
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IGU-LORA: ADAPTIVE RANK ALLOCATION VIA IN-
TEGRATED GRADIENTS AND UNCERTAINTY-AWARE
SCORING

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) scale to billions of parameters, full-parameter
fine-tuning becomes compute- and memory-prohibitive. Parameter-efficient fine-
tuning (PEFT) mitigates this issue by updating only a small set of task-specific
parameters while keeping the base model frozen. Among PEFT approaches, low-
rank adaptation (LoRA) is widely adopted; however, it enforces a uniform rank
across layers despite substantial variation in layer importance, motivating layerwise
rank allocation. Recent adaptive-rank variants (e.g., AdaLoRA) allocate ranks
based on importance scores, yet typically rely on instantaneous gradients that
capture only local sensitivity, overlooking non-local, pathwise effects within the
same layer, which yields unstable and biased scores. To address this limitation,
we introduce IGU-LoRA, an adaptive-rank LoRA that (i) computes within-layer
Integrated Gradients (IG) sensitivities and aggregates them into a layer-level score
for rank allocation, and (ii) applies an uncertainty-aware scheme using exponential
moving averages with deviation tracking to suppress noisy updates and calibrate
rank selection. Theoretically, we prove an upper bound on the composite trape-
zoidal rule approximation error for parameter-space IG under a pathwise Hessian-
Lipschitz condition, which informs the quadrature budget. Across diverse tasks
and architectures, IGU-LoRA consistently outperforms strong PEFT baselines
at matched parameter budgets, improving downstream accuracy and robustness.
Ablations confirm the contributions of pathwise within-layer sensitivity estimates
and uncertainty-aware selection to effective rank allocation.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across a wide range of NLP
tasks (Devlin et al., 2019; Brown et al., 2020a; Han et al., 2025). However, specialising these models
for new downstream tasks remains challenging due to their large parameter counts and substantial
computational and memory costs. Consequently, fine-tuning has emerged as the standard way to
adapt pre-trained LLMs to particular downstream tasks.

Early efforts in fine-tuning primarily relied on full-parameter fine-tuning (FPFT) (Lv et al., 2024;
Qiu et al., 2020; Raffel et al., 2020), where all model parameters are updated during training. While
effective for small to medium-scale models, such as BERT (Devlin et al., 2019) and RoBERTa-
large (Liu et al., 2019), FPFT becomes increasingly impractical as model size scales exponentially.
For example, GPT-3 (Brown et al., 2020b) contains 175 billion parameters, making full fine-tuning
prohibitively expensive in terms of computation and memory.

To alleviate these challenges, parameter-efficient fine-tuning (PEFT) methods have been proposed,
which adapt pre-trained models by updating only a small subset of parameters while keeping most
of the model frozen. Notable PEFT methods include Adapter Tuning (Houlsby et al., 2019; Rücklé
et al., 2021; Pfeiffer et al., 2021; He et al., 2022; Wang et al., 2022), Prefix Tuning (Li & Liang,
2021; Wu et al., 2024), and Prompt Tuning (Liu et al., 2022b; Zhang et al., 2024; Yu et al., 2023;
Cui et al., 2025). These methods significantly reduce the number of trainable parameters. However,
they primarily affect shallow or intermediate layers, limiting their ability to capture deeper semantic
representations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Complementary to the above, weight-delta methods (e.g., Diff Pruning (Guo et al., 2020; Fang et al.,
2023)) selectively update a sparse subset of important weights. While effective in reducing the scale
of trainable parameters, these methods often rely on unstructured sparsity, which poses challenges for
optimisation and is less compatible with modern hardware acceleration. A more structured alternative
is Low-Rank Adaptation (LoRA) (Hu et al., 2022a), which models the weight update ∆W as the
product of two low-rank matrices. By preserving the pretrained model architecture and introducing
only a small number of trainable parameters, LoRA achieves high efficiency without sacrificing model
capacity. However, LoRA typically uses a fixed rank across all layers, ignoring the heterogeneous
contribution of different weight matrices. This static configuration may limit the adaptability and
expressiveness of the model.

Building on this observation, several adaptive-rank PEFT methods have been proposed (Zhang et al.,
2023; Xu et al., 2023; Ding et al., 2023; Valipour et al., 2023). For example, AdaLoRA (Zhang et al.,
2023) applies singular value decomposition (SVD) to the low-rank update matrices and dynamically
adjusts rank sizes based on layer-wise importance scores. However, the scoring mechanism in
AdaLoRA is primarily based on instantaneous gradient signals, which fail to capture long-term
parameter contributions and inter-layer interactions. As a result, the rank allocation may be suboptimal
in complex optimisation scenarios.

To overcome these limitations, we propose IGU-LoRA(Fig. 1(c)), an IG-driven PEFT framework
that extends Integrated Gradients to the parameter space for scoring parameter importance. The
IG path integral is efficiently approximated via a mini-batch stochastic quadrature that uniformly
samples one node α ∈ [0, 1] per mini-batch, thereby avoiding the O(N) forward-backward passes of
trapezoidal integration—where N denotes the number of discretization steps along the IG path—and
adding only batch-linear overhead. Compared with instantaneous-gradient heuristics, this yields
stable and globally informed importance estimates. Robustness is further enhanced by modeling
the predictive effect of parameter perturbations and by an uncertainty-aware score that couples an
EMA mean with a dispersion term. On the theory side, we establish (i) a discretization-sampling
error bound for the IG estimator of order O(N−2) +O(M−1/2), where M is the number of sampled
mini-batches, and (ii) a high-probability stability guarantee for the EMA ratio score SNRt, the signal-
to-noise ratio at iteration t. Empirically, across datasets (BoolQ, GSM8K, GLUE, . . .) and backbones
(RoBERTa-large, Qwen-2.5-0.5B, Llama-2-7B, Llama-3-8B, DeepSeek-R1-Distill-Qwen-2.5-7B),
IGU-LoRA consistently improves accuracy over strong PEFT baselines (LoRA, AdaLoRA, DoRA)
while matching their memory footprint and decoding latency.

(a) LoRA (b) AdaLoRA (c) IGU-LoRA (Ours)

Pretrain Weight
Martix

input

output

Pretrain Weight
Martix

input

output
Based on simple gradient

sensitivity

Compute importance
score

Adaptive rank
allocation

SVD

Pretrain Weight
Martix

input

output

SVD

Based on integrated
gradients (IG)

Compute importance
score

Adaptive rank
allocation

Figure 1: Comparison of frameworks: left to right—(a) LoRA, (b) AdaLoRA, (c) the proposed IGU-LoRA. IGU-
LoRA builds on LoRA and AdaLoRA, introducing integrated gradients (IG) to compute parameter importance
scores. Please zoom in 300% for better clarity.

