Under review as submission to TMLR

How good is Good-Turing for Markov samples?

Anonymous authors
Paper under double-blind review

Abstract

The Good-Turing (GT) estimator for the missing mass (i.e., total probability of missing
symbols) in n samples is the number of symbols that appeared exactly once divided by n.
For i.i.d. samples, the bias and squared-error risk of the GT estimator can be shown to fall
as 1/n by bounding the expected error uniformly over all symbols. In this work, we study
convergence of the GT estimator for missing stationary mass (i.e., total stationary probability
of missing symbols) of Markov samples on an alphabet X with stationary distribution
[rz : € X] and transition probability matrix (t.p.m.) P. This is an important and
interesting problem because GT is widely used in applications with temporal dependencies
such as language models assigning probabilities to word sequences, which are modelled as
Markov. We show that convergence of GT depends on convergence of (P~%)" where P~% is
P with the z-th column zeroed out. This, in turn, depends on the Perron eigenvalue A~*
of P™~* and its relationship with 7, uniformly over x. For randomly generated t.p.ms and
t.p.ms derived from New York Times and Charles Dickens corpora, we numerically exhibit
such uniform-over-z relationships between A~* and 7. This supports the observed success
of GT in language models and practical text data scenarios. For Markov chains with rank-2,
diagonalizable t.p.ms having spectral gap 3, we show minimax rate upper and lower bounds
of 1/(nB®) and 1/(nf3), respectively, for the estimation of stationary missing mass. This
theoretical result extends the 1/n minimax rate for i.i.d. or rank-1 t.p.ms to rank-2 Markov,
and is a first such minimax rate result for missing mass of Markov samples. We also show,
through experiments, that the MSE of GT decays at a slower rate as the rank of the t.p.m
increases.

1 Introduction

When observing a sequence of symbols from an unknown alphabet and distribution, we are often interested in
the probability that the next sampled symbol is going to be new, i.e. a symbol that has not been seen so far.
This probability is the sum of the probabilities of all the symbols missing in the sequence of samples observed
so far, and is called the missing mass. Good and Turing (Good, |1953) had originally studied this problem in
the context of solving the enigma code. The popular Good-Turing (GT) estimator estimates missing mass as
the ratio of the number of symbols seen exactly once in the samples to the sample size. Today, estimation of
missing mass finds applications in language modelling (W.Church & A.Gale, |1991} |Gale & Sampson, [1995;
Chen & Goodman, [1996)), ecology (Chao & Lee, [1992; |Shen et al.,|2003) and in entropy estimation (Vu et al.
2007, and it has been studied in the i.i.d. samples setting by multiple authors (McAllester & Schapire] 2000
Berend & Kontorovich| |2013; |Chandra et al.| [2019; |Ohannessian & Dahleh| |2012; Mossel & Ohannessianl, 2019;
Orlitsky & Suresh| 2015; [Rajaraman et al., 2017; |Acharya et al.| 2018; |Cohen et al., 2020; |Painsky, [2022]).
The mean-squared error for estimating missing mass using the GT estimator in the i.i.d. setting (Rajaraman
ot all, [2017) falls as (sample-size) ~! with no further assumptions on the alphabet size or restrictions to the
distribution. So, whenever the missing mass is expected to be non-vanishing, it can be reliably estimated in
the i.i.d. case.

While missing mass and the GT estimator are well-studied in the i.i.d. samples regime, their definitions and
properties in cases where the samples have memory have not been extensively considered in the literature.
Many applications like natural language text processing involve data with temporal dependencies, which are
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often modelled as Markov chains (Chen & Goodman| 1996). In this work, we study missing mass and its
estimation through GT estimator in cases when the samples form a Markov chain. Estimation from Markov
samples has been considered in (Wolfer & Kontorovich| 2019 Hao et al., [2018; [Han et al., |2018} [Hsu et al.,
2019; Han et al.l [2021) and forays towards missing mass estimation from Markov chains were made in (Skorski,
2020; (Chandra et al., [2020; [Chandra et al) 2022)). Though GT missing mass estimates are used as part of
distribution estimation in cases where the samples have memory, theoretical properties of the estimation of
missing mass in such scenarios is, to the best of our knowledge, considered for the first time here.

2 Missing stationary mass of a Markov chain

A sequence X" = (X1, Xs,...,X,), X; € X, is said to be a Markov chain if
PI“(Xi::CAXi,l:{L‘i,l, e 7X1:£L'1> = PT(XQZLL'Z'|X1:$Z‘,1)

fori=2,...,n and all x; € X. The X;’s are called states and X is called the state space. K = |X]| is the size
of the alphabet X. The transition probability matrix (t.p.m.) of the Markov chain, denoted P, is the K x K
matrix with (i, j)-th element P;; £ Pr(Xs = j|X; = i). A distribution 7 = [my,...,7x] on X is said to be a
stationary or invariant distribution of the Markov chain if wP = & (Gallager} [1996). A Markov chain X™ is
said to be stationary if X; ~ 7r, which implies that X; ~ 7 for all i. We denote by X" ~ Markov(P, ), a
stationary Markov chain with t.p.m. P and state distribution 7.

Let I(-) and E[-] denote the indicator random variable and expectation, respectively, and let [K] denote the
set {1,2,...,K}. For x € X, N,(X") £ > " | I(X; = ) is the number of occurrences of z in X", also called
the frequency of . For I = 0,1,2,..., ¢;(X™) & > __ I(N,(X™) = 1) is the number of letters that have
occurred [ times in X".

zeX

The missing stationary mass of a Markov chain X™ ~ Markov(P, 7), which is the missing mass of 7 in X™,
is defined as
Mo(m, X") £ "y I(NL(X™) =0). (1)

zeX

Estimation of the missing mass My(w, X™) when X™ ~ Markov(P, 7) and the quantities X', K, 7 and P are
unknown is important for many applications and in theory (see the role of missing mass in excess risk of
competitive distribution estimation in (Orlitsky & Suresh| [2015)). Note that My(7, X™) is a random variable
that is a function of both the samples X™ and the distribution 7r. This makes estimation of missing mass
and its analysis non-trivial even in the classical i.i.d. regime where X™ ~ i.i.d. 7 or a Markov chain with
P =1m. For X" ~ Markov(P, ) with a general P, the samples are not drawn exactly as per 7r, which is the
weight for measuring missing mass. This makes the study of missing stationary mass of a Markov chain more
challenging, when compared to an i.i.d. sequence.

The Good-Turing (GT) estimator (Good, [1953)) for the missing mass My (7, X™) is defined as

BT (xmy & A, ®

which is the fraction of symbols that have appeared exactly once in the n samples.

The minimax squared-error riskE| of estimating missing mass over a class of distributions P, denoted RX(P),
is defined as

Ri(P)= min _ max_ ExnoMarkov(pm [(Mo(X™) — Mo(m, X™))?]. (3)
Estimator M, (B7)€EP

The GT estimator has a worst case squared error risk of O(1/n) in the i.i.d. regime and is known to be
minimax rate-optimal (Rajaraman et al.,2017; |/Acharya et al. [2018). A common approach to use an estimator

In cases where missing mass is expected to vanish with n, relative error is more meaningful as shown in (Mossel &
Ohannessiar], |2019). However, in many interesting large alphabet scenarios, missing mass is non-vanishing for large n, and
estimation is critical in the non-vanishing case. So, we consider additive error in this work.
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that works well on i.i.d. sequences in the (non-i.i.d.) Markov setting is to sub-sample the Markov chain at
intervals of mixing time and apply the estimator on the resultant, nearly i.i.d, sub-sampled sequence. But
such an estimate using the GT estimator will have a non-vanishing bias for the missing stationary mass of a
Markov chain, since the missing mass of the subsampled sequence would be different and possibly greater
than the missing mass of the whole Markov chain. Moreover, through examples, we demonstrate how GT
estimator fails to converge to the missing mass for Markov chains with mixing time 2 or 3.

Another metric that is extensively used in the study of Markov chains is spectral gap (Gallager, (1996} Levin
et all, 2008)). A chain with nonzero, constant spectral gap shares several properties of i.i.d. sequences.
However, through a counter example, we show how GT estimator fails to converge to missing mass for Markov
chains with a non-vanishing spectral gap. Hence, the success of the GT estimator for missing mass in the
Markov case appears to require a new measure of closeness to i.i.d, and we study such a closeness property in
this work.

We make two main contributions. Firstly, we study the Good-Turing (GT) estimator and characterise the
classes of Markov chains or t.p.ms for which it converges to missing stationary mass. A large class of t.p.ms
occurring in practical scenarios are likely to satisfy these characterisations.

Secondly, on the theoretical side, we characterise the minimax squared-error risk of estimating missing
stationary mass over a class of rank-2 Markov t.p.ms with a spectral gap. To the best of our knowledge, this
work presents the first minimax rate result for a Markov case.

3 Main Results

3.1 Convergence of GT estimator

We first provide a simplified expression for the bias of the GT estimator for missing stationary mass, using
which convergence analysis becomes possible. We require the following notation.

For x € X, let P™* be a modified transition matrix equal to P in all positions except the x-th column, which
is set as the all-0 vector. So, under P~%, the symbol x is never observed. Let Pfx £ P — P™® be all-zero
except for the z-th column, which is set as the z-th column of P. Let ™7 be equal to the vector 7r in all
positions except the z-th entry, which is set as 0. Let 1 be the |X| x 1 vector with all entries as 1 and e, be
the 1 x |X| vector with the z-th entry as 1 and all other entries as zeros.

