \Sigma_i^{(t)}\|_F^2 \\ & - \langle \nabla \mathcal{F}(\Sigma_i^{(t)}), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \rangle. \end{aligned} \quad (43)$$

1504 Due to the first-order optimality condition of equation 5,  $\exists \Phi \in \partial \lambda \|\Sigma_i^{(t+\frac{1}{2})}\|_{1,\text{off}}$  such that  
 1505

$$\langle \mathbf{Y}_i^{(t)} + \gamma(\mathbf{D}_i^{(t)}) + \Phi, \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \rangle \geq 0.$$

1506 Since  $\lambda \|\cdot\|_{1,\text{off}}$  is convex, we have  
 1507

$$\lambda \|\widehat{\Sigma}\|_{1,\text{off}} - \lambda \|\Sigma_i^{(t+\frac{1}{2})}\|_{1,\text{off}} - \langle \Phi, \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \rangle \geq 0.$$

1512 Adding the above two inequalities leads to  
 1513  
 1514  
 1515

$$\lambda \left\| \widehat{\Sigma} \right\|_{1,\text{off}} - \lambda \left\| \Sigma_i^{(t+\frac{1}{2})} \right\|_{1,\text{off}} + \left\langle \mathbf{Y}_i^{(t)} + \gamma \left( \mathbf{D}_i^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \geq 0. \quad (44)$$

1516 Combining equation 43 and equation 44 gives  
 1517  
 1518

$$\begin{aligned} 0 &\leq \mathcal{L} \left( \widehat{\Sigma} \right) - \mathcal{L} \left( \Sigma_i^{(t+\frac{1}{2})} \right) + \frac{L}{2} \left\| \mathbf{D}_i^{(t)} \right\|_F^2 - \frac{\mu}{2} \left\| \widehat{\Sigma} - \Sigma_i^{(t)} \right\|_F^2 \\ &\quad + \gamma \left\langle \mathbf{D}_i^{(t)}, \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle + \left\langle \mathbf{Y}_i^{(t)} - \nabla \mathcal{F} \left( \Sigma_i^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle. \end{aligned}$$

1522 Since  $\widehat{\Sigma}$  is the minimum of  $\mathcal{L}$ , we have  $\mathcal{L} \left( \widehat{\Sigma} \right) - \mathcal{L} \left( \Sigma_i^{(t+\frac{1}{2})} \right) \leq 0$ , and hence  
 1523  
 1524

$$\begin{aligned} 2 \left\langle \mathbf{D}_i^{(t)}, \Sigma_i^{(t)} - \widehat{\Sigma} \right\rangle &\leq \frac{L - 2\gamma}{\gamma} \left\| \mathbf{D}_i^{(t)} \right\|_F^2 - \frac{\mu}{\gamma} \left\| \widehat{\Sigma} - \Sigma_i^{(t)} \right\|_F^2 \\ &\quad + \frac{2}{\gamma} \left\langle \mathbf{Y}_i^{(t)} - \nabla \mathcal{F} \left( \Sigma_i^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle, \end{aligned}$$

1528 and hence  
 1529

$$\begin{aligned} \left\| \Sigma_i^{(t+\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2 &\leq \left\| \mathbf{D}_i^{(t)} \right\|_F^2 + \left\| \Sigma_i^{(t)} - \widehat{\Sigma} \right\|_F^2 + 2 \left\langle \mathbf{D}_i^{(t)}, \Sigma_i^{(t)} - \widehat{\Sigma} \right\rangle \\ &\leq - \left( 1 - \frac{L}{\gamma} \right) \left\| \mathbf{D}_i^{(t)} \right\|_F^2 + \left( 1 - \frac{\mu}{\gamma} \right) \left\| \Sigma_i^{(t)} - \widehat{\Sigma} \right\|_F^2 \\ &\quad + \frac{2}{\gamma} \left\langle \mathbf{Y}_i^{(t)} - \nabla \mathcal{F} \left( \Sigma_i^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle. \end{aligned} \quad (45)$$

1537 Then we bound  $\left\langle \mathbf{Y}_i^{(t)} - \nabla \mathcal{F} \left( \Sigma_i^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle$  by  
 1538

$$\begin{aligned} &\left\langle \mathbf{Y}_i^{(t)} - \nabla \mathcal{F} \left( \Sigma_i^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\ &\leq \left\langle \mathbf{Y}_i^{(t)} - \bar{\mathbf{Y}}^{(t)}, \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\ &\quad + \left\langle \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \Sigma_j^{(t)} \right) - \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \bar{\Sigma}^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\ &\quad + \left\langle \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \bar{\Sigma}^{(t)} \right) - \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \Sigma_j^{(t)} \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle. \end{aligned} \quad (46)$$

1549 According to the update rule equation 7, we have  
 1550

$$\mathbf{Y}_i^{(t)} - \bar{\mathbf{Y}}^{(t)} = \sum_{j=1}^m \ell_{ij}^{(t)} \mathbf{E}_{\mathbf{Y}_j}^{(0)} + \sum_{s=0}^{t-1} \sum_{j=1}^m \ell_{ij}^{(t-s)} \left( \nabla \mathcal{F}_j \left( \Sigma_j^{(s+1)} \right) - \nabla \mathcal{F}_j \left( \Sigma_j^{(s)} \right) \right),$$

1554 where  $\ell_{ij}^{(t)}$  denotes the  $(i, j)$ -th element of matrix  $(\mathbf{W} - \mathbf{J})^t$ . Therefore, we have  
 1555

$$\begin{aligned} &\sum_{i=1}^m \left\langle \mathbf{Y}_i^{(t)} - \bar{\mathbf{Y}}^{(t)}, \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\ &= \sum_{i=1}^m \left\langle \sum_{j=1}^m \ell_{ij}^{(t)} \mathbf{E}_{\mathbf{Y}_j}^{(0)} + \sum_{s=0}^{t-1} \sum_{j=1}^m \ell_{ij}^{(t-s)} \left( \nabla \mathcal{F}_j \left( \Sigma_j^{(s+1)} \right) - \nabla \mathcal{F}_j \left( \Sigma_j^{(s)} \right) \right), \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\ &\leq \sum_{i=1}^m \sum_{j=1}^m \ell_{ij}^{(t)} \left\| \mathbf{E}_{\mathbf{Y}_j}^{(0)} \right\|_F \left\| \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\ &\quad + \sum_{i=1}^m \sum_{s=0}^{t-1} \sum_{j=1}^m \ell_{ij}^{(t-s)} \left\| \nabla \mathcal{F}_j \left( \Sigma_j^{(s+1)} \right) - \nabla \mathcal{F}_j \left( \Sigma_j^{(s)} \right) \right\|_F \left\| \widehat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F. \end{aligned}$$

Moreover, under Assumption 1, we have  $\|(\mathbf{W} - \mathbf{J})^t\|_2 = \rho^t$ , and hence  $\|(\mathbf{W} - \mathbf{J})^t\|_\infty \leq \sqrt{m} \|(\mathbf{W} - \mathbf{J})^t\|_2 = \sqrt{m} \rho^t$ . Then based on Young's inequality, Proposition 8, and Theorem 4, we have

$$\begin{aligned}
& \sum_{i=1}^m \left\langle \mathbf{Y}_i^{(t)} - \bar{\mathbf{Y}}^{(t)}, \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\
& \leq \frac{\sqrt{m} \rho^t}{2\epsilon} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2 + \frac{\epsilon \sqrt{m} \rho^t}{2} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \Sigma_{\diamond}^{(s+1)} - \Sigma_{\diamond}^{(s)} \right\|_F^2 \\
& \quad + \frac{L\epsilon \sqrt{m}}{2} \sum_{s=0}^{t-1} \rho^{t-s} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 \\
& \leq \frac{\sqrt{m} \rho^t}{2\epsilon} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2 + \frac{L\epsilon \sqrt{m} \rho}{1-\rho} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \Sigma_{\diamond}^{(s+1)} - \Sigma_{\diamond}^{(s)} \right\|_F^2,
\end{aligned}$$

where  $\epsilon > 0$ . Since

$$\left\| \Sigma_{\diamond}^{(s+1)} - \Sigma_{\diamond}^{(s)} \right\|_F^2 = \left\| (\mathbf{W} \otimes \mathbf{I}) \left( \Sigma_{\diamond}^{(s)} + \theta \mathbf{D}_{\diamond}^{(s)} \right) - \Sigma_{\diamond}^{(s)} \right\|_F^2 \leq 8 \left\| \mathbf{E}_{\Sigma}^{(s)} \right\|_F^2 + 2 \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2,$$

we have

$$\begin{aligned}
& \sum_{i=1}^m \left\langle \mathbf{Y}_i^{(t)} - \bar{\mathbf{Y}}^{(t)}, \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\
& \leq \frac{\sqrt{m} \rho^t}{2\epsilon} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2 + \frac{L\epsilon \sqrt{m} \rho}{1-\rho} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left( 8 \left\| \mathbf{E}_{\Sigma}^{(s)} \right\|_F^2 + 2 \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2 \right).
\end{aligned} \tag{47}$$