2 RELATED WORKS

2.1 PARAMETER EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) received widespread attention for its effectiveness in effi-
ciently adapting LLMs. Representative approaches included Adapter Tuning (Houlsby et al., 2019;
Rücklé et al., 2021; Pfeiffer et al., 2021; He et al., 2022; Wang et al., 2022), Prefix Tuning (Li &
Liang, 2021; Wu et al., 2024), Prompt Tuning (Liu et al., 2022b; Zhang et al., 2024; Yu et al., 2023;
Cui et al., 2025), and P-Tuning v2 (Liu et al., 2021), which inserted lightweight trainable modules into
different layers of the model to enable efficient task adaptation. In parallel, reparameterization-based
PEFT approaches (Li et al., 2018; Aghajanyan et al., 2021; Liu et al., 2024a; Hu et al., 2022a; Zhang

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2023) received increasing attention. Without modifying the model architecture, these methods
modeled and optimized parameter updates in a low-dimensional and efficient manner. Among them,
Low-Rank Adaptation (LoRA) (Hu et al., 2022a) has become a prominent method by expressing
weight updates as the product of two low-rank matrices, which allows for tight control over the train-
able parameter count while maintaining model performance. With the rapid release of open-source
LLMs (Shao et al., 2024; Liu et al., 2019; Dubey et al., 2024) and their increasing use in instruction
tuning and other real-world applications, PEFT has emerged as the mainstream paradigm for scalable
fine-tuning and has been widely adopted in practical systems.
2.2 LOW-RANK ADAPTATION FINE-TUNING

LoRA (Hu et al., 2022a) is a representative PEFT method that freezes pretrained weights and injects
low-rank matrices, reducing parameter overhead with minimal performance loss. Several LoRA-based
methods have been proposed to enhance efficiency and scalability. For example, Delta-LoRA (Zi
et al., 2023) improves LoRA’s expressiveness by updating weights with the temporal difference of
AB, addressing the limitations of small low-rank matrices. DoRA (Liu et al., 2024b) decouples
optimization by factorizing W into a magnitude vector m and a direction matrix V. MeLoRA (Ren
et al., 2024) aggregates outputs from parallel low-rank adapters in a block-diagonal structure to
improve model capacity. AutoLoRA (Xu et al., 2023) uses meta-learning to automatically assign
optimal per-layer ranks, while AdaLoRA (Zhang et al., 2023) dynamically adjusts ranks during
training using SVD and parameter importance scores. SalientLoRA (Ke et al., 2024) allocates ranks
based on parameter saliency, optimizing the low-rank layers for improved performance. GoRA (He
et al., 2025) adapts low-rank adjustments dynamically using gradient-driven methods to meet task
requirements while maintaining efficiency. These techniques enable efficient fine-tuning with fewer
trainable parameters and strong performance.
2.3 INTEGRATED GRADIENTS

In interpretability research for deep learning, Integrated Gradients (IG (Sundararajan et al., 2017))
is a widely adopted attribution method that mitigates gradient saturation by computing the integral
of gradients along the path from a baseline input to the actual input. IG satisfies two key axioms,
completeness and sensitivity, which ensure that it quantitatively reflects the contribution of each input
feature to the model’s output. Subsequent studies extend IG in various directions. Theoretically, Lund-
berg & Lee (2017) show that IG is equivalent to Shapley values under certain conditions. From a
computational perspective, Kapishnikov et al. (2021) propose an adaptive sampling strategy that
improves runtime efficiency by 3×. IG also demonstrates practical utility in high-stakes domains such
as medical imaging (Sayres et al., 2019), where it improves the localization of diabetic retinopathy
markers. In this work, we extend IG to parameter importance estimation in large model fine-tuning.
Our method addresses the limitations of instantaneous gradient signals, which are prone to vanishing
in deep networks. It introduces a redefined sensitivity scoring mechanism that more accurately
captures long-term parameter contributions during optimization.

3 METHOD

3.1 PRELIMINARIES

Low-Rank Adaptation. Low-Rank Adaptation (LoRA (Hu et al., 2022a)) injected trainable low-rank
matrices into frozen pre-trained weights, substantially reducing the number of trainable parameters
while preserving downstream task performance. Given a pre-trained parameter matrix W0 ∈ Rd1×d2

for a specific layer of an LLM, LoRA updated the parameter matrix as:

W = W0 +AB, (1)

where A ∈ Rd1×r and B ∈ Rr×d2 were low-rank trainable matrices with r ≪ min{d1, d2}.

Adaptive LoRA. A key limitation of LoRA is that it requires manually selecting the rank r, which is
challenging due to the heterogeneity of intrinsic dimensionalities across layers and the lack of princi-
pled guidance for determining appropriate values. To enable adaptive rank selection, singular value
decomposition (SVD) is typically applied to the trainable low-rank product AB in Eq. (1) (Zhang
et al., 2023):

W = W0 + SVD(AB) = W0 +PΛQ, (2)
where P ∈ Rd1×r, Q ∈ Rr×d2 are two orthogonal matrices, and the diagonal matrix Λ =
diag{λ1, λ2, . . . , λr} ∈ Rr×r containing the singular values. We initialize r as an over-
parameterized upper bound r ≪ min{d1, d2}, then prune redundant dimensions via spectral analysis.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To determine the final rank, we define an importance score Si for each singular value λi, which guides
the pruning process. Unlike conventional methods that rely solely on magnitude, our proposed scoring
method incorporates both the singular value and the sensitivity of its associated parameters, namely
the elements in the i-th column of P and the i-th row of Q. Specifically, for each i ∈ {1, . . . , r},
we estimate Si by aggregating two components. First, sλ(·) measures the intrinsic strength of the
singular value; Second, se(·) quantifies the importance of the parameters with the i-th column of
matrix P and the i-th row of matrix Q. The final score Si is computed as Zhang et al. (2023):

Si = sλ(λi) +
1

d1

d1∑
k=1

ssnr(Pki) +
1

d2

d2∑
k=1

ssnr(Qik), (3)

where sλ(λi) = |λi| denotes the magnitude of the singular value, and ssnr(·) is a specific importance
score function that measures the importance of individual weight on the training loss function.
Existing methods (Zhang et al., 2023) for measuring parameter importance are primarily based on
simple gradient sensitivity

∣∣wij∇wij
L
∣∣, where wij is a single parameter in model. However, this

simple gradient sensitivity-based method suffers from the following limitations:

• Lack of Structural Interpretability: Simple gradient sensitivity-based method evaluate weights
independently, ignoring the structured interactions among parameter groups. In settings like LoRA,
where parameters operate collectively within subspaces, such element-wise assessments fail to capture
their joint contribution, thereby limiting interpretability at the structural level.

• Instantaneous Parameter Sensitivity: Simple gradient sensitivity-based method capture only the
instantaneous impact of a parameter on the loss function, overlooking its accumulated or long-term
contribution throughout training. This limitation can result in unstable or misleading estimates.

• Gradient Saturation: In transformer-based LLMs, activation functions such as ReLU may lead to
gradient saturation in inactive regions, where the gradient signal vanishes entirely. As a result, the
estimated importance of the affected parameters becomes unreliable.