Lemma 1. For a stationary Markov chain X™ ~ Markov(P, ), the bias of the Good-Turing estimator can
be expressed as follows:

E[]/\ZOGT(XTL) _MO('?T,Xn)] = % Z |:7-(-m (ez _ﬂ.NI) (wa)(n—l) 1
TEX

+ 3w (P mTD (PR, - m PR (P L (4)

m=2

Proof. Section O

For X™ ~iid. m, the t.p.m. P =1, P~ =1 7™~ and the bias of the GT estimator equals ) . 72 (1-
72)" "t = O(1/n). Therefore, the Good-Turing estimator has a vanishing bias for the missing stationary mass
in the i.i.d. case and one might expect ]/W\OGT to perform similarly over Markov chains that are close to the
i.i.d. regime, say, in mixing time or spectral gap. In Section [3.3] we show through simulations that there
exists a non-i.i.d. Markov chain with mixing time as small as 2 (or 3), which is the closest non-i.i.d Markov
chains can get to the i.i.d regime in terms of mixing time, for which the Good-Turing estimator does not
converge to the missing stationary mass. A similar counterexample is shown for spectral gap as well. So we
need a different notion of proximity to the i.i.d. regime to extend the i.i.d. result on the convergence of the
GT estimator to the Markov regime.
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In the following theorem, we present sufficient conditions on the t.p.m. P for the convergence of the GT
estimator to My(w, X™). These conditions require powers of P~ to be close to 17~, which is P;;* of the
corresponding i.i.d. chain with t.p.m P;q = 17 and stationary distribution 7r. In Section we verify that
these conditions are satisfied by randomly generated t.p.ms, empirical t.p.ms built using language corpora
and the GT estimator has vanishing MSE for My(m, X™) of the stationary Markov chains from these t.p.ms.

Theorem 2. The absolute bias of the Good-Turing estimator MOGT(X”), for the missing stationary mass of
a stationary Markov chain X™ ~ Markov(P, ) is bounded as

2(2n0 +1 e ! e”!
2000 4 1) 4 Bepgn + Byl + 2 +

|E[MET(X™) — My(m, X™)]| <

n

where ng, €, ao and ¢1 (defined below) satisfy the following conditions:

1. there exist ng = o(n), Ay € [0,1] for x € X and e, > 0 such that for any x € X and k > ny,

(a) (\E-1 — k) T < e, (P~)k < (NP1 4 €hm) ™%, z€ X,
(b)) Ao < 1—cymy, ¢ €10,1],

2. there exists ag > 0 such that P, < ag 7, for allz € X.

The MSE of the GT estimator M\OGT(X”) for Mo(m, X™) of X" ~ Markov(P, ) is bounded as

— 2 R
GT(yn nY\)2 / ! / 2 / 3
BIEET(X") = Mo(m, X)) S (5n +2) |24 ot | o ngn + 6+ Al ) + (e )
-1 -1 -1 -1 -1
+ — [2—1—6 (86 +ci +ey (34 8ape ))} (6)

if, in addition to the above mentioned conditions, there exist nf, = o(n), {As, €[0,1] 1 z,y € X,z # y} and
€.n > 0 such that for any x,y € X,x # y and k > ng,

(4) (gl — €))7 < e, (Pro)f < (Wl dd, ) mo0, 2 € X,

(B) Aoy < 1—ca(ms+m,), 2 €0, 1],

where the matrix P~"Y equals the t.p.m. P in all entries except in the x-th and y-th columns which are set
to 0 and w~*Y is the vector obtained by setting the x-th and y-th entries to 0 in .

Proof. Section [6] O

It is easy to retrieve the classical O(1/n) bounds on the bias and MSE of the GT estimator for missing mass
in n i.i.d. samples from Theorem [2| by checking that the conditions required for and @ are satisfied in
the i.i.d. case with Ay =1 — 7y, A\py =1 — (7p + 7y), €k = e}c,n =0,c0 =ca=ap=1and ng =nj=1.

The conditions on the t.p.m. P in the above theorem constrain the rows of (P~*)* to be similar to those
of (1 #~*)* = (1 — )1 1 #~*. This is reasonable and may be satisfied by many t.p.ms since the k-th
power of a non-negative matrix converges to the k-th power of its Perron eigenvalue, i.e. the eigenvalue
with the largest magnitude, times the outer-product of the corresponding right and left eigenvectors and we
expect such left and right eigenvectors of P~* to be close to those of 17w™~* i.e. w™~* and 1, and the Perron
eigenvalue of P~* to be close to 1 — m,, the only non-zero eigenvalue of 1 #~*. The conditions on P~*Y
have similar interpretations.

The error term in the convergence of (PNCE)’“, which we have denoted ¢ ,,, may, in general, be a function of &
and n (note that entries of P may be scaling with n as well). The convergence of bias to zero depends on the
convergence of €,, , to zero. This may be numerically verified for many interesting t.p.ms, as shown later.
Similarly, the convergence of MSE to zero depends on the convergence of 6;6771 to zero.
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The condition on P,, (self-loop probability) is necessary for successful convergence of the GT estimator as
shown later by a counter example. This condition is also expected to be satisfied by a wide range of t.p.ms
such as those arising from natural language text because a word seldom follows itself in writing.

The conditions of Theorem [2] need to be satisfied only for those letters z that are most likely to contribute to
the missing mass. For example, if 7, > 1/n, the letter = will appear in n samples with high probability and
P™~* need not satisfy the conditions. We have not explicitly stated such modifications for simplicity.

The conditions of Theorem [2| constrain a Markov t.p.m. to be close to the i.i.d. regime in an analytical way.
Next, we shift to an algebraic view, and study missing mass estimation from Markov chains with t.p.ms that
are close to the i.i.d. regime in rank. Note that the i.i.d. t.p.m. has rank 1. As a natural next step, we
consider t.p.ms with rank equal to 2.

3.2 Rank-2 Markov chains

Consider a Markov chain with a rank-2 t.p.m P, which we will call, loosely, as a rank-2 Markov chain. Since
P has all entries in [0, 1] with each row adding to 1 and since it has rank 2, the eigenvalues of P will be 1, Aq,
0,...,0,and —1 < Ay <1 (by Perron-Frobenius theorem) (Pillai et al., |2005). The value of A2 determines
several important properties of the chain. If Ay = 1, the chain is reducible. If A = —1, the chain is periodic
with period 2. If Ay = 0, the chain is i.i.d. For —1 < Ay < 1, the chain is irreducible and aperiodic. We define
the spectral gap of a t.p.m P as

B(P)&1— ) €[0,2]. (7)

In this section, we let P» g denote the family of rank-2 diagonalizable t.p.ms with spectral gap 3.
3.2.1 Bias of GT estimator

The absolute bias of the GT estimator converges as 1/(n3?) +1/(n3?) for rank-2 Markov chains with spectral
gap (. This is shown in the next theorem.

1/2
Theorem 3. For P € P, g with stationary distribution m and § > [30(1n n)/(n—3)] , there exists universal
constants c1,co > 0, such that

[BITT(X™) = Mo(m, X™)]| < -+ 25+ O(1/m). (8)

In comparison to Theorem [2] we see that the bias is explicitly bounded in terms of the spectral gap, which
is an important parameter of the chain. For 5 < 1, we see that the bias of the GT estimator converges if
(1/(nB3)) — 0, or B is higher than ¢/¥/n for large n. So, even in cases where the spectral gap is asymptotically
vanishing, the GT estimator converges if the rate of fall is not too rapid.

3.2.2 Minimax rate

For rank-2 chains, a much stronger result than convergence of bias can be shown. We next characterise the
minimax rate R} (P2 ) of the squared error risk of estimating Mo(w, X™) of X™ ~ Markov(P, m) for the
class P 3.

Theorem 4. The minimaz squared error risk R (P2 g) is bounded as follows:
1. For 8> ((1601nn)/(n — 5))1/3,
R, (Pap) < O(1/nf). (9)
2. For n sufficiently large, there is a constant ¢ such that

R, (Pg) > R,(P2p) > (10)

Cc
%.
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We get the upper bound in @D by analyzing the worst case MSE (over P, ) of the GT estimator ]\//.T(E;T(X”) =
$1(X™)/n in estimating My(w, X™) from X" ~ Markov(P, 7) with P € P 3. The simplifications in the
upper bound are fairly involved and an outline of the proof is presented in Section [7} The complete proof is
provided in the Appendix.

To get the lower bound in , we modify the Le Cam two point method. The usual Le Cam method for
lower bounds on minimax risk (Yu, |1997) directly applies when the estimand does not depend on the samples,
and is a parameter of the distribution alone. Using concentration properties, we extend the Le Cam two-point
method to the case of estimating missing stationary mass My (7, X™) that clearly depends on the samples X™.
By constructing two Markov chains (with t.p.ms in Ps g) close in distribution and separated in My(w, X™),
we get the lower bound in on R} (P2p). Since Ps g is contained in Pg, the class of all Markov chains
with spectral gap f, the same lower bound extends to R} (Pg) as well. Specific details are provided in the
Appendix.

Overall, we see that the minimax rate behaves as 1/n for rank-2 chains. This extends the previously known
1/n rate for i.i.d. samples. The behaviour with respect to 3 differs in the upper and lower bounds (1/(n3°)
vs 1/(nfB)), and this gap could be closed in future work.

