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Abstract

One aim of representation learning is to recover the
original latent code that generated the data, a task
which requires additional information or induc-
tive biases. A recently proposed approach termed
Independent Mechanism Analysis (IMA) postu-
lates that each latent source should influence the
observed mixtures independently, complementing
standard nonlinear independent component analy-
sis, and taking inspiration from the principle of in-
dependent causal mechanisms. While it was shown
in theory and experiments that IMA helps recov-
ering the true latents, the method’s performance
was so far only characterized when the modeling
assumptions are exactly satisfied. Here, we test the
method’s robustness to violations of the underly-
ing assumptions. We find that the benefits of IMA-
based regularization for recovering the true sources
extend to mixing functions with various degrees of
violation of the IMA principle, while standard reg-
ularizers do not provide the same merits. Moreover,
we show that unregularized maximum likelihood
recovers mixing functions which systematically
deviate from the IMA principle, and provide an
argument elucidating the benefits of IMA-based
regularization.

1 INTRODUCTION

One objective of representation learning is to invert the data
generating process, recovering the underlying factors of
variation which generated the observations [Bengio et al.,
2013]. A closely related objective is blind source separa-
tion (BSS) [Jutten and Hérault, 1991]: given measurements
which are mixtures of some latent sources, the aim is to
recover them up to tolerable ambiguities. A method to solve
BSS is Independent Component Analysis (ICA) [Comon,

1994], under the additional assumption that the sources are
statistically independent. If the mixing is nonlinear, how-
ever, the model is nonidentifiable without additional con-
straints, i.e. the reconstructed sources, even though inde-
pendent, might not be the true ones. Recently, Gresele et al.
[2021] proposed a new method called Independent Mecha-
nism Analysis (IMA) to address this problem. This extends
Independent Component Analysis by additionally requir-
ing that the sources should influence the observations inde-
pendently, where independence is meant in a nonstatistical
sense inspired by the principle of Independent Causal Mech-
anisms [Peters et al., 2017], thereby providing a causally
motivated inductive bias for representation learning. Simi-
lar objectives have subsequently been used in the context
of generative adversarial networks [Wei et al., 2021] and
Principal Manifold Flows [Cunningham et al., 2022].

Gresele et al. [2021] showed that IMA allows to rule out
many of the counterexamples (or spurious solutions) typi-
cally used to show nonidentifiability of nonlinear ICA; and
that a regularised likelihood objective based on IMA helps
recovering the ground truth sources. However, this approach
has so far only been tested on problems where the mixing
satisfies the IMA assumption, but for many practical prob-
lems of interest, the assumption will most likely not hold
exactly, and it is unclear whether the method is robust to
deviations from it. Moreover, it is a priori unclear whether
the observed benefits of the IMA-regularised likelihood
would also be given by other kinds of regularization of the
mixing function class—for example, by enforcing that the
reconstructed mixing has low complexity or is close to lin-
ear [Zhang and Chan, 2008]—or whether they are specific
to the IMA principle.

In this work, we aim to close this gap by considering more
generic mixing functions, i.e. multilayer perceptrons (MLPs)
of varying depth and with randomly sampled parameters,
which are frequently used as ground truth mixing functions
in the literature [Hyvärinen and Morioka, 2016, Hyvarinen
and Morioka, 2017, Khemakhem et al., 2020]: crucially,
these are not specifically designed to satisfy the IMA prin-
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ciple. We quantify to what degree these functions deviate
from the IMA assumptions, and investigate whether the IMA
contrast still enables us to distinguish between the true and
spurious solutions. Furthermore, we compare IMA-based
regularization to other types of regularization, investigating
whether its benefits are specific to it. We find that the spuri-
ous solutions can be ruled out and the ground truth sources
reconstructed even when the assumptions are not exactly sat-
isfied, thus indicating a degree of robustness of the method,
and that the benefits of IMA-based regularization are not
observed for other standard regularizers. Moreover, we find
that unregularized maximum likelihood systematically de-
viates from the IMA principle, and provide an argument
to explain why this happens and how different levels of
IMA-based regularization can be beneficial.