Figure 2 illustrates why (a) the simple gradient method fails in gradient-saturated regions, while (b)
the integrated gradient method provides more reliable parameter importance estimation through a
comparative demonstration. To address these limitations, we estimate parameter importance using
Integrated Gradients (IG) in the parameter space. IG integrates the gradients along the path from 0 to
1, thereby capturing the non-local sensitivity and overall impact of the gradients. This method not
only accounts for the cumulative effect of the parameter gradients along the integration path but also
effectively bypasses saturation regions, where gradient signals typically vanish. By considering the
entire path, this method ensures a more accurate estimation of parameter importance, particularly in
regions where simple gradient-based methods may fail due to vanishing gradients or saturation.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Parameter Value (wij)

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

di
en

t
/ I

m
po

rt
an

ce

Importance 0

L/ wij

Saturation Region

(a) Simple Gradient (Instantaneous)

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Parameter Value (wij)

0.0

0.2

0.4

0.6

0.8

1.0

G
ra

di
en

t
/ I

m
po

rt
an

ce

Importance =

L/ wij

Integrated Importance

(b) Integrated Gradients (IG)
Figure 2: Comparison of parameter importance scoring methods. (a) The simple gradient method fails in
saturated regions, assigning near-zero importance. (b) Integrated gradients compute importance by integrating
along the path from initial to final parameter values, capturing the actual total contribution.

3.2 IMPORTANCE SCORING VIA INTEGRATED GRADIENTS

Integrated Gradients (IG (Sundararajan et al., 2017)) is an attribution method originally developed
to improve the interpretability of deep neural networks by attributing a model’s output to its input
features. It quantifies the contribution of each input feature by integrating the gradients of the output
with respect to the input, along a path from a baseline to the actual input.

Inspired by this idea, we propose IGU-LoRA, which extends IG to the parameter space for importance
estimation in LLMs. Specifically, we integrate the gradients of the loss function with respect to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

model parameters along a continuous path from a baseline (e.g., zero) to the actual trained weights,
thereby capturing the cumulative influence of each parameter on the training loss function. This
parameter-space IG formulation addresses key limitations of conventional gradient-based importance
scores, such as limited structural interpretability, over-reliance on local (instantaneous) sensitivity,
and susceptibility to gradient saturation. Consequently, it provides more stable and comprehensive
estimates of parameter importance for transformer-based LLMs.

Formally, given a weight matrix ∆W, we denote by wij its (i, j)-th entry, representing a specific
weight. Let L denote the loss function of the LLMs. Since Integrated Gradients (IG) requires a
baseline representing a state of no information, we choose 0 as the value for ∆W(0) as the baseline,
and compute the importance score of wij under IG as:

se(wij) =

∣∣∣∣(wij −∆w
(0)
ij)

∫ 1

α=0

∂L(α(∆W −∆W(0)))

∂wij
dα

∣∣∣∣ = ∣∣∣∣wij

∫ 1

α=0

∂L(α∆W)

∂wij
dα

∣∣∣∣ , (4)

where ∆w
(0)
ij ∈ ∆W(0). Due to the massive number of parameters in LLMs, the loss function L

exhibits strong non-convexity and highly nonlinear dependencies in the parameter space. As a result,
Eq. (4) involves a high-dimensional integral that lacks a closed-form solution. To approximate it, we
discretize the path [0, 1] into N equal intervals with nodes αk = k/N (k = 1, . . . , N − 1) and apply
the trapezoidal rule, yielding:

ŝe(wij) ≈
|wij |
2N

∣∣∣∣∣∂L(0)∂wij
+ 2

N−1∑
k=1

∂L (αk∆W)

∂wij
+

∂L(∆W)

∂wij

∣∣∣∣∣ . (5)

Note that Eq. (5) requires gradient evaluations at N + 1 points, which leads to O(N) forward-
backward passes for each weight wij , making it computationally expensive in large models. To
mitigate this computational burden, we propose a stochastic approximation strategy: during fine-
tuning, We randomly sample a single integration point αk = k/N for each mini-batch from a set
{1/N, . . . , (N − 1)/N} that follows a uniform distribution. Consequently, for the p-th mini-batch,
the importance score of wij is approximated as:

ŝpe(wij) ≈
|wij |
2N

∣∣∣∣∂L(0)∂wij
+ 2

∂L (αk∆W)

∂wij
+

∂L(∆W)

∂wij

∣∣∣∣ . (6)

At the end of the t-th training epoch (which consists of M mini-batches), we compute the aggregated
importance score of wij as follows:

sagg(wij) =
1

M

M∑
p=1

ŝpe(wij). (7)

Theorem 1 bounds the error of our estimator, quantifying the gap between the exact IG score in Eq. (4)
and the epoch-level estimator in Eq. (7); the total error is O(N−2) (discretization) + O(M−1/2)
(sampling).
Theorem 1. Let se(wij) be the importance score based on Integrated Gradients (IG) as defined
in Eq. (4), and let sagg(wij) be the epoch-level estimator as defined in Eq. (7). Define gij(α) =
∂L(α∆W)

∂wij
, α ∈ [0, 1].

We assume the following:

1. gij is twice continuously differentiable on [0, 1], and there exists a constant C2 < ∞ such
that

sup
α∈[0,1]

∣∣g′′ij(α)∣∣ ≤ C2. (8)

2. Let α1, α2, . . . , αM be i.i.d. samples drawn from the discrete uniform distribution over{
1
N , 2

N , . . . , N−1
N

}
, and let sagg(wij) be defined as in Eq. (7).

Then, for any N,M ≥ 1 and δ ∈ (0, 1), with probability at least 1− δ, the following bound holds:

|se(wij)− sagg(wij)| ≤
|wij |C2

12N2
+ c|wij |B

√
log(1/δ)

M
, (9)

where c > 0 is an absolute constant, and B is a constant such that |gij(α)| ≤ B for all α ∈{
1
N , 2

N , . . . , N−1
N

}
. The proof is provided in Appendix A.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 UNCERTAINTY-AWARE SCORING

Recent studies (Zhang et al., 2022) demonstrate that stochastic sampling and complex training
dynamics result in high variance in importance score estimates via Eq. (7), thereby undermining
their reliability. To alleviate this issue, we incorporate two complementary mechanisms: sensitivity
smoothing and uncertainty quantification, defined respectively as:

s̄(t)e (wij) = β1s̄
(t−1)
e (wij) + (1− β1)s

(t)
agg(wij), (10)

Ū (t)(wij) = β2Ū
(t−1)(wij) + (1− β2)

∣∣∣s(t)agg(wij)− s̄(t)e (wij)
∣∣∣ . (11)

We define the final importance score as:

s(t)snr(wij) = SNRt =
s̄
(t)
e (wij)

Ū (t)(wij)+ϵ
, (12)

where the numerator s̄(t)e (wij) captures the persistent influence of the parameter wij via exponen-
tial moving averaging of gradient-parameter correlations. The denominator Ū (t)(wij) quantifies
epistemic uncertainty by measuring deviations from the smoothed sensitivity across mini-batches.
ϵ is a very small number to prevent the denominator in Eq. (12) from being 0. This ratio can be
interpreted as a signal-to-noise ratio (SNR), providing a criterion for assessing the importance of
parameters. Specifically, a larger smoothed sensitivity s̄

(t)
e (wij) indicates that wij consistently exerts

strong influence on the loss function. In contrast, a smaller uncertainty Ū (t)(wij) suggests lower
variability, reinforcing the reliability of the signal. A high-probability stability guarantee for the EMA
ratio score SNRt is presented in Appendix A.2. We summarize the complete workflow of IGU-LoRA
in Algorithm 1.

