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ABSTRACT

The advent of Video Diffusion Transformers (Video DiTs) marks a milestone
in video generation. However, directly applying existing video editing methods
to Video DiTs often incurs substantial computational overhead, due to resource-
intensive attention modification or finetuning. To alleviate this problem, we present
DFVEdit , an efficient zero-shot video editing method tailored for Video DiTs.
DFVEdit eliminates the need for both attention modification and fine-tuning by
directly operating on clean latents via flow transformation. To be more specific,
we observe that editing and sampling can be unified under the continuous flow
perspective. Building upon this foundation, we propose the Conditional Delta
Flow Vector (CDFV) — a theoretically unbiased estimation of DFV — and integrate
Implicit Cross Attention (ICA) guidance as well as Embedding Reinforcement
(ER) to further enhance editing quality. DFVEdit excels in practical efficiency,
offering at least 20x inference speed-up and 85% memory reduction on Video DiTs
compared to attention-engineering-based editing methods. Extensive quantitative
and qualitative experiments demonstrate that DFVEdit can be seamlessly applied
to popular Video DiTs (e.g., CogVideoX and Wan2.1), attaining state-of-the-art
performance on structural fidelity, spatial-temporal consistency, and editing quality.

1 INTRODUCTION
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"Normalized DFV" refers to the original DFV scaled to [0,1] via Min-Max scaling,
illustrating its relative intensity distribution across different steps t.
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Existing video editing techniques mainly follow two
aradigms: training-based methods Singer et al. . . L
p_l)zozz ﬁ—an etal. (]_l)zogzs -[Shin et al (2024 ﬁLlu octal]  Tigure I: Key insight and motivation.
2024c)) and zero-shot methods Q1 et al.| (2023)); [Cai et al.| (2024); |Geyer et al.| (2023)); [Zhang et al.
2023b); [Yang et al.; [Wang et al|(2024b)). We focus on zero-shot methods for the plug-and-play
flexibility and application efficiency. For training-free video editing, a high-quality pre-trained base
model is crucial. Early video editing methods primarily utilized image diffusion models
et al| (2022)); [Song et al.| (2020d), which suffered from temporal inconsistencies due to the lack of
capable video diffusion models. These early methods [Khachatryan et al.| (2023); [Qi et al.| (2023));
[Geyer et al.| (2023)); [Yatim et al.| (2024) not only had to ensure structural integrity and editing accuracy
but also required significant effort to enhance temporal coherence. In contrast, methods |Cai et al.
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(2024); |[Ku et al.| (2024) based on video diffusion models naturally excel in temporal consistency,
leading us to leverage the latest Video DiTs Wang et al.| (2025); [Yang et al.| (2024b); [Kong et al.
(2024) for video editing. Regardless of the type of base models, achieving high fidelity and temporal
consistency hinges on attention engineering in most existing methods, including various attention
caching and modification techniques. The key to effective attention engineering is that attentions
(including keys, queries, and values) contain the spatial-temporal information of the source video,
allowing for smooth editing of target regions while preserving the original content’s integrity. How-
ever, attention mechanisms now consume hundreds of gigabytes of memory (Fig. [T[a)) in Video
DiTs|Yang et al.| (2024b)); Wang et al.| (2025); [Kong et al.| (2024), a significant increase from previous
usage in Unet-based diffusion models Wang et al.| (2023)); Rombach et al.[(2022); [Song et al.| (2020a)
and image DiT models Li et al.| (2024b)); Yang et al.|(2024a) at the gigabyte scale. This suggests that
traditional attention engineering techniques are incompatible with Video DiTs, creating an urgent
need for methods that preserve editing quality while improving computational efficiency.

Motivated by this inefficiency, we shift the focus from attention to input latents and introduce
a continuous flow transformation framework, DFVEdit, for direct video latent refinement. We
observe that the standard sampling process in video diffusion models—whether based on Score
Matching [Song et al.| (2020b) or Flow Matching [Lipman et al.| (2022)—can be unified under a
continuous flow perspective. Based on this insight, we demonstrate that editing from the source to
the target video naturally forms a time-dependent flow vector field (Fig.[I[c)), which we term the
Delta Flow Vector (DFV).

Building upon this foundation, we introduce the Conditional Delta Flow Vector (CDFV) to esti-
mate the flow from source to target latent, incorporating Implicit Cross Attention Guidance (ICA)
and Embedding Reinforcement (ER) to further improve editing accuracy. The CDFV in Video
DiTs inherently enforces spatial-temporal dependencies while its divergence directly determines
update weights. This physically grounded formulation provides two fundamental advantages over
approximation-based latent-refinement approaches like DDS Hertz et al.| (2023)) and SDS [Poole
et al.; (1) theoretical unification by modeling both sampling and editing from the continuous flow
perspective and (2) computational efficiency through divergence-determined and hyperparameter-free
weights that eliminate heuristic scheduling and overcome low convergence issues inherent to shallow
approximations. Moreover, for the seamless application to video editing, we enhanced spatiotemporal
coherence by intrinsically avoiding randomness bias while incorporating ICA guidance and ER
mechanisms (Fig. . Experiments show DFVEdit achieves at least 20x speed-up and 85% memory
reduction over attention-engineering-based methods on Video DiTs (e.g., CogVideoX, Wan2.1), while
maintaining SOTA performance in fidelity, temporal consistency, and editing quality. Consequently,
our approach offers an efficient and versatile solution for zero-shot video editing on Video DiTs.

2 RELATED WORK

Video Diffusion Transformer. Video Diffusion Transformers have evolved from early 3D-UNet-
based designs Zhang et al.| (2023a); [Wang et al.| (2023)); [Blattmann et al.| (2023));/Chen et al.| (2024)
to modern 3D-Transformer-based designs Peebles & Xie|(2023)). Advanced models such as Open-
SoraZheng et al.|(2024); Lin et al.|(2024)), CogVideoX |Yang et al.| (2024b), HunyuanVideo [Kong et al.
(2024)) and Wan Wang et al.|(2025) have all or part of the following key innovations: replacement of
3D-UNets with scalable 3D-Transformer blocks; integration of cross-attention and self-attention into
a unified 3D-full-attention |Yang et al.| (2024b); [Kong et al.| (2024); and adoption of 3D-VAE |Yang
et al.| (2024b)) for spatiotemporal latent compression. Some Video DiTs|Li et al.[(2024b)); [Wang et al.
(2025) are combined with Flow Matching|Lipman et al.| (2022) while others|Yang et al.| (2024b) adopt
SDE Song et al.|(2020b)) samplers like DPM-solver Lu et al.|(2022).

Image editing on Diffusion Transformer. With the rise of Diffusion Transformer Peebles & Xie
(2023), DiT-based image editing methods|Yang et al.| (2024a); Li et al.| (2024b)) have emerged. How-
ever, directly applying image editing methods to videos often fails to address temporal consistency
and motion fidelity. Additionally, adapting them to Video DiTs introduces extra challenges. Firstly,
generalization limitations occur when applying methods |Dalva et al.| (2024)); Kulikov et al.| (2024);
Rout et al.[(2024)); Jiao et al.| (2025)); |Garibi et al.| (2024); Deutch et al.| (2024])) that rely on rectified
flow [Esser et al.| (2024)) or distilled few-step models [Sauer et al.|(2024) to Video DiTs that are not
combined with rectified flow or distillation techniques. Secondly, efficiency limitations are present for
image editing methods Nguyen et al.[(2024) that require finetuning. Furthermore, even generalized
and efficient methods like DiT4Edit |Feng et al.| (2024) and KVEdit|[Zhu et al.| (2025), which use
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attention or key-value caching and modification, still face prohibitive computational costs due to the
more massive attention overhead in Video DiTs compared to image DiTs.
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Figure 2: DFVEdit overview. Follow these steps for DFVEdit: (1) Encode X into the latent space
Z, and initialize the target latent variable as ZT = Zo. (2) Transform [ZT; Z] via the flow map
®1(-). (3) Feed the result with prompt embeddings [C, Cy] into the Video Diffusion Transformer,
compute the delta difference to obtain the CDFV at timestep 7', then refine it using ER and ICA. (4)
Update ZT — ZT_l using the enhanced CDFV, and iterate (1)-(4) until reaching ZO. (5) Decode Zo
to generate the target video X .