3.3 Synthetic and corpora-based illustrations

In this section, we present the results of our simulations studying the performance of the GT estimator in
estimating the missing stationary mass of Markov sequences drawn using rank 2 t.p.ms, higher rank t.p.ms,
randomly generated t.p.ms, and empirical t.p.ms built over natural language text.

3.3.1 Rank-2 synthetic t.p.m.

We consider a K x K rank-2 t.p.m. with spectral gap § formed by 4 K/2 x K/2 blocks as follows:

[ ckp -+ ckp ckp| B2 0 - 0]
cxp - Cxp cxp|B/2 0 - 0
0 - 0 B/2|ckp cxp 0 ckp |
L 0 - 0 B2 cekp crp o CKp
where cxpg = (1 — (/2)(2/K). We generated stationary Markov sequences of lengths n =

30, 60, 120, 240, 500, 1000 from the rank—2 t.p.m. specified above with K = 1.2n and with 8 = 1/n%2
B =1/n and computed the missing mass My and the GT estimate over 5000 trials. The mean values with
standard deviation bars are shown in Fig. For comparison, similar results are shown for i.i.d. sequences
from the same stationary distribution. As predicted by the theoretical results, the GT estimate converges in
the rank-2 case for 3 = 1/n%2, while it is away by a constant value for 3 = 1/n. In the i.i.d. case, there is
convergence in all cases. We see that the variances in the rank-2 case are noticeably higher when compared
to the i.i.d. case.

A plot of MSE of GT versus n is shown in Fig. [2] for a larger range of values for n for the rank-2 chain
considered above. The parameters were chosen as K = 1.2n, 8 = 1/n%2,1/n%° 1/n%8,1/n, and the MSE
was averaged over 16000 trials for each n. We observe that the MSE falls with n for 8 higher than 1/n, while
it stays flat for § = 1/n. So, in this particular case, it appears that the actual MSE is as per the lower bound
of Theorem [ in terms of .

3.3.2 Markov chains with rank of t.p.m. above 2

The mean square error of the GT estimator for the missing stationary mass of a Markov chain with t.p.m.
rank greater than 2 is considered next for simulations. Through these simulations, we show the following:

e The minimax rate of missing mass estimation for Markov chains will depend on the rank of the t.p.m.
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Figure 1: Missing mass and GT estimates for rank-2 chain and i.i.d. sequence.
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Figure 2: MSE of GT for a rank-2 chain with spectral gap 8 and rank L sticky t.p.m.

e Rapid mixing of a Markov chain is not sufficient for convergence of GT estimator of missing mass.

e Large spectral gap of a Markov chain is not sufficient for convergence of GT estimator of missing
mass.

We consider a K x K t.p.m. P with the i-th row as (recall that e; is a vector with 1 at the i-th position and
zero elsewhere)

P, =ae+(l-—a)p, fori=1,2,...,L, and P, = p, fori=L+1,...,K,
where o € [0,1] and p = {p, : © € X} is a probability distribution on X = {1,..., K}. The stationary
distribution 7r of this t.p.m. is such that

1 1-
T o= Pi fori=1,2,...,L, and m; = a

pi, fori=L+1,..., K,

where 7 =1—« (ZfiLHpi).

For @« > 0 and L = K, m = p and we refer to the above t.p.m as a (geometrically) sticky t.p.m. or a sticky
Markov chain. For « > 0 and L < K, we refer to the above t.p.m as a partially sticky t.p.m. For a = 0, we
retrieve the i.i.d. chain. Note that the rank of this t.p.m is L + 1 for L < K and K, i.e. full rank, for L = K.

We generated stationary Markov sequences of lengths n = 100, 200, 400, 800, 1600, 3200, 6400 from the t.p.m
specified above with K = 1.2n, L = n%2% n%5 n%7 1.2n, a = 0.5 and p as the uniform distribution. A plot
of the MSE (averaged over 16000 trials) of GT against n, for these choices of L, is shown in Fig
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From the plot, we observe that the MSE of the GT estimator, for missing stationary mass of a Markov chain
with the above specified t.p.m, increases with the rank of the t.p.m. It is clear that the rate of decay of the
MSE, and, hence, the minimax rate of missing mass estimation depends on the rank.

Further, the MSE is non-vanishing (with n) when the t.p.m is of full rank which is a geometrically sticky
t.p.m in this case. Note that the geometrically sticky Markov chain considered here with o = 0.5 has mixing
times of 2 and 3 for total-variation distances of 1/4 and 1/8 to the stationary distribution 7. Further, the
spectral gap is 1 — o = 0.5. Therefore, even in the regime of mixing times close to i.i.d. (the mixing time of
an i.i.d. chain is 1) and constant spectral gap, there exist Markov chains for which the GT estimator does
not converge to Mo(mw, X™).

The geometrically sticky chain violates Condition 2 of Theorem [2} i.e. P, = a+ (1 — )7, < ag 7, is not
satisfied for o > 7. The authors of (Chandra et al., |2022) suggest a scaling of the GT estimator, which
converges to missing mass in this case.

3.3.3 T.p.ms generated at random and from corpora

Analytical characterisation of non-i.i.d. t.p.ms that satisfy the conditions in Theorem [2| is a challenging
problem. While there are counterexamples such as the sticky channels, the GT estimator appears to work in
practice for several text-based corpora, which behave like Markov chains. To study this phenomenon under
the setting of Theorem [2| we construct some random t.p.ms and some t.p.ms from text corpora and verify
conditions in Theorem [2] numerically.

We consider a class of randomly generated t.p.ms, and two classes of t.p.ms from text corpora.

o Pinifgen: Each entry is first drawn i.i.d. from the uniform distribution over [0,1] and each row is
then scaled to make the row sum equal to 1.

o NYT: The New York Times (NYT) corpus E| consists of randomly collected articles from the front
pages of New York Times from the years 2017 and 2018. To build an empirical t.p.m, we consider an
article in the NYT corpus and set the empirical transition probability (from word w;y to wa) Py, w,
as Ny wy /Nuw, , where Ny, 1, is the number of times the word ws follows w; in the article and N,
is the number of occurences of the word w in the article EL The empirical probability m,, is set to
N, /(total wordcount) of the article.

o GE: The novel Great Expectations (GE) by Charles Dickens is available under the project Gutenberg
(https://www.gutenberg.org/). To construct a t.p.m, we consider a chapter from the novel and repeat
the same process as NYT above.

We specifically use two Punirgen t-p.ms with support sizes K = 1250, 1.2n and three empirical t.p.ms, each
built using a chapter of the novel Great Ezpectations and five empirical t.p.ms, each built using an article
with more than 1600 words from the NYT corpus. To verify Condition 1 in Theorem [2] we use the Perron
eigenvalue A ., the eigenvalue of P~* with the largest magnitude. We consider the difference between the
ratio (PN‘”)’;Z/WZ and (A1 ,)*"! and denote by € ,, ., the maximum of the absolute value of this difference
over all the entries of (P~*)* except the entries of the x-th column which are 0. €, is the maximum of
€k n,o Over all x. Figshows two scatter plots, for k& = 16 and 64, of €y, , against 1 — 7, for & Punirgen t.p.1m
with K = 1.2n and n = 100,200 and 400. From these plots, we see that € , , falls with both & and n. Fig
also shows a scatter plot of A; , against 1 — 7, for the same t.p.m with n = 100, 200 and 400, which indicates
a linear relation between A; ; and 1 — 7. From the plots in Fig EI, we see that Condition 1 in Theorem |Z| is
satisfied by this t.p.m with A, as Ay, as €, decreases with n.

Figure [4] shows scatter plots of 1 — \; , against the stationary probability 7, for the remaining three t.p.ms.
All the plots show a linear upper bound relation between 1 — A; , and 7, closely matching the Condition

2available under CCO:Pubilc domain license at https://www.kaggle.com/datasets/mathurinache/10700-articles-from-new-
york-times
3We change all the words in the article to lower case, lemmatize the words and ignore punctuations.
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Figure 3: €gpno vs 1 — 7, and Az vs 1 — 7, for Pupiggen t.p.ms with K = 1.2n
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Figure 4: 1 — Ay 5 vs 7, for randomly generated t.p.m and t.p.ms from corpora.

1(b) in Theorem [2| In addition, these t.p.ms satisfy Condition 1(a) in Theorem 2 as €,, ,, is negligible for a
sufficiently high ny.

For the randomly generated t.p.ms Pynifgen With K = 1250 and K = 1.2n, P,, was found to be less than
10m,, for any x. For the empirical t.p.ms built from language text, P,, = 0 for any x. Therefore, the t.p.ms
under consideration also satisfy Condition 2 in Theorem @ Since €y, falls with n for the Punitgen t.p.m
with K = 1.2n and is negligible for a suitable choice of ng for the other t.p.ms, Theorem [2| implies that the
GT estimator should converge to the missing stationary mass of Markov chains from these t.p.ms.

Figure [5| plots the MSE of the GT estimator for My(m, X™) of a stationary Markov chain X™ generated using
the t.p.ms Piniftgen With K = 1250,1.2n, the three empirical t.p.ms from GE and the five empirical t.p.ms
from NYT corpora, for n = 100, 200, 400, 800, 1600, 3200, 6400 and averaged over 16000 trials. The curves for
GE and NYT correspond to MSE averaged over the three t.p.ms from Great Expectations and the five t.p.ms
from the NYT corpus. We observe that MSE falls for all of these t.p.ms.