Algorithm 1 IGU-LoRA

Input: Dataset D; the number of total iterations T ; a pre-trained parameter matrix W0 ∈ Rd1×d2 of a large
language model, number of mini-batches M ; budget of remaining singular values b; randomly initialize
trainable low-rank matrices A ∈ Rd1×r and B ∈ Rr×d2 ; hyperparameters β1, β2.

1: for t = 1 to T do
2: for p = 1 to M do
3: Sample a mini-batch from D and train A and B.
4: Perform SVD on the matrix product AB to obtain PΛQ = SVD(AB), where Λ =

diag{λ1, λ2, . . . , λr}.
5: Compute the ŝpe in Eq. (6) for every parameter in P,Q.
6: end for
7: Compute the aggregated importance score sagg in Eq. (7) for every parameter in P,Q.
8: Compute the s̄

(t)
e in Eq. (10) and Ū (t) in Eq. (11) for every parameter in P,Q.

9: Update the final importance score s
(t)
snr in Eq. (12).

10: Compute the importance score of each singular value Si in Eq. (3) for PΛQ.
11: Find the top b eigen value: λ̂1, λ̂2, . . . , λ̂b by importance score Si.
12: Set Λ̃← diag(λ̂1, λ̂2, . . . , λ̂b, 0, . . . , 0) .
13: Update A ← P:,π1:bΛ̃

1/2, B ← Λ̃1/2Q⊤
π1:b,: ▷ The subscript π denotes the index set obtained by

sorting the columns of P and Q in descending order; π1:k represents the indices of the first b selected
columns; P1:π1:b represents selecting the first b columns according to the order defined by π.

14: end for
Output: W = W0 +AB

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Computational Resources. All experiments are implemented in PyTorch and conducted on an
NVIDIA L40 GPU (48GB) running Ubuntu 18.04.1.

Pretrained Backbone Models. We use RoBERTa-large model (Liu et al., 2019) as the backbone for
the GLUE tasks. For the remaining tasks, we adopt Qwen-2.5-0.5B model 1. We further validate the
robustness and generalization of IGU-LoRA via a backbone ablation, fine-tuning larger-parameter

1https://huggingface.co/Qwen/Qwen2.5-0.5B

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

backbones (Llama-2-7B (Touvron et al., 2023), Llama-3-8B (Dubey et al., 2024), DeepSeek-R1-
Distill-Qwen-2.5-7B 2) on multiple datasets.

IGU-LoRA Configuration. For the BoolQ, ARC, GSM8K, and AQuA tasks, we perform instruction
tuning. The initial LoRA rank is set to r(0) = 32, and pruned to an average rank of r(1) = 16,
achieving pruning 50% rank reduction. For the GLUE tasks, we follow AdaLoRA’s setup, using a
classification or regression head, with r(0) = 2 pruned to an average r(1) = 1. During the fine-tuning,
IGU-LoRA selects the scaling factor α from N = 20 uniformly spaced values in the interval (0, 1).
Rank pruning begins at epoch 2 and ends at epoch 5, performed at every one-fifth of an epoch. After
pruning, we fine-tune the modules with early stopping (patience = 10 steps) to restore performance.
Inference is performed using beam search with a width of 3.

Reproducibility. Each task is run with 5 different random seeds, and we report the median test
performance. All predictions are generated using the model’s language modeling head, which is
conditioned on a given prompt or instruction. Additional training configurations are available in
Appendix C.

4.2 DATASETS AND EVALUATION METRICS

We group the tasks into 2 categories and compare the proposed IGU-LoRA against several baselines:
(i) GLUE Benchmark Datasets (Wang et al., 2018) include a diverse set of language understanding
tasks, such as paraphrase detection (MRPC, QQP), sentiment classification (SST-2), natural lan-
guage inference (MNLI, RTE, QNLI), and linguistic acceptability (CoLA). (ii) Mathematical and
Common-Sense Reasoning Datasets include two mathematical reasoning tasks: AQuA (Li et al.,
2024) and GSM8K (Cobbe et al., 2021), and four common-sense question answering tasks: ARC-e,
ARC-c (Clark et al., 2018), BoolQ (Clark et al., 2019) and COPA (Roemmele et al., 2011). Detailed
dataset descriptions, statistical, and evaluation metrics are in Appendix I.

4.3 BASELINE METHODS

To evaluate the performance of the proposed IGU-LoRA method in fine-tuning LLMs, we compare it
against the following representative baseline: (i) LoRA and Its Variants. We evaluate four LoRA-
based approaches: LoRA (Hu et al., 2022a), AdaLoRA (Zhang et al., 2023), DoRA (Liu et al., 2024b),
AutoLoRA (Xu et al., 2023) and GoRA (He et al., 2025). (ii) Other PEFT Method. We also evaluate
the following non-LoRA parameter-efficient fine-tuning methods: Housbly-Adapter (Houlsby et al.,
2019), P-Tuning v2 (Liu et al., 2021), (IA)3 (Liu et al., 2022a), and SSP (Hu et al., 2022b). (iii)
Full Fine-tuning Method. For reference, we also include results from full-parameter fine-tuning
(denoted as Full FT). All baseline methods are implemented using publicly available codebases.
Hyperparameter settings are listed in Appendix C, and additional descriptions of baselines are
provided in Appendix J.

4.4 MAIN RESULTS

Table 1: Performance comparison of fine-tuning methods on the GLUE task using RoBERTa-large. All results
are reported as the median over 5 runs with different random seeds. Bold and Underline indicate the best and the
second-best results. The metric for each task is explained in Appendix I.5.

Method # Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.(mcc) (acc) (acc-f1) (acc-f1) (corr) (acc) (acc) (acc)
Full FT 355M 69.19 95.63 89.46 91.10 91.60 90.01 94.03 86.94 88.50

Housbly-Adapter 0.35M 67.80 94.38 89.75 89.41 91.08 90.28 93.52 84.36 87.57
P-tuning v2 0.31M 67.35 93.13 88.49 88.63 90.41 89.19 91.94 82.42 86.45
(IA)3 0.33M 68.62 93.82 89.54 89.78 90.84 89.87 92.60 82.75 87.23
SSP 0.36M 69.89 94.96 90.08 90.14 91.37 90.42 94.16 84.88 88.24

LoRA 0.33M 68.71 94.84 89.71 90.26 91.63 90.34 93.87 85.56 88.12
AdaLoRA 0.35M 70.04 95.62 90.34 90.37 91.57 90.18 94.29 87.06 88.68
DoRA 0.33M 70.26 95.80 90.12 90.16 91.68 90.43 94.17 87.38 88.75
AutoLoRA 0.34M 70.47 95.53 90.26 90.31 91.52 90.26 94.08 87.64 88.76

IGU-LoRA 0.33M 71.93 96.17 90.69 90.68 91.95 90.76 94.72 88.46 89.42

GLUE Benchmark Results. We evaluate the performance of IGU-LoRA against baseline methods
on the GLUE development set using the RoBERTa-large model. The results are presented in Table 1.