Video editing. Video editing via diffusion models is dominated by two parading‘ training-based

and trammg -free methods. Training-based approaches . (2025); [P 1 (2024);

Esser et al (2023): [Gu et al (2024); [Zi et al] (2025); [Wang et al. (20245|) Wu et al. 12023) LLiul
et al.[(2024¢) enhance pre-trained image diffusion models Rombach et al. (2022) with spatiotemporal

modules, optimizing for complex edits but at high computational costs, limiting real-time applications.
Conversely, training-free methods emphasize computational efficiency and real-time capability.
Training-free video editing commonly involves two stages: latent space initialization and editing
condition injection. Latent space initialization typically follows three paradigms: (1) forward diffusion

with some steps for preserving low-frequency features Meng et al| (2021)); [Yang et al.| (2023), (2)
DDIM (2020a)) inversion for enabling deterministic reconstruction Qi et al.| (2023); [Geyer|

(2023), or (3) direct source latent usage [Hertz et al.| (2023)); [Poole et al.| For editing condition
injection, most existing zero-shot methods heavily rely on attention engineering to maintain spatial-
temporal fidelity. For instance, FateZero enhances temporal consistency by caching
attention maps from DDIM [Song et al.| (2020a)) inversion and integrating them into the denoising
process; TokenFlow Geyer et al.|(2023)) improves spatiotemporal coherence by leveraging cached
attention outputs from DDIM inversion for inter-frame correspondences and incorporating extended
attention blocks during denoising; VideoDirector[Wang et al.| (2024b) achieves fine-grained editing
via SAM [Kirillov et al.| (2023) masks by fusing self-attention with reconstruction attention and mask
guidance; and VideoGrain realizes complex semantic structure modifications through
SAM masks while operating on complex attention map modifications. These attention-engineered
methods face scalability challenges in Transformer blocks|Vaswani et al.|(2017), particularly for Video

DiTs [Kong et al.| (2024); [Wang et al.| (2025)) where attention memory demands grow dramatically
(Fig.[I). Moreover, approaches Yoon et al.|(2024b); [Liu et al.| (2024a)); Ku et al; [Yatim et al| (2024)

free of attention engineering suffer from structural degradation: FRAG|[Yoon et al.| (2024b) mitigates
blurring and flickering through frequency processing but compromises fidelity due to basic DDIM

inversion for source content retention; DMT (2024) employs SSM

(2024)) loss for motion transfer yet underperforms in detail preservation; and first-frame propagation
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methods (e.g., StableV2V |Liu et al.| (2024al), AnyV2V [Ku et al.) introduce accumulating artifacts
without full-frame coordination. In conclusion, designing efficient and high-quality editing methods
tailored for Video DiTs remains a critical challenge.

3 METHOD

Fig.[2] provides an overview of DFVEit. Given a source video Xo € RF*3*HxW comprising F
RGB frames at resolution H x W, together with source and target text prompts (Py, P; ), our method
supports both global stylization and local modifications (shape and attribute editing). The edited
video X; preserves spatiotemporal integrity in unedited regions while ensuring motion fidelity and
precise alignment with P;. Our approach leverages two key insights: manipulating latent space is
more computationally efficient than manipulating attention (Fig. [I)), and editing can be modeled as
the continuous flow transformation between the source and target videos (Sec[3.1)). We introduce the
Conditional Delta Flow Vector (CDFV) (Sec @ for this transformation. To enhance video editing
performance, we utilize Implicit Cross-Attention Guidance and Embedding Enforcement (Sec[3.3) to
improve spatiotemporal fidelity.

3.1 UNIFIED CONTINUOUS FLOW PERSPECTIVE ON SAMPLING AND EDITING

Diffusion models include inverse and forward processes. The inverse process is typically parame-
terized as a Markov chain with learned Gaussian transitions, mapping noisy inputs to clean outputs.
Conversely, the forward process gradually adds Gaussian noise to the clean input according to a
variance schedule. As mentioned in Song & Ermon)|(2020; 2019)); |Song et al.| (2020b), given a data
input z, both inverse and forward processes can be regarded as overdamped Langevin Dynamics juhl
(1930) (named Stochastic Differential Equation (SDE) in Score Matching Song et al.| (2020b)):

dxy = f(xe, t)dt + g(e, t)dW (1)
where f (x4, ) is the drift coefficient corresponds to deterministic direction and g(x¢, t) is the diffusion
coefficient corresponds to disturbing intensity and dW is a Wiener process and the probability density
P(x4,t) can be described by introducing the Fokker-Planck equation Jordan et al.|(1998) combined
with the Ito’s lemma Kloeden et al.| (1992)) and the concept of probability flow:

OP(z:,t 2(xy,t

% -V Kf(sct,ﬂ - g(a;mwogp(w)) P(xht)} @
Eq. 2] generalizes traditional sampling methods like DDPM [Ho et al | (2020) and DDIM [Song et al.
(2020a)). This formulation reveals that methods based on SDE Song et al.| (2020b) obey the
continuity equation principle of Flow Matching |Lipman et al.| (2022) and can be unified under
a continuous flow perspective. The continuous flow is characterized by a vector field v;(z;) =

2
flag,t) — @Vlogp(xt, t), enabling state transitions from x; to z;y a; either through flow map

@, in Eq. [3]or through its Euler discretized approximation in Eq. [

d
@@t(x) = Ut(q)t(x)) 3)
Dp(z) =z

T4 At = T + At % ’Ut(q)t(.’E)) (4)

As discussed in Section [2] zero-shot video editing includes two stages: latent space initialization and
editing condition injection. The first stage involves a standard sampling process. In the second stage,
we derive an isomorphism with sampling process by formulating video editing as:

X5 = gog (X5, 0, (X5, 0) +AC(XE™ 1, +) ) 5)

Canonical Denoiser Control Term
where { X4 T  defines the state trajectory of the edited video in the sampling process; 96, 18
differentiable transition function parameterized by learnable 0s; €y, is pretrained diffusion model
with frozen 0;; C'(z, t, %) is the control term with intensity A > 0 and optional extra input * . Under

the Euler discretization scheme with step size At — 0 and 62 = Z, the discrete process in Eq.
converges to the controlled SDE:

axgin = | P e, B0 Gy, (x4 3P0 s iyoixei 1ol ar v D AW 6
2 2 2 N/

. g(t)
fo, (X§40t)
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where V log p;(X{) is the score function, and o(t) = /(1 — a(t))/a(t) is the signal-to-noise

ratio coefficient with a(t) = e~ J5 B()ds  The structural isomorphism between Eq. and the
stochastic differential equation in Eq.[I|indicates that video editing processes can be represented
within a continuous flow sampling framework, as shown in Eq. 3| (see Appendix for more details).

3.2 CONDITIONAL DELTA FLOW VECTOR

Building upon the isomorphic correspondence between editing and sampling, we introduce the
Conditional Delta Flow Vector (CDFV) to establish a direct continuous flow bridge from the source
video to the target video.