4 Conclusion and Future Directions

In conclusion, our study of the Good-Turing (GT) estimator for missing stationary mass of a Markov
chain with t.p.m P and stationary probability 7 (with support size assumed to be unknown) indicates that
convergence of GT depends on relationships between the spectrum of P~* (P with z-th column zeroed
out) and 7, to be satisfied uniformly for all = that contribute to missing mass. We derive specific sufficient
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Figure 5: MSE of GT for randomly generated t.p.ms and t.p.ms from corpora.

conditions for convergence of absolute bias in terms of the nature of convergence of powers of P~* with
respect to powers of P. These conditions are verified numerically for t.p.ms derived from text corpora, which
supports the success of GT in practice. Analytical understanding of relationships between the spectrum of
P~* and m, for arbitrary t.p.ms is a topic for future study. In the case when P has rank 2 with a spectral gap
of 3, we derive minimax squared-error risk lower (¢/(n3)) and upper (¢//(n°)) bounds. The bounds extend
the 1/n minimax rate result from the i.i.d. case to rank-2 Markov. Characterizing the exact dependence on
is a topic for future work. Through our simulations on high-rank t.p.ms, we see that the rank of the t.p.m
affects the minimax rate of missing mass estimation.

5 Proof of Lemma Il

To prove , we begin with the expressions for the expected values of My(m, X™) and ]\/4\(§3T using 7w~*, P~
and me.

Since Mo(m, X™) =3 cx Te I(N(X™) = 0), we have

E[My(m = Y m Pr(N = Y mpw™ (P L (11)

zeX reX

Since MFT(X™) = ¢1(X™)/n =L 3, o I(NL(X™) = 1), we have

— 1 1 -
EMT(X™)] = = Y Pr(N (X")=1) =~ > Pr(Xp=zX #x,l#m1<1<n)
reX rzeX m=l1
1 n
= = Y |mep (PP 14 Y wvm (PR PP(PY) T L (12)
n
reX m=2

Taking the difference and , we get . This completes the proof of Lemma

6 Proof of Theorem

In this section, we provide a proof for in Theorem [2| The proof for @ is similar. To prove the bound on
the bias of MGT in . we first bound the expectation of M cLet X7 2 (X1, s X1, Xt 15 - - -5 Xon)s

10
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the samples X ... X, except X,,,, form=1,...,n

1
E 17GT n — [ — n —
[MET(X™) Z Pr(N. =1) = — Pr(X,, =z, N,(X",) =0)
reX zeX m=1
1 n—no
= - Y > Pr(Xpm=a,No(X2,)=0)+ > Pr(X, =z Ny (X",)=0)
n reX m=1,...,n0+1 m=ng+2
n—no+1,...,n
(a) 1 n—ng B
< - > Y Pr(Xpm=a)+ Y Pr(X,=a,N.(X2,)=0)
TeX m=1,...,n0+1 m=ng+2
n—no+1,..., n
1 " ~T ~r\m—2 0 ~r\n—m
- - [(znoﬂ)wﬁ S (e Py, (P 1]
n
reX m=ngo+2

) 1 n—mngo
< ) 1 . ~T )\m—3 2 1 77 PO )\n—m—l e 1 7% 1]
S oY femdmt Y wT T o auaa) 1A P (T ) L

TeX m=ngo+2
( ) 1 n—no
S Z [(Qno +1) T + Z T (1 — Pypy) (1 — 7TI)2 ()\2_4 + €n—m,n )\;”_3 +em—2n Ag‘m—l
n
TEX m=ng+2

+ €m—2.n anm,n)]

(d) 2n9 +1 2ng + 1 9
2 _ Z B _ n—4 2 }
> n + (1 n ) |:7TI (1 Pza:) (1 71—1?) ()\(1: + 26”0;” + 6’rL(],”L)
reX
(e) 2(2710 + 1) 2n9 +1 2 j : 2 yn—4
S n + (1 B n ) [26"0,” + eno,n] + cX T (1 N PMC) (1 - ﬂ-w) )‘gg ’ (13)

where we get (a) by using Pr(X,, = ©; X; # 2,0l #m,1 <1 <n) < Pr(X,, =z) = 7730, (b) by using
Condition 1(a) of Theorem |2} (c) by using #~* 1 =1 -, and #~* P}, 1 = m, (1 — P,,), (d) by using
Yowex Tz =1 A <l and €p mn > €ngny Em—2,n > €ngn fOr m =mng +2,...,n —ng and (e) by using
Ywew o (1= Poa) (1 =mp)? A4 <Y o Mo (1= Pog) (1—72)2 <X cp Mo =1

Using a similar method, we lower bound the expectation of My(w, X™) as

(@)
E[My(m,X")] = Y mpa™ (P™)" 'L > Y mm™ (A=) 17701
zEX reX
= Z Ty (1 — 7Tz)2 ()\;_2 - €n71,n)a (14)
reX

where we get (a) by using Condition 1(a) of Theorem [2| Using and , we get

- (@ 2(2 1
EMST(X™)] - E[My(m, X™)] < 2o+ 1) + [Bengun + €pym) + Z e (1 —mp)2 A2 [1 — Py — Ai]

n
rzeX
(b) 2(2n, +1 n—
R N D DEACEES P\ LR RN
n zeX
(©) 2(2ng + 1) 2 e”! el
< — ng,n 2 !
< - +[3€ o, +6n0,n]+ n_4+0001(n_2) ( 5)

where we get (a) by using > . 7 (1 - T2)? €n-1n < €n—1n Yowex Tz < €nin < €ngm, (b) by using
14+ X <2, Py < ag m, and (¢) by using A\, < 1 — ¢y, from Condition 1 in Theorem [2| along with
maxeo1) t (1—8)" <e '/n.

11
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Using a similar method, we can show that

2(2n0 +1 e e
2010 41 Benain + gl 25 + a0

B[My(m, X™)] - EIM§T(X™)] < ==

This completes the proof of (5)) in Theorem

7 Proof of Theorems 3] and [@

A proof of Theorem [3]is given in Section [A] of the Appendix. In the proof,

o we split the alphabet X into three sets: letters with m, = P,,, which we refer to as iid-like letters,
infrequent letters with m, # Py, frequent letters with 7, # P, and bound the letter-wise bias of
the GT estimator 'y, = % Pr(N,(X") =1) — 1, Pr(N,(X") = 0), i.e. E[M§T(X")— Mo(mw,X")] =
> wex L'z, over these sets. The infrequent letters contribute the most to missing mass, in expectation.

o For the letters with m, = Py, Pr(N,(X") = 0) = (1 —m,)" and Pr(N,(X") = 1) =n 7, (1 —7,)" " *
and the sum of |I';| over all the did-like letters is bounded as O(1/n).

e We bound the sum of |Fz over all infrequent letters (with m, # P,,) by using the eigenvalue
decomposition of P~ in ({)) along with bounds of the form Ay , <1 — ¢omy, ¢o being a function of
the spectral gap 3, on the Perron eigenvalue Ay ; of P™.

« To bound the sum of |I'y| (over all frequent letters) with m, # Py, we bound Pr(N,(X") = 0)
and Pr(N,(X™) = 1) using the eigenvalue decomposition of P~* along with bounds of the form
A,z < 1—com, and use these to upper bound the absolute value of I';.

The upper bound on the bias of the GT estimator in is obtained by combining the bounds on the sum of
[T | over these three sets and choosing a suitable threshold on stationary probability to split the alphabet X
into frequent and infrequent letters.

The proof of the upper bound in Theorem [ also uses ideas similar to the above. See Section [B]in the
Appendix.

The lower bound in Theorem [4] is proved by an extension of the standard Le Cam method to estimation of
the missing mass random variable. See Section [C]in the Appendix.
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A Proof of Theorem [3

Consider a rank-2, K x K diagonalizable t.p.m P with stationary distribution 7 = [r; --- 7| and spectral
gap (. By the standard eigenvector decomposition for the rank-2 matrix P, there exist vectors u = [uy -+ ug]
and v = [v; --- vg|T satisfying the decomposition

P = RDS with SR = B (ﬂ ,

1

where R = [1 v],D: {0

1 E 5} and S = {Z] Since P is a t.p.m, we have, for 1 <i,j5 < K,

0< P =m; —|—Bviuj <1, (16)

where the notation @ £ 1 — a.

Since P = RDS, we have P~* = RDS™" where S™" is obtained by setting the z-th column in S to zeros.
Now, the matrix P~*, when diagonalizable, can be written as

2

P =" N 0w, (17)
i=1
with
eigenvalues \;,; = 0.5(%, + B(1 — vpug) + (=1)1A,), (18)
right eigenvectors v =1+ (1/27,v,) [s2 + (=1)'A,] v, (19)
left eigenvectors u® = (1/Ai0Ay) ((1/2) (A, + (=1)its,] @™ + (=1)° Brovs UW), (20)
for i = 1,2, where A2 £ 52+ 4B vy and sy 2 B — 7y + Buguy,. We use u™® to denote the vector u with

2-th entry set to 0. Note wv]® =1 for ¢ = 1,2, since mv = 0. P, in the rank-2 case, is not diagonalizable
when both its non-zero eigenvalues equal 1 — 7, with only one non-trivial eigenvector and this case is handled
separately later (refer lemma [g).

The right and left eigenvectors of P~* are expressed in terms of 1 and 7 (or w™%), the right and left
eigenvectors of P. However, the difference terms involve the eigenvalues and eigenvector coordinates, which
need to be carefully bounded.

The following lemma contains important relationships between A\;*, 7, and 3.