2https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Under the constraint of fine-tuning only 1% of model parameters, IGU-LoRA achieves performance
that is comparable to or surpasses existing approaches across all tasks. Notably, on the CoLA task,
IGU-LoRA achieves a Matthews correlation coefficient (MCC) of 71.93%, outperforming the best
baseline by 1.5%. On the RTE task, it exceeds the second-best method, AutoLoRA, by 0.8% in
accuracy (acc). Similar improvements are also observed on the remaining tasks, demonstrating
the robustness of IGU-LoRA. Averaged across all tasks, IGU-LoRA achieves the highest overall
performance. Importantly, it maintains strong parameter efficiency, requiring only 0.33 million
trainable parameters, comparable to leading PEFT methods, while significantly outperforming full-
parameter fine-tuning in both accuracy and efficiency.
Table 2: Performance comparison of fine-tuning methods on the Mathematical and common-sense reasoning
task using the Qwen-2.5-0.5B. All results are reported as the median over 5 runs with different random seeds.
Bold and Underline indicate the best and the second-best results.

Method # Params BoolQ ARC-e ARC-c GSM8K AQuA Avg.(acc) (acc) (acc) (acc) (acc)

Full FT 494.0M 81.74 74.82 54.98 34.64 48.72 58.98
Housbly-Adapter 9.0M 78.36 71.04 53.26 28.67 42.85 54.84
LoRA 8.8M 78.94 72.78 54.38 31.42 45.33 56.57
AdaLoRA 8.9M 80.32 73.90 54.23 33.27 46.58 57.67
GoRA 8.8M 79.24 71.20 51.91 32.07 45.81 56.04

IGU-LoRA 8.8M 82.45 74.62 55.67 34.16 48.93 59.17

Mathematical and Common-Sense Reasoning Benchmark Results. We further systematically
conduct mathematical and common-sense reasoning tasks using the Qwen-2.5-0.5B model, comparing
four representative fine-tuning methods: Full Fine-tuning, Adapter, LoRA, AdaLoRA and GoRA.
Table 2 summarizes the results, where IGU-LoRA consistently achieves performance advantages
across most tasks. Specifically, IGU-LoRA achieves state-of-the-art results on BoolQ, ARC-c, and
AQuA, outperforming the second-best method by 0.2% to 0.8% in accuracy. While it does not obtain
the highest score on ARC-e and GSM8K, IGU-LoRA fine-tunes only 8.8M parameters, substantially
fewer than full-parameter tuning (494.0M), yet delivering comparable performance. Across all
evaluated datasets, IGU-LoRA consistently outperforms other parameter-efficient methods with
similar parameter budgets, highlighting its strong generalization under tight resource constraints.

4.5 ABLATION STUDY AND ANALYSIS

Analysis of Training and Inference Efficiency. So far, we have shown that IGU-LoRA outperforms
LoRA, AdaLoRA, and DoRA on BoolQ. A natural concern is whether these gains come at the
expense of extra time or memory cost. We fine-tune the Qwen-2.5-0.5B model and report peak
training GPU memory and wall-clock training time, as well as inference peak GPU memory and
decoding latency, as shown in Table 3. All methods utilise a similar memory due to the frozen
backbone. LoRA trains the fastest but yields smaller gains; DoRA is slower because it maintains
normalized weight directions while updating an additional magnitude vector ρ, which involves adding
normalization/rescaling operations and optimizer states each step. AdaLoRA improves accuracy
via sensitivity-based rank pruning in a two-stage schedule; IGU-LoRA adopts a similar two-stage
design and thus achieves comparable training time while delivering higher accuracy. For inference,
IGU-LoRA matches LoRA, DoRA, and AdaLoRA in memory usage and decoding latency.
Table 3: The time cost, memory and speed for fine-
tuning Qwen-2.5-0.5B on the BoolQ task with different
PEFT methods.

Method Training Inference
Time cost (h) GPU Mem (GB) Speed (it/s) GPU Mem (GB)

LoRA 0.42 10.21 5.50 10.3
AdaLoRA 0.73 10.60 5.21 10.4
DoRA 0.95 9.53 5.30 10.3

IGU-LoRA 0.87 10.32 5.23 10.3

Table 4: Comparison of the performance of dif-
ferent variants of IGU-LoRA on fine-tuning Qwen-
2.5-0.5B across BoolQ and GSM8K tasks.

Method BoolQ GSM8K Avg.

IGU-LoRA-1 (w/o α) 81.87 33.76 57.82
IGU-LoRA-2 (N=10) 82.14 33.95 58.05
IGU-LoRA-3 (N=4) 82.02 33.83 57.93
IGU-LoRA-4 (se = s̄e · Ū) 82.28 33.69 57.99

IGU-LoRA 82.45 34.16 58.31

Ablation Study on Hyperparameters and Importance Scoring. To assess the sensitivity of
IGU-LoRA to its key hyperparameters and scoring components, we perform the ablation study by
incrementally disabling or simplifying individual modules. Specifically, we evaluate the following
variants: (1) IGU-LoRA-1 removes the gradient-integrated α coefficient used during both training
and pruning; (2) IGU-LoRA-2 reduces candidate resolution of α from N = 20 to N = 10; (3)
IGU-LoRA-3 further reduces the candidate set to N = 4; and (4) IGU-LoRA-4 replaces the final

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

importance score in Eq. (12) with the alternative formulation in Eq. (11) from Zhang et al. (2023),
which combines sensitivity and uncertainty via AdaLoRA’s multiplicative strategy 3. As shown in
Table 4, all variants exhibit performance degradation, particularly IGU-LoRA-3 and IGU-LoRA-4,
which involve more aggressive simplifications. These results confirm that the default configuration
of IGU-LoRA, with high-resolution integrated gradient and uncertainty-aware scoring, is critical in
achieving strong performance.