Delta Flow Vector. Given the initial distribution p(Z7) = N(Zr; 0, I) for the reverse process and a
clean video latent Z, Eq. [3]implies the existence of a time-dependent flow map & that:

T
7 =7r = Atv(®(2)) @)

t=0

Assuming the source and target latents (Zo, Zo) and their corresponding prompts (P, Py) are given,
we replace Z in Eq. |7 with Zy and Zj respectively and define the Delta Flow Vector (DFV) as

Avy(Zy, Zo) = ve(D(Z0)) — v:(Py(Zp)), and the target latent Z, can be expressed in terms of the
source latent Z as:

T
Zo=Zy— Z At Avy(Zo, Zo). (®)
t=0
Eq. @establishes a continuous flow directly from the source latent 7, to the target latent Zo, with
the vector field defined as v, = Avy(Zy, Zy). While prior works Han et al.| (2024)); |Couairon et al.
(2022); Hertz et al.| (2023) heuristically observed that latent differences indicate editing regions, we

rigorously prove this as a special case of DFV when the transformation state and vector field satisfy
the continuity equation (Eq. [3).

Conditional Delta Flow Vector. The direct computation of Avt(Zo, Zy) is intractable since Zo

is the editing target. To resolve this problem, we leverage the terminal condition of diffusion

processes to derive an unbiased estimation of DFV. From Eq. 2| we obtain vi(z;) = f(x4,t) —
2

%Vlogp(xt, t). As t approaches T, and given that P(x;,t) is the probability density of x, if

we set winner process of Zy and Zo is equal, then g(Zp,t) = g(ZO, t). Consequently, as t — 7', both

P(Zy,t) and P(Zy,t) follow a normal distribution N (Z7; 0, I') with zero mean and unit variance.

Moreover, Z; is equivalent to Z; as t — T', and we have:
Avi(Z0, Z0) = for.e: (Zist) = for.c0(Zi, ) ©)
t—T

The latent Z7_ o, can be updated using Eq. which corresponds to applying the continuous flow
map from Zj as defined in Eq.

Zr-ne = Zr—at — At [fo.e, (Zr,t) — fo.co(Zr,1)] (10)

Zr-at = Pr_ni(Zo). (11
We sequentially obtain all v ($(Z,)) and define the Conditional Delta Flow Vector (CDFV) in Eq.

{Avt(zo, C0,C1) = V¢, (Zy) — Vt,eo (Pe(Z0))

. (12)
Zp = @ (Zo)

Theoretically, the CDFV provides an unbiased estimate of DFV. By using the CDFV as a control term,
defined in Eq.[I3] and integrating it into Eq.[31} we maintain a computational complexity similar to
that of the basic sampling process. See the Appendix [B]for more details.

C(Zt, bx) = Vlog P(Z;,t) *UZ)lOg P(®(Z),1) (13)
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3.3 SPATIOTEMPORAL ENHANCEMENT FOR CDFV

Implicit Cross-Attention Guidance. Although CDFV extracted from Video DiTs theoretically
captures semantic differences between Py and P; with temporal coherence (Sec [3.2)), empirical
studies reveal persistent background leakage (Fig.[2). We attribute this phenomenon to the score
function V x log p:(X; 0), which is learned by the model and may not perfectly align with theoretical
expectations. This discrepancy can introduce local distributional drift in unedited regions, and such
shifts have the potential to cause noticeable alterations in the background of edited videos (see
Fig. 5| for examples). Segmentation masks play a crucial role in effective structure guidance, and
cross-attention, as highlighted in |Cai et al.| (2024); Q1 et al.| (2023); Hertz et al.[ (2022)), exhibit
significant potential for shape editing tasks. This is attributed to their time-aware adaptability and
target-following characteristics, which enhance the capability to maintain structural integrity and
motion consistency over time. Although most recent Video DiTs have moved from discrete cross-
attention to Full Attention [Yang et al.| (2024b) for more accurate spatial-temporal learning, we
introduce Implicit Cross-Attention derived from Full Attention. ICA still retains the essence of
traditional cross-attention and guides shape editing effectively. Given text embeddings E € RV >4
and latent video tokens B € RM*d Fuyll Attention mechanism first concatenates them to form a
larger matrix C = [E; B] € RW+M)xd each row of C can be considered as both Query (Q), Key
(K), and Value (V). The full attention map is computed as follows:

.
A = Softmax <C§a> = [ en| e roveanxovn (14

We identify that the off-diagonal block Agp or Apg inherently encodes cross-modal interactions.
Our Implicit Cross-Attention extracts this block of different timesteps and binarizes it into M;. We
mask Av;(Zy, ¢, ¢1) with M, to restrain the changes in the unedited region as Eq. M; can also
be optionally combined with the popular SAM [Kirillov et al.|(2023)) masks using Boolean operations.

vy, (Zo, 0, 1) = My ® [Ur.ey (Z2) = V1,00 (92(20))] (15)

Target Embedding Reinforcement. We observe that in 3D Full-Attention, the effect of text
embeddings diminishes as frame length increases. This phenomenon is particularly evident in global
editing tasks such as stylization. We attribute this issue to the competition between fixed-length text
tokens E € RY*? and an increasing number of spatiotemporal tokens Z € R¥*H>xWxd “Aq the
video duration grows, vectors associated with stylization embeddings become increasingly sparse
across frames. This sparsity may further reduce the guidance fidelity of the text embeddings. To
address these challenges, we propose Embedding Reinforcement (ER) for prompt alignment:

E® =E+~+®oE (16)

where k is used to locate the target embedding for editing, and its value is amplified by v + 1.
Specifically, we set v = 0.2 for shape editing and v = 5 for stylization. By reinforcing the
embeddings, the cross-attention map is reweighted to focus on regions more relevant to the editing
target, enhancing editing precision. Refer to the Appendix [C]for more method statements.

4 RESULTS

We evaluate DFVEdit on a comprehensive set of video editing tasks, including local editing (object
shape and attribute modification) and global editing (style transfer) for both single (Sec. and
multiple objects editing (Appendix [G). Using public videos from DAVIS2017 [Pont-Tuset et al.
(2017) and Pexels [Pexels, our evaluation covers: (1) comparisons with state-of-the-art training-
free and finetuning-based methods; (2) ablation analysis of DFVEdit’s key components; and (3)
extension experiments across architectures and tasks. Additional experiment results are provided in
the Appendix |Gl and experiment setting details are provided in the Appendix [D} DFVEdit outperforms
zero-shot editing methods and surpasses competing fine-tuned methods |Yatim et al.| (2024); (Wu
et al.[(2023); Liu et al.| (2024c)) in all scenarios, excelling in structural fidelity, motion integrity,
and temporal consistency. Ablation studies confirm each component’s contribution, demonstrating
strong scalability across Video DiT architectures (Fig. 4] Fig. 3] Tab. and generalizing well to 2D
U-Net-based image diffusion models (Tab. [T/} Fig.[F7).

6
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Figure 3: Comparison. Most methods based on attention-engineering (FateZero Qi et al.| (2023)), To-
kenFlow |Geyer et al.|(2023)), VideoDirector|Wang et al.[(2024b)), FreeMask |Cai et al.| (2024)) suffer
from flickering and fail in multi-object editing. While VideoGrain|Yang et al. enhances multi-object
editing, it is inferior in structure consistency and motion detail fidelity (the second column). Attention-
engineering-free approaches (FLATTEN DMT |Yatim et al.| (2024)), ControlVideo
(2023b), SDEditMeng et al.| (2021)) exhibit structural infidelity. In comparison, our method

achieves SOTA performance in fidelity, alignment, and temporal consistency.
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Table 1: Quantitative evaluation and user study results.