Similarly, according to the update rule equation 6, we have

$$\Sigma_i^{(t)} - \bar{\Sigma}^{(t)} = \sum_{j=1}^m \ell_{ij}^{(t)} \mathbf{E}_{\Sigma_j}^{(0)} + \theta \sum_{j=1}^m \sum_{s=0}^{t-1} \ell_{ij}^{(t-s)} \left( \Sigma_j^{(s+\frac{1}{2})} - \Sigma_j^{(s)} \right), \tag{48}$$

and thus

$$\begin{aligned}
& \sum_{i=1}^m \left\langle \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \Sigma_j^{(t)} \right) - \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \bar{\Sigma}^{(t)} \right), \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\
& \leq \sum_{i=1}^m \frac{L}{m} \sum_{j=1}^m \left\| \bar{\Sigma}^{(t)} - \Sigma_j^{(t)} \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
& \leq \sum_{i=1}^m \frac{L}{m} \sum_{j=1}^m \left\| \sum_{l=1}^m \ell_{jl}^{(t)} \mathbf{E}_{\Sigma_l}^{(0)} + \theta \sum_{l=1}^m \sum_{s=0}^{t-1} \ell_{jl}^{(t-s)} \left( \Sigma_l^{(s+\frac{1}{2})} - \Sigma_l^{(s)} \right) \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
& \leq \frac{L}{m} \sum_{i=1}^m \sum_{j=1}^m \sum_{l=1}^m \ell_{jl}^{(t)} \left\| \mathbf{E}_{\Sigma_l}^{(0)} \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
& \quad + \frac{L\theta}{m} \sum_{i=1}^m \sum_{j=1}^m \sum_{l=1}^m \sum_{s=0}^{t-1} \ell_{jl}^{(t-s)} \left\| \Sigma_l^{(s+\frac{1}{2})} - \Sigma_l^{(s)} \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
& \leq \frac{L\sqrt{m} \rho^t}{2\epsilon} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{L\epsilon \sqrt{m} \rho^t}{2} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\theta \sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2 \\
& \quad + \frac{L\theta \epsilon \sqrt{m}}{2} \sum_{s=0}^{t-1} \rho^{t-s} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 \\
& \leq \frac{L\sqrt{m} \rho^t}{2\epsilon} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{L\theta \epsilon \sqrt{m} \rho}{1-\rho} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\theta \sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2,
\end{aligned} \tag{49}$$

1620

and

$$\begin{aligned}
 & \sum_{i=1}^m \left\langle \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \bar{\Sigma}^{(t)} \right) - \frac{1}{m} \sum_{j=1}^m \nabla \mathcal{F}_j \left( \Sigma_i^{(t)} \right), \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\
 & \leq \sum_{i=1}^m L \left\| \bar{\Sigma}^{(t)} - \Sigma_i^{(t)} \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
 & \leq \sum_{i=1}^m L \left\| \sum_{j=1}^m \ell_{ij}^{(t)} \mathbf{E}_{\Sigma_j}^{(0)} + \theta \sum_{j=1}^m \sum_{s=0}^{t-1} \ell_{ij}^{(t-s)} \left( \Sigma_j^{(s+\frac{1}{2})} - \Sigma_j^{(s)} \right) \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
 & \leq L \sum_{i=1}^m \sum_{j=1}^m \ell_{ij}^{(t)} \left\| \mathbf{E}_{\Sigma_j}^{(0)} \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
 & \quad + L\theta \sum_{i=1}^m \sum_{j=1}^m \sum_{s=0}^{t-1} \ell_{ij}^{(t-s)} \left\| \Sigma_j^{(s+\frac{1}{2})} - \Sigma_j^{(s)} \right\|_F \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F \\
 & \leq \frac{L\sqrt{m}\rho^t}{2\epsilon} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{L\epsilon\sqrt{m}\rho^t}{2} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\theta\sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2 \\
 & \quad + \frac{L\theta\epsilon\sqrt{m}}{2} \sum_{s=0}^{t-1} \rho^{t-s} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 \\
 & \leq \frac{L\sqrt{m}\rho^t}{2\epsilon} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{L\theta\epsilon\sqrt{m}\rho}{1-\rho} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{L\theta\sqrt{m}}{2\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2. \tag{50}
 \end{aligned}$$

Plugging equation 47, equation 49, and equation 51 into equation 46 leads to

$$\begin{aligned}
 & \sum_{i=1}^m \left\langle \mathbf{Y}_i^{(t)} - \nabla \mathcal{F} \left( \Sigma_i^{(t)} \right), \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\rangle \\
 & \leq \frac{\sqrt{m}\rho^t}{2\epsilon} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2 + \frac{4L\sqrt{m}}{\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{E}_{\Sigma}^{(s)} \right\|_F^2 \\
 & \quad + \frac{L\sqrt{m}\rho^t}{\epsilon} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{3L\epsilon\sqrt{m}\rho}{1-\rho} \sum_{i=1}^m \left\| \hat{\Sigma} - \Sigma_i^{(t+\frac{1}{2})} \right\|_F^2 + \frac{2L\sqrt{m}}{\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2. \tag{52}
 \end{aligned}$$

Plugging equation 52 into equation 45, we have

$$\begin{aligned}
 & \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \hat{\Sigma} \right\|_F^2 \\
 & \leq \left( 1 - \frac{\mu}{\gamma} \right) \sum_{i=1}^m \left\| \Sigma_i^{(t)} - \hat{\Sigma} \right\|_F^2 - \left( 1 - \frac{L}{\gamma} \right) \left\| \mathbf{D}_{\diamond}^{(t)} \right\|_F^2 \\
 & \quad + \frac{4L\sqrt{m}}{\gamma\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2 + \frac{8L\sqrt{m}}{\gamma\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{E}_{\Sigma}^{(s)} \right\|_F^2 \\
 & \quad + \frac{\sqrt{m}\rho^t}{\gamma\epsilon} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2 + \frac{2L\sqrt{m}\rho^t}{\gamma\epsilon} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2. \tag{53}
 \end{aligned}$$

Due to the update rule equation 6, we have

$$\begin{aligned}
 & \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(t)} - \hat{\Sigma} \right\|_F^2 = \sum_{i=1}^m \left\| \Sigma_i^{(t)} + \theta \left( \mathbf{D}_i^{(t)} \right) - \hat{\Sigma} \right\|_F^2 \\
 & \leq \theta \sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \hat{\Sigma} \right\|_F^2 + (1-\theta) \sum_{i=1}^m \left\| \Sigma_i^{(t)} - \hat{\Sigma} \right\|_F^2. \tag{54}
 \end{aligned}$$

1674 Plugging equation 54 into equation 53 and the fact that  $\|\Sigma_i^{(t)} - \widehat{\Sigma}\|_F^2 \leq \|\tilde{\Sigma}_i^{(t-1)} - \widehat{\Sigma}\|_F^2$ , we have  
 1675

$$\begin{aligned}
 & \frac{1}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \sum_{i=1}^m \|\tilde{\Sigma}_i^{(t)} - \widehat{\Sigma}\|_F^2 \\
 & \leq \left( 1 - \frac{\mu}{\gamma} + \frac{1-\theta}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \right) \sum_{i=1}^m \|\Sigma_i^{(t-1)} - \widehat{\Sigma}\|_F^2 - \left( 1 - \frac{L}{\gamma} \right) \|\mathbf{D}_\diamond^{(t)}\|_F^2 \\
 & \quad + \frac{4L\sqrt{m}}{\gamma\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \|\mathbf{D}_\diamond^{(s)}\|_F^2 + \frac{8L\sqrt{m}}{\gamma\epsilon} \sum_{s=0}^{t-1} \rho^{t-s} \|\mathbf{E}_\Sigma^{(s)}\|_F^2 \\
 & \quad + \frac{\sqrt{m}\rho^t}{\gamma\epsilon} \|\mathbf{E}_\mathbf{Y}^{(0)}\|_F^2 + \frac{2L\sqrt{m}\rho^t}{\gamma\epsilon} \|\mathbf{E}_\Sigma^{(0)}\|_F^2. \tag{55}
 \end{aligned}$$

1687 We then prove the linear convergence based on the following lemmas.

1688 **Lemma 3** (Sun et al. (2022a)). *For  $T \geq 1$ ,  $\rho \in (0, 1)$ ,  $z \in (\rho, 1)$ , and a nonnegative sequence  
 1689  $\{a(t)\}$ , define*

$$A^{(T)}(z) = \sum_{t=1}^T a(t)z^{-t}.$$

1693 Then we have:

- 1694 •  $\sum_{t=1}^T a(t+1)z^{-t} \geq zA^{(T)}(z) - a(1)$ ;
- 1695 •  $\sum_{t=1}^T \left( \sum_{\eta=0}^{t-1} \rho^{t-\eta} a(\eta) \right) z^{-t} \leq \frac{\rho}{z-\rho} (A^{(T)}(z) + a(0))$ ;
- 1696 •  $\sum_{t=1}^T \left( \sum_{\eta=0}^{t-1} \rho^{t-\eta} a(\eta+1) \right) z^{-t} \leq \frac{z\rho}{z-\rho} A^{(T)}(z)$ .