Lemma 5. 1.
Ag € [_(6(1 - 77':8) + anc)a (/8(1 - 7737) + Pz:c)]7 if B€ [07 1] (21)

14
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2.
Az € [_(ﬂ + (1 - ﬁ)vxuw)7 (/B + (1 - B)Ua:uw)]v Zfﬁ € [1, 2] (22)

3.
IATE] < 1—(cp/2)ms, 1 =1,2, (23)

where cg = 8 for € (0,1], cg =1 for B € [1,2].
/.
~r B .

AT < 1 mﬂz, =12 (24)
Proof. See Section O

In the eigenvalue decomposition of P, let 1, £ Bv,u., for w, z € X. The following lemma bounds summation
terms that typically occur in the analysis.

Lemma 6. Forz,y € X,

Z(Wz)“ 2| [Vyel < 3, fora,b,c€{0,1,2,3,...} anda+b+c>1. (25)
TEX
Proof. See Section [A4] O

Let I'; £ L Pr(N,(X") = 1) — 1, Pr(N,(X") = 0) be the letter-wise bias of the GT estimator i.e.
E[]\//TOGT (X™) = Mo(m, X™)] = >, cx T'z. To bound Iy, we divide the alphabet X’ into three sets,

Ay & {r e X 7, = Py}, (iid-like)
A@0) & {z e X\ Ay : 7, <6}, (infrequent)
A@0) & {z e X\ Ay : 7w, > 6}, (frequent)

with 0 <0 < /5. For § = O((Inn)/n), the letters in the set A(5) are less likely to occur in X", than the
letters in A(J), and contribute more to the missing mass My(mw, X™).

A.1 Case 1: Infrequent letters

Using (|17) and the ensuing expressions in 7 we obtain

2
Lo o= [ Y (Niw)" " (1) (uf " Pl — mpXix)
=1

+(1/n) AN (M) = Qo)™ D (1) (uiN“"P&U?I)]. (26)
i.gel2l: it

For z € A(6), we will show by careful analysis that }° ¢ 45 [I'z| is bounded. The following lemma bounds
the absolute value of the factors multiplying \; ; powers in the above expression for I'; when = ¢ Ajg.

Lemma 7. Forxz € X\ Ay,
1. Fori=1,2,

(u; 1) (U™ PP, o™ — madia)

K2

< A2 [4 (ol + 72) o +2 70 Ao (1— M), (27)

15
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2. Fori,j in {1,2} with i # j,

: < 6 A7 T, (28)

| 1) (Pl o7

Proof. To prove Lemma |7, we use the expressions for v7"* and u;™* in and to get

1.
~T _ 1 _ i—lsi L
u; 1_2P+(1) AJJ—LZ (29)
2.
~T 0 ~NT . e el _1\¢ Y.
u;® P, v; Ty i e A, Q(Ar +(=1)"s2)(B — i z)
+ (_l)iilﬂ'ac [/\i,x(l - Ai,x) - B(ﬂ'x + Uxux)]] yi=1,2. (30)
3.
1 — 1
W P 05" = 1 (A =B [m+ (80 +5)] (31)
o o 1 1
us” Pl = o= B [me+ 5(80 = s)] (32)

Proof of Lemmal[7, part
Using and , we have

|(e1) 5 Pl o = mohia
(1/4) (A2 = 52) (B— Aiw)

(1) (1/2) (A (=1) ) e W1 = Aie) = Bl + vy
= 8.2 B (et (B Ai) + (1/2) (<)) (B0 + (1) 1s) (70 + vaia)]

+ (=1 (1/2) (Ap + (=1) 7 s0) T Nip(l = Nia)

= A2

Using (1/2) (Ay — sz) =75 — (1 — A12), (1/2) (Az + 85) =1 — 75 — Ao, along with ¢, = Bugty, |B| <1,
1—my <land|\z| <1, we get

IN

~T ~T 0 ~x
‘(“1 1) ug P,Lm v = A

Az_2 |:2(2|1/}zz| + 71—1) Ty + 2 Ty )\1,95 (]- - )\1,93)]

IN

~x ~T 0 ~T
‘(Uz 1) uj Prp v3® = mpAa s

A;Q |:4(|wxr| + 7Tz) Ty + 2 Ty >\1,.’r (1 - Al,m)]

Proof of Lemmal[7, part
Using along with and , we have

‘(u;ll) (UTI sz /U;x) = ‘AI_Q Ty [Al,z _B} [71—:5 - (1 - )\l,z) + wa::r:|
(d1)
<

-2

z T

urlvwl u2~x sz ,UTZD — ‘A;Q Ty [B — )\2’1} [(1 — Ty — )\2,1) + wzm]

(dz2)
< 6A7m,,
where we get (d1) and (da) using [B] <1, [Nio| < 1,1 -7, <1 and [ihy,] < 1. 0O
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Using and in to bound the absolute value of I'y, for z € A(J), we have

Tal < 2 (0a)"™ A72 [4 (el +72) o2 70 At (1= M)

+ (12/n) A7 [(Mo)" = (A\20)"] 7o

(b1)
< 207 4 (el + ) e Oaa)" 2 m ()" (L= M)
+ (24/n) A3 7,

(b2)
€ 4 (1m) A7 [(4/0) (Worel +m) +¢7 w46 A7 ], (33

where we get (b1) by using |\; | < 1,4 = 1,2, and (b2) by using along with max,c(o1yp (1 —cp)™ <
min{e~!/(cn),1/c(n + 1)}.

We next claim that A, is bounded away from 0 for x € A(9).
Claim 1: A, > /3, for x € A(9).

Proof. Using Bogu, > —m, from (16]), we get

B — Tz +vauz > ﬂ — 27y,

Ay Boguy, > —4Am2.
Using the above in the expression for A2,
Ai = (B -7+ szux)Q + 47, Bty
> (B —2my)? — dn} = % — 4P,
25> 129, (34

where we use 7, < 3/5 to get (a). O
Using the above lower bound on A, for z € A(§) in ([33), we get

Tl < 36 (1/n8) |(4/cs) (aw| +70) + (€71 +18/8) 7. (35)

Taking the sum of over x in A(d), we get

Z T (2) 36 (1/nB%) (e7' +16/cs +34/P), (36)
zEA(S)

where we get (a1) by using 3°, (5 7o < 1 and Lemma@as Prea) Yoal < Xpen [Vaa| < 1.
A.2 Other two cases

When = ¢ A(J), we require computation of the probabilities Pr(N,(X"™) = 0) and Pr(N,(X™) = 1) occurring
in the definition of T',. Pr(V,(X™) = 0) can be written as

(;)

Pr(N,(X™) =0) a7 (P~ 1 = (&~®) R D (S”RD)"2 §~" 1

S

xT

=

where we get (a) by noting that the entry of the (K x 1) vector (P~%)"~! 1 corresponding to any state z € X
is the probability of not passing through the state = in the next n — 1 steps, given the present state is z, (b)
by using w1 = 1,7 v =0, and ul = 0.
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Pr(N,(X™) = 1) can be written as
Pr(N,(X")=1) = Y Pr(Xp, =2, N (X" ") = No(X]4,) =0)
=1

DS Pr(Xm = 2, Ny (XY) = 0) Pr(No(XJoyy) = 0] X, = 2)
m=1

<

Qo t ST Pr(Xy = o, N (X3') = 0) Pr(X; = &, N,(X3 ") = 0),
m=1
where we get (a) by using the Markov property, (b) using
Pr(X,, =z, N,(X"™1) = 0) = Pr(X;=x, N,(X3") = 0)
and noting that Pr(N, (X2, ) = 0|X,, = z) = 7} Pr(X; = 2, N,(X3 ™) = 0). Now,

Pr(X; =2, N.(X3") =0) = 7, e, (P~")" 11 = 71, e, RD (SYRD)™ 2 5~ 1

where e, is a 1 x K vector with z-th entry as 1 and all other entries as 0.

(38)

(39)

7o [1 Bus] (S~*RD)™2 F ‘uﬂw}, (40)

The expressions for Pr(NV,(X™) = 0) and Pr(N,(X"™) = 1) involve powers of the 2 x 2 matrix S~ RD.
Using the eigen decomposition, we find expressions for terms in powers of S~ RD and derive bounds for

Pr(N,(X™) =0), Pr(N,(X"™) =1) and |I';|. This is done differently for the two remaining cases.

A.2.1 Case 2: iid-like letters

Since Py = mp + (1 — B)vgtty, mp = Py, implies that u, = 0 or v, = 0. For this scenario, the powers of
S~ RD simplify as shown in the following lemma.

—1

T 0
Lemma 8. 1. For z € X, with v, = u, = 0,(S~*RD)! = [ 0 ﬁl] .

2. Forx € X, with 7, = P, = 03,
(a) vy =0,u; #0:

(S~*RD)’

Il

I
£ 3
S5~
I o
[

(b) vy #0,uy =0:
1 —1
(S~ RD) = [m I vs T }

3. For x € X, with 7, = Py # J3,

(a) vy =0,u; #0:
T 0
o= [, 5 AL
To— P 0 Bl m->8

(b) vy # 0,uy, = 0:

18
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— UgUy

Proof. Since SR = I, we have S™ R = [ : 1*7%% } and

~T _ . _Bﬂ-wvz
S~RD = [_uw 51— vxux)} (43)

1. We substitute v, = u, = 0 in and raise the power on both sides to [.

2. (a)

Substituting Uy = O, ﬁ = 7, in ’ we get S™RD = |: :| Note that this matrix is
not diagonalizable since both its eigenvalues are equal to 7, Wlth T as the only non-trivial

eigenvector. Using induction on the exponent I, we get (S~*RD)! = [ [ ﬂol} .
x xz

ﬂ-mﬁ‘rvm} . Similar to the above case,
0 o
this matrix is also not diagonalizable with both its eigenvalues as 7, and [1 0]7" as the only non-

— —1
trivial eigenvector. Using induction on the exponent [, we get (S~*RD)! = Fg Zﬂ%vfﬁm } .
xr

Substituting u, = 0, 8 = 7, in ([43), we get S~*RD = [WT

jj g} . We observe that 7, 3 are the

1
eigenvalues of S~ RD with { g } and [(1)] as their respective right eigenvectors resulting in
B

Substituting v, = 0 in , we get SYPRD = {

e —

the diagonalised form in .