Method Consistency Fidelity Alignment User Study Computation Efficiency
CLIP-Ft E, ) M.PSNRT LPIPS| CLIP-Tt Editt Qualityl Consistencyf VRAM | RAM] Latency|
SDEdit[Meng et al.|(2021] 09811  1.67 20.52 0.4090 2746  66.57 8045 85.66 1.01 113 0.87
FateZero[Q1 ef al.[{20Z3] 09289  3.09 23.39 0.2634 2608  58.87 50.63 56.89 232 21.44 3.40
FreeMask|Ca et al.|(Z024] 0.9699  2.00 29.92 0.2314 2706 7588  74.67 77.13 1.64 25.58 5.65
Tokenflow|Geyer et al.[(Z023] 0.9583  1.48 29.97 0.2247 2978  70.12 5345 57.41 1.43 3.69 13.03
VideoDirector m (2024b)  0.9555 244 28.97 0.3205 2750 7413 7325 71.45 6.00 2.26 27.97
VideoGrain 0.9695  2.68 30.70 0.2948 2779 7641 79.87 70.61 2.35 2.61 13.44
FLATTEN 0.9510  4.89 1591 0.3559 2757 6345 6945 68.32 1.54 7.31 4.61
ControlVideo g @ 0.9533  3.10 10.08 0.4015 2706  56.08 5533 59.41 8.74 1.62 9.45
DMT (2024 0.9668  3.50 15.95 0.5096 2534 62.66 6836 69.88 5.64 3.32 24.40
DFVEdit (on CogvideoX-5B) 0.9924 1.12 31.18 0.1886 30.84  87.65 84.56 86.98 0.95 0.86 120
wlo ICA 09922  1.25 29.33 0.1920 31.02 8645 8433 86.56 0.94 0.78 1.19
w/o EmbedRF 09913  1.13 31.15 0.1889 2925  86.04 83.15 86.13 0.95 0.85 1.20

| b;"oWn bear ->An lAer‘ic’qn’quck’ b;]r A brown bear ->A wolf A blue jeep driving in the countryside

A lion walklng in The z00. N o Watercolor style of a jeep driving in the countryside.

Figure 4: Extensive qualitative results. The extensive experiments take Wan2.1-14B
(2025) as the base model, demonstrating the generalization of DFVEdit for Video DiTs.

4.1 COMPARISON RESULTS

Qualitative evaluation. Fig. 3| and Fig. [F8| provide qualitative comparison results, showcasing
our method’s superiority in structure fidelity, motion integrity, and temporal consistency over other
prominent baselines. For single object editing (first column), FateZero (2023), Token-
Flow [Geyer et al| (2023)), and VideoDirector[Wang et al.| (2024b) exhibit noticeable flickering, while
ControlVideo|Zhang et al.|(2023b), FLATTEN |Cong et al.| and finetuning-based methods DMT |Yatim|
(2024), Tune-A-Video (2023)), and VideoP2P fail to preserve the
details of unedited regions. For multi-object editing (second column), most methods struggle with
editing accuracy; although VideoGrain [Yang et al.| achieves success in multi-object editing using
fine-grained SAM [Kirillov et al| (2023)) masks, it falls short in maintaining motion detail fidelity (e.g.,
a mismatch between the fox and dog expressions). For stylization (third column), Freemask [Cai et al |
@]}, which is based on a UNet-based video diffusion model, performs notably well, while other
methods still show inconsistencies in color tone and structural details (refer to the supplementary ma-
terial for video displays). Additionally, we extended FateZero and KVEdit[Zhu et al |
(2025)) directly to Cogvideo-5B [Yang et al.| (2024b) to compare editing quality and efficiency. Due to
space limitations, please refer to the appendix for more detailed comparison results. Fig. ] provides
the extensive experiment results on Wan2.1-14B [Wang et al.| (2023)), which also demonstrates high
editing quality with respect to structure fidelity, motion integrity, and prompt alignment. Wan

et al] (2025) is combined with Flow Matching [Lipman et al[(2022), while CogVideoX [Yang et al,
(2024b) is based on Score Matching [Song et al.| (2020b). As illustrated in both Fig. i and Flg. El
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(a) Ablation results on Embedding Reinforcement (ER)

S

riginl o ‘ ; ‘:}anonessbias in DDS

(b) Ablation results on replacing CDFV with DDS vector. (c) Ablation results on Implicit Cross Attention (ICA) Guidance

Figure 5: Ablation. (a)(c) demonstrate the effectiveness of ER and ICA. (b) highlights limitations of
popular approximation-based latent refinement methods (2023) in video editing, including:
low convergence leading to unnatural changes and unpredictable convergence times; randomness
bias resulting in unsatisfactory structural fidelity.

DFVEdit achieves consistent editing quality across popular Video DiTs, whether based on Score

Matching [Song et al|(2020b) or Flow Matching [Lipman et al (2022).

Quantitative Evaluation. In Tab. [T} we compare DFVEdit with baseline methods using both auto-
matic metrics and user study evaluations. Detailed quantitative metrics can be found in Appendix [D.2]
and user study details are provided in Appendix [D.3] These results highlight DFVEdit’s practi-
cal efficiency and efficacy.We extended FateZero (2023) and KVEdit (2025)
to CogVideoX-5B |Yang et al.| (2024b) to assess their performance. As shown in Fig.|I[b), these
methods, originally designed for image diffusion, incur significant computational overhead when
applied to Video DiTs. Refer to the Appendix [E]for more quantitative experiment results on insight.
Tab. [I|shows DFVEdit’s superior performance across multiple metrics: structural consistency CLIP-F
(0.9924), motion fidelity Eqqrp (1.12), unedited region fidelity M.PSNR (31.18), overall structural
fidelity LPIPS (0.1886), and video-prompt alignment CLIP-T (30.84). User studies confirm its lead
in editability (87.65), quality (84.56), and consistency (86.98). Additionally, it achieves notable
efficiency in VRAM (0.95) and RAM (0.86) usage, with minimal latency (1.20).

4.2 ABLATION RESULTS

We evaluate the efficacy of CDFV, ICA, and ER in our ablation study. Tab. mreveals that omitting
either the ICA or ER modules degrades performance, highlighting their indispensable roles in
achieving optimal outcomes. In Fig.5[a), we vary the Embedding Reinforcement factor ~y from 1
to 10. Without reinforcement (y = 1), stylization effects are negligible. Stylization improves as
~ increases but degrades with excessively high values. Empirically, v = 5 optimizes stylization
without compromising structural fidelity or visual quality. Fig.[5[c) shows that omitting Implicit
Cross-Attention Guidance leads to unintended changes in unedited regions. Incorporating cross-
attention mechanisms significantly enhances structural fidelity and overall quality. In Fig. [5(b), we
replace CDFV with the stochastic latent refinement vector in DDS (2023). In this ablation,
for the "horse’ experiment, ICA and ER are kept, while for the *bear’ experiment, they are omitted
for a fair comparison. The results highlight the effectiveness of CDFV. For additional qualitative and
quantitative comparison and ablation results, please refer to the Appendix [F|

5 CONCLUSION

We present DFVE(it, an efficient and effective zero-shot video editing framework tailored for Video
Diffusion Transformers. DFVEdit realizes video editing through the direct flow transformation
of the clean source latent. We theoretically unify editing and sampling from the continuous flow
perspective, propose CDFV to estimate the flow vector from the source video to the target video, and
further enhance the editing quality with ICA guidance and ER mechanism. Extensive experiments
demonstrate the efficacy of DFVEdit on Video DiTs.
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6 STATEMENT

Ethics Statement. This work does not involve human subjects or personally identifiable information.
The datasets used are publicly available and have been previously released for research purposes
under appropriate licenses. Our method does not enable capabilities that are likely to cause harm
when deployed, though we acknowledge that any machine learning model capable of generating
realistic content could potentially be misused. No ethical approval was required for this study.