1699 **Lemma 4** (Sun et al. (2022a)). *If for all  $T \geq 1$  and  $z \in (0, 1)$ , a nonnegative sequence  $\{a(t)\}$   
 1700 satisfies*

$$\sum_{t=1}^T a(t)z^{-t} \leq B + c \sum_{t=1}^T z^{-t},$$

1704 where  $B, c > 0$ , then we have

$$a(t) \leq Bz^t + \frac{c}{1-z}.$$

1707 Following Lemma 3, for  $z \in (\rho, 1)$ , we define

$$\begin{aligned}
 V^{(T)}(z) &= \sum_{t=1}^T \sum_{i=1}^m \|\tilde{\Sigma}_i^{(t-1)} - \widehat{\Sigma}\|_F^2 z^{-t}, \\
 D^{(T)}(z) &= \sum_{t=1}^T \|\mathbf{D}_\diamond^{(t)}\|_F^2 z^{-t}, \\
 E^{(T)}(z) &= \sum_{t=1}^T \|\mathbf{E}_\Sigma^{(t)}\|_F^2 z^{-t}.
 \end{aligned}$$

1718 Then multiplying  $z^{-t}$  on both sides and summing from 0 to  $T$ , equation 55 becomes

$$\begin{aligned}
 & \frac{1}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \left( zV^{(T)}(z) - \sum_{i=1}^m \|\tilde{\Sigma}_i^{(0)} - \widehat{\Sigma}\|_F^2 \right) \\
 & \leq \left( 1 - \frac{\mu}{\gamma} + \frac{1-\theta}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \right) V^{(T)}(z) - \left( 1 - \frac{L}{\gamma} \right) D^{(T)}(z) \\
 & \quad + \frac{4L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} D^{(T)}(z) + \frac{8L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} E^{(T)}(z) \\
 & \quad + \frac{\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} \|\mathbf{E}_\mathbf{Y}^{(0)}\|_F^2 + \frac{2L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} \|\mathbf{E}_\Sigma^{(0)}\|_F^2. \tag{56}
 \end{aligned}$$

1728 Meanwhile, recall that equation 48, we have  
 1729

$$1730 \quad \left\| \mathbf{E}_{\Sigma}^{(t)} \right\|_F^2 \leq 2\rho^{2t} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{2\rho}{1-\rho} \sum_{s=0}^{t-1} \rho^{t-s} \left\| \mathbf{D}_{\diamond}^{(s)} \right\|_F^2. \quad (57)$$

1733 Multiplying  $z^{-t}$  on both sides and summing from 0 to  $T$ , equation 57 becomes  
 1734

$$1735 \quad E^{(T)}(z) \leq 2 \frac{\rho^2}{z-\rho^2} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{2\rho}{1-\rho} \frac{\rho}{z-\rho} D^{(T)}(z).$$

1737 Therefore, we have

$$1738 \quad \left( \frac{z}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) - \left( 1 - \frac{\mu}{\gamma} + \frac{1-\theta}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \right) \right) \left( zV^{(T)}(z) - \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(0)} - \hat{\Sigma} \right\|_F^2 \right) \\ 1739 \\ 1740 \\ 1741 \\ 1742 \\ 1743 \\ 1744 \\ 1745 \\ 1746$$

$$\leq - \left( 1 - \frac{L}{\gamma} - \frac{4L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} - \frac{16L\sqrt{m}}{\gamma\epsilon} \frac{2\rho}{1-\rho} \left( \frac{\rho}{z-\rho} \right)^2 \right) D^{(T)}(z) \\ + \left( \frac{16L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} \frac{\rho^2}{z-\rho^2} + \frac{2L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} \right) \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2 + \frac{\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2.$$

1747 Then we prove that there exists some  $z \in (\rho, 1)$  such that

$$1748 \quad \frac{z}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) - \left( 1 - \frac{\mu}{\gamma} + \frac{1-\theta}{\theta} \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} \right) \right) > 0, \quad (58)$$

1750 and

$$1751 \quad 1 - \frac{L}{\gamma} - \frac{4L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z-\rho} - \frac{16L\sqrt{m}}{\gamma\epsilon} \frac{2\rho}{1-\rho} \left( \frac{\rho}{z-\rho} \right)^2 > 0, \quad (59)$$

1754 so that the linear convergence can be obtained using Lemma 4. Here we choose  $\epsilon = \frac{\mu}{L} \frac{1-\rho}{12\sqrt{m}}$ . Then  
 1755 equation 58 holds when

$$1756 \quad z > 1 - \theta \frac{2-\rho}{2\frac{\gamma}{\mu}-\rho}, \quad (60)$$

1758 and equation 59 holds when

$$1759 \quad z > \frac{8\rho^2}{1-\rho} \left( \sqrt{1 + \frac{\mu\rho(\gamma-L)}{3L^2m}} - 1 \right)^{-1} + \rho.$$

1763 Note that equation 60 is satisfied when

$$1764 \quad z > 1 - \frac{(2-\rho)\theta L}{2\gamma\kappa}.$$

1767 Since  $\gamma \geq L + \frac{48L^2m\sqrt{\rho}}{\mu(1-\rho)^2}$ , we have  
 1768

$$1769 \quad \frac{8\rho^2}{1-\rho} \left( \sqrt{1 + \frac{\mu\rho(\gamma-L)}{3L^2m}} - 1 \right)^{-1} + \rho \\ 1770 \\ 1771 \\ 1772 \\ 1773 \\ 1774 \\ 1775 \\ 1776 \\ 1777 \\ 1778 \\ 1779$$

$$\leq \frac{8\rho^2}{1-\rho} \left( \sqrt{1 + \frac{16\rho\sqrt{\rho}}{(1-\rho)^2}} - 1 \right)^{-1} + \rho \\ = \frac{\sqrt{\rho}(1-\rho)}{2\sqrt{\rho}} \left( \frac{4\sqrt{\rho\sqrt{\rho}}}{1-\rho} + 2 \right) + \rho \\ \leq 3\rho + \sqrt{\rho}.$$

Since

$$1780 \quad \rho \leq \left( \frac{\sqrt{\kappa^2 + (12\kappa-2)(\kappa-1)} - \kappa}{6\kappa-1} \right)^2,$$

1782 we have

$$1783 \quad 3\rho + \sqrt{\rho} \leq 1 - \frac{2 - \rho}{2\kappa} \leq 1 - \frac{(2 - \rho)\theta L}{2\gamma\kappa}.$$

1785 Finally, we have

$$1786 \quad 1787 \quad \sum_{i=1}^m \left\| \Sigma_i^{(t)} - \hat{\Sigma} \right\|_F^2 \leq C'_1 \left( 1 - \frac{1}{C'_2 \kappa} \right)^t, \quad (61)$$

1789 where

$$1790 \quad C'_1 = \frac{\left( \frac{192mL^2}{\gamma\mu(1-\rho)} \frac{\rho}{z-\rho} \frac{\rho^2}{z-\rho^2} + \frac{24mL^2}{\gamma\mu(1-\rho)} \frac{\rho}{z-\rho} \right) \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|^2 + \frac{12mL}{\gamma\mu(1-\rho)} \frac{\rho}{z-\rho} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2}{\frac{z}{\theta} \left( 1 - \frac{\rho\mu}{2\gamma} \right) - \left( 1 - \frac{\mu}{\gamma} + \frac{1-\theta}{\theta} \left( 1 - \frac{\rho\mu}{2\gamma} \right) \right)} + \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(0)} - \hat{\Sigma} \right\|_F^2,$$

1794 and

$$1795 \quad C'_2 = \frac{2\gamma}{(2 - \rho)\theta L},$$

1797 which complete the proof.

### 1799 C.2.3 ON THE COMPUTATION OF $\bar{r}$ , $\underline{r}$ , AND $e$

1800 In the previous proof, we only established the existence of  $\bar{r}$ ,  $\underline{r}$ , and  $e$ . Similar to the proof of  
1801 Theorem 1, one way to compute them is to use the inequalities equation 19 and equation 20 obtained  
1802 in Proposition 5 to derive a bound. Specifically, we can choose  $\bar{r}$  and  $\underline{r}$  as the solutions of  
1803

$$1804 \quad \frac{1}{m} (ay - \tau \log y) = \left( d - \frac{1}{m} \right) \left( \tau - \tau \log \frac{\tau}{a} \right) - \frac{a}{N} \sum_{j=1}^N \left\| \mathbf{x}_j \mathbf{x}_j^\top \right\|_1 - \frac{1}{2} d^2 a^2 - \mathcal{V} \left( \Sigma_{\diamond}^{(0)}, \mathbf{Y}_{\diamond}^{(0)} \right),$$

1807 and  $e$  as the solution of

$$1808 \quad c_2 y = d \left( \tau - \tau \log \frac{\tau}{a} \right) - \frac{a}{N} \sum_{j=1}^N \left\| \mathbf{x}_j \mathbf{x}_j^\top \right\|_1 - \frac{1}{2} d^2 a^2 - \mathcal{V} \left( \Sigma_{\diamond}^{(0)}, \mathbf{Y}_{\diamond}^{(0)} \right),$$

1812 with respect to the variables  $y$ .

### 1813 C.3 PROOF OF THEOREM 3

1815 We first characterize the local strong convexity within a neighborhood of  $\Sigma^*$  with the following  
1816 proposition.

1818 **Proposition 10.** (Local strong convexity) Suppose Assumption 2 holds. Assume  $a = c_a \sqrt{\frac{KN}{\log d}}$  where  
1819  $c_a \geq \frac{4}{\sqrt{2-\mu}} \sqrt{\frac{\log d}{N}}$  and  $K = \max\{\sigma^2, (2\sigma)^{2(1+\nu)}\}$ , and  $N \geq \frac{16c_N \log d}{(2-\mu)^2}$ . Let  $\mathcal{H} = \frac{1}{m} \sum_{i=1}^m \mathcal{H}_i$ .  
1821 Then for any  $\Sigma_1, \Sigma_2 \in \{\Sigma \mid \|\Sigma - \Sigma^*\|_{\max} \leq \frac{a}{2}\}$ , we have

$$1822 \quad \langle \nabla \mathcal{H}(\Sigma_1) - \nabla \mathcal{H}(\Sigma_2), \Sigma_1 - \Sigma_2 \rangle \geq \frac{\mu_0}{2} \|\Sigma_1 - \Sigma_2\|_F^2$$

1824 with probability at least  $1 - 2/d^{2(c_N-1)}$ , where  $\mu_0 \in (0, 2)$ .