Substituting u, = 0 in (43)), we get S~*RD = ﬁ;” _ngvz} . We observe that 7, 3 are the
Brpvg

. 1|1 — . o . L
eigenvalues of S~* RD with [0] and Wals*ﬁ ] as their respective right eigenvectors resulting in

the diagonalised form in .

Substituting the corresponding form of (S~*RD)"~2 in and gives

Pr(N,(X") =0) = (1 —m,)", (44)
Pr(X; =2, N, (X3") =0) =7, (1 — 7)™ L.

Using the above in , we get

Pr(N,(X™) =1) = nmp(1 — m,)" L.

So, we have (in a manner reminiscent of the iid case)

Ty =7 (1 —m)" ! —7m,(1 — )" =7 (1 — )" <7, m;ixp(l —p)" ' =7m, O(1/n).

This results in the following bound:

Y I =0(1/n). (45)

T€EAp

A.2.2 Case 3: Frequent letters

In this case, m, > J and the letters z are likely to occur multiple times. So, Pr(N,(X"™) = 0) and
Pr(N,(X™) = 1) will both be small, and we bound them both. Further, since Py, # 7, we have that u, # 0

and v, # 0.

For this scenario, the powers of S~™*RD simplify as shown in the following lemma.
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Lemma 9. For x € X, with v, # 0,u; # 0,

~z e [T 0 oy
oyt = v |00 0y (16)
1 1
where V% = _Ax_sx Ay + 5,

)

2@7%% QE’]TI’Um
Sp=1—mp — B(1 — vyuy).

Proof. Solving det(S~*RD — AI) = 0, we get A7 = 0.5(T, + B(1 — vpug) + (—1)"A,), i = 1,2, as
1 1
[_(AI - 396)/@57796”90)], {(Ar +52)/(2B7vs)
eigenvectors, where A2 = s2 + 487, v,Uy, 5, = 1 — 7, — B(1 — v u,), resulting in the diagonalised form in

([49). O

the eigenvalues of S~ RD with ] as their respective right

Substituting the diagonalized form of (S~*RD)"~2 from into , and simplifying, we get

P00 =0 = 100+ 0|+ 2 [Sosnr-mioay] (an)
=0
Pr(X; =, Ny (X2') = 0) = ;m[()\f"‘”)ml L5 ] +7rz[ ﬁvzuz} [mZQ ApT)m-2=l(\gey!
=0
(48)

Claim 2: |s;| <3
Proof. Using |B] <1, 7, < 1, and Bvgu, <1 — 7, from in s, =7, — B+ Bugus, we get |s,| < 3. O

Using triangle inequality on the R.H.S of , we get

n—1

PrvCe) =0) < g [ Q)+ gD+ B D o gy

=0

—~

2
(1_|_32n> 670.5(77,71)c57r3C (_2 <1_|_32n) 670.5(7’L71)c;357 (49)

where we use along with 1 —z < e™* to get (a), e * < 1 and the above Claim 2 to get (b), and 7, > §
for x € A() to get (c).

Claim 3: For z in A(), m=1,...,n,
Pr(X; =2, Ny(X3") =0) <m, (1+(5/2) (m—1)) exp{—(m —2) cg 6/2}.

i) <60‘5013ﬂ$+n81’> 670.5(n71)¢:57rx

—
NS

Proof. To get the above bound, we bound using |s,| < 3 (Claim 2 above), |Bvzu,| < 1, and |\ .| <
1 —cpd/2 (from along with 1 —¢ < e™* O

Using Claim 3 in , we get

Pr(N, (X <Y me (14(5/2) (m— 1)) exp{—(m —2) ¢z 5/2}

) (1+(5/2) (n—m)) exp{—(n—m —1) cg §/2}
= nm, g(n) exp{—(n—3) ¢z 6/2},
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where g(n) = [1+ (5/2) (n —1) (14 (5/12) (n — 2))]. So,
IT,| = ’fPr H(X™) = 1) — m,Pr(N,(X") = 0)| < %Pr(Nm(X”) =1) + m,Pr(N,(X") = 0)
< 70 [g(n) exp{—(n—3) ¢ 6/2} + (1+(3/2) n) exp{—(n—1) ¢z 6/2}].

Summing over z in A(§) and using erZ(a) T, < 1, we get

S Il < [g(n) exp{—(n—3) cs 6/2} + (1+(3/2) ) exp{-(n—1) c3 6/2}].  (50)

©€A(5)
A.3 Combining all cases
Taking the sum of (36, and (50), and choosing 6§ = (6/cg) (Inn)/(n — 3), we get

| BT (X™) = Mo (m, X™)]

<36 (1/nB%) (1+16/cs +18/B) + O(1/n),

1/2

for g > {SO(IH n)/(n — 3)} (since 6 < /5). This concludes the proof of Theorem

A.4 Proofs of some lemmas

A.4.1 Proof of Lemma
1. We first consider the case with a > 1.

S (m)® 188 196 £ St € S = 1,

zeX reX reX
where we get (f) by using [¢zs|, [¢yz| < 1 (from (L6))) and (g) by using 7¢ < .

2. We now consider the case with a = 0. Since a + b + ¢ > 1, atleast one of b, c must be > 1.

(a) Say ¢ > 1.
) (a)
Yo Wl Wpal < Y Wl = D el + D Y
TeX reX TEX 1Py, <0 TEX 1Py >0
(9)
o2 ¥ ez ¥ w2
TEX 17y, <0 TEX 1Py <0

where we get (a) by using [tg|, [ty < 1 (from (T16)), (b) by using >, ¥ye =0, and (c) by
using —tpy, <, (from (L6)).
(b) Say b > 1.

(a)

zeX zEX TEX Y34 <0 TEX Mz >0
(b)
Q-2 Y |l
TEX P <0

(0)
< 1l+2 ) m <3

TEX 3, <0

where we get (a) by using |[¢zz], |[¥ys] < 1 (from ), (b) by using >° . x Y2z = (1 — 3), and
(c) by using =ty < 7, (from (16)).

This completes the proof.
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A.4.2 Proof of Lemma

To prove 7 we first start with the expression for A2 and bound it in the following way:

AL = [(1=m) = (1= B) 1 = vzta)]* + 4(1 = B)mvrtia
= [(1—m) + (1= B)(1 — vaus)]* — 4(1 = B)(1 -y — vyuy)

= B+ (1 —=B)m+(1- ﬁ)vxuw]z + Fi(ﬁz +2B(1 = B)) + 267 [(8 — 2) + (1 — B)vguy]

[B(1—mz) + anﬁ]Z + 77;3(52 +2B(1 = B)) + 2872(B — 2) + 2B, (1 — 75)
= [5( - 7rz) + P:rx]2 - 52’”3 + 257Ta:(ﬂ - 1)
2501 =) + P

where (a) follows by using [(1 — 7;) + (1 — 8)(1 — vu.)]? = [B+ (1 — B)7s + (1 — B)vpuy + B, — 2]? and
simplyfying, (b) follows by using Py, = 7, + (1 — B)vgts, (1 — B)vzu, < 1—m, from and (c) follows from
B < 1.Since (1 — ) + Ppz > 0, we get A, € [—(B(1 — 7z) + Paw), (B(1 — 73) + Pyy)]. This completes the
proof of .

To prove , we again start with the expression for A2 but bound it in a different way as shown below:

AL = (1) = (1= B)(1 — voua)]* +4(1 = B) Tttty
= [ﬁ + (1 - ﬁ)vmuz - Wx]Q + 4(1 - ﬁ)ﬂwkuw
= [5 + (1 - B)vxumF - 257Tm + 77'32c + 2(1 — ﬁ)wzvzugﬁ

(g) [5 + (1 - 5)kuw]2 - 2ﬁ7rz + 7T§ + 271';5(1 — 7Ta;)

- [ﬂ + (1 - 6)”95“1}2 + 27790(1 - ﬂ) - Wazc
< B+ (- Bl

where (a) follows by using (1 — 8)vyuy <1 — 7, from and (b) follows from 8 > 1. Since 8+ (1 — vz uy
is positive for 8 > 1, we get A, € [—(B+ (1= B)vaus), (B+ (1 — B)vsug)]. This completes the proof of (22)).

Using and in the expression A\7" = 1 ((1—7,) + (1 = B)(1 — vpuy) + (—1Zi+1Aw) ,i=1,2, we get
A7® <1 —0.58m,, 8 € [0,1] and \;® < 1—0.5m,,8 € [1,2] for i = 1,2. Using £ < § for 8 € [0,1] and
B% < B+ 2 for B € [1,2] completes the proof of Lemma

B Proof of Theorem [, Upper bound

In this appendix, we provide proof for the upper bound in theorem [

The minimax risk R} (P2 ) is upper bounded by the worst case risk (over P; g) of the Good-Turing estimator.
Our next lemma gives an expression for the MSE of the GT estimator.