Reproducibility Statement. To ensure the reproducibility of our results, we include detailed
experiment settings in the Appendix. Our code will be open-sourced upon publication. All datasets
used in our experiments are publicly available. Implementation details for baseline methods are also
provided to facilitate fair comparison.
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A LLM USAGE STATEMENT

We used GPT-4 (via OpenAI’s API) to assist with language polishing, grammar correction, and
structural refinement of the manuscript. Specifically, the model was used to help draft and revise the
introduction and related work sections, and to improve the clarity and flow of the overall writing. All
prompts and generated content were carefully reviewed, critically edited, and fact-checked by the
authors. The core ideas, technical content, experimental design, and final text are the responsibility
of the authors and were not generated by the model.

B ADDITIONAL THEORETICAL DETAILS

B.1 REVISITING VIDEO EDITING FROM SAMPLING PERSPECTIVE

Let { X4 T | define the state trajectory of the edited video in the sampling process. We formalize
video editing as a controlled Markov chain with the following recursive relation:

X9 = g, (XEW, e, (XE9,8) +AC(X5 1, 4) ) (17)

Canonical Denoiser Control Term

where State Transition gy, , is the differentiable transition function parameterized by learnable 0o,
€p, is the pretrained diffusion model with frozen 6,, Control Term C'is the editing condition injector
with intensity A > 0.

The formulation maintains consistency with standard diffusion sampling process when A\ = 0 and
9, = I, where Z : X — X denotes the identity operator satisfying Z(z) = x, Vo € X.:

Xi%] amo = X7 (18)

9oy = -
B.2 UNIFICATION WITH VARIOUS EDITING METHODS
Existing popular editing paradigms emerge as special cases of our control framework:

1. Inversion-based editing (like Fatezero Qi et al.[(2023)):

V-1
905, (a,b) = Nl (a+ ABb) (19)
C(Xedlt t * — 6c;dlt Xedlt t _ 691 Xedlt t (20)

AB, = ,/ \/1_” @1)

2. Latent-approximation-based editing (like DDS [Hertz et al.|(2023))):

965, (av b) = ProjGQ,t (a + Ub) (22)
C(zy,t, %) = €, (z4,t) — €9, (w4, ) — € (23)
e ~N(0,071) (24)

where «; is the DDPM noise schedule coefficient at step ¢, AS; is the noise scale difference term

maintaining consistency in the reverse process, 62‘:11“ is the edited noise prediction conditioned on the

target prompt, X4t is the latent representation during the editing process. And Proj, ,, 15 a shallow

approximation network with learnable parameter 65 that directly refines the latent to the target latent,
7 is the step size controlling parameter update strength, oy is the time-dependent noise scale for
stochastic refinement, and € is the Gaussian noise enabling exploration in the latent space. These
formulations show how various editing methods are implicitly isomorphic with the sampling process.
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B.3 REVISITING VIDEO EDITING FROM THE CONTINUOUS FLOW TRANSFORMATION
PERSPECTIVE

For the sampling process of SDE:

1
dX = —§B(t)X dt ++/B(t) dW (25)
NI N——
FX.) g(t)
For the inverse process of SDE:
1
dX = —iﬁ(t)X - B({t)Vx logpt(X)} dt + +/B(t)dW (26)

when changing the discrete update formulation into continuous At — 0, we define:

Using Taylor’s expansion,we have:

a1~ aft) — a(t)At (28)
Q-1 1
N 1-5B(HAL (29)
Xith ~ X - @ (X" + () (€0, +2C)) At (30)

Under the Euler discretization scheme with step size At — 0 and gy, = Z, the discrete process
equation [I7|converges to the controlled SDE:

AX 9 — [_ 5;75) Xedit 4

B(t)
2

Vlogpt(xted“)+A@a(t)0(){§dﬁ,t> dt ++/B(t)dW  (31)
N——

2
g(t)

fo, (X394

And our derived CDFV adheres to the minimum intervention principle from optimal control theory,
which theoretically guarantees computational efficiency:

min E
£\,C

T
/||C(Xt,t)||2dt] st dX = [fo, (X, 1) + AC(X, )] dt + g()dW (32
0

Vx log pi"(X) — Vx log pi(X)
o(t)

In addition, we provide the simplified algorithm of DFVEdit as below:

C* (X, 1) = (33)

C INNOVATIONS OVER TRADITIONAL ATTENTION-ENGINEERING APPROACHES

C.1 CONCEPTUAL AND OPERATIONAL DISTINCTIONS

* Difference on the conceptual foundation: We unify editing and sampling from the flow
perspective, and model editing as a continuous flow transformation in latent space via CDFV,
whereas attention engineering manipulates feature correlations via Q/K/V modifications
(caching, replacing, or fusing).
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Algorithm 1 Simplified algorithm for DFVEdit

Require: source video Xy, target and source prompt embeddings [C7, Cy], Video DiT ey, , encoder
£(-), decoder D(-), sampling timesteps 7', ER scale ()
Ensure: Edited video X;

1: Zo + E(Xop) > Latent encoding
20 Ly < 2o > Initialize target latent
3: C1+ C1+ 'y(k) o C, > Embedding Reinforcement
4: for t <~ T down to 1 do

5: Zans < D1([Zy; Zo)) > One-step forward process: q(z:|zo)
6: Avy W €0, (Zugans, [C’l, Co)) > Raw CDFV prediction
7: Avg gy < My © [Avy] > Implicit Cross-Attention Guidance
8: Zt,l — Zt — Av(t,Mt) > Latent update
9: end for
10: Xy < D(Zp) > Video synthesis

Note:

> Flow map ®; implements the one-step forward process with standard method-specific
coefficients (DDPM/DDIM/Flow Matching).
> ICA mask M, is computed from the specific layer of the Full Attention map (Section 3.3).

* Difference on the operational mechanism: CDFV performs end-to-end deformation, and
ICA only infers an implicit mask from cross-attention or full-attention maps to constrain
CDFV’s spatial influence, and SAM masks are also applied to CDFV optionally (used in
multi-object shape editing), which means ICA and SAM masks are operated on the latent
space without engaging in traditional attention engineering.

* Difference on the architectural impact: DFVEdit’s flow-based formulation enables model-
agnostic operation (has been verified on 2D U-Net and various Video DiTs), while most
attention engineering works fail on Video DiTs due to architectural and computational
constraints.

C.2 ADVANTAGES OF ICA OVER TRADITIONAL ATTENTION ENGINEERING

ICA does not modify attention weights or feature activations but instead infers an implicit mask from
attention responses to guide the CDFV. This fundamental distinction brings several key advantages:

* Preservation of Feature Distribution: By not altering attention outputs, ICA avoids
unintended distribution shifts in unedited regions.

* Computational Efficiency: The mask is computed once per timestep via a forward pass,
contrasting with the iterative recomputation required by attention engineering.

* Architecture Compatibility: As a lightweight component of CDFV, ICA can seamlessly
deploy across various architectures, including 2D U-Net and Video DiTs, where traditional
attention editing faces integration challenges.

C.3 USE OF SAM MASKS IN DFVEDIT

DFVEdit uses SAM masks selectively for enhancing multi-object editing scenarios, particularly when
dealing with semantic leakage issues like distinguishing between left/right objects in Fig.[FT0] Unlike
other methods that require precise SAM masks as essential input for operation, DFVEdit operates
primarily without SAM. Spatial constraints are mainly derived from ICA, producing timestep-aware,
coarse-to-fine masks. When used, SAM masks undergo padding to soften edges and intersect with
ICA maps, ensuring diffusion-aligned, soft masks that enhance editing fluidity and naturalness.
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D EXPERIMENTAL SETTINGS

D.1 DATASETS

We evaluate our method on the public DAVIS2017 dataset Pont-Tuset et al.|(2017)) and open-source
videos from Pexels |Pexels, following the video editing benchmarks established by popular methods
such as FateZero Qi et al.| (2023) and TokenFlow |Geyer et al.|(2023)). All experiments are conducted
on one A100-80G GPU.