2 BACKGROUND

2.1 INDEPENDENT COMPONENT ANALYSIS
AND ESTIMATION

Independent Component Analysis (ICA) is one approach to
solve BSS [Comon, 1994]. It assumes ground truth latent
sources s ∈ Rn and observations x ∈ Rn. The relation
between s and x is an invertible transformation

x = f(s),

where f is also termed mixing function. Moreover, it
assumes that the sources are statistically independent,
ps(s) =

∏n
i=1 psi(si). The task of independent component

analysis is to transform x into independent components, i.e.
we need to find a transformation g : Rn → Rn, y = g(x),
which should result in the estimated components yi being
statistically independent. Such a mapping g can for example
be found through maximum likelihood estimation (MLE),
where the likelihood L(θ;x) is maximized for some class of
models parametrized by θ. This provides a way to estimate
the parameters θ̂ of g, and can be written as follows:

θ̂ = argmax
θ

L(θ;x).

Whether the estimated independent components yi recover
(or “separate”) the ground truth sources si depends on a
property of the model (f , ps) called identifiability.

2.2 IDENTIFIABILITY

Here we adopt the notation from [Gresele et al., 2021].
Let F be the space of all smooth, invertible functions
f : Rn → Rn and let P be the space of all smooth, factorized
densities, ps on Rn. Further let M ⊆ F ×P be a subspace
of models and let ∼ be an equivalence relation on M. De-
note by f∗ps the push-forward density of ps via f . Then, the

generative model is said to be ∼-identifiable on M if:

∀(f , ps), (f , ps) ∈ M :

f∗ps = f̄∗ps̄ =⇒ (f , ps) ∼ (f̄ , ps̄)

Intuitively, it means that the ground truth sources may be re-
constructed up to some ambiguities specified by the equiva-
lence relation “∼”. For example, identifiablity of linear ICA
has been analyzed in [Comon, 1994], where it was shown
that the true sources can be recovered up to permutation and
rescaling provided at most one of the true latents is Gaussian.
When f is nonlinear, however, the model is in general non-
identifiable: one can construct maps which yield indepen-
dent components while not solving BSS. An example of this
is given by the Darmois construction gD : Rn → (0, 1)n

[Hyvärinen and Pajunen, 1999]:

gD
i (x1:i) =

∫ xi

−∞
p(x′

i|x1:i−1)dx
′
i

That is, the construction recursively applies the conditional
Cumulative Distribution Function (CDF) transform. The
Jacobian of the resulting map gD is lower-triangular. The
reconstructed sources using such transformation will be
independent but will in general not solve BSS. Identifia-
bility results for nonlinear ICA can be given for settings
where an auxiliary variable u (e.g., an environment index,
time stamp, class label) renders the sources conditionally
independent [Hyvärinen et al., 2019, Gresele et al., 2019,
Khemakhem et al., 2020, Hälvä and Hyvärinen, 2020].

2.3 INDEPENDENT MECHANISM ANALYSIS

To deal with the case where no auxiliary variables are avail-
able, Gresele et al. [2021] propose an approach termed Inde-
pendent Mechanism Analysis (IMA). They take inspiration
from the principle Independent Causal Mechanisms:

Principle 1 (Independent Causal Mechanisms [Peters et al.,
2017]). The causal generative process of a system’s vari-
ables is composed of autonomous modules that do not in-
form or influence each other.

In Principle 1, independence is meant in the nonstatistical
sense of “no fine tuning” between the causal mechanisms;
various formalisations of this principle exist [Janzing and
Schölkopf, 2010, Janzing et al., 2012, Besserve et al., 2018].

In IMA, a similar “nonstatistical” independence is assumed
over the influences of the individual sources on the obser-
vations. The key assumption is that the contributions of
different sources si to the observations through the mix-
ing function f are independent. This can be formalized as
follows:

log |Jf (s)| =
n∑

i=1

log

∣∣∣∣∣∣∣∣ ∂f∂si
(s)

∣∣∣∣∣∣∣∣ ,



i.e. the contributions ∂f/∂si from each source to the mixing
mechanisms (which are the columns of the Jacobian Jf ) are
orthogonal. The authors of the paper introduce a function to
measure the IMA principle and show how it can be useful
in nonlinear BSS. This is called global IMA contrast and is
given by:

CIMA(f , ps) = Es∼ps

[
n∑

i=1

log

∣∣∣∣∣∣∣∣ ∂f∂si
(s)

∣∣∣∣∣∣∣∣− log |Jf (s)|

]

It quantifies how the IMA principle is violated for a solution
(f , ps). The properties of CIMA are as follows:

1. CIMA(f , ps) ≥ 0, and equal only when
Jf = O(s)D(s) where O(s) is an orthogonal
matrix and D(s) a diagonal matrix,

2. CIMA(f , ps) = CIMA(f̃ , ps̃) for f̃ = f ◦ h−1 ◦ P−1

and s̃ = Ph(s) where P is a permutation and h an
invertible element-wise function.

