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Abstract. Automatic segmentaion of organs and tumor in abdominal
CT scans is essential for cancer diagnosis and treatment monitoring.
However, there does not exist an accurate and efficient method for uni-
versal organ and tumor segmentation in abdominal CT scans. Therefore,
we propose a coarse to fine segmentation (CFS) method based on pseudo
labels. Specifically, the CFS consists of a coarse segmentation model
(CSM), a tumor segmentation model (TSM), and an organ segmenta-
tion model (OSM). The CSM is trained to segment abdominal regions in
CT scans. The TSM and the OSM are trained to generate segmentation
masks of organs and tumor. The outputs of the TSM and the OSM are
merged to generate the final segmentation results. To improve efficiency
of the CFS, we optimize the inference process by streamlining intricate
steps. On validation set of FLARE23 challenge, our method achieves
mean DSC of 91.59% and mean NSD of 95.74% on organ segmentation,
and mean DSC of 47.12% and mean NSD of 39.94% on tumor segmen-
tation. The mean inference time is 24.12s, and the mean area under the
GPU memory-time curve is 39543.46MB.
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1 Introduction

Abdominal organs are quite common cancer sites, such as colorectal cancer
and pancreatic cancer, which are the 2nd and 3rd most common cause of can-
cer death [24]. Computed Tomography (CT) scanning is widely used for diag-
nosis and treatment monitoring of abdominal cancers. Nowadays, radiologists
and clinicians measure the tumor and organs on CT scans based on manual
two-dimensional measurements, which is inherently subjective with considerable
inter- and intra-expert variability. Therefore, it is necessary to develop an auto-
matic segmentation method for simultaneous segmentation of organs and tumor
in abdominal CT scans.
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Fig. 1. Data distribution of training set in FLARE23 challenge. (a) Distribution of
labeled samples and unlabeled samples. (b) Data partitioning of labeled samples. (c)
Data partitioning of labeled samples only with organ annotation.

For segmentation of abdominal CT scans, the difficulty of data annota-
tion leads to a lack of public large-scale labeled datasets. Thus, researchers
try to improve segmentation accuracy using unlabeled data and partial-label
data. To effectively utilize unlabeled data, Zhou et al. proposed a deep multi-
plane co-training approach [27] to generate dependable pseudo labels. Similarly,
Lee et al. devised an advanced pseudo-label quality discriminator to effectively
guide and regulate network learning of unlabeled data [17]. Additionally, par-
ticipants of FLARE22 challenge proposed many semi-supervised methods for
organ segmentation in abdominal CT scans, including pseudo label-based meth-
ods [13,1,6], consistency learning-based methods [9,16,22], and cross pseudo
supervision-based methods [4,12]. Compared with the consistency learning-based
methods and the cross pseudo supervision-based methods, the pseudo label-
based methods achieved more accurate segmentation results.

Although the above researchs improved semi-supervised segmentation accu-
racy, the tasks of them mainly focus on segmentation of organs or one type
of tumor whose distribution in CT scans is relatively fixed. In FLARE23 chal-
lenge, the segmentation task focuses on 13 organ segmentation and pan-cancer
segmentation. Different from existing researchs, the FLARE23 aims to segment
various abdominal cancer types and 13 organs simultaneously. Compared with
organ segmentation, the pan-cancer segmentation faces two major challenges.
The first one is that the tumor location, tumor shape, and the tumor number
are various among different CT scans, which make the tumor feature complex.
The second one is lack of cases with both organ and tumor annotations. There-
fore, it is necessary to make full use of cases with tumor annotation.

To achieve accurate organ and pan-cancer segmentation, we propose a coarse
to fine segmentation (CFS) method based on pseudo labels. The CFS consists of
a coarse segmentation model (CSM), a tumor segmentation model (TSM), and
an organ segmentation model (OSM), whose architectures are all nnU-Net [15].
The CSM is first trained using cases with full organ annotations. Then, cases
with only tumor labels are inferenced to generate pseudo labels of organs based
on the trained CSM. Next, we use the cases with tumor labels and pseudo labels
of organs to train the TSM. The OSM is trained using all 4000 cases with
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ground truth and pseudo labels generated by the [14]. During inference, we first
segment input CT scans using the CSM to obtain abdominal regions. Then, the
abdominal regions are segmented by the TSM and the OSM separately. Last,
the segmentation masks given by the TSM and the OSM are merged to generate
the final segmentation results. To improve efficiency of the CFS, we optimize the
inference process by streamlining intricate steps.