1826 *Proof.* Define  $D_{kl} = \frac{1}{N} \sum_{j=1}^N I(|\Sigma_{kl}^* - x_{jk} x_{jl}| \leq \frac{a}{2})$  for  $k, l = 1, \dots, d$ . Since  $a = c_a \sqrt{\frac{KN}{\log d}}$  and  
1827  $c_a \geq \frac{4}{\sqrt{2-\mu_0}} \sqrt{\frac{\log d}{N}}$ , we have  $a \geq 4 \sqrt{\frac{K}{2-\mu_0}}$ . By Chebyshev's inequality, we have  
1829

$$1830 \quad \mathbb{E}(D_{kl}) = \mathbb{P} \left( |\Sigma_{kl}^* - x_{jk} x_{jl}| \leq \frac{a}{2} \right) \geq 1 - \frac{4K}{a^2} \geq \frac{2 + \mu_0}{4}.$$

1833 Then utilizing the fact that  $I(|\Sigma_{kl}^* - x_{jk} x_{jl}| \leq \frac{a}{2}) \in \{0, 1\}$  and Hoeffding's inequality, we have

$$1834 \quad 1835 \quad \mathbb{P} \left( D_{kl} \leq \frac{\mu_0}{2} \right) \leq \mathbb{P} \left( |D_{kl} - \mathbb{E}(D_{kl})| \geq \frac{2 - \mu_0}{4} \right) \leq 2 \exp \left( - \frac{N(2 - \mu_0)^2}{8} \right).$$

1836 According to union bound and  $N \geq \frac{16c_N \log d}{(2-\mu_0)^2}$ , we have  
 1837

1838 
$$P \left( \min_{k,l} D_{kl} \leq \frac{\mu_0}{2} \right) \leq 2d^2 \exp \left( -\frac{N(2-\mu_0)^2}{8} \right) \leq 2 \exp(2(1-c_N) \log d).$$
  
 1839  
 1840

1841 Due to the non-decreasing nature of  $h'$ , for each  $(k, l)$  we have  
 1842

1843 
$$(h'((\Sigma_1)_{kl} - x_{jk}x_{jl}) - h'((\Sigma_2)_{kl} - x_{jk}x_{jl}))((\Sigma_1)_{kl} - (\Sigma_2)_{kl}) \geq 0.$$
  
 1844

1845 Conditioned on  $\min_{k,l} D_{kl} \geq \frac{\mu_0}{2}$ , we have  
 1846

1847 
$$\begin{aligned} & \frac{1}{N} \sum_{j=1}^N (h'((\Sigma_1)_{kl} - x_{jk}x_{jl}) - h'((\Sigma_2)_{kl} - x_{jk}x_{jl}))((\Sigma_1)_{kl} - (\Sigma_2)_{kl}) \\ & \geq \frac{1}{N} \sum_{j=1}^N I\left(|\Sigma_{kl}^* - x_{jk}x_{jl}| \leq \frac{a}{2}\right) (h'((\Sigma_1)_{kl} - x_{jk}x_{jl}) - h'((\Sigma_2)_{kl} - x_{jk}x_{jl}))((\Sigma_1)_{kl} - (\Sigma_2)_{kl}) \\ & \geq \frac{1}{N} \sum_{j=1}^N I\left(|\Sigma_{kl}^* - x_{jk}x_{jl}| \leq \frac{a}{2}\right) ((\Sigma_1)_{kl} - (\Sigma_2)_{kl})^2 \\ & \geq \frac{\mu_0}{2} ((\Sigma_1)_{kl} - (\Sigma_2)_{kl})^2. \end{aligned}$$
  
 1848  
 1849  
 1850  
 1851  
 1852  
 1853  
 1854  
 1855  
 1856  
 1857

1858 Summing over all  $(k, l)$  leads to the desired result.  $\square$   
 1859

1860 Then we bound  $\|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max}$  by the regularization parameter  $\lambda$ .  
 1861

1862 **Proposition 11.** Suppose Assumptions 2 and 3 hold. Assume  $a = c_a \sqrt{\frac{KN}{\log d}}$ ,  $\tau \leq$   
 1863  $c_\tau \left\|(\Sigma^*)^{-1}\right\|_{\max}^{-1} \sqrt{\frac{\log d}{N}}$ , and  $\lambda = c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{\log d}{N}}$ . Then we have  
 1864

1865 
$$\|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \leq \frac{\lambda}{2}$$
  
 1866  
 1867

1868 with probability at least  $1 - 2/d$ .  
 1869

1870 *Proof.* For each  $k, l = 1, \dots, d$ , we have  
 1871

1872 
$$\begin{aligned} & |E(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))| \\ & = |E((\Sigma_{kl}^* - x_{jk}x_{jl}) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| \leq a) + \text{asign}(\Sigma_{kl}^* - x_{jk}x_{jl}) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a))| \\ & = |E(\Sigma_{kl}^* - x_{jk}x_{jl} + (\text{asign}(\Sigma_{kl}^* - x_{jk}x_{jl}) - (\Sigma_{kl}^* - x_{jk}x_{jl})) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a))| \\ & = |E(\Sigma_{kl}^* - x_{jk}x_{jl}) + E((\Sigma_{kl}^* - x_{jk}x_{jl}) - \text{asign}(\Sigma_{kl}^* - x_{jk}x_{jl})) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a))| \\ & \leq E(|\Sigma_{kl}^* - x_{jk}x_{jl}| - a) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a)) \\ & \leq \frac{1}{|\Sigma_{kl}^* - x_{jk}x_{jl}| + a} E\left(\left((\Sigma_{kl}^* - x_{jk}x_{jl})^2 - a^2\right) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a)\right) \\ & \leq \frac{1}{a} E\left((\Sigma_{kl}^* - x_{jk}x_{jl})^2\right) \\ & \leq \frac{K}{a}. \end{aligned} \tag{62}$$
  
 1873  
 1874  
 1875  
 1876  
 1877  
 1878  
 1879  
 1880  
 1881  
 1882  
 1883  
 1884

1885 Then since the  $a = c_a \sqrt{\frac{KN}{\log d}}$  and  $N > \frac{16c_N \log d}{(2-\mu_0)^2}$ , we have  
 1886

1887 
$$\begin{aligned} |h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - E(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))| & \leq |h'(\Sigma_{kl}^* - x_{jk}x_{jl})| + |E(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))| \\ & \leq a + \frac{K}{a} \leq 2a. \end{aligned}$$
  
 1888  
 1889

1890 Then since  $h$  is 1-Lipschitz smooth, for  $n \geq 2$  we have  
 1891  
 1892  
 1893  
 1894  
 1895  
 1896  
 1897  
 1898  
 1899  
 1900  
 1901  
 1902  
 1903  
 1904  
 1905  
 1906

$$\begin{aligned}
 & \mathbb{E}((h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl})))^n) \\
 & \leq (2a)^{n-2} \mathbb{E}((h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl})))^2) \\
 & = (2a)^{n-2} \text{Var}(h'(\Sigma_{kl}^* - x_{jk}x_{jl})) \\
 & = (2a)^{n-2} \inf_u \mathbb{E}((h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - u)^2) \\
 & \leq (2a)^{n-2} \mathbb{E}((h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - h'(\mathbb{E}(\Sigma_{kl}^* - x_{jk}x_{jl})))^2) \\
 & \leq (2a)^{n-2} \mathbb{E}((\Sigma_{kl}^* - x_{jk}x_{jl} - \mathbb{E}(\Sigma_{kl}^* - x_{jk}x_{jl}))^2) \\
 & = (2a)^{n-2} \text{Var}(\Sigma_{kl}^* - x_{jk}x_{jl}) \\
 & \leq (2a)^{n-2} K \\
 & \leq \frac{n!}{2} a^{n-2} K.
 \end{aligned}$$

1907 Then according to the Bernstein's inequality, we have  
 1908  
 1909  
 1910

$$P(|h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))| \geq t) \leq 2 \exp\left(-\frac{Nt^2}{2(K + \frac{at}{3})}\right).$$

1911 Taking  $t = \sqrt{\frac{6\sigma^2 \log d}{N}} + a\frac{2 \log d}{N}$ , we have  
 1912

$$\begin{aligned}
 & P\left(|h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))| \geq \sqrt{\frac{6K \log d}{N}} + a\frac{2 \log d}{N}\right) \\
 & \leq 2 \exp\left(-\frac{N\left(\sqrt{\frac{6K \log d}{N}} + a\frac{2 \log d}{N}\right)^2}{2\left(\sigma^2 + \frac{a}{3}\left(\sqrt{\frac{6K \log d}{N}} + a\frac{2 \log d}{N}\right)\right)}\right) \\
 & \leq 2 \exp\left(-\frac{\left(6\sigma^2 + 4a\sqrt{\frac{6K \log d}{N}} + 4a^2\frac{\log d}{N}\right)}{\left(6\sigma^2 + 2a\sqrt{\frac{6K \log d}{N}} + 4a^2\frac{\log d}{N}\right)} 3 \log d\right) \\
 & \leq \frac{2}{d^3}.
 \end{aligned}$$

1927 In conjunction with the union bound, we have  
 1928  
 1929  
 1930

$$P\left(\|\nabla \mathcal{H}(\Sigma^*) - \mathbb{E}(\nabla \mathcal{H}(\Sigma^*))\|_{\max} \geq \sqrt{\frac{6K \log d}{N}} + a\frac{2 \log d}{N}\right) \leq \frac{2}{d}.$$