Lemma 10. Consider a stationary Markov chain X™ with state distribution 7. Let Q" (a) = Pr(N,(X") = a),
and Q7 ,(a,b) £ Pr(No(X") = a,N,(X") =b) for x,y € X and a,b e {0,1,...}.

B[(Mo(m, X™) — MET(X™))?

- Z(wi Qn(0) + (1/n)? Q:<1>)+Z T (51)

n2(n
TEX TEX yeX ,y#x

where Ty, £ mpmy Q1 ,(0,0) — (7, Q2 ,(1,0) + 7, Q7 ,(0,1)) + ﬁ wy(11).
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Proof. Substituting Mo(X",m) = > 4y 7 I(N, = 0) and M\OGT(X”) = (1/n)> ,cx I(N; = 1) into
E[(My(X™, m) — M\OGT(X”))Q] and taking expectation of each term in the square of the summation,

2
E[(My — M§™)] = E (Zm »=0)— (1/n)I(N. —1)>

reX

> (wi Pr(N, = 0) + (1/n)? Pr(N, = 1))

zeX

+> > memPr(N. =N, =0) - wyPr(Nz =1,N, =0)
T€EX yeX ,y#x

1 1
— —m,Pr(N, =0,N, = 1) + —Pr(Nm =N, =1)
n

Y (R@oamem)- X X e,

reEX zeEX yeX, y;éa:

1
+> > mem, Q1,(0,0) - ~ (my Q,(1,0) + 7 Q7,(0,1))
reEX yeX y#x

1 n
* n(n —1) Qz,y(1,1), (52)

n(n—1)

where we get (a) by expanding 1/n? as 1/n? = —— — W and using the definitions of Q7 (a), Q% ,(a,b).
Using the definition of T}’ in completes the proof of

To bound E[(My — Z/W\(?T)Q], we begin with the following expression for Q7 (1).

Q"(1) = Pr(Ny(X") = ZPr X =x; X #x,m#1) < ipr(xlzx) = nm,.  (53)

=1 =1

This implies

(1/n?) Z QM) <1/n (54)
reX
Similarly,
n—1
py(LD)=Pr(N, =N, =1) = »_ Z Pr(X;, =z, X, =y, X # 2,y ;m # 11, 12)
l1=11ls=l1+1
n—1
+Z Z Pr(Xy, =y, Xi, =2, X 2,y ;m #£1,la)  (55)
I1=113=l1+1

For lo > 1; > 1,

Pr(Xh = J?,Xl2 = anm 7é Z,yi;m 7& llvl2) < PI‘(X[I = x)Xlz = y)
= Ty Pr(Xlz = y|Xl1 = $) (56)
Similarly, Pr(X;, =y, X, = ¢, X,y # 2,y sm # 1, le) < 7wy Pr(Xy, =2|X;, =y) (57)
Plugging and into ,
n—1
Z Z 7 Pr(Xp, = y|Xi, = x)
I1=11ls=l1+1
n—1 n
+ Z Z Ty Pr(Xlg = $|Xl1 = y)
l1=11ls=l1+1
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Since Zzex Zyex,y;éx e Pr(X, =y|X;, =2) < ZzeX m, < 1, we get
Dovex Doyexyrte Way(L1) < n(n—1). Therefore,

T X 2 @) < v (59)

TEX yEX yFz

To bound Y, .1 72 Q7(0), we consider the sets Ag, A(6) and A(5) (with 0 < & < 3/5) defined in section
that make up X.

For x € A(4), we have

n—1

Q1(0) = Pr(N,(X™) = 0) = (1/2) [ AP + <A;z>”] T (5:/2) [Z(W)ﬂ“(xgﬂ

=0

from .

Since the claim 1 (in section [A.1)) implies AT* — A3* = A, > 0 for z € A(J), B € (0,2], we get
n—1 1
SO6M 05 = 1| 06" - 05" e € 400 (59)
1=0 ¥

Substituting in and applying triangle inequality on the absolute value of the R.H.S, we get

n 1 |5f| ~x |\ ~x\T
a0 < 5 (1+ ) [+ g
@ |52 ¢\ @ 9 5
< _5 < i _5
< <1+ Ax> (1 2@) < <1+5) (1 2%) (60)
where we use (23)) to get (a) and the claims 1 and 2 from section |[A|to get (b). Therefore, for x € A(9),

S 2 Qo) € (1+Z) > w2 (1-%a)

TEA(S) ©EA(6)

(2) 2(1+Z> (1/ncp) Z Ty g 2(1+Z> (1/ncp) (61)

z€A(S

where we get (a1) by using (60), (b1) by using max,e(o,1)p (1 —cp)" = c(n+1) (1 - %H) < L and (1)
by using ZmeA(é) e < 1.

For x € A(6),
2 (a2) 3n L 0.5(n—1)eas 9 (c2) n s tlens
Z 7, Q5 (0) < 1+ > e~ 0-5(n=1)eg Ty < 1+ > e~ 0:5(n—1)cg (62)
z€A(S) z€A(S)
where we get (az) by using , and (c2) by using 35 757 2 <1
For z € Ay(9),
2 (ao) 2 (bo) (co)
Yor2Qro) ' Y -m)" < 1n Y m < 1n (63)

TEAQ TEAQ x€Ap

n
where we get (ag) by using , (bo) by using max,c(o,1)p (1 —p)" = sy <1 — m) < %, and (cp) by

using D o4, T < 1.
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Since X = A(8) U A(8) U Ay,

dDomQu0) = Y m Qo)+ > m o)+ > m Qo

TEX €Ap zEA(S) z€A(S)
(@)
< 1/n 4o <1 " ;) (I/NCﬂ) (1 n 32n> 6—0.5(n—1)6/36
where we get (a) by combining (61)), and (63).
Choosing ¢ = (8/cg) (Inn)/(n — 1) and using n — 5 < n — 1, we get

> Qo) < 2 (1+2) (1/ncg) + O(1/n), (64)

reX

where ¢z = 8 for 5 € (0,1] and ¢g =1 for § € [1,2].

To bound »°,c v Dy c vy Loy, we divide {(z,y) : x € X,y € X,z # y} into two sets:
B(o) £ {(z,y):a,y€X, v #y, mp +my <6}
B©) £ {(x,y):zyeX, vy, m +my >3}

with 0 < § < /5. Similar to the sets A(J) and A(6), defined in section |A] the ordered pairs in B(§) have
atleast one frequent letter that is likely to be seen in X™, while the set B(J) contains ordered pairs of rare
letters that are less likely to be seen in X™ and hence contribute more to the missing mass My (mw, X™).

In the following lemma, we provide bounds on T}, for (z,y) in B(6), B(9).
Lemma 11. For a rank-2 diagonalizable t.p.m P with spectral gap 8, and ¢ € [0,3/5),

1. For (x,y) in B(d),

T2 < qy (16 (e + ) (1—2(/f_i2)<m+wy>)n2
bany () 14 5] (63)
2. For (2,y) in B(5),
13, < 4, 0) e { ~ (n-5) 5 5} (66)

where the positive constants quy, @y, and g7, are such that 3° ., e xo Qoys Do yyexe Qoy WD D, yexe oy
are constant w.r.t. n.

Proof. We get (65]) by using a method similar to the upper bound on the letter wise bias T, for infrequent
letters, in section is obtained by following a method similar to the upper bound on I',., for frequent
letters, in section [A.22] O

We first the bound the sum of Ty, over (z,y) in B(§) using (65).

n(a) / (ﬂ+2) 4 6
X E X gyt B a0 [ty

(z,y)€B(3) (z,y)€B(3) (z,y)eB(5)
(®) (B+2) 6
< ! —
- ( 2. qu) [2 Bo(n—1) 2 qu) [ 55 (n— 1)1
(z,y)eXx? (z,y)eXx?
(c)
< 0(1/np?), (67)
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where we get (a) by using max,cp 1 p(1 —cp)" 2 < C(n L (b) by using >°, yep(s) Goy < Do(ay)exe doys
Z(x,y)EB(J) Ty SZ(m,y)eﬂ .y, and (c) because Z(m’y cx2 Qays Z(z,y)GXz 4y, are constant w.r.t. n.

Similarly, we get

n B
2 Ty, < O(n’) eXp{ —(n—5) 2B+2) 5}
(w,y)€B(9)

using . Choosing § = 8 ﬁz(:{g)& Inn, we have

> I, < 0(1/n). (68)

(z,y)€B(5)

Combining with , we get
> 2. T < 00/np) (69)

TEX yeX y#x

Combining , , , and to upper bound completes the proof of the upper bound on R} (P> g)
in Theorem [4l

C Proof of Theorem [4, Lower bound

To prove the lower bound on R} (P2,) in 7 we use the Le Cam method. The standard Le Cam method
Yu| (1997) is for estimating constant parameters of a distribution whereas My (7, X™) is a function of both the
distribution and the samples. To get , we use the following extension of Le Cam method for estimands
that depend on both the distribution and its samples.

Le Cam lower bound for estimating random variables: Let Q be a family of distributions over an alphabet ) and
Y be a random variable distributed according to @ € Q. Let §(Y, Q), taking values in a pseudometric space D
with a pseudometric d, be a function of both Y and the distribution (). We assume that the set D is bounded
i.e. the distance d(u,v) between any two points u,v € D is at most A. Let d(Dy, D2) £ min,ep, vep, d(u,v)
be the distance between the subsets Dy, Dy of D. Let §(Y) be an estimator for 8(Y, Q) and co(Q) denote the
convex hull of Q.