Hyperparameter Sensitivity Analysis. To investigate the sensitivity of IGU-LoRA to key hyperpa-
rameters, we varied one hyperparameter at a time while keeping others fixed. We analyzed the effects
of mini-batch size M , the number of discrete points for α (denoted as N), and smoothing coefficients
β1 and β2. Experiments were conducted by fine-tuning the Qwen2.5-0.5B model on the Boolq and
GSM8K datasets. The results, shown in Figure 3 and 4, demonstrate that IGU-LoRA performs stably
across a range of values. Performance improves with larger M and N , suggesting better adaptability
with finer granularity in scaling factor selection. The coefficients β1 and β2 show good robustness,
with optimal performance in a moderate range. These findings indicate that M , N , β1, and β2 are
robust hyperparameters for IGU-LoRA.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Value

80.6

80.8

81.0

81.2

81.4

81.6

81.8

82.0

82.2

Ac
cu

ra
cy

 (%
)

Boolq

(a) M parameter
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

Value

82.02

82.04

82.06

82.08

82.10

82.12

82.14

82.16

Ac
cu

ra
cy

 (%
)

Boolq

(b) N parameter
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value

81.90

81.95

82.00

82.05

82.10

82.15

Ac
cu

ra
cy

 (%
)

Boolq

(c) β1 coefficient
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value

82.00

82.05

82.10

82.15

82.20

Ac
cu

ra
cy

 (%
)

Boolq

(d) β2 coefficient
Figure 3: The impact of different hyperparameters M,N, β1, β2 on performance when fine-tuning the Qwen2.5-
0.5B model on the Boolq dataset. Please zoom in 300% for better clarity.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Value

30.5

31.0

31.5

32.0

32.5

33.0

33.5

34.0

Ac
cu

ra
cy

 (%
)

GSM8K

(a) M parameter
5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0

Value

33.80

33.82

33.84

33.86

33.88

33.90

33.92

33.94

Ac
cu

ra
cy

 (%
)

GSM8K

(b) N parameter
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value

32.25

32.50

32.75

33.00

33.25

33.50

33.75

34.00

Ac
cu

ra
cy

 (%
)

GSM8K

(c) β1 coefficient
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value

32.25

32.50

32.75

33.00

33.25

33.50

33.75

34.00

Ac
cu

ra
cy

 (%
)

GSM8K

(d) β2 coefficient
Figure 4: The impact of different hyperparameters M,N, β1, β2 on performance when fine-tuning the Qwen2.5-
0.5B model on the GSM8K dataset. Please zoom in 300% for better clarity.

1-3 4-6 7-9
10

-12
13

-15
16

-18
19

-21
22

-24

Query

Key

Value

Output

Gate

Up

Down

6 8 9 9 9 7 9 8

7 7 8 8 8 9 8 9

7 8 9 9 8 8 9 8

7 9 8 9 8 7 8 8

8 8 8 9 7 8 8 7

8 8 8 8 8 7 8 7

8 7 6 6 8 9 7 8

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Lo
RA

 R
an

k

(a) BoolQ task
1-3 4-6 7-9

10
-12

13
-15

16
-18

19
-21

22
-24

Query

Key

Value

Output

Gate

Up

Down

8 8 8 8 8 7 8 9

8 8 8 9 9 9 9 9

9 8 9 8 8 9 9 9

7 8 8 7 8 8 8 9

7 7 8 8 7 8 7 6

8 7 7 7 9 7 7 8

9 9 9 8 7 8 8 8

6.0

6.5

7.0

7.5

8.0

8.5

9.0
Lo

RA
 R

an
k

(b) GSM8K task
Figure 5: Rank allocation by IGU-LoRA on the Qwen-2.5-0.5B backbone after fine-tuning for the BoolQ and
GSM8K tasks. Please zoom in 300% for better clarity.

Visualization of Rank Allocation in IGU-LoRA. Figure 5 visualizes the pruned LoRA rank
allocation produced in IGU-LoRA. The rank distributions vary significantly across tasks, underscoring
the need for task-specific adaptation to achieve optimal performance. Even within a single task,
different Transformer layers allocate ranks differently, reflecting the fine-grained sensitivity of model

3AdaLoRA (Zhang et al., 2023) for details.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

components to low-rank updates. Despite this heterogeneity, consistent structural patterns emerge:
in the self-attention mechanism, the Query and Key projections are most frequently prioritized for
adaptation, while in the feed-forward network (FFN), the Up and Down projection layers receive the
highest ranks. These observations reveal structural preferences in LoRA-based fine-tuning, offering
valuable insights for designing generalized and efficient low-rank adaptation strategies.

Comparisons on Rank Budgets. In the main experiments, we fixed the initial rank budget at r0 = 32
as a standard configuration. To further evaluate the robustness and adaptability of IGU-LoRA, we
vary the initial rank budget across {2, 4, 8, 16, 32, 64} and compare its performance with AdaLoRA,
LoRA, and DoRA on the BoolQ and GSM8K tasks. The results, shown in Figure 6, demonstrate that
IGU-LoRA consistently outperforms AdaLoRA, LoRA and DoRA under all budget settings. This is
attributed to its ability to allocate LoRA dynamically across Transformer layers, which enables more
effective adaptation.

0 10 20 30 40 50 60
Initial Rank (r0)

74

76

78

80

82

Ac
cu

ra
cy

IGU-LoRA
AdaLoRA
LoRA
DoRA

(a) BoolQ task

0 10 20 30 40 50 60
Initial Rank (r0)

30

31

32

33

34

Ac
cu

ra
cy

IGU-LoRA
AdaLoRA
LoRA
DoRA

(b) GSM8K task
Figure 6: Performances across different initial rank budgets. The x-axis denotes the initial rank r0, while the
y-axis indicates the corresponding task performance. Please zoom in 300% for better clarity.

Comparisons on Different Backbone Models. To demonstrate the broad applicability of our method,
we now conduct experiments on Llama-2-7B, Llama-3-8B and DeepSeek-R1-Distill-Qwen-2.5-7B.
The results are reported in Table 5. We can see that on these three backbones, IGU-LoRA can also
outperform the baseline methods.
Table 5: PEFT methods comparison on different backbones. Left: GLUE accuracy (%) with Llama-2-7B.
Right: BoolQ and GSM8K accuracy (%) with Llama-3-8B and DeepSeek-R1-Distill-Qwen-2.5-7B. Results are
reported as the median over 5 random seeds. Bold and underline indicate the best and the second-best results.

Llama-2-7B
Method # Params SST-2 RTE QNLI BoolQ COPA Avg.

Full FT 6738M 95.83 92.11 92.54 87.30 93.01 92.16
Adapter 21.2M 94.15 82.12 93.10 87.03 91.10 89.50
P-tuning v2 20.9M 93.42 79.62 92.64 84.73 90.30 88.14
SSP 40.0M 94.14 83.11 93.10 87.11 91.65 89.82

LoRA 20.0M 94.12 83.37 93.10 87.34 91.33 89.85
AdaLoRA 20.0M 94.12 83.51 93.20 87.11 91.62 89.91
DoRA 40.0M 94.24 84.12 91.23 85.51 90.01 89.02

IGU-LoRA 40.0M 94.34 84.33 93.33 88.11 92.10 90.44

Llama-3-8B
Method BoolQ GSM8K Avg.
LoRA 88.48 73.54 81.01
AdaLoRA 91.65 75.82 83.74
DoRA 88.07 74.75 81.41
IGU-LoRA 93.33 77.63 85.48

DeepSeek-R1-Distill-Qwen-2.5-7B
Method BoolQ GSM8K Avg.
LoRA 88.38 74.60 81.49
AdaLoRA 90.54 73.30 81.92
DoRA 88.48 69.52 79.00
IGU-LoRA 92.82 74.28 83.55