1931 Recall equation 62, we have  
 1932  
 1933  
 1934  
 1935  
 1936  
 1937  
 1938  
 1939

$$\begin{aligned}
 & P\left(\|\nabla \mathcal{H}(\Sigma^*)\|_{\max} \geq \sqrt{\frac{6K \log d}{N}} + a\frac{2 \log d}{N}\right) \\
 & \leq P\left(\|\nabla \mathcal{H}(\Sigma^*) - \mathbb{E}(\nabla \mathcal{H}(\Sigma^*))\|_{\max} + \|\mathbb{E}(\nabla \mathcal{H}(\Sigma^*))\|_{\max} \geq \sqrt{\frac{6K \log d}{N}} + a\frac{2 \log d}{N} + \frac{K}{a}\right) \\
 & \leq \frac{2}{d}.
 \end{aligned}$$

1941 Since  $\tau \leq c_\tau \left\|(\Sigma^*)^{-1}\right\|_{\max}^{-1} \sqrt{\frac{\log d}{N}}$ , we have  
 1942

$$\|\nabla(-\tau \log \det(\Sigma^*))\|_{\max} = \tau \left\|(\Sigma^*)^{-1}\right\|_{\max} \leq c_\tau \sqrt{\frac{\log d}{N}}.$$

1944 Combining the two inequalities above, we have  
1945  
1946  $\|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \leq \sqrt{\frac{6K \log d}{N}} + a \frac{2 \log d}{N} + \frac{K}{a} + c_\tau \sqrt{\frac{\log d}{N}}$   
1947  
1948 with probability at least  $1 - 2/d$ . Finally, since  $a = c_a \sqrt{\frac{KN}{\log d}}$  and  $\lambda =$   
1949  
1950  $c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{\log d}{N}}$ , we have the desired result.  $\square$   
1951

1952 Based on Proposition 11, we can further bound  $\|(\hat{\Sigma} - \Sigma^*)_{\mathcal{S}^c}\|_1$ .  
1953

1954 **Proposition 12.** *Based on Proposition 11 and suppose that there exists a constant  $r_q$  such that  
1955  $\|\hat{\Sigma} - \Sigma^*\|_{\max} \leq r_q$ , we have*

$$1956 \|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}^c} \leq \frac{2\lambda + \|\nabla(\frac{1}{m} \sum_{i=1}^m \mathcal{H}_i(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} + L_q r_q}{\lambda - \|\nabla(\frac{1}{m} \sum_{i=1}^m \mathcal{H}_i(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} - L_q r_q} \|\hat{\Sigma} - \Sigma^*\|_1.$$

1960 *Proof.* Due to the first-order optimization condition of equation 2, for  $\Phi \in \partial \lambda \|\hat{\Sigma}\|_{1,\text{off}}$ , we have  
1961

$$\begin{aligned} 1962 \quad 0 &\geq \langle \nabla \mathcal{F}(\hat{\Sigma}) + \Phi, \hat{\Sigma} - \Sigma^* \rangle \\ 1963 \quad &\geq \langle \nabla(\mathcal{H}(\hat{\Sigma}) - \tau \log \det(\hat{\Sigma})) - \nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)), \hat{\Sigma} - \Sigma^* \rangle \\ 1964 \quad &\quad + \langle \nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)), \hat{\Sigma} - \Sigma^* \rangle - \langle \nabla \mathcal{Q}(\hat{\Sigma}) - \nabla \mathcal{Q}(\Sigma^*), \hat{\Sigma} - \Sigma^* \rangle \\ 1965 \quad &\quad - \langle \nabla \mathcal{Q}(\Sigma^*), \hat{\Sigma} - \Sigma^* \rangle + \langle \Phi, \hat{\Sigma} - \Sigma^* \rangle. \end{aligned}$$

1966 Due to the convexity of Huber loss, we have  
1967

$$\langle \nabla(\mathcal{H}(\hat{\Sigma}) - \tau \log \det(\hat{\Sigma})) - \nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)), \hat{\Sigma} - \Sigma^* \rangle \geq 0.$$

1968 In addition, we have  
1969

$$\begin{aligned} 1970 \quad \langle \Phi, \hat{\Sigma} - \Sigma^* \rangle &= \langle \Phi_{\mathcal{S}^c}, (\hat{\Sigma} - \Sigma^*)_{\mathcal{S}^c} \rangle + \langle \Phi_{\mathcal{S}}, (\hat{\Sigma} - \Sigma^*)_{\mathcal{S}} \rangle \\ 1971 \quad &= \langle \Phi_{\mathcal{S}^c}, \hat{\Sigma}_{\mathcal{S}^c} \rangle + \langle \Phi_{\mathcal{S}}, (\hat{\Sigma} - \Sigma^*)_{\mathcal{S}} \rangle \\ 1972 \quad &= \lambda \|\hat{\Sigma}_{\mathcal{S}^c}\|_1 + \langle \Phi_{\mathcal{S}}, (\hat{\Sigma} - \Sigma^*)_{\mathcal{S}} \rangle \\ 1973 \quad &\geq \lambda \|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}^c} - \lambda \|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}}. \end{aligned} \tag{63}$$

1974 According to Assumption 3, we have  
1975

$$\begin{aligned} 1976 \quad \langle \nabla \mathcal{Q}(\Sigma^*), \hat{\Sigma} - \Sigma^* \rangle &= \langle \nabla \mathcal{Q}(\Sigma^*)_{\mathcal{S}}, (\hat{\Sigma} - \Sigma^*)_{\mathcal{S}} \rangle \\ 1977 \quad &\leq \lambda \|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}}. \end{aligned}$$

1978 Combining the four inequalities above, we have  
1979

$$\begin{aligned} 1980 \quad 0 &\geq -\|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \|\hat{\Sigma} - \Sigma^*\|_1 - L_q \|\hat{\Sigma} - \Sigma^*\|_{\max} \|\hat{\Sigma} - \Sigma^*\|_1 \\ 1981 \quad &\quad + \lambda \|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}^c} - 2\lambda \|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}}. \end{aligned}$$

1982 Decomposing  $\|\hat{\Sigma} - \Sigma^*\|_1$  into  $\mathcal{S}^c$  and  $\mathcal{S}$ , we have  
1983

$$\|\hat{\Sigma} - \Sigma^*\|_{\mathcal{S}^c} \leq \frac{2\lambda + \|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} + L_q \|\hat{\Sigma} - \Sigma^*\|_{\max}}{\lambda - \|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} - L_q \|\hat{\Sigma} - \Sigma^*\|_{\max}} \|\hat{\Sigma} - \Sigma^*\|_1.$$

1984 Since  $\|\hat{\Sigma} - \Sigma^*\|_{\max} \leq r_q$ , we have the desired result.  $\square$   
1985

1998 Then we can bound the estimation error  $\|\widehat{\Sigma} - \Sigma^*\|_F$ .  
 1999

2000 **Theorem 5.** Suppose that  $N > \frac{38c_\lambda}{\mu_0 c_a \sqrt{K}} \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{s} \log d$ ,  $\lambda =$   
 2001  $c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{\log d}{N}}$ ,  $a = c_a \sqrt{\frac{KN}{\log d}}$ , and  $L_q \leq \frac{c_q \mu_0}{\sqrt{s}}$ , where  $c_a, c_\lambda, c_\tau, c_q > 0$ ,  
 2002 and  $\mu_0 \in (0, 2)$ . Based on Propositions 10, 11, and 12, we have  
 2003

$$\|\widehat{\Sigma} - \Sigma^*\|_F < \frac{a}{2},$$

2004 and  
 2005

$$\|\widehat{\Sigma} - \Sigma^*\|_F \leq \frac{60}{\mu_0} c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{s \log d}{N}}.$$

2006 *Proof.* Based on Propositions 11 and 12, when  $L_q r_q \leq \frac{\lambda}{4}$ , we have  
 2007

$$\left\| (\widehat{\Sigma} - \Sigma^*)_{S^c} \right\|_1 \leq 11 \left\| (\widehat{\Sigma} - \Sigma^*)_S \right\|_1,$$

2008 and hence  
 2009

$$\|\widehat{\Sigma} - \Sigma^*\|_1 \leq 12\sqrt{s} \|\widehat{\Sigma} - \Sigma^*\|_F. \quad (64)$$

2010 Define  $\eta = \sup \left\{ u \in (0, 1] \mid u \left\| \widehat{\Sigma} - \Sigma^* \right\|_{\max} \leq \frac{a}{2} \right\}$ , and  $\widehat{\Sigma}_\eta = (1 - \eta) \Sigma^* + \eta \widehat{\Sigma}$ . Note that  $\eta = 1$   
 2011 if  $\left\| \widehat{\Sigma} - \Sigma^* \right\|_{\max} \leq \frac{a}{2}$  and  $\eta \in (0, 1)$  otherwise. Meanwhile, if  $\left\| \widehat{\Sigma}_\eta - \Sigma^* \right\|_{\max} < \frac{a}{2}$ , then  $\widehat{\Sigma}_\eta = \widehat{\Sigma}$ .  
 2012 By convexity of Huber loss, we have  
 2013

$$\langle \nabla \mathcal{H}(\widehat{\Sigma}_\eta) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma}_\eta - \Sigma^* \rangle \leq \eta \langle \nabla \mathcal{H}(\widehat{\Sigma}) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma} - \Sigma^* \rangle. \quad (65)$$

2014 Since  $\left\| \widehat{\Sigma}_\eta - \Sigma^* \right\|_{\max} \leq \frac{a}{2}$ , according to Proposition 10, we have  
 2015

$$\langle \nabla \mathcal{H}(\widehat{\Sigma}_\eta) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma}_\eta - \Sigma^* \rangle \geq \frac{\mu_0}{2} \left\| \widehat{\Sigma}_\eta - \Sigma^* \right\|_F^2.$$