All experiments are conducted on 40-frame video sequences at a resolution of 512 x 512. Our focus
is on training-free appearance editing, encompassing both local editing (e.g., shape and attribute
modification) and global editing (e.g., stylization). To comprehensively assess motion preservation
capabilities, we design experiments spanning four categories of motion complexity and articulation
level: 1) High Dynamics, Low Articulation: e.g., jeep stylization (Fig. [3) — characterized by large-
scale motion with minimal structural deformation. 2) Moderate Dynamics, Moderate Articulation:
e.g., human-to-robot translation (Fig. 3] Fig.[FI2) - involving intermediate limb articulation and pose
transitions. 3) Low Dynamics, High Articulation: e.g., dogs-to-foxes translation (Fig. 3 Fig.[F12}
Fig. —requiring preservation of fine, high-frequency non-rigid motions (e.g., ear flicks, blinking,
facial expressions). 4) High Dynamics, High Articulation: e.g., cyclist editing (Fig.[F10] Fig. [FTI)) -
combining fast motion, complex limb articulation, and micro-action transfer.

Notably, while competing methods are typically limited to editing short video clips (under 20 frames)
due to memory constraints (Tab. [T3), our approach demonstrates robust performance on extended
40-frame sequences without memory overflow or significant distortion. Additionally, as evidenced
in Fig. and Fig. [3] our method exhibits superior capability in handling complex multi-object
editing scenarios. Given the inherent limitations of static figures for conveying temporal dynamics,
we strongly encourage readers to consult our supplementary video. This resource provides clear
demonstrations of temporal coherence, editing fidelity, and motion preservation across all evaluated
scenarios.

D.2 QUANTITATIVE METRICS

We do quantitative and human evaluations with 8 quantitative metrics, including Temporal Con-
sistency ("CLIP-F’), Warping Error (" Eyqrp’) |Geyer et al.|(2023)), Prompt Alignment ("CLIP-T”),
Masked PSNR ("M.PSNR’), Perceptual Similarity CLPIPS’), Relative GPU Memory Consumption
(CVRAM’), Relative CPU Memory Consumption (‘RAM’), Relative Inference Latency (’Latency’)
and 3 metrics for user study, including Text Alignment ("Edit’), Overall Frame Quality (" Quality’)
and Temporal Consistency and Realism ("Consistency’). Specifically, CLIP-F calculates inter-frame
cosine similarity to assess structural consistency, while Eya,p measures warping error Geyer et al.
(2023) to evaluate motion fidelity. Additionally, M.PSNR computes the Masked Peak Signal-to-
Noise Ratio between source and target videos to gauge the fidelity of unedited regions, and LPIPS
evaluates the Learned Perceptual Image Patch Similarity for overall structural fidelity. Moreover,
CLIP-T quantifies the alignment between the target prompt and video through the CLIP Score|Hessel
et al.| (2021)). The results demonstrate that DFVEdit achieves superior spatial-temporal consistency,
fidelity, and prompt alignment compared to other methods. Furthermore, to evaluate memory and
computational efficiency, we measure Relative GPU Memory Consumption (VRAM), defined as the
ratio of editing consumption on GPU relative to original inference consumption; Relative Inference
Latency (Latency), which assesses the ratio of editing latency to inference latency; and Relative CPU
Memory Consumption (RAM), measuring the ratio of editing consumption on CPU over original
inference consumption.

CLIP metrics. We employ the output logits of the official ViT-L-14 CLIP model to compute two
metrics: (1) the mean cosine similarity between all frame embeddings and the target text prompt
(CLIP-T), and (2) the average cosine similarity of consecutive frame embeddings of edited videos
(CLIP-F).

Masked PSNR. We quantify structural preservation by computing Masked PSNR on unedited regions,
following|Liu et al.|(2024b)). Using 10 DAVIS [Pont-Tuset et al.|(2017) videos, 30 diverse prompts and
corresponding segmentation annotations M provided by DAVIS, we calculate pixel-level differences
between source (Xg) and edited (X;) videos within regions identified by inverted segmentation
masks M™* = -M.
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M.PSNR(X1,Xo) = PSNR(B(Xy, M*), B(Xy, M*) (34)
where B(...) is the binary operation with a threshold of 0.3.

Relative Efficiency Metrics. We evaluate computational efficiency through three normalized metrics:
Relative CPU Memory Consumption means the ratio of average CPU Memory allocated during
editing to that average CPU allocated to original inference (only generation) with the same base
model. Relative Inference Latency means the ratio of the latency with editing to that of the original
inference latency with the same model. These relative metrics enable fair comparison across varying
base model requirements. Tab. [T2]reports absolute values and experimental configurations. Reported
values include absolute peak allocated GPU/CPU memory consumption (MB), processing latency,
frame count ("), and corresponding base models. The groups ’Stable Diffusion’, *Zeroscope’, and
’CogVideoX’ represent the original generation results with base models, while other groups are the
editing results.

Table T2: Absolute empirical computational efficiency results.

Method GPU Memory (MB) CPU Memory (MB) Latency (s) F  Base Model

Stable Diffusion[Rombach et al.[(2022) 4134.31 2865.00 15.47 8  Stable Diffusion 1.5
Zeroscope |Wang et al.|(2023) 4551.32 3833.86 13.14 8 Zeroscope
CogVideoX|Yang et al.|(2024b) 33110.36 10522.26 100.80 41 CogVideoX-5B
SDEditMeng et al.|(2021) 33441.46 11890.15 87.69 41 CogVideoX-5B
FateZero|Qi1 et al.|(2023) 9576.13 61416.08 52.58 8  Stable Diffusion 1.5
FreeMask|Cai et al.|(2024) 7464.16 98059.40 7429 8 Zeroscope
TokenFlow |Geyer et al.|(2023) 17040.29 159475.48 126.87 8 Stable Diffusion 1.5
VideoDirector|Wang et al.|(2024b) 24789.38 6475.66 432.64 8 Stable Diffusion 1.5
FLATTEN Cong et al. 6385.01 20936.98 71.35 8  Stable Diffusion 1.5
ControlVideo|Zhang et al.|(2023b) 36115.23 4635.36 146.19 8 Stable Diffusion 1.5
DMT |Yatim et al.|(2024) 42500.24 25572.34 217.54 8 Stable Diffusion 1.5
Ours 31454.84 9049.14 120.96 41 CogVideoX-5B

D.3 USER STUDY

Regarding user studies, we focus on Target Prompt Alignment (Edit), Overall Editing Quality includ-
ing fidelity of unedited areas, minimal filtering and blurring (Quality), and Motion and Structural
Consistency (Consistency). We conducted a pairwise comparison study with 20 participants eval-
uating 80 video-prompt pairs (30 from DAVIS, 50 from the website Pexels |[Pexels). Participants
rated three aspects: (1) Text Alignment (prompt-video correspondence), (2) Frame Quality (visual
artifacts), and (3) Consistency (temporal coherence and motion preservation). Scores (0-100 scale)
were aggregated by trimming extremes and averaging remaining responses, yielding 1600 total
ratings.

D.4 BASE MODELS

DFVECdit is focused on fully exploiting the capabilities of Video DiTs for high-quality zero-shot video
editing. We take CogVideoX-5B |Yang et al.|(2024b) and Wanx2.1-14B |Wang et al.|(2025)) as our base
models. To the best of our knowledge, DFVEdit is the first method enabling efficient and effective
zero-shot video editing on modern Video DiTs—including both score-matching (e.g., CogVideoX)
and flow-matching (e.g., Wan2.1) models. Prior attention-based methods are often incompatible
due to architectural and computational constraints. DFVEdit overcomes these via a lightweight,
flow-field-based formulation. For a fair comparison and to show DFVEdit’s model-agnostic operation
ability, we also conduct experiments on a unified 2D U-Net (Stable Diffusion 1.5) for image editing
(Fig. Tab. [T7), demonstrating the effectiveness of DFVEdit independent of Video-DiT-specific
advantages.