2 Method

2.1 Preprocessing

In our method, preprocessing operations include data grouping, image cropping,
data resampling, intensity normalization, and data augmentation. The details of
the preprocessing operations are listed as follows:

– Data grouping:
The training set is analysed and grouped based on annotations. As shown
in Fig. 1(a), the training set consists of 1800 unlabeled samples (Group 1)
and 2200 labeled samples (Group 2). For the Group 2, we further divide
labeled samples based on whether annotations contain tumor labels. As
shown in Fig. 1(b), there are 703 labeled samples without tumor annota-
tions (Group 3) and 1497 labeled samples with tumor annotations (Group 4).
Furthermore, we divide the Group 3 into 484 samples with partial organ an-
notations (Group 5) and 219 samples with all organ annotations (Group 6)
(Fig. 1(c)).

– Cropping strategy:
Before model training, the training CT scans are cropped along the z-axis
direction based on ground truth or pseudo labels. Specifically, the indices of
start slice and the end slice of region containing targets are first calculated
based on labels. To reserve context information of segmentation targets, we
reduce the index of the start slice by 10 and add the index of the end slice by
10. During model training, the cropped CT scans are further cropped based
on non-zero region introduced by nnU-Net [15].

– Resampling method for anisotropic data:
We perform image redirection to the desired orientation, followed by resam-
pling all CT scans to match the median voxel spacing of the training dataset.
Specifically, third-order spline interpolation is used for image resampling, and
the nearest neighbor interpolation is employed for label resampling.

– Intensity normalization approach:
We gather pixel values in the cropped CT scans and subsequently truncate
all data to fall within [0.5, 99.5] of foreground voxel values. Following that,
z-score normalization is applied.

– Data augmentation:
In our method, random rotation, random scaling, elastic transformation,
brightness transformation, contrast transformation, and gamma transforma-
tion are used for data augmentation.
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Fig. 2. The overall architecture of the CFS method. The CFS consists of three mod-
els: the CSM, the TSM, and the OSM. The three models are all based on nnU-Net
architecture, but trained with different data.

2.2 Proposed Method

As shown in Fig. 2, the architecture of our proposed method contains three
segmentation models, i.e. the CSM, the TSM, and the OSM. Noted that the
three segmentation models are all based on the nnU-Net framework [15]. We
combine Dice loss and cross-entropy loss to train all models. The details of
model training and inference process are described in the following.

Training of the CSM To reduce redundant information in CT scans and
extract abdominal regions, we first train the CSM using 219 labeled samples with
all organ annotations (Group 6). Based on the trained CSM, we predict pseudo
labels of 13 organs on Group 1 − 5 and merge them with the corresponding
ground truth. Then, we obtain 4000 training data with all organ annotations
(real labels or pseudo labels), which is termed as Dataset 1.

Training of the TSM To train the TSM, we first extract the 1497 sam-
ples of the Group 4 from Dataset 1. The 1497 samples are randomly divided
into training data and validation data by 4:1. The TSM is trained to segment 13
organs and tumor. The best weights are saved every 50 epochs based on the high-
est segmentation accuracy of tumor on validation data. Then, we evaluate the
saved weights on online validation set (100 samples) and select the best weight
(tumor_weight1) with the highest segmentation accuracy of tumor. To further
improve accuracy of tumor segmentation, we train the TSM with random ini-
tialization again and save another weight (tumor_weight2) following the above
method.

Training of the OSM The OSM is trained using all training data with
the pseudo labels generated by the FLARE22 winning algorithm [14]. The 4000
samples are randomly divided into training set and validation set by 4:1. The
model is trained to segment 13 organs and the best weights are saved based
on the performance of validation set every 50 epochs. Finally, we evaluate the
saved weights on the online validation and choose the weight with the highest
segmentation accuracy as the weight of the OSM.