2016 Combining the two inequalities above, we have  
 2017

$$\left\| \widehat{\Sigma}_\eta - \Sigma^* \right\|_F^2 \leq \frac{2\eta}{\mu_0} \langle \nabla \mathcal{H}(\widehat{\Sigma}) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma} - \Sigma^* \rangle. \quad (66)$$

2018 Then we bound the right side of equation 66. For  $\Phi \in \partial \lambda \left\| \widehat{\Sigma} \right\|_{1, \text{off}}$ , according to the first-order  
 2019 optimality condition of equation 2, we have  
 2020

$$\begin{aligned} & \langle \nabla \mathcal{H}(\widehat{\Sigma}) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma} - \Sigma^* \rangle \\ &= \langle \nabla \mathcal{F}(\widehat{\Sigma}) + \Phi, \widehat{\Sigma} - \Sigma^* \rangle - \langle \nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)), \widehat{\Sigma} - \Sigma^* \rangle \\ & \quad - \langle \Phi, \widehat{\Sigma} - \Sigma^* \rangle - \tau \langle (\Sigma^*)^{-1} - \widehat{\Sigma}^{-1}, \widehat{\Sigma} - \Sigma^* \rangle + \langle \nabla \mathcal{Q}(\widehat{\Sigma}), \widehat{\Sigma} - \Sigma^* \rangle \\ & \leq - \langle \nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)), \widehat{\Sigma} - \Sigma^* \rangle - \langle \Phi, \widehat{\Sigma} - \Sigma^* \rangle + \langle \nabla \mathcal{Q}(\widehat{\Sigma}), \widehat{\Sigma} - \Sigma^* \rangle. \end{aligned}$$

2021 For the right side of the above inequality, we have  
 2022

$$\begin{aligned} & - \langle \nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)), \widehat{\Sigma} - \Sigma^* \rangle \\ & \leq \|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \left\| \widehat{\Sigma} - \Sigma^* \right\|_1. \end{aligned}$$

2023 Then recall equation 63 and Assumption 3, we have  
 2024

$$\begin{aligned} & \langle \nabla \mathcal{H}(\widehat{\Sigma}) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma} - \Sigma^* \rangle \\ & \leq \|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \left\| \widehat{\Sigma} - \Sigma^* \right\|_1 \\ & \quad - \lambda \left\| (\widehat{\Sigma} - \Sigma^*)_{S^c} \right\|_1 + \lambda \left\| (\widehat{\Sigma} - \Sigma^*)_S \right\|_1 + \lambda \left( \left\| (\widehat{\Sigma} - \Sigma^*)_S \right\|_1 + \left\| (\widehat{\Sigma} - \Sigma^*)_{S^c} \right\|_1 \right) \\ & = \|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \left\| \widehat{\Sigma} - \Sigma^* \right\|_1 + 2\lambda \left\| (\widehat{\Sigma} - \Sigma^*)_S \right\|_1. \end{aligned} \quad (67)$$

Combining Proposition 11, equation 64, equation 66, and equation 67, we have

$$\langle \nabla \mathcal{H}(\widehat{\Sigma}) - \nabla \mathcal{H}(\Sigma^*), \widehat{\Sigma} - \Sigma^* \rangle \leq 30\lambda\sqrt{s} \|\widehat{\Sigma} - \Sigma^*\|_F. \quad (68)$$

Combining equation 66 and equation 68 leads to

$$\|\widehat{\Sigma}_\eta - \Sigma^*\|_F^2 \leq \frac{60}{\mu_0} \lambda \sqrt{s} \|\widehat{\Sigma}_\eta - \Sigma^*\|_F.$$

Since  $a = c_a \sqrt{\frac{KN}{\log d}}$ ,  $N > \frac{38c_\lambda}{\mu_0 c_a \sqrt{K}} \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{s} \log d$ , and  $\lambda = c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{\log d}{N}}$ , we have  $\frac{a}{2} > \frac{60}{\mu_0} \lambda \sqrt{s}$ . Therefore, we have  $\|\widehat{\Sigma}_\eta - \Sigma^*\|_F < \frac{a}{2}$ , and hence  $\widehat{\Sigma}_\eta = \widehat{\Sigma}$ , which means that  $\|\widehat{\Sigma} - \Sigma^*\|_F < \frac{a}{2}$  and

$$\|\widehat{\Sigma} - \Sigma^*\|_F \leq \frac{60}{\mu_0} c_\lambda \left( \left( \sqrt{6} + 2c_a + \frac{1}{c_a} \right) \sqrt{K} + c_\tau \right) \sqrt{\frac{s \log d}{N}}.$$

Moreover, since  $L_q \leq \frac{c_q \mu_0}{\sqrt{s}}$ , we have  $L_q \|\widehat{\Sigma} - \Sigma^*\|_{\max} \leq L_q \|\widehat{\Sigma} - \Sigma^*\|_F \leq \frac{60}{\mu_0} L_q \lambda \sqrt{s} \leq \frac{\lambda}{4}$  if  $c_q \leq \frac{1}{240}$ , which complete the proof.  $\square$

Based on Propositions 10, 11, and 12, and Theorem 5, we can finally prove Theorem 3. According to Theorem 5, we have  $\|\widehat{\Sigma} - \Sigma^*\|_F < \frac{a}{2}$ . Then recall Proposition 10 and  $L_q \leq \frac{c_q \mu_0}{\sqrt{s}}$  where  $c_q \in (0, \sqrt{s})$ , we have

$$\mathcal{F}(\widehat{\Sigma}) - \mathcal{F}(\Sigma^*) - \langle \nabla \mathcal{F}(\Sigma^*), \widehat{\Sigma} - \Sigma^* \rangle \geq \frac{\mu_0 - L_q}{2} \|\widehat{\Sigma} - \Sigma^*\|_F^2,$$

and

$$\mathcal{F}(\Sigma^*) - \mathcal{F}(\widehat{\Sigma}) - \langle \nabla \mathcal{F}(\widehat{\Sigma}), \Sigma^* - \widehat{\Sigma} \rangle \geq \frac{\mu_0 - L_q}{2} \|\Sigma^* - \widehat{\Sigma}\|_F^2.$$

Since  $\lambda \|\cdot\|_{1,\text{off}}$  is convex, for  $\Phi \in \partial \lambda \|\widehat{\Sigma}\|_{1,\text{off}}$  and  $\Psi \in \partial \lambda \|\Sigma^*\|_{1,\text{off}}$ , we have

$$\lambda \|\widehat{\Sigma}\|_{1,\text{off}} - \lambda \|\Sigma^*\|_{1,\text{off}} - \langle \Psi, \widehat{\Sigma} - \Sigma^* \rangle \geq 0,$$

and

$$\lambda \|\Sigma^*\|_{1,\text{off}} - \lambda \|\widehat{\Sigma}\|_{1,\text{off}} - \langle \Phi, \Sigma^* - \widehat{\Sigma} \rangle \geq 0.$$

According to the first-order optimality condition of equation 2, we have

$$\langle \nabla \mathcal{F}(\widehat{\Sigma}) + \Phi, \Sigma^* - \widehat{\Sigma} \rangle \geq 0.$$

Combining the above inequalities, we have

$$\begin{aligned} (\mu_0 - L_q) \|\widehat{\Sigma} - \Sigma^*\|_F^2 &\leq \langle \nabla \mathcal{F}(\Sigma^*) + \Psi, \Sigma^* - \widehat{\Sigma} \rangle \\ &\leq \sum_{k,l} |(\nabla \mathcal{F}(\Sigma^*) + \Psi)_{kl}| \left| (\Sigma^* - \widehat{\Sigma})_{kl} \right|. \end{aligned} \quad (69)$$

Then for  $(k, l) \in \mathcal{S}^c$ , according to Assumption 3, we have  $q'_\lambda(\Sigma^*_{kl}) = 0$ . Moreover, according to Proposition 11, we have

$$\|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))\|_{\max} \leq \frac{\lambda}{2},$$

and hence  $|\nabla \mathcal{F}(\Sigma^*)_{kl}| \leq \lambda$ . Then since  $\Psi_{kl} \in [-\lambda, \lambda]$ , there exists a  $\Psi$  such that  $|(\nabla \mathcal{F}(\Sigma^*) + \Psi)_{kl}| = 0$ . Therefore, we have

$$\sum_{(k,l) \in \mathcal{S}^c} |(\nabla \mathcal{F}(\Sigma^*) + \Psi)_{kl}| \left| (\Sigma^* - \widehat{\Sigma})_{kl} \right| = 0. \quad (70)$$

2106 For  $(k, l) \in \mathcal{S}$ , since  $b\lambda \leq |\Sigma_{ij}^*|$ , by Assumption 3, we have  $p'_\lambda(\Sigma_{kl}^*) = 0$ . Therefore, we have  
2107

$$\begin{aligned} & \sum_{(k,l) \in \mathcal{S}} |(\nabla \mathcal{F}(\Sigma^*) + \Psi)_{kl}| \left| (\Sigma^* - \widehat{\Sigma})_{kl} \right| \\ & \leq \sum_{(k,l) \in \mathcal{S}} |(\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)))_{kl}| \left| (\Sigma^* - \widehat{\Sigma})_{kl} \right| \\ & \leq \|(\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*)))_{\mathcal{S}}\|_F \left\| \Sigma^* - \widehat{\Sigma} \right\|_F. \end{aligned} \quad (71)$$