D.5 BASELINES

For baselines, we compare against training-free editing methods, including FateZero Qi et al.| (2023),
TokenFlow |Geyer et al.| (2023)), VideoDirector [Wang et al.| (2024b), FreeMask |Cai et al.| (2024),
VidToMe |Li et al|(2024a)) and VideoGain |Yang et al.l which rely on attention engineering; Con-
trolVideo Zhang et al.| (2023b), FLATTEN (Cong et al., which are free of attention engineering; and
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SDEdit Meng et al.|(2021) (directly applied to CogVideoX-5B |Yang et al.| (2024b) base model for
video editing), CogVideoX-V2V Yang et al.| (2024b), as well as finetuning-based method DMT |Yatim
et al.[|(2024), Tune-A-Video |Wu et al.| (2023), Video-P2P L1u et al.| (2024c)).

E EXPERIMENTAL DETAILS ON INSIGHT

In Fig. 1 of the main text, we present some visualizations of our insights: (a) presents the theoretical
attention memory consumption of different base models; (b) presents the theoretical inference latency
of FateZero Qi et al.[(2023) and KVEdit|/Zhu et al.|(2025) when directly applying them to CogVideoX-
5B, as well as the practical inference latency of DFVEdit on CogVideoX-5B. (c) reveals the evolution
pattern of DFV from coarse contours to fine details, consistent with the diffusion sampling process,
providing an intuitive motivation for a unified perspective on editing and generation. Here, we provide
more details on these insights.

Attention memory explosion in DiT models. We analyze the memory consumption of attention
mechanisms in the Unet module of diffusion models versus the Transformer module of DiT models,
focusing on estimating the memory (GB) needed for storing attention score maps in float32 format
per timestep. Although attention score maps are rarely computed explicitly in base models due to
efficiency concerns, traditional editing methods often require their direct manipulation for attention
engineering. Therefore, explicit examination of these maps helps in identifying challenges in
adapting traditional editing techniques to modern DiT architectures. While our analysis centers on
the memory footprint of attention score maps within a single timestep, editing methods based on
attention engineering may involve caching or modifying attention maps across multiple timesteps,
and we highlight the significant computation overhead when applying attention-engineering-based
video editing methods to Video DiTs. As shown in Tab. traditional diffusion models (e.g.,
Stable Diffusion and Zeroscope) exhibit multi-scale attention mechanisms with shapes varying
by layer. In contrast, modern Video DiTs like CogVideoX-5B employ fixed large-scale attention
([2, 48, 11490, 11490]), resulting in 283 x higher memory than SD’s maximum (7 GB vs. 1871 GB).
This fundamental architectural shift explains the inefficiency of attention-based editing methods when
applied to Video DiTs.

Table T3: Peak attention memory consumption (GB) for full score maps (float32) per timestep.
Values with ~ approximate ground truth with £5% variance. F': processed frames. Asterisk (*)
indicates dynamic attention shapes.

Model Attention Shape  Block Number Attention Memory (GB)  Dtype F
Stable Diffusion Rombach et al.|(2022)* Multi-scale 32 ~7 float32 1
HunyuanDiT [Li et al.|(2024b) [2,4096,4096] 80 ~10 float32 1
Zeroscope |Wang et al.|(2023)* Multi-scale 64 ~25 float32 8
HunyuanVideo|Kong et al.|(2024) [1,24,11520,11520] 48 ~612 float32 41
Wanx2.1-14B [Wang et al.|[(2025) [1,40,11264,11264] 40 ~794 float32 41
CogVideoX-5B|Yang et al.|(2024b) [2,48,11490,11490] 40 ~1871 float32 41

Inference Latency Comparison. We adopt a theoretical estimation approach to evaluate the inference
latency for attention-engineering-based editing methods (FateZero Qi et al.|(2023) and KVEdit Zhu
et al.| (2025)) and measure the practical inference latency of DFVEit, since direct empirical testing of
FateZero and KVEdit with Video DiT is infeasible due to GPU memory and CPU RAM constraints.
First, we conduct performance analysis assuming unlimited CPU memory. Specifically, we measure
execution times per timestep and extrapolate to the total timesteps required for editing. Given that
caching attention maps, keys, and queries exceeds GPU capacity, all caching operations utilize CPU
memory. This methodology provides theoretical latency estimates for these methods in Video DiT
contexts. The selected approaches demonstrate that both traditional diffusion-based methods and
image DiT-based methods face significant resource overheads when directly applied to Video DiTs.

F EXPERIMENT RESULTS ON HYPERPARAMETERS

We used the full version of DFVE(it, including both the ICA and ER components. The hyperpa-
rameters of DFVEdit are stable and easy to tune. In practice, DFVEdit introduces only a few key
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hyperparameters: the fusion timesteps for ICA, the number of sampling iterations (T), and ER’s
hyperparameter ~.

Seed Sensitivity and Reproducibility. The latent initialization stage is noise-free, meaning we
transform a clean source video latent into a clean target latent. When computing the Conditional
Delta Flow Vector (CDFV), the same Wiener process ¢ (i.e., the same random seeds) is applied
to both 2! (target latent at t) and z{ (source latent) in the forward flow (Eq. 1), which leads to
the cancellation of stochastic noise in the output difference (Eq. 12). Additionally, each forward
pass uses a new random seed, preventing bias accumulation from fixed noise patterns. We tested
DFVEdit (on CogVideoX-5B) on 20 video-prompt pairs with five different repetitive experiments
to evaluate stability across random seeds. Tab. [T4]reports the mean and standard deviation of key
metrics, indicating low variance and consistent performance. The stability arises from our CDFV
design—only the deterministic score difference drives editing, and ICA further enhances consistency
by anchoring background features.

Table T4: Performance stability across 5 repetitive experiments (mean = std).
Method CLIP-F 1 Evwarp .  M.PSNR 1 LPIPS | CLIP-T
DFVEdit 0.9924 +0.003 1.114+0.12 31.24+1.3 0.189+£0.012 30.8+0.9

Ablation Study on Number of Diffusion Steps We thank the reviewer for this suggestion. To analyze
the sensitivity of DFVEdit the total number of diffusion steps (1"), we conducted an ablation study
on Wan2.1-14B. As shown in Tab. both editing accuracy (measured by CLIP-T 1) and temporal
consistency (Eyarp ., CLIP-F 1) stabilize when T" > 50. For T' < 50, insufficient flow field estimation
leads to under-editing, manifesting as blurred or temporally unstable results. In contrast, increasing T’
beyond 50 yields diminishing improvements at the cost of higher computational overhead, and may
result in a slight decrease in performance on background preservation. We therefore set 7' = 50 as the
default, achieving an optimal trade-off between efficiency and quality. This value is also consistent
with common practice in high-fidelity video generation, where moderate step counts suffice under
advanced solvers.

Table T5: Ablation study on the number of diffusion steps 7'.
Total Timesteps T CLIP-F1  Eyap | M.PSNRT LPIPS| CLIP-T 1

10 0.9731 2.1305 30.56 0.1793 29.91
20 0.9833 2.1100 30.61 0.1688 30.66
50 (default) 0.9950 1.0600 31.23 0.1568 31.34
100 0.9954 1.4175 30.96 0.1569 31.32
150 0.9973 1.3881 30.73 0.1571 31.36
200 0.9953 1.3672 30.66 0.1578 31.50

Embedding Reinforcement. Due to space limitations, we only visualize the embedding reinforce-
ment ablation results on stylization in the main text; here, we additionally visualize the results on
shape editing. As shown in Fig.[F9] at v = 0, the distinctive traits of polar bears compared to brown
bears, such as their white fur and rounded ears, are effectively captured with high background fidelity.
Increasing v to 1 enhances editing quality, more accurately portraying the polar bear’s elongated
neck and smaller head-to-body ratio. However, at y = 5, there is a notable decline in video synthesis
quality, characterized by visible flickering and noise, alongside reduced background preservation. Our
experiments demonstrate that for optimal editing outcomes in shape modification, the ER method’s
hyperparameter vy should be set within the range of 0 to 1. For simplicity and efficiency, we typically
set 7y to 0.3 in our studies, although values within this range generally yield satisfactory results.