Inference process During inference, the test CT scans are first segmented
by the CSM, and the abdominal regions of the CT scans are cropped based on the
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segmentation masks of 13 organs. Then, the abdominal regions are segmented
by the TSM with tumor_weight1 and tumor_weight2, respectively. The seg-
mentation masks given by the two weights are merged to obtain the masks of
tumor and 13 organs (mask1). Next, the abdominal regions are segmented by
the OSM and the masks of 13 organs are generated (mask2). Finally, we mod-
ify the mask1 with mask2 for organ labels and obtain the final segmentation
results.

To improve the efficiency of the CFS, we optimize the inference process of
conventional nnU-Net by streamlining intricate steps while ensuring faster sam-
pling without compromising accuracy. During the employment of sliding window
inference, we omit Gaussian weighting and mirror inference. Compared with the
conventional inference of the nnU-Net, our inference strategy achieves a sig-
nificant reduction in inference time. To reduce resource consumption, we use
abdominal regions rather than whole CT scans as input of the TSM and the
OSM.

2.3 Post-processing

Based on the segmentation mask, we retain the largest connected region for each
segmentation organ based on centroid distances. The small connected regions of
segmented organs are removed to reduce false positive islands. Noted that the
segmented tumor regions are not processed because there are might multiple
tumors in one CT scan.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2023 challenge is an extension of the FLARE 2021-2022 [20][21],
aiming to promote the development of foundation models in abdominal disease
analysis. The segmentation targets cover 13 organs and various abdominal le-
sions. The training dataset is curated from more than 30 medical centers under
the license permission, including TCIA [5], LiTS [3], MSD [2], KiTS [10,11], au-
toPET [8,7], TotalSegmentator [25], and AbdomenCT-1K [19]. The training set
includes 4000 abdomen CT scans where 2200 CT scans with partial labels and
1800 CT scans without labels. The validation and testing sets include 100 and
400 CT scans, respectively, which cover various abdominal cancer types, such as
liver cancer, kidney cancer, pancreas cancer, colon cancer, gastric cancer, and
so on. The organ annotation process used ITK-SNAP [26], nnU-Net [15], and
MedSAM [18].

The evaluation metrics encompass two accuracy measures—Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD)—alongside two efficiency
measures—running time and area under the GPU memory-time curve. These
metrics collectively contribute to the ranking computation. Furthermore, the
running time and GPU memory consumption are considered within tolerances
of 15 seconds and 4 GB, respectively.
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3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.
System Ubuntu 20.04
CPU 13th Gen Intel(R) Core(TM) i7-13700KF 3.40 GHz
RAM 8×4GB; 2.67MT/s
GPU (number and type) NVIDIA 4070Ti 12G
CUDA version 12.1
Programming language Python 3.10
Deep learning framework Pytorch (Torch 1.12, torchvision 0.2.3)
Specific dependencies nnU-Net 1.7.0
Code https://github.com/zhuji423/MICCAI2023_Flare2023

Table 2. Training protocols for the three segmentation models.
CSM TSM OSM

Network initialization "he" normal initialization
Batch size 2 2 2
Patch size 64×160×224 96×128×192 96×160×192
Total epochs 1500 2500 2000
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01 0.01 0.01
Lr decay schedule halved by 200 epochs
Training time 48 hours 65 hours 55.5 hours
Number of model parameters 41.22M 41.22M 41.22M
Number of flops 59.32G 59.32G 59.32G
CO2eq 1.23 Kg 2.34 Kg 1.56 Kg

Training protocols The data processing of unlabeled data and samples with
partial labels has been described in Section 2.2. We adopt nnU-Net’s data aug-
mentation to train the CSM, the TSM, and the OSM. The best weights of the
three models are determined based on the online validation, and the details
have been introduced in Section 2.2. The detailed training protocols of the three
models are listed in Table 2.

4 Results and discussion

In this section, we assess the CFS method using FLARE23 dataset. Ablation
studies on utilization of unlabeled data and effectiveness of the three models are
conducted. We present quantitative results, qualitative results, and efficiency
results on validation set. Additionally, results on final testing set are presented.
Last, we discuss limitations of the CFS method and our future work.
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Table 3. Quantitative evaluation results of CFS method.