The authors show that Darmois construction solutions
have strictly positive CIMA. For a mixing function where
CIMA = 0, it is therefore possible to distinguish the Dar-
mois construction from the true one; similarly, CIMA dis-
tinguishes other common classes of spurious solutions in-
troduced by [Locatello et al., 2019] from the true ones.
Moreover, CIMA is blind to permutation and element-wise
transformation of the sources, which are unresolvable ambi-
guities of nonlinear ICA [Hyvärinen et al., 2001].

3 EXPERIMENTS

In the following experiments, firstly we define a mapping
that we use as a model of generic mixing functions occurring
in practical applications. Then, we compute the IMA con-
trast and observe what happens when such mixing deviates
from the assumptions of IMA and if we can still distinguish
between true and spurious solutions. For that mixing, devi-
ating from the method’s assumptions, we check how good
the reconstruction of the sources is using CIMA-regularized
MLE. Moreover, we compare regularization with the CIMA
with other types of regularization.

3.1 GENERIC MIXING FUNCTIONS

Firstly, we define a framework to model and generate
generic mixing functions. In the literature [Hyvärinen and
Morioka, 2016, Khemakhem et al., 2020, Hyvarinen and
Morioka, 2017], authors have used MLPs since they of-
fer a nonlinear, complex mixing that have an increasing
complexity the more layers are used and they can resemble
real-world maps. Therefore, our setting is as follows:

1. Mixing. The mixing function is an MLP with
leaky_tanh [Gresele et al., 2020] as the activation.
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Figure 1: CIMA of randomly initialized MLPs with varying
number of layers and the corresponding Darmois construc-
tion.

The weights for each layer are initialized as orthogonal
matrices and the biases are normally-distributed ran-
dom arrays. The invertibility of the mixing function
is ensured as the activation function and the weight
matrices are invertible—and so is the composition of
them. We check results for an increasing number of
layers L ∈ {2, 3, . . . , 20}. The dimensionality of the
data is n = 5.

2. Spurious solution. To learn the spurious solutions, i.e.
to estimate the Darmois construction for our case, we
use residual normalizing flows with triangular Jacobian
[Gresele et al., 2021] with a Gaussian base distribution.
We maximize the likelihood over 100 000 iterations
for 20 different mixings.

For such mixing functions, we want to check if the generic
map still satisfies the assumptions of IMA, i.e. that the
columns of the Jacobian are orthogonal, corresponding to
CIMA = 0. Figure 1 shows the CIMA values for the true
mixing (MLP) and for the spurious solution (Darmois con-
struction) for an increasing number of layers. The more
layers we use, the further the mixing deviates from the
IMA assumption. Note that linear orthogonal transforma-
tions satisfy IMA, but maps which intertwine them with
elementwise nonlinearities do not necessary do so. Appar-
ently, errors seem to accumulate, i.e. the deviation from
the IMA principle grows monotonically in L. However, we
notice that up to 10-12 layers spurious solutions possess
higher CIMA than the true mixing functions. Therefore, the
true mixing is distinguishable up to some point and IMA
appears to be useful even for such mixings. In related works
[Hyvärinen and Morioka, 2016, Khemakhem et al., 2020,
Hyvarinen and Morioka, 2017], MLPs with up to 5 layers
are used, meaning that the CIMA could still be useful there.

The results shown here and in the later experiments were,
however, obtained using orthogonal weights initialization,
whereas in the literature [Hyvärinen and Morioka, 2016]
the initialization was uniform. Results for such initializa-
tion show a less clear separation between true and spurious
solutions and can be found in the Appendix A.
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Figure 2: Visualization of the ground truth sources and the
observations generated by an 4-layered MLP as well as the
reconstructed sources using the Darmois construction, MLE,
and MLE with CIMA-regularization.