On ICA masks. Our method, though not specifically designed for multi-object editing, inherently
adapts to such tasks through the editing region localization capability of CDFV. We enhance the
editing precision by combining: (1) Implicit Cross-Attention (ICA) derived from Layer 16 transformer
blocks (based on the observation that cross-attention masks exhibit a coarse-to-fine change across
denoising timesteps as found in FreeMask|Cai et al.| (2024)), with the layer index selection method
also following FreeMask), and (2) SAM masks with edge padding. Fig.[F6|shows an example of
ICA extraction and visualization. This strategy operates in two phases: ICA guidance during early
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Table T6: Quantitative comparison with additional state-of-the-art video editing methods.

Method CLIP-Ft E_warp) M.PSNRT LPIPS| CLIP-Tt
VideoP2PLiu et al.| (2024c) 0.9624 3.28 17.38 04531  27.26
Tune-A-Video|[Wu et al. (2023) 0.9612 3.35 16.67 04545  27.14
CogvideoX-V2V|[Yang et al|(2024b)  0.9812 1.67 20.53 04092  27.46
VidToMe [Li et al.[(2024a) 0.9737 2.96 22.52 03062  27.32
DFVEdit (CogvideoX-5B) 0.9924 1.12 31.18 0.1886  30.84
DFVEdit (on Wan2.1-14B) 0.9950 1.06 31.23 0.1568 31.34

denoising (t = T' — 0.4T) preserves shape flexibility while reducing background leakage, followed
by SAM-based mask guidance (t = 0.37" — 0).

G ADDITIONAL EXPERIMENTAL RESULTS

Extended Comparison Experiments. To ensure a comprehensive evaluation, we additionally
compare with CogVideoX-V2V |Yang et al.| (2024b) on the Video DiT backbone (CogVideoX-
5B), state-of-the-art fine-tuning-based editing methods including Tune-A-Video |Wu et al.| (2023)),
VideoP2P Liu et al.|(2024c)), and the latest competing method VidToMe|Li et al.|(2024a)). As illustrated
in Tab.[T6|and Fig.[F8] DFVEdit demonstrates superior performance. Furthermore, qualitative results
using Wan2.1-14B are provided in Figs.[dand[F12] with corresponding quantitative metrics in Tab.
These results confirm that DFVEdit achieves enhanced outcomes when leveraging this advanced
Video DiT backbone.

Image Editing Experiments We conducted experiments on PIE-Bench Ju et al.| (2023) using
Stable Diffusion 1.5, comparing DFVEdit with Instruct-pix2pix Brooks et al.| (2023)), PnP Tu/{
manyan et al.| (2023), and P2P |Hertz et al.| (2022) (PnP and P2P have adopted DirectInversion Ju
et al.| (2023) techniques). We evaluated DFVEdit and T2I baselines on two representative sub-
sets: I_change_object_80 and 9_change_style_80, using standard metrics—Distance (overall struc-
ture coherence), PSNR/LPIPS/SSIM (background preservation), and CLIP Similarity (whole align-
ment)—following Directlnversion. Results in Tab. [I'/|and Fig. |[F7|show the competitive performance
and practical cross-modal generalization ability of DFVEdit. Our core contribution remains en-
abling efficient, zero-shot editing on modern Video DiT models, where DFVEdit overcomes the
computational and architectural limitations of attention-based methods without requiring fine-tuning.

Table T7: Quantitative results on PIE-Bench Ju et al.|(2023) for image editing.

Structure Background
Method Distance | PSNR1 LPIPS| SSIM{ CLIP Similarity 1
DFVEdit 0.0167 23.24 0.1225 0.6935 29.62
Instruct-pix2pix [Brooks et al.|(2023) 0.0258 21.56 0.1308 0.6321 26.13
P2P Hertz et al.|(2022) 0.0186 22.38 0.1257 0.6416 29.07
PnP Tumanyan et al.[(2023) 0.0279 18.06 0.1353 0.6135 29.02

On multi-objects editing. As shown in Fig. our method demonstrates robust multi-object
editing capabilities across diverse scenarios, achieving target object accuracy while maintaining
non-edited region fidelity. The framework handles both complex dynamic interactions with multiple
objects in cluttered environments, and fine-grained editing requiring precise motion retention. These
findings not only underscore the robustness and effectiveness of our proposed method but also lay a
solid foundation for future advancements in multi-object editing.

More results on attribute editing. Due to space limitations, we include the visualization results
of attribute editing in the Appendix. As shown in Fig. [FTT] our method demonstrates satisfactory
performance on attribute editing, enabling the natural and seamless integration of both added and
removed small objects within existing scenes.

More results on extension experiments. We have demonstrated additional results of applying
DFVEdit to the Wan2.1 base model in the main text. To further objectively evaluate the generality
and robustness of DFVEdit on Video DiTs, Fig. compares the performance of the same video
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editing tasks across different base models using our method. This comparison aims to reveal the
variations in outcomes due to differences in models and to verify the robustness and generality of
our approach. The experimental results indicate that although different base models may lead to
slight variations in the editing outcomes, overall, all edited videos align well with the target prompt,
and the editing quality meets the expected standards. These findings reflect the high robustness and
generalization ability of our proposed method. Refer to the ’DF VEdit.mp4’ in the supplementary
material for the dynamic video display. The code will be public upon publication of this work.

H LIMITATIONS AND FUTURE WORK

As illustrated in Fig. our method exhibits several limitations common to zero-shot video editing.
First, maintaining perfect detail fidelity in non-edited regions remains challenging. While our
approach demonstrates superior fidelity preservation compared to existing methods, some detail loss
persists even with ICA guidance. This issue is partially attributable to VAE compression artifacts, a
fundamental bottleneck in latent diffusion models that particularly affects high-frequency textures
and fine structures. In addition, our method has limited capability for large shape variations (e.g.,
bicycle-to-car transformations). The flow-based formulation and the underlying DiT’s structural
dependencies restrict applications to shape editing tasks with minor layout changes. Generating
entirely new geometries while preserving background consistency and motion dynamics remains
an open challenge in video editing. Furthermore, DFVEdit is primarily designed for appearance
editing and currently offers limited support for non-rigid shape modifications |Yoon et al.| (2024a)
or drag-based interactive editing Teng et al|(2023)); Deng et al.| (2024)). Future work could explore
incorporating explicit structural guidance (e.g., depth, optical flow) or layered compositing strategies
to address these limitations, potentially enabling more extreme shape transformations and interactive
editing capabilities.
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Figure F6: Implicit Cross Attention extraction and visualization.
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Figure F7: Qualitative comparison results on image editing with PIE-bench.
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Figure F8: More comparison results.
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a man doing moonwalk -> a silver robot doing moonwalk

Figure F9: Ablation results of ER on shape editing. ER strength v (y = 0 — 1 optimal, v > 5
degrades).
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Figure F10: Multi-object editing results. DFVEdit performs well on multi-object editing across
various scenarios: (1) complex dynamic interactions (person-vehicle) with cluttered backgrounds,
and (2) fine-grained object manipulation with detailed motions (two dogs).
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Figure F11: Attribute editing results.
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Figure F12: More extension experiment results.
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Figure F13: Limitation.
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