Target Public Validation Online Validation Testing
DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%)

Liver 98.62 ± 0.40 99.28 ± 0.89 98.56 99.23 97.83 98.17
Right Kidney 96.59 ± 5.46 96.54 ± 0.41 95.65 95.84 95.74 95.52
Spleen 97.98 ± 4.09 98.69 ± 4.04 97.07 97.96 97.76 98.51
Pancreas 87.88 ± 4.88 97.08 ± 3.65 86.71 96.19 91.32 97.22
Aorta 97.62 ± 1.15 99.42 ± 0.40 97.57 99.31 98.12 99.73
Inferior vena cava 92.33 ± 8.52 93.17 ± 8.81 92.13 92.74 92.70 94.12
Right adrenal gland 87.03 ± 12.47 95.91 ± 13.32 87.40 96.52 88.26 96.73
Left adrenal gland 88.82 ± 5.31 97.70 ± 3.09 88.06 96.7 89.32 96.77
Gallbladder 88.49 ± 19.27 89.68 ± 20.6 89.01 89.92 86.14 87.90
Esophagus 83.03 ± 16.47 91.38 ± 16.40 83.59 92.36 89.50 87.90
Stomach 94.37 ± 4.72 97.07 ± 4.83 94.83 97.34 97.46 95.64
Duodenum 84.57 ± 8.48 94.96 ± 6.45 84.80 94.99 96.83 89.36
Left kidney 95.03 ± 11.56 94.70 ± 13.59 95.26 95.54 95.16 94.75
Tumor 54.45 ± 34.80 47.31 ±31.78 47.12 39.94 63.43 51.02
Average 89.05 ± 9.82 92.34 ± 9.72 91.59 95.74 92.64 96.10

4.1 Quantitative results on validation set

In our method, the CSM is trained using 219 labeled data with all organ anno-
tations. The TSM is trained using 1497 labeled data with tumor annotation and
pseudo labels of 13 organs. To further improve the segmentation performance,
we train the OSM using all 4000 CT scans including unlabeled data. To verify
the effectiveness of the utilization of the unlabeled data, we evaluate the segmen-
tation results given by the CSM and the TSM (two-stage method). The mean
and standard deviation (SD) of DSC and NSD on 50 validation data (public
validation) are calculated based on the official evalution code. The mean of DSC
and NSD on 100 validation data are calculated on CodaLab platform.

Table 4. Quantitative evaluation results of two-stage method.

Target Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 95.49 ± 5.94 99.09 ± 0.89 97.21 98.59
Right Kidney 96.59 ± 5.46 96.54 ± 0.41 93.74 93.57
Spleen 96.22 ± 10.12 97.37 ± 10.44 94.28 96.26
Pancreas 86.63 ± 6.96 96.38 ± 6.16 84.45 95.54
Aorta 96.78 ± 2.43 98.6 ± 3.54 95.98 97.88
Inferior vena cava 92.84 ± 6.77 94.41 ± 7.20 93.00 95.28
Right adrenal gland 84.10 ± 15.2 94.25 ± 16.42 81.73 93.67
Left adrenal gland 85.01 ± 10.54 95.72 ± 10.04 80.63 93.17
Gallbladder 85.44 ± 22.4 86.52 ± 23.53 79.96 80.19
Esophagus 82.13 ± 16.26 91.13 ± 16.23 81.98 92.54
Stomach 93.83 ± 4.68 97.16 ± 4.68 93.54 97.53
Duodenum 83.74 ± 7.81 94.84 ± 5.76 82.85 94.67
Left kidney 94.12 ± 10.23 93.67 ± 12.91 92.91 92.89
Tumor 54.45 ± 34.8 47.31 ± 31.78 47.12 39.94
Average 87.66 ± 11.4 91.64 ± 9.72 85.67 90.12
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Table. 3 and Table. 4 list quantitative resutls of the CFS method and the
two-stage method, respectively. Because pseudo labels of unlabeled data lack tu-
mor label, the tumor segmentation accuracy of the CFS method is same as that
of the two-stage method. Compared with the two-stage method, the organ seg-
mentation accuracy is improved by the CFS method. For right adrenal gland, left
adrenal gland, and gallbladder, the CFS method yields results of 87.4%, 88.06%,
and 89.01% in mean DSC on online validation, which outperforms the two-stage
method by 5.67%, 7.43%, and 9.05%, respectively. These results demonstrate
that the unlabeled data have great potential to improve segmentation accuracy
of organs, especially small organs.