5 CONCLUSION

In this work, we address the challenge of parameter importance estimation for efficient fine-tuning
of LLMs. We propose IGU-LoRA, a robust scoring framework that integrates the concept of
integrated gradients with an uncertainty-aware quantification mechanism. Unlike prior methods
that rely solely on instantaneous gradient signals, IGU-LoRA captures each parameter’s global
and long-term contribution to model performance. Experimental results across diverse tasks and
model architectures demonstrate that IGU-LoRA consistently outperforms state-of-the-art baselines,
validating its effectiveness and generality. Nevertheless, the method incurs non-trivial computational
overhead in network models in networks with large parameter counts, and its performance can be
influenced by the choice of integration paths and the precision of uncertainty estimation. In future
work, we plan to extend IGU-LoRA to larger-scale models and cross-modal tasks to further explore
its adaptability and generalization across architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This paper proposes an efficient fine-tuning framework, IGU-LoRA, that adaptively allocates LoRA
ranks to alleviate the inaccuracy of gradient-sensitivity-based parameter importance estimation
under gradient saturation, thereby enhancing the adaptability of large language models (LLMs)
across diverse task domains. This study strictly adheres to ethical guidelines: no human subjects or
sensitive data were involved. All experimental data are publicly available fine-tuning datasets, and no
scenarios containing harmful content were used. While IGU-LoRA effectively improves the overall
performance of LLMs, the models may still produce erroneous outputs or misjudgments; thus, we
do not recommend deploying them in high-risk scenarios without thorough validation. We further
declare that this work has no conflicts of interest, and all experiments and data processing comply
with relevant ethical standards.

7 REPRODUCIBILITY STATEMENT

For clarity and reproducibility, we summarize the critical details of our method in the main text and
Appendix as follows.

• Algorithmic Details: We provide a detailed description of the IGU-LoRA algorithm in
Section 3, including the integrated gradients computation (Section 3.2) and uncertainty-
aware scoring mechanism (Section 3.3). Pseudocode is provided in Algorithm 1.

• Theoretical Analysis: We present a theoretical analysis of the approximation error for
parameter-space integrated gradients Section 3.2, Appendix A.1 and Appendix A.2, includ-
ing all necessary assumptions and proofs.

• Experimental Setup: We detail the experimental setup in Section 4.1 and Appendix C.
• Code Availability: We adopt the code proposed by Zheng et al. (2024) for model training,

which is publicly available at https://github.com/hiyouga/LLaMA-Factory.
In addition, if this work is accepted, we commit to releasing the source code of our method.

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021.

Nadav Benedek and Lior Wolf. Prilora: Pruned and rank-increasing low-rank adaptation. In Findings,
2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020a.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, 2020b.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational

11

https://github.com/hiyouga/LLaMA-Factory

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, 2018.

Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems. ArXiv, 2021.

Chaoran Cui, Ziyi Liu, Shuai Gong, Lei Zhu, Chunyun Zhang, and Hui Liu. When adversarial
training meets prompt tuning: Adversarial dual prompt tuning for unsupervised domain adaptation.
IEEE Transactions on Image Processing, 34:1427–1440, 2025.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 4133–4145, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and Ahmad Al-Dahle. The
llama 3 herd of models. ArXiv, abs/2407.21783, 2024.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
arXiv preprint arXiv:2012.07463, 2020.

Simeng Han, Frank Palma Gomez, Tu Vu, Zefei Li, Daniel Cer, Hansi Zeng, Chris Tar, Arman Cohan,
and Gustavo Hernandez Abrego. Ateb: Evaluating and improving advanced nlp tasks for text
embedding models. arXiv preprint arXiv:2502.16766, 2025.

Haonan He, Peng Ye, Yuchen Ren, Yuan Yuan, Luyang Zhou, Shucun Ju, and Lei Chen. Gora:
Gradient-driven adaptive low rank adaptation. arXiv preprint arXiv:2502.12171, 2025.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022a.

Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, and Maosong
Sun. Sparse structure search for parameter-efficient tuning. ArXiv, abs/2206.07382, 2022b.

Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Yang Liu, Jing Lin, Yiwu Yao, and Rongrong Ji.
Dynamic low-rank sparse adaptation for large language models. ArXiv, abs/2502.14816, 2025.

Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Ben Wedin, Michael Terry, and Tolga
Bolukbasi. Guided integrated gradients: an adaptive path method for removing noise. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5048–5056,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenjun Ke, Jiahao Wang, Peng Wang, Jiajun Liu, Dong Nie, Guozheng Li, and Yining Li. Unveiling
lora intrinsic ranks via salience analysis. In Advances in Neural Information Processing Systems,
volume 37, pp. 131575–131595, 2024.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. ArXiv, abs/1804.08838, 2018.

Ming Li, Yanhong Li, and Tianyi Zhou. What happened in llms layers when trained for fast vs. slow
thinking: A gradient perspective. ArXiv, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning.
In Proceedings of the 36th International Conference on Neural Information Processing Systems,
2022a.

Jiajun Liu, Wenjun Ke, Peng Wang, Jiahao Wang, Jinhua Gao, Ziyu Shang, Guozheng Li, Zijie Xu,
Ke Ji, and Yining Li. Fast and continual knowledge graph embedding via incremental lora. In
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24,
pp. 2198–2206, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353, 2024b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. CoRR, abs/2110.07602,
2021.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp.
61–68, 2022b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank
adaptation for fine-tuning large language models. ArXiv, abs/2403.16187, 2024c.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
Proceedings of the 31st International Conference on Neural Information Processing Systems, pp.
4768–4777, 2017.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning for
large language models with limited resources. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 8187–8198, 2024.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
Fusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 487–503, 2021.

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
models for natural language processing: A survey. Science China Technological Sciences, 63:
1872–1897, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:1–67, 2020.

Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke,
Zhumin Chen, and Jiahuan Pei. MELoRA: Mini-ensemble low-rank adapters for parameter-efficient
fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3052–3064, 2024.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alterna-
tives: An evaluation of commonsense causal reasoning. In AAAI spring symposium: logical
formalizations of commonsense reasoning, pp. 90–95, 2011.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. AdapterDrop: On the efficiency of adapters in transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pp. 7930–7946, 2021.

Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz, Naama Hammel, Jonathan Krause,
Arunachalam Narayanaswamy, Zahra Rastegar, Derek Wu, Shawn Xu, Scott Barb, Anthony Joseph,
Michael Shumski, Jesse Smith, Arjun B. Sood, Greg S. Corrado, Lily Peng, and Dale R. Webster.
Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic
retinopathy. Ophthalmology, 126:552–564, 2019.

Zhihong Shao, Damai Dai, Daya Guo, Bo Liu (Benjamin Liu), Zihan Wang, and Huajian Xin.
Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. ArXiv,
2024.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vl-bert: Pre-training
of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530, 2019.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, pp. 331–3328,
2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. DyLoRA: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, 2018.

Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model
tuning. arXiv preprint arXiv:2205.12410, 2022.

Yue Wu, Yaoxiang Yu, Zhengming Yuan, Siwei Huang, and Bo Cai. Apt: Adaptive prefix-tuning
on pretrained models for code intelligence. In 2024 International Joint Conference on Neural
Networks (IJCNN), pp. 1–10, 2024.