2115 Then similar to the proof of Proposition 11, we have  
2116

$$\begin{aligned} & |\mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))| \\ & \leq \mathbb{E}(|\Sigma_{kl}^* - x_{jk}x_{jl}| - a) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a) \\ & \leq \frac{1}{|\Sigma_{kl}^* - x_{jk}x_{jl}|^{1+\nu} + a^{1+\nu}} \mathbb{E}\left(\left((\Sigma_{kl}^* - x_{jk}x_{jl})^{2(1+\nu)} - a^{2(1+\nu)}\right) I(|\Sigma_{kl}^* - x_{jk}x_{jl}| > a)\right) \\ & \leq \frac{1}{a^{1+\nu}} \mathbb{E}\left((\Sigma_{kl}^* - x_{jk}x_{jl})^{2(1+\nu)}\right) \\ & \leq \frac{K}{a^{1+\nu}}. \end{aligned}$$

2126 In addition, we have  
2127

$$\mathbb{E}\left(\left(h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))\right)^2\right) \leq \text{Var}(\Sigma_{kl}^* - x_{jk}x_{jl}) \leq K.$$

2130 Therefore, recall that  $a = c_a \sqrt{\frac{KN}{\log d}}$  and  $N > \frac{(\log d)^{1+\frac{1}{\nu}}}{c_a^{2(1+\frac{1}{\nu})} K}$  we have  
2131

$$\begin{aligned} & \mathbb{E}\left(\left(\frac{1}{N} \sum_{j=1}^N h'(\Sigma_{kl}^* - x_{jk}x_{jl})\right)^2\right) \\ & = \left(\frac{1}{N} \sum_{j=1}^N \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl}))\right)^2 \\ & \quad + \mathbb{E}\left(\left(\frac{1}{N} \sum_{j=1}^N (h'(\Sigma_{kl}^* - x_{jk}x_{jl}) - \mathbb{E}(h'(\Sigma_{kl}^* - x_{jk}x_{jl})))\right)^2\right) \\ & \leq \frac{K^2}{a^{2(1+\nu)}} + \frac{K}{N} \\ & \leq \frac{2K}{N}, \end{aligned}$$

2148 and hence  
2149

$$\begin{aligned} \mathbb{E}(\|\nabla \mathcal{H}(\Sigma^*)_{\mathcal{S}}\|_F) & \leq \mathbb{E}\left(\sqrt{\sum_{(k,l) \in \mathcal{S}} \left(\frac{1}{N} \sum_{j=1}^N h'(\Sigma_{kl}^* - x_{jk}x_{jl})\right)^2}\right) \\ & \leq \sqrt{\sum_{(k,l) \in \mathcal{S}} \mathbb{E}\left(\left(\frac{1}{N} \sum_{j=1}^N h'(\Sigma_{kl}^* - x_{jk}x_{jl})\right)^2\right)} \\ & \leq \sqrt{\frac{2sK}{N}}. \end{aligned}$$

2160 According to Markov's inequality, we have  
 2161

$$2162 \quad P\left(\|\nabla \mathcal{H}(\Sigma^*)_{\mathcal{S}}\|_F \geq \beta \sqrt{\frac{sK}{N}}\right) \leq \frac{E(\|\nabla \mathcal{H}(\Sigma^*)_{\mathcal{S}}\|_F)}{\beta \sqrt{\frac{sK}{N}}} \leq \frac{\sqrt{\frac{2sK}{N}}}{\beta \sqrt{\frac{sK}{N}}} \leq \frac{\sqrt{2}}{\beta}.$$

2165  
 2166 Then since  $\tau \leq c_\tau \left\|(\Sigma^*)^{-1}\right\|_{\mathcal{S}}^{-1} \sqrt{\frac{s}{N}}$ , we have  
 2167

$$2168 \quad \|\nabla(\mathcal{H}(\Sigma^*) - \tau \log \det(\Sigma^*))_{\mathcal{S}}\|_F \leq \left(\beta \sqrt{K} + c_\tau\right) \sqrt{\frac{s}{N}}. \quad (72)$$

2170  
 2171 with probability at least  $1 - \frac{\sqrt{2}}{\beta}$ . Combining equation 71 and equation 72, we have  
 2172

$$2173 \quad \sum_{(k,l) \in \mathcal{S}} |(\nabla \mathcal{F}(\Sigma^*) + \Psi)_{kl}| \left|(\Sigma^* - \widehat{\Sigma})_{kl}\right| \leq \left(\beta \sqrt{K} + c_\tau\right) \sqrt{\frac{s}{N}} \|\Sigma^* - \widehat{\Sigma}\|_F. \quad (73)$$

2174 Finally, combining equation 69, equation 70, and equation 73, we have the desired result  
 2175

$$2176 \quad \|\widehat{\Sigma} - \Sigma^*\|_F \leq \frac{\beta \sqrt{K} + c_\tau}{\mu_0 - L_q} \sqrt{\frac{s}{N}}$$

2177 with high probability. Specifically, according to union bound of the probability of equation 72 and  
 2178 the probabilities in Propositions 10 and 11, the final probability is  $1 - \left(\frac{2}{d} + \frac{2}{d^2(c_N-1)} + \frac{\sqrt{2}}{\beta}\right)$ .  
 2179

#### 2180 C.4 PROOF OF COROLLARY 1

2181 According to Theorem 5, with high probability we have  
 2182

$$2183 \quad \|\widehat{\Sigma} - \Sigma^*\|_{\max} \leq \|\widehat{\Sigma} - \Sigma^*\|_F < \frac{a}{2}.$$

2184 Then since  $T = \max\left\{0, \left\lceil 2 \log\left(c_h/\sqrt{C_1}\right) / \log(1 - 1/(C_2\kappa)) \right\rceil\right\}$  and Theorem 1, we have  
 2185

$$2186 \quad \|\Sigma^{(t)} - \widehat{\Sigma}\|_{\max} \leq \|\Sigma^{(t)} - \widehat{\Sigma}\|_F \leq \sqrt{C_1 \left(1 - \frac{1}{C_2\kappa}\right)^T} < \frac{a}{2} - \|\widehat{\Sigma} - \Sigma^*\|_F \leq \frac{a}{2} - \|\widehat{\Sigma} - \Sigma^*\|_{\max},$$

2187 and hence with high probability  
 2188

$$2189 \quad \|\Sigma^{(t)} - \Sigma^*\|_{\max} \leq \|\Sigma^{(t)} - \widehat{\Sigma}\|_{\max} + \|\widehat{\Sigma} - \Sigma^*\|_{\max} \leq \frac{a}{2}.$$

2190 Then recall Proposition 10, we have  
 2191

$$2192 \quad \langle \nabla \mathcal{H}(\Sigma^{(t)}) - \nabla \mathcal{H}(\widehat{\Sigma}), \Sigma^{(t)} - \widehat{\Sigma} \rangle \geq \frac{\mu_0}{2} \|\Sigma^{(t)} - \widehat{\Sigma}\|_F^2$$

2193 with high probability, and hence  
 2194

$$2195 \quad \mathcal{F}(\widehat{\Sigma}) - \mathcal{F}(\Sigma^{(t)}) - \langle \mathcal{F}(\Sigma^{(t)}), \widehat{\Sigma} - \Sigma^{(t)} \rangle \geq \frac{\mu_0 - L_q}{2} \|\Sigma^{(t)} - \widehat{\Sigma}\|_F^2. \quad (74)$$

2196 Due to Theorem 1, we have  
 2197

$$2198 \quad \|\Sigma^{(t+1)} - \widehat{\Sigma}\|_F \leq \|\Sigma^{(t)} - \widehat{\Sigma}\|_F < \frac{a}{2} - \|\widehat{\Sigma} - \Sigma^*\|_F,$$

2199 and hence  
 2200

$$2201 \quad \|\Sigma^{(t+1)} - \Sigma^*\|_F \leq \frac{a}{2}.$$

2202 According to Weyl's inequality, we have  
 2203

$$2204 \quad \lambda_{\min}(\Sigma^{(t+1)}) \geq \lambda_{\min}(\Sigma^*) - \|\Sigma^{(t+1)} - \Sigma^*\|_2 \geq \lambda_{\min}(\Sigma^*) - \|\Sigma^{(t+1)} - \Sigma^*\|_F \geq \lambda_{\min}(\Sigma^*) - \frac{a}{2}$$

2214 and

$$\lambda_{\min}(\Sigma^{(t)}) \geq \lambda_{\min}(\Sigma^*) - \frac{a}{2}.$$

2217 Therefore, when  $\lambda_{\min}(\Sigma^{(t)}) - \frac{a}{2} > 0$ , we have

$$\mathcal{F}(\Sigma^{(t+1)}) - \mathcal{F}(\Sigma^{(t)}) - \langle \mathcal{F}(\Sigma^{(t)}), \Sigma^{(t+1)} - \Sigma^{(t)} \rangle \leq \frac{1 + \frac{\tau}{(\lambda_{\min}(\Sigma^*) - a/2)^2}}{2} \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2. \quad (75)$$

2222 Substituting equation 74 and equation 75 into Section C.1.3, we obtain the desired result.

2223 When  $\lambda_{\min}(\Sigma^{(t)}) - \frac{a}{2} \leq 0$ , according to equation 64, we have

$$\|\widehat{\Sigma} - \Sigma^*\|_2 \leq \|\widehat{\Sigma} - \Sigma^*\|_1 \leq 12 \|\widehat{\Sigma} - \Sigma^*\|_F.$$