3.2 QUALITY OF SOURCE RECONSTRUCTION

Since even for some mixing functions that deviate from
IMA assumption the method appears to identify spurious so-
lutions, we want to investigate whether we can use the IMA
contrast to solve BSS. In order to do so, we use the objective
function from [Gresele et al., 2021]. The authors propose a
maximum likelihood approach with CIMA-regularization:

L(g;x) = Ex[log pg(x)− λCIMA(g
−1, py)]

where g is the learnt unmixing, y the reconstructed sources,
λ is the Lagrange multiplier and it determines how big the
regularization is (λ = 0 is just MLE). Ideally, we would
like our model to solve BSS. The setting for the following
experiments is:

1. Mixing. The mixing function we use is again an MLP
mixing function. The dimensionality of the data is n =
{2, 5} and number of layers L ∈ {2, 3, . . . , 20}. The
other parameters are the same as before.

2. Learnt unmixing. To learn the unmixing, we use now
residual normalizing flows with full Jacobian [Chen
et al., 2019] and the base distribution is changed to a
logistic distribution. We maximise the likelihood of
the data with CIMA-regularization for λ ∈ {0, 0.5, 1.0}
over 100 000 iterations for 20 different mixing func-
tions.

3.2.1 Visualization

Firstly, we want to inspect whether the Darmois construc-
tion, MLE and CIMA-regularized MLE recovers the mixing
visually the best for a two-dimensional mixing function. In
Figure 2, we can assess that MLE λ = 1 gives the best
results for a 4-layered MLP. It produces sources closer to
the true sources than Darmois construction or unregular-
ized MLE (λ = 0), although some slight distortions are
visible. Results for more or less layers can be found in the
Appendix A.

3.2.2 Metrics

To quantify how close the reconstructed sources are to the
ground truth we use the mean correlation coefficient (MCC).
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Figure 3: CIMA, KLD to the ground truth, and MCC of flow
models trained with various levels of CIMA-regularization
on data generated by an MLP with 4 layers.
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Figure 4: MCC of flow models trained with various levels
of CIMA-regularization on data generated by an MLP with
varying number of layers.

Higher values mean that the reconstruction is closer to the
true sources. We can check the MCC between the origi-
nal sources and the corresponding latents. We compute the
Spearman correlation matrix of the true and reconstructed
sources and after that we need to match them where they
have the highest correlation with the Hungarian algorithm.

In Figure 3 we show the value of the contrast function for
different values of regularization as well as the KLD and
MCC for 5-dimensional MLPs with 4 layers. We can notice
that with bigger values of λ, CIMA is decreasing. MCC
gets bigger with higher regularization. Regarding the fit of
the model to the data, the KLD is low across all values of
regularization; however, we can observe a small decrease
when regularization is applied. Metrics for different number
of layers can be found in the Appendix A.

Next, we want to check what happens to MCC value across
different number of layers of 5-dimensional MLPs for unreg-
ularized and regularized models. In Figure 4 we can see that
MCC gets worse with increasing number of layers. Bigger
CIMA-regularization results in higher values of MCC com-
pared to unregularized results. After around 10 layers the
distributions of the results are overlapping, but on average
higher values of λ still lead to higher MCC mean values.
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Figure 5: Loss, log-likelihood and CIMA values across train-
ing for a 4-layered MLP and the dimensionality of the data
n = 5.

Note also that whereas for λ = 0 the variance in MCC val-
ues is high across all values of L, for λ ∈ {0.5, 1} it tends
to be low (and the mean tends to concentrate near 1) for
lower L, and high for higher L. This seems to suggest that
for small L (i.e., less violation of the IMA principle) most
solutions achieve source separation, whereas as L increases
(i.e., more violation of the IMA principle) other solutions
which do not separate the sources are found by stochastic
gradient descent: the broader spread in MCC values seems
to reflect a larger variety of solutions found when optimizing
the CIMA-regularized objective for large L.

3.3 CIMA ACROSS TRAINING

In this section, we investigate how the CIMA changes during
training. In Figure 5 we notice that for an unregularized
model, i.e. λ = 0, the CIMA increases with more iterations
and as the log-likelihood increases. In constrast, for regu-
larized models instead, i.e. λ ∈ {0.5, 1}, the CIMA does not
grow significantly. Note that the log likelihood increases
for all values of the regularization. A similar figure for two
dimensions can be found in the Appendix A, as well as more
in depth theoretical justification for the behavior of CIMA
during training in this setting.