Furthermore, we implement an ablation study to evaluate the effectiveness
of the three models in our method. The quantitative results are list in Table. 5.
Compared with the CSM, the TSM significantly improves the mean organ DSC
and the mean organ NSD. Additionally, the OSM achieves higher organ DSC
and higher organ NSD than the two-stage method. Furthermore, we evaluate
the effectiveness of the two weights used in the TSM. The quantitative results
(Table. 6) demonstrate that inference using two weights obtains the highest
tumor segmentation accuracy. All these results illustrate the effectiveness of the
TSM and the OSM.

Table 5. Quantitative results of ablation study on the three models.
CSM TSM OSM organ_DSC organ_NSD tumor_DSC tumor_NSD√

66.97% 70.19% \ \√ √
90.35% 95.70% 47.12% 39.94%√ √ √
91.59% 95.74% 47.12% 39.94%

Table 6. Quantitative results of ablation study on tumor segmentation weights.
tumor_weight1 tumor_weight2 organ_DSC organ_NSD tumor_DSC tumor_NSD√

91.58% 95.75% 43.09% 36.87%√
91.60% 95.75% 46.14% 38.82%√ √
91.59% 95.74% 47.12% 39.94%

4.2 Qualitative results on validation set

Fig. 3 shows two examples with good segmentation results and two examples
with bad segmentation results given by the CFS and the two-stage method, re-
spectively. In Case #FLARETs_0019 (slice #155) and Case #FLARETs_0099
(slice #290), both the two-stage method and the CFS achieve accurate or-
gan segmentation. However, the two-stage method and the CFS fail to seg-
ment small organs accurately in Case #FLARETs_0001 (slice #99) and Case
#FLARETs_0029 (slice #290). Additionally, we present three examples with
bad organ segmentation results in Fig. 4. In Case #FLARETs_0001 (slice #31),
stomach (green label) and pancreas (yellow label) are not completely segmented.
In Case #FLARETs_0029 (slice #290), duodenum in the upper right corner and
gallbladder are not segmented. Additionally, the stomach and the pancreas are
not fully segmented in the Case #FLARETs_0011 (slice #97). These results
indicate that our method still has room for improvement in organ segmentation,
especially in small organ segmentation.
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Fig. 3. Qualitative results given by the two-stage method and the CFS, respectively.
Case #FLARETs_0019 and Case #FLARETs_0099 are examples with good segmen-
tation results. Case #FLARETs_0001 and Case #FLARETs_0029 are examples with
bad segmentation results. Red arrows indicate regions with bad segmentation.

Besides qualitative results of organ segmentation, we present three exam-
ples with tumor segmentation results in Fig. 5. In Case #FLARETs_0051 (slice
#73), the tumor in the right kidney is segmented as liver by the CFS. In Case
#FLARETs_0071 (slice #104), the tumor in the liver is not segmented. Addi-
tionally, the tumor in the Case #FLARETs_0048 (slice #297) is segmented as
liver or stomach. These results demonstrate that tumors have similar features
with organs and it is difficult for the CFS to segment tumors accurately.

4.3 Segmentation efficiency results on validation set

Table. 7 lists quantitative efficiency results in terms of the running time and
GPU memory consumption. Total GPU denotes the area under GPU Memory-
Time curve. Evaluation GPU platform is NVIDIA QUADRO RTX5000 (16G).
The average running time of the CFS is 24.12s, while the two-stage method
obtains shorter average running time (18.17s). Additionally, the GPU memory
consumption of the two-stage method and the CFS is both within 4GB. Fur-
thermore, quantitative efficiency results of eight examples given by the CFS and
the two-stage method are listed in Table. 8 and Table. 9, respectively. All results
demonstrate that our methods achieve efficient segmentation.
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Fig. 4. Qualitative results of three examples with bad organ segmentation results given
by the CFS. Red arrows indicate regions with bad segmentation.