Xilie Xu, Jingfeng Zhang, and Mohan S. Kankanhalli. Autolora: A parameter-free automated robust
fine-tuning framework. ArXiv, 2023.

Lang Yu, Qin Chen, Jiaju Lin, and Liang He. Black-box prompt tuning for vision-language model
as a service. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Haozhen Zhang, Hualin Zhang, Bin Gu, and Yi Chang. Subspace selection based prompt tuning
with nonconvex nonsmooth black-box optimization. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 4179–4190, 2024.

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
importance. In International Conference on Machine Learning, pp. 26809–26823, 2022.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. arXiv
preprint arXiv:2403.13372, 2024.

Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora:
Fine-tuning high-rank parameters with the delta of low-rank matrices. ArXiv, abs/2309.02411,
2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. Fix wij and set f(α) ≡ fij(α) = gij(α) = ∂L(α∆W)/∂wij . By Eq. (4), se(wij) =

|wij |
∣∣ ∫ 1

0
f(α) dα

∣∣. Define the composite trapezoidal approximation and its sampled variant:

TN =
1

2N

[
f(0) + 2

N−1∑
k=1

f
(

k
N

)
+ f(1)

]
, T̃M =

1

2N

[
f(0) + 2(N−1) fM + f(1)

]
, (13)

where fM = 1
M

∑M
p=1 f(αp) with αp i.i.d. drawn from the discrete uniform distribution on

{1/N, . . . , (N−1)/N}.

Since sagg(wij) = |wij | |T̃M | and ||x| − |y|| ≤ |x− y|, the triangle inequality yields∣∣ se(wij)− sagg(wij)
∣∣ ≤ |wij |

∣∣ ∫ 1

0
f − T̃M

∣∣ ≤ |wij |
(∣∣ ∫ 1

0
f − TN

∣∣+ |TN − T̃M |
)
. (14)

Step 1: discretization error. By assumption, f is twice continuously differentiable on [0, 1] and
supα∈[0,1] |f ′′(α)| ≤ C2. The standard error bound for the composite trapezoidal rule on [0, 1] (see,
e.g., classical numerical analysis texts) yields∣∣ ∫ 1

0
f(α) dα− TN

∣∣ ≤ C2

12N2 . (15)

Step 2: sampling error. Let µ = 1
N−1

∑N−1
k=1 f(k

N) denote the average of f over the (N−1) interior
nodes. A simple algebraic manipulation gives

|TN − T̃M | = 1

N

∣∣∣N−1∑
k=1

f
(

k
N

)
− (N−1) fM

∣∣∣ = N − 1

N
|µ− fM | ≤ |µ− fM |. (16)

By assumption, f(α) is uniformly bounded on the discretization nodes, which is discussed in detail
in Appendix B.1: there exists B < ∞ such that |f(α)| ≤ B for all α ∈ {1/N, . . . , (N−1)/N}.
Therefore, each sample f(αp) lies in [−B,B], and Hoeffding’s inequality for bounded random
variables implies that, for any δ ∈ (0, 1),

Pr
(
|µ− fM | ≥ t

)
≤ 2 exp

(
− 2Mt2

(2B)2

)
= 2 exp

(
−Mt2

2B2

)
. (17)

Setting the right-hand side equal to δ and solving for t yields that, with probability at least 1− δ,

|µ− fM | ≤ B

√
2 log(2/δ)

M
≤ cB

√
log(1/δ)

M
(18)

for an absolute constant c > 0. Combining with the previous display gives

|TN − T̃M | ≤ |µ− fM | ≤ cB

√
log(1/δ)

M
(19)

with probability at least 1− δ.

Step 3: combining the bounds. Plugging Eq. (15) and Eq. (19) into the decomposition in Eq. (14)
yields that, with probability at least 1− δ,∣∣ se(wij)− sagg(wij)

∣∣ ≤ |wij |
(C2

12N2
+ cB

√
log(1/δ)

M

)
, (20)

which is exactly the claimed bound in Eq. (9).

A.2 HIGH-PROBABILITY STABILITY OF SNRt

The resulting SNR-based score favors parameters with consistent, high-impact contributions and
suppresses those with volatile or transient behavior. While the above formulation provides an intuitive
interpretation of SNR, it remains essential to ensure its statistical stability with high probability,
which is formally addressed in Theorem 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 2. Let yt = sagg(wij) be the per-epoch raw importance defined in Eq. (7). Since ϵ in
Eq. (12) is a very small constant, it can be ignored. Therefore, we have:

SNRt =
s̄
(t)
e

Ū (t) + ϵ
≈ s̄

(t)
e

Ū (t)
, (21)

Assume that (yt) is an i.i.d. sequence of sub-Gaussian random variables with mean µ and variance
σ2, and let d = E

[
|yt − µ|

]
> 0. For β1, β2 ∈ (0, 1), define the effective EMA window lengths

neff(β1) =
1 + β1

1− β1
, neff(β2) =

1 + β2

1− β2
, neff = min{neff(β1), neff(β2)}. (22)

Then there exist universal constants c1, c2, c0 > 0 such that, for any δ ∈ (0, 1) and all

t ≥ tburn =

⌈
c1

1−min{β1, β2}
log

c2
δ

⌉
, (23)

the following holds with probability at least 1− δ:

∣∣SNRt − µ/d
∣∣ ≤ C

√
log(2/δ)

neff
, C =

2
√
2σ

d
+ 2c0

µ

d2
(σ + d). (24)

Proof. We analyze the EMA under the stylized assumption stated in Theorem 2: (yt) is an i.i.d.
sub-Gaussian sequence with mean µ, variance proxy σ2, and d = E|yt − µ| > 0.

Recall that Eq. (10) and Eq. (11) define the EMAs

s̄(t)e = β1s̄t−1 + (1− β1)yt, Ū (t) = β2Ūt−1 + (1− β2)
∣∣yt − s̄(t)e

∣∣. (25)

Unrolling the recursions (for t large enough so that transients are negligible) shows that

s̄(t)e =
∑
k≥0

w
(1)
k yt−k, w

(1)
k = (1− β1)β

k
1 , Ū (t) = (1− β2)

∑
k≥0

βk
2

∣∣yt−k − s̄t−k

∣∣. (26)

Note that (w(1)
k)k≥0 is a geometric weight sequence with

∑
k w

(1)
k = 1 and

∥w(1)∥22 =
∑
k≥0

(1− β1)
2β2k

1 =
1− β1

1 + β1
=

1

neff(β1)
. (27)

Below we write neff = min{neff(β1), neff(β2)}.

Step 1: concentration of s̄(t)e . Since (yt) are i.i.d. sub-Gaussian with mean µ and variance proxy
σ2, any fixed weighted sum

∑
k w

(1)
k yt−k is also sub-Gaussian with mean µ and variance proxy

σ2∥w(1)∥22 = σ2/neff(β1). Standard sub-Gaussian tail bounds then yield

Pr
(
|s̄(t)e − µ| ≥ ε

)
≤ 2 exp

(
−c neff(β1) ε

2

σ2

)
(28)

for an absolute constant c > 0. Setting the right-