We can get an intuition on the observed behavior by writing
the IMA-regularized likelihood for a single point in n = 2,

L(g;x) = log py(y)︸ ︷︷ ︸
(i)

− (log ∥a∥+ log ∥b∥)︸ ︷︷ ︸
(ii)

− (1− λ) log | sin θ|︸ ︷︷ ︸
(iii)

(1)

where y = g(x) are the learned sources, a,b are the
columns of the Jacobian evaluated at y and θ is the angle
between them, see Appendix B for details. For unregular-
ized maximum likelihood (λ = 0), maximization of (1) can
be achieved by minimising (iii), leading to more collinear
columns. We show in Figure 14, that the gradient of this
term is steep close to θ = 0, suggesting that it may dominate
maximum likelihood estimation, as empirically observed
in our experiments. In contrast, the term in (ii) may have
the opposite effect, i.e. encouraging column orthogonality.
At the optimal value of (i), the area element given by the
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Figure 6: CIMA, KLD, and MCC of the models trained on
data generated by a 4-layered MLP with CIMA-, L1-, or L2-
regularization applied.

Jacobian determinant ∥a∥∥b∥| sin θ| is fixed1, and maxi-
mization of (1) amounts to minimization of (ii), which for
fixed area of the parallelogram spanned by a,b is achieved
when the two columns are orthogonal. This suggests that for
0 < λ < 1, orthogonality is encouraged by down-weighing
the term in (iii), whereas for λ = 1, (iii) vanishes and opti-
misation of (ii) yields orthogonal columns at the optimum.
Related hypotheses on the behavior of unregularized MLE
were reported in Cunningham et al. [2022]; the empirical
evidence and theoretical insights that unregularized maxi-
mum likelihood training systematically deviates from the
IMA principle provide additional arguments in this regard,
elucidating the benefits of explicit IMA regularization.

3.4 COMPARISON TO OTHER
REGULARIZATION TYPES

In the previous sections, we demonstrated that regularization
with the CIMA is a useful tool in representation learning.
Here, we compare this approach to other regularization
methods, namely L1- [Santosa and Symes, 1986, Tibshirani,
1996] and L2-regularization [Hoerl and Kennard, 1970],

1It can be shown that any two models optimally fitting the data
will achieve the optimal value of (i) and have equal area elements,
see Appendix B for details.



which are given by

L(g; x) = Ex[log pg(x)]− γ
∑

|θi|,

L(g; x) = Ex[log pg(x)]− β
∑
i

θ2i ,

where θi are the weight parameters of the model, not includ-
ing the biases. We considered the following setting:

1. Mixing. The mixing functions we use is again MLPs.
The dimensionality of the data is n = 5 and the number
of layers is L = 4. Other parameters are the same as
before.

2. Learnt unmixing. To learn the unmixing, we use the
same residual normalizing flows architecture. We train
models for 10 different mixings for each regulariza-
tion. We maximise the likelihood of the data with
L1- and L2-regularization for β, γ ∈ {0, 10−4, 5 ×
10−4, 10−3}.

Figure 6 shows a quantitative comparison of the regular-
ization types. When applying L1- or L2-regularization, the
CIMA of the learned models remains unchanged and the
KLD is mostly in a similar range for all regularization
types. In terms of the MCC, neither increased L1- nor L2-
regularization leads to improvement, while regularizing with
the CIMA boosts the performance significantly. Hence, CIMA-
regularization should be preferred over the traditional tech-
niques.

4 CONCLUSION

We use randomly initialised MLPs as a generic nonlinear
mixing which is not a priori designed to satisfy the IMA
principle. For such mixings, we notice that with the increase
of the number of layers, the IMA principle is increasingly
violated; nevertheless, CIMA still allows distinguishing true
and spurious solutions for a broad range of cases. Addi-
tionally, CIMA-regularized MLE approach produces better
source reconstruction than the typical MLE. Finally, the
benefits of IMA regularization are not matched by other
more standard regularizers. Overall, our results indicate that
IMA may be a useful method for nonlinear BSS even when
the ground truth mixing violates the IMA principle to some
extent. This suggests that the approach could be a useful tool
for representation learning even in more realistic settings
where the modeling assumptions are not exactly satisfied.
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A ADDITIONAL RESULTS

Here, we present some additional results which extend the
scope of the experiments from Section 3.