2227 Then due to  $C_s \sqrt{s/N} < \lambda_{\min}(\Sigma^*) / (12c_r)$  and Theorem 3, we have

$$\|\widehat{\Sigma} - \Sigma^*\|_2 \leq 12C_s \sqrt{\frac{s}{N}} < \frac{\lambda_{\min}(\Sigma^*)}{12c_r}.$$

2232 Then recall Weyl's inequality, we have

$$\lambda_{\min}(\widehat{\Sigma}) \geq \lambda_{\min}(\Sigma^*) - \|\widehat{\Sigma} - \Sigma^*\|_2 > \frac{12c_r - 1}{12c_r} \lambda_{\min}(\Sigma^*).$$

2236 Theorem 3,  $T = \max \left\{ 0, \left\lceil 2 \log(c_h/\sqrt{C_1}) / \log(1 - 1/(C_2\kappa)) \right\rceil \right\}$ , and  $c_h = \lambda_{\min}(\widehat{\Sigma}) - (12c_r - 1) \lambda_{\min}(\Sigma^*) / 12c_r$ , we have

$$\lambda_{\min}(\Sigma^{(t)}) \geq \lambda_{\min}(\widehat{\Sigma}) - \|\Sigma^{(t)} - \widehat{\Sigma}\|_2 \geq \lambda_{\min}(\widehat{\Sigma}) - \|\Sigma^{(t)} - \widehat{\Sigma}\|_F \geq \frac{12c_r - 1}{12c_r} \lambda_{\min}(\Sigma^*).$$

2241 Similarly, we have

$$\lambda_{\min}(\Sigma^{(t+1)}) \geq \frac{12c_r - 1}{12c_r} \lambda_{\min}(\Sigma^*),$$

2245 and hence

$$\mathcal{F}(\Sigma^{(t+1)}) - \mathcal{F}(\Sigma^{(t)}) - \langle \mathcal{F}(\Sigma^{(t)}), \Sigma^{(t+1)} - \Sigma^{(t)} \rangle \leq \frac{1 + \frac{144c_r^2 \tau}{(12c_r - 1)^2 \lambda_{\min}^2(\Sigma^*)}}{2} \|\Sigma^{(t)} - \Sigma^{(t+1)}\|_F^2. \quad (76)$$

2249 Substituting equation 74 and equation 76 into Section C.1.3, we obtain the desired result.

## C.5 PROOF OF COROLLARY 2

2253 We first show that  $\sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2$  converges linearly as well.

2255 **Corollary 3.** Suppose Assumptions 1, 2, and 3 hold, and all conditions in Theorem 2 are satisfied.  
2256 Then we have

$$\sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2 \leq C_1'' \left( 1 - \frac{1}{C_2' \kappa} \right)^t, \quad (77)$$

2260 where

$$\begin{aligned} C_1'' &= \frac{\left( \frac{16L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{\underline{z}-\rho} \frac{\rho^2}{\underline{z}-\rho^2} + \frac{2L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{\underline{z}-\rho} \right) \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|^2 + \frac{\sqrt{m}}{\gamma\epsilon} \frac{\rho}{\underline{z}-\rho} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2}{1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} - \left( 1 - \frac{\mu}{\gamma} \right) \frac{\theta}{\underline{z} - (1-\theta)}} \\ &+ \frac{\left( 1 - \frac{\mu}{\gamma} \right) \frac{1}{\underline{z} - (1-\theta)} \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(0)} - \widehat{\Sigma} \right\|_F^2}{1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} - \left( 1 - \frac{\mu}{\gamma} \right) \frac{\theta}{\underline{z} - (1-\theta)}} + \sum_{i=1}^m \left\| \Sigma_i^{(\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2. \end{aligned}$$

2268  
2269 *Proof.* Since equation 54 and the fact that  $\left\| \Sigma_i^{(t)} - \widehat{\Sigma} \right\|_F^2 \leq \left\| \tilde{\Sigma}_i^{(t-1)} - \widehat{\Sigma} \right\|_F^2$ , we have

2270  
2271 
$$\sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(t)} - \widehat{\Sigma} \right\|_F^2 \leq \theta \sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2 + (1-\theta) \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(t-1)} - \widehat{\Sigma} \right\|_F^2. \quad (78)$$

2272  
2273 Multiplying  $z^{-t}$  on both sides, summing from 1 to  $T$ , and utilizing Lemma 3, we have

2274  
2275 
$$V^{(T)}(z) \leq \frac{\theta}{z - (1-\theta)} \sum_{t=1}^T \sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2 z^{-t} + \frac{1}{z - (1-\theta)} \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(0)} - \widehat{\Sigma} \right\|_F^2. \quad (79)$$

2276 Define

2277  
2278 
$$W^{(T)}(z) = \sum_{t=1}^T \sum_{i=1}^m \left\| \Sigma_i^{(t-\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2 z^{-t}.$$

2279  
2280 Combining equation 53, equation 79, and the fact that  $\left\| \Sigma_i^{(t)} - \widehat{\Sigma} \right\|_F^2 \leq \left\| \tilde{\Sigma}_i^{(t-1)} - \widehat{\Sigma} \right\|_F^2$ , multiplying  
2281  
2282  $z^{-t}$  on both sides, summing from 1 to  $T$ , and utilizing Lemma 3, we have

2283  
2284  
2285  
2286  
2287 
$$\begin{aligned} & \left( 1 - \frac{6L\epsilon\sqrt{m}\rho}{\gamma(1-\rho)} - \left( 1 - \frac{\mu}{\gamma} \right) \frac{\theta}{z - (1-\theta)} \right) \left( zW^{(T)}(z) - \sum_{i=1}^m \left\| \Sigma_i^{(\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2 \right) \\ & \leq \left( 1 - \frac{\mu}{\gamma} \right) \frac{1}{z - (1-\theta)} \sum_{i=1}^m \left\| \tilde{\Sigma}_i^{(0)} - \widehat{\Sigma} \right\|_F^2 - \left( 1 - \frac{L}{\gamma} \right) D^{(T)}(z) \\ & \quad + \frac{4L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z - \rho} D^{(T)}(z) + \frac{8L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z - \rho} E^{(T)}(z) \\ & \quad + \frac{\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z - \rho} \left\| \mathbf{E}_{\mathbf{Y}}^{(0)} \right\|_F^2 + \frac{2L\sqrt{m}}{\gamma\epsilon} \frac{\rho}{z - \rho} \left\| \mathbf{E}_{\Sigma}^{(0)} \right\|_F^2. \end{aligned} \quad (80)$$

2288  
2289 Then following the proof of Theorem 2, we have the desired result.  $\square$

2290  
2291 Corollary 3 shows that the convergence rate of  $\sum_{i=1}^m \left\| \Sigma_i^{(t+\frac{1}{2})} - \widehat{\Sigma} \right\|_F^2$  differs from that of  
2292  
2293  $\sum_{i=1}^m \left\| \Sigma_i^{(t)} - \widehat{\Sigma} \right\|_F^2$  with only a constant factor. Therefore, defining  $C_3'' = \max\{C_1', C_3''\}$  and  
2294 following similar steps to Section C.4, we can prove Corollary 2.

## 2295 D DISCUSSION

2296  
2297 **Zero-mean assumption of  $\mathbf{x}$**  In the previous discussion, we assumed for simplicity that the random  
2298 vector  $\mathbf{x}$  is zero-mean. However, in many practical applications, the mean is unknown. In scenarios  
2299 where the mean is unknown, its effect can be removed by constructing a new sample using the  
2300 pairwise difference of observations within each local subsample  $\mathcal{J}_i$  (Maronna et al., 2019). The  
2301 proposed algorithms and theoretical guarantees in this paper can be readily extended to this setting  
2302 with only minor modifications.

2303  
2304 **Supporting recovery** Table 1 in Section 7 demonstrates that our method achieves both the lowest  
2305 NMSE and the highest F1-score among all compared approaches. This suggests that it not only  
2306 provides excellent estimation accuracy in terms of the Frobenius norm but also exhibits strong support  
2307 recovery capability. Due to space constraints, we have focused on establishing statistical convergence  
2308 guarantees under the Frobenius norm in Theorem 3. As part of future work, we plan to develop  
2309 formal support recovery guarantees to further characterize the theoretical properties of our estimator.

2310  
2311 **High-dimensional covariance matrix estimation when features are distributed** This paper focuses  
2312 on the sample-partitioned setting. However, in many practical applications, feature variables are  
2313 distributed across different agents (Hu et al., 2019; Liu et al., 2022). As a direction for future work,  
2314 we plan to extend our method to accommodate such feature-distributed scenarios.

2322 **Parameter selection** The proposed method involves six parameters, which may introduce tuning  
2323 overhead in practical applications. Specifically,  $a$  controls robustness to heavy tails and outliers,  $\tau$   
2324 ensures positive definiteness,  $b$  adjusts the bias correction of the non-convex penalty,  $\lambda$  determines the  
2325 sparsity level, and  $\gamma$  and  $\theta$  govern the convergence behavior. In our experiments, the performance is  
2326 largely insensitive to  $\tau$ , and setting it to a small constant is typically sufficient. The parameters  $\gamma$  and  
2327  $\theta$  can be selected empirically, as described in the main text, or through simple increasing/decreasing  
2328 schedules. For  $b$ , a commonly recommended choice is  $b = 3.7$  when using SCAD (Fan & Li, 2001).  
2329 Therefore, in practice, the most critical parameters to tune are  $a$  and  $\lambda$ . In future work, we aim to  
2330 develop a more user-friendly robust sparse covariance estimator with fewer tuning parameters.

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375