The following lemma provides a lower bound on the worst case risk (over Q) of any estimator a(Y) for (Y, Q).
Lemma 12. (Chandra et all 2029, Lemma 5) Let Dy, Dy be two subsets of D, and Q1, Qa2 be two subsets of
Q such that for any Q; € Q;, 0(Y, Q;) € D; with probability at least 1 —¢;, i = 1,2. Let § = d(Dy,D2)/2, and
[[Q1 A Q2| 21— ||Q1 — Qa||7v denote the affinity of the two distributions @y and Qz. Then

sup E[d(0(Y),0(Y,Q))] = ( sup ||@Qy AQzll) —(a +e)A. (70)

QeQ Qi€co(Q;)

To prove the lower bound in theorem {4} we apply Lemma [12{on Py g, the family of rank-2 diagonalizable
t.p.ms with spectral gap 3, using two specifically constructed t.p.ms € P, g that are hard to distinguish.

We first prove ([10]) for 8 € (0, 1.6).

1-9 ((51/R) 11 K—1
Let P61, 0] £ ! x
[91,02] 02 1g—1x1 (1 —02)/R1g_1xKx—1
and 1x_1x1 denoting the row and column vectors with all entries as 1, and 1x_1xx—1 denoting the
K — 1 x K — 1 matrix with all entries as 1.

Let P = {Pi} and P, = {P2} be two subsets of P23, where P, = P[0.58,0.50], P, = P[0.50 —
@,0.58 + a] are two t.p.ms on the alphabet {1,2,...,L + 1} with m; = 0.5[1 (1/L)11x.] and wy =
[0.5+ (a/B) (0.5— (a/B))/L 11x1] as their respective stationary distributions. For each element of P, to
lie in [0, 1] and each row of P, to sum up to 1, we require that & < min{0.58,1 — 0.58}. Both P; and P»

] be a K x K t.p.m parameterized by 01, do, with 11« x_1
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have the same spectral gap 8 (and hence € P; 3) and «, L are choosen appropriately to get the best lower
bound on R} (Pap).

For i = 1,2, if X" is a stationary Markov chain with t.p.m P;, then My(X", ;) satisfies

- £ (054 6-05) 1 20 (1)
-t € (054 6-05) 10020 + § (05— - 1F) ()
s (n-635) () (-v-5)]

i probabiey 1 - (05—~ 1%) (1-2 ~-na) L

where we get the bounds in (a) and (b) by considering the cases of : (i) the letter 1 occuring in all the samples
X™ and (ii) all the n samples, X™, being distinct with the letter 1 occurring only once, respectively. We get
the confidence interval in by using the bounds in and in the event of the letter 1 occurring
atleast once.

Let aw > 0.56n/L, so that the above confidence intervals in for Mo(X™,m;),i = 1,2, are non-overlapping.
Using lemmawith Q="Psp Y =X"0(Y,Q)=My(mw,X"),D=[0,1],d(u,v) = (u—v)2,A=1,0; =P;
and D; as the confidence interval in for i = 1,2, we get

sup Bl (X7 Mom X7 2 05 (5= 20} Imeenanoeyi- (1-5) @

Our next lemma gives an upper bound on the total variation distance between P;(X™) and Pa2(X™).

Lemma 13. For the t.p.ms Pi, Py € Py g, constructed above and X" being a stationary Markov chain,

1+0.5(n— 2)5)0'5

1-0.53 (75)

IPUX™) — Py (XNl < (VEo/B) (
Proof. Section [C.1] O

Since ||P1(X™) A Po(X™)|| =1 — ||P1(X™) — Po2(X™)||rv, using the above Lemma to lower bound the R.H.S
in , we get

2 0.5
) ) 2 06 (5 7). (- (M1252)°)

-8y -

0.5
Substituting o = 2% (%) ,and L = ¢” in completes the proof of for 3 € (0,1.6).

We now prove for 8 € [1.6,2]. Let P; = {P;} and P, = {P5} be two subsets of Py g, with g € [1.6, 2],

where
b [2-8 051 (05(8-1)/L) L
1 — )
Lixr+1 Or41xL41
_ _ / _ _ /
P = 2-8 058 —1)+a’ ((05(8—1) —&)/L) Trxr are two t.p.ms on the alphabet
Tixrit Or41xr+1

{1,2,...,L+2} with @} = [1/8 0.5(8—1)/8 0.5(8—1)/BL 11x.] and
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= [1/8 (05(8—1)+a')/B (0.5(8—1)—a’)/BL 11,1] as their respective stationary distributions
and Or11x7+1 being the L + 1 x L 4 1 all zero matrix. For each element of Pj to lie in [0, 1] and each row
of P} to sum up to 1, we require that o/ < min{0.5(8 —1),1 —0.5(8 — 1)}. Both P| and P} have the same
spectral gap § (and hence € P) and o/, L are choosen appropriately to get the best lower bound on R}, (P2 ).

Following a method similar to the proof of for 5 € (0,1.6), we get

AT n ny\2 1 O/ n ? / n / n L?J
g B = Ma(m X 2 5 (G = 57500-1)) PR A PG -9(09) 55 ()

Our next lemma gives an upper bound on the total variation distance between Pj(X™) and Pj(X™).

Lemma 14. For the t.p.ms Py, Py € Ps g, constructed above and X" being a stationary Markov chain,

I1P{(X™) = Py(X™)|lrv < V2na!/V/B(B - 1) (78)

Proof. Section O

Using the above lemma to lower bound the R.H.S in and choosing o/ = 0.5\/8(8—1)/v2n, L ="
completes the proof of for 8 € [1.6,2].
This completes the proof of the lower bound on R} (P2 ).

C.1 Proof of Lemmas [13] [14]

To show the bound in (75), we first bound the total variation distance between P;(X™) and P»(X") by the
KL divergence D, (P1(X™)||P2(X™)) using Pinsker’s inequality.

Lemma 15. Pinkser’s inequality (Boucheron et all, |2013, Theorem 4.19)

[PL(X™) = Po(X™)]|rv < % VDi L (P (X™)||Py(X™)) (79)

where D (P (X™)||P2(X™)) is the KL divergence between Py (X™) and Py(X™).

Our next lemma expresses Dy, (P (X™)||P2(X™)) in terms of the KL divergence between the stationary
distributions 71, 7ro and the KL divergence between the corresponding rows of P; and Ps.

Lemma 16. For any two t.p.ms Py, Py, on an X, with 7,72 as their respective stationary distributions,

Dgr(Pi(X™)||Po(X™) = Dgp(mllma) + (n—1) > ma Dr(Pi(|z) || Pa(-|2)) (80)
reX

where P;(-|x) denotes the row of the t.p.m P;,i = 1,2, with transition probabilities from the state x.
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Proof. Let 2™ £ (21, 29,...,2,) € X™.
D (PL(X™)|[P(X™))
= Y Pa") n(Pi(a")/Pa(a™)

rneXxXn

n

P (X =o| X101 = x1-1)

(a)
Z 1@") (I (T /72.00) + Z . Py(X, = x| X1 = x11)
nEXT =2

P (X =x| X110 = x1-1)

n
(®) 1
= DKL(7T1H7T2) + E E Pl(x) In PQ(XZ :xl‘Xl,1 :xlil)
=2 zlex!

= Dgp(mi|m2)
+> Y ma PXi=wX g =x)h
=2 x;_1,x1€EX

= Dgr(mllms) +(n—=1) Y m. Drr(Pi(l2) || Pa(-)
reX

P (X =z X101 = x-1)
Py( X =a| X1 = x1-1)

where we get (a) by using the Markov property P;(z™) = m; 4, [[} o Pi(Xi = 2| Xi—1 = 2-1), i = 1,2, (b)
and (c) by appropriately marginalizing P;(z™). O

C.1.1 Proof of Lemma([13

Using the values specified for m; 5, P;(Xo = y|X1 =) for z,y € {1,...,L+1}, i =1,2, in the section we
get
Dgpr(mi||m2) = —0.51n (1 —40°/5%)
Drcp (P11 || BC1) = —(1-058) In(1+a/(1—0.58) — 0.5 8 In(1 - 2a/5)
Dgr(Pi(|2) || P2(]z)) = =(1—-0.58) In(1—a/(1-0.58)) - 0.5 5 In(1+2a/8),
forz € {2,...,L+1}.

Using the above three equations in , we get

Drr(PL(X™)|[P(X™))
= —05(m—1)[(1-058) In(1-a?/(1-0.58)?)+0.5 5 In(1—4a?/5%)]
—0.5In (1 —4a°/58%)
a? a? a? o?
1-053 +2B} i = e —osp)

where we get (a) by using —In(1 — z) < 2z, for z € (0,0.5). Plugging the above bound into completes
the proof of Lemma

(@)

2 (- 1)[ [1+05(n — 2)4]

C.1.2 Proof of Lemma [14]

Using the values specified for 7} ,, P/(Xo = y|X1 = z) for 2,y € {1,..., L+ 2}, i = 1,2, in the section we
get

Dir(millm) = —2= [1—( 2o’ )]

23 g—1

B-1
0, forxe{2,...,L+2}.

Do (P{(|1) || P3(11) = —05(5—1) In [1( - ) 1

Dgr(Pi(]x) || P3(-|x))
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Using the above three equations in and following a method similar to we get ||[P{(X™) —
Py(X™)||lrv < v2na'/+/B(S — 1). This completes the proof of Lemma
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