Fit of the model for spurious solutions. In the setting from
Figure 1, we want to check how well the model learns the
spurious solutions (Darmois construction) across different
number of layers. In Figure 7, we can notice that KLD
has higher values with more layers. This means that the
goodness of fit of the Darmois construction solutions to the
data is getting worse. This result is intuitive as the Darmois
construction for a mixing function with more layers is harder
to learn. A possible solution could be to extend the time
of the training or add more layers in the normalizing flows
architecture for higher values of L.
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Figure 7: KLD across layers for a spurious solution, i.e. the
Darmois construction.

Uniform initialization of MLP weights. The results from
Section 3 have been obtained using orthogonal weights
initialization. Here, we want to investigate if the spurious
solutions are still distinguishable from the true mixing as in
Figure 1 if the initialization is as in the literature [Hyvärinen
and Morioka, 2016]. The initialization for the weights θ is
as follows :

θ ∼ U

[
− 1√

n
,

1√
n

]
where n is the size of the layer (the number of columns
of θ) and U [−a, a] is a uniform distribution in the interval
(−a, a). Biases were set to zeros. In Figure 8 we can observe
that for such initialization with layers L ∈ {2, 3, 4, 5}, the
spurious solutions obtain lower values of CIMA than the true
mixing. Therefore, it is impossible to distinguish between
them and choose the true mixing. This result highlights the
limitation of the method for MLP mixings based on the
initialization.

Visualization of source reconstruction for less and more
layers. Next, we visually inspect the reconstructed sources
using three different methods: Darmois construction, MLE
and CIMA-regularized MLE with λ = 1 for a MLP mixing
where L = 2 and L = 8. This enables us to see how the
methods perform for less and more complex mixings than
the one used in Figure 2. In Figure 9 we can notice that for
both 2 and 8 layers CIMA-regularized MLE performs better
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Figure 8: CIMA of uniformly initialized MLPs with with
varying number of layers and the corresponding Darmois
construction.

than Darmois construction or unregularized MLE. For a
more complex mixing, we can observe that in the CIMA-
regularized MLE reconstructed source, slight distortions are
present.

Ground truth Observations Darmois MLE, = 0 CIMA, = 1

Ground truth Observations Darmois MLE, = 0 CIMA, = 1

2 layers

8 layers

Figure 9: Visualization of the ground truth sources and
the observations generated by an (top) 2-layered and (bot-
tom) 8-layered MLP as well as the reconstructed sources
using the Darmois construction, MLE, and MLE with CIMA-
regularization.

Metrics for less and more layers across different reg-
ularization values. Following the previous results, now
we would like to quantitatively check how close the recon-
structed sources are to the ground truth for less and more
complex mixings. As in Figure 3 we show the value of the
contrast function for different values of regularization as
well as the KLD and MCC. In Figures 10 & 11, we can
see that for less layers, KLD mean seems to be decreasing
for increasing λ value. For more layers, it seems to stay at
the same level. Other metrics show the same trend as for 4
layers - lower CIMA and higher MCC with regularization.

CIMA across training for dimensionality n = 2. In Section
3.3, we showed in Figure 5 the results for n = 5. Now, we
want to observe the training behavior for n = 2. In Figure
12 we can see the loss value, log-likelihood and CIMA across
training. For λ = 1, CIMA increases at a quicker pace than
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Figure 10: CIMA, KLD to the ground truth, and MCC of flow
models trained with various levels of CIMA-regularization
on data generated by an MLP with 2 layers.
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Figure 11: CIMA, KLD to the ground truth, and MCC of flow
models trained with various levels of CIMA-regularization
on data generated by an MLP with 8 layers.

for n = 5 until the moment log-likelihood is increasing and
then CIMA stays at the same level.
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Figure 12: Loss, log-likelihood and CIMA values across train-
ing for a 4-layered MLP and the dimensionality of the data
n = 2.

B CIMA ACROSS TRAINING -
THEORETICAL INSIGHTS

Next, we elaborate on the theoretical intuition for the empiri-
cal observation that CIMA grows in unregularized maximum
likelihood training as show in Section 3.3.