Table 7. Quantitative efficiency results on online validation (Mean ± SD).

Efficiency index two-stage method CFS
Running Time (s) 18.17 ± 4.78 24.12 ± 5.39
Max GPU (MB) 3137.16 ± 232.18 3480.48 ± 150.48
Total GPU (MB) 26314.9 ± 8457.26 39543.46 ± 9845.58

Table 8. Quantitative efficiency results given by the CFS.
Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 21 3452 36129
0051 (512, 512, 100) 26.31 3452 47694
0017 (512, 512, 150) 26.24 3452 46555
0019 (512, 512, 215) 24.03 3452 37880
0099 (512, 512, 334) 28.09 3452 42890
0063 (512, 512, 448) 34.86 3452 54187
0048 (512, 512, 499) 35.65 3452 52391
0029 (512, 512, 554) 44.23 4064 69970
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Fig. 5. Qualitative results of three examples with tumor segmentation results given by
the CFS. Red arrows indicate tumor regions.

Table 9. Quantitative efficiency results given by the two-stage method.
Case ID Image Size Running Time (s) Max GPU (MB) Total GPU (MB)
0001 (512, 512, 55) 18.26 3071 23535
0051 (512, 512, 100) 23.67 3071 39243
0017 (512, 512, 150) 22.97 3097 37210
0019 (512, 512, 215) 17.45 3071 23727
0099 (512, 512, 334) 22.51 3071 33945
0063 (512, 512, 448) 26.1 3229 37647
0048 (512, 512, 499) 23.59 3223 31547
0029 (512, 512, 554) 34.15 4025 49582

4.4 Results on final testing set

The quantitative results of the CFS on final testing set are listed in Table. 3. The
mean DSC and the mean NSD are 92.64% and 96.10%, respectively. Compared
with the results on online validation set, the CFS achieves higher tumor DSC
(63.43%) and higher tumor NSD (51.02%) on the final testing set. Additionally,
the CFS obtains mean organ DSC of 92.64% and mean organ NSD of 96.10%
on the final testing set, respectively.
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4.5 Limitation and future work

The major limitation of the CFS is that the tumor segmentation accuracy is
much lower than the organ segmentation accuracy. It is valuable to propose novel
methods to improve the tumor segmentation accuracy. Besides that, the training
of the CFS is cumbersome because the three models are trained seperately.
Furthermore, the segmentation accuracy of the small organs is low, and the
robustness of the segmentation results is poor.

In the future, we will continue working on segmentation of abdominal organs
and tumor in CT scans. We will further investigate semi-supervised methods
for segmentation of abdominal CT scans. Specifically, we will mainly focus on
improvement of tumor segmentation and small organ segmentation.

5 Conclusion

In this study, we propose a novel CFS method for multi-organ and tumor seg-
mentation in abdominal CT scans. The CFS consists of the CSM, the TSM, and
the OSM, which are trained with different data. During inference, test samples
are first segmented by the CSM to obtain abdominal regions. Then, the ab-
dominal regions are segmented by the TSM and the OSM, respectively. Finally,
the segmentation masks of the TSM and the OSM are merged to generate the
final segmentation results. Besides that, we optimize the inference process by
streamlining intricate steps to improve the efficiency of the CFS.

To validate segmentation performance of the CFS, we implement ablation
studies on utilization of unlabeled data and effectiveness of the three models.
The experimental results demonstrate that the unlabeled data can improve seg-
mentation accuracy of organs, especially small organs. Additionally, the TSM
achieves higher tumor segmentation accuracy using two weights than using one
weight. The organ segmentaion model further improves the organ segmentation
accuracy given by the TSM. Furthermore, the quantitative results of segmenta-
tion efficiency demonstrate that the two-stage method and the CFS achieve fast
multi-organ and tumor segmentation in CT scans.
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