Geometric interpretation of CIMA-regularlized likeli-
hood in 2-D

We consider a simplified setting, the dimensionality of the
data is n = 2. We write the CIMA-regularized likelihood at
a point x = f(s), in terms of the norms of the columns of
the Jacobian, Jg−1(y), and the angle between them, where

g is the learned unmixing and y are the learned sources.

Let a,b be the columns of Jg−1(y) and θ be the angle
between them. The determinant of Jg−1(y) is given by the
area of the parallelogram spanned by a and b, |Jg−1(y)| =
∥a∥∥b∥ sin θ2.

Figure 13: Area of parallelogram.

Using this fact, we parse the CIMA-regularized log likelihood
at a point x.

L(g;x) = log pg(x)− λCIMA(g
−1, py),

where py is the chosen base distribution.

L(g;x) = log pg(x)− λCIMA(g
−1, py)

= log py(y)− log
∣∣Jg−1(y)

∣∣− λCIMA(g
−1, py)

= log py(y)− log
∣∣Jg−1(y)

∣∣
− λ

(
log ∥a∥+ log ∥b∥ − log

∣∣Jg−1(y)
∣∣)

= log py(y)− log |∥a∥∥b∥ sin θ|
− λ (log ∥a∥+ log ∥b∥ − log |∥a∥∥b∥ sin θ|)

Hence, we show (1),

L(g;x) = log py(y)︸ ︷︷ ︸
(i)

−

log ∥a∥+ log ∥b∥︸ ︷︷ ︸
(ii)


− (1− λ) log | sin θ|︸ ︷︷ ︸

(iii)

(1)

CIMA across training

In the case of unregularized maximum likelihood training
(λ = 0), maximizing L(g;x) leads to minimizing all the
terms in (1)—and in particular both terms that involve the
Jacobian of the learned unmixing, (ii) and (iii). Clearly,
lower values of (iii) promote functions which have collinear
columns in the Jacobian. In contrast, minimizing the term
in (ii) may have the opposite effect i. e. encouraging col-
umn orthogonality. To show this, we compare the loss for
learned unmixings which have the same value of likeli-
hood, log px(x). See below that, at the optimal value for the

2https://proofwiki.org/wiki/Area_of_
Parallelogram_from_Determinant

https://proofwiki.org/wiki/Area_of_Parallelogram_from_Determinant
https://proofwiki.org/wiki/Area_of_Parallelogram_from_Determinant


learned latent likelihood py(y), i. e. for fixed (i), this results
in comparing the loss for same value of area element given
by the determinant of the Jacobian. Consider two models,
given by the learned unmixing functions g(1) and g(2). For
y(1) = [g(1)]−1(x), y(2) = [g(2)]−1(x): we compare the
loss for two such models with the same value of likelihood,
and optimal latent likelihood, py(y(1)) = py(y

(2)),

log px(x) = log py(y
(1))− log |J[g(1)]−1(y(1))|

= log py(y
(2))− log |J[g(2)]−1(y(2))|

=⇒ |J[g(1)]−1(y(1))| = |J[g(2)]−1(y(2))|

Among unmixing functions corresponding to the same area
element given by the Jacobian determinant, the function
which minimizes (ii), is the one which has orthogonal Jaco-
bian columns. This is because, by the Isoperimetric Theorem
for parallelograms3: among parallelograms with the same
area, the one with the minimum perimeter is a rectangle.
This supports our claim that minimizing (ii) encourages
column orthogonality in the Jacobian.

Given the contrasting effects of optimizing (ii) and (iii), we
empirically observe that (iii) dominates maximum likeli-
hood training. A possible justification is the steep gradient
of log | sin θ| close to θ = 0, which results in large gradients
for the parameters by chain rule of differentiation.
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Figure 14: log | sin θ| and its gradient.

Further, our empirical observations suggest that for 0 < λ <
1, orthogonality is encouraged by down-weighing the term
in (iii), whereas for λ = 1, (iii) vanishes and optimisation
of (ii) yields orthogonal columns at the optimum.

3https://www.cut-the-knot.org/m/Geometry/
ParallelogramToRectangle.shtml

https://www.cut-the-knot.org/m/Geometry/ParallelogramToRectangle.shtml
https://www.cut-the-knot.org/m/Geometry/ParallelogramToRectangle.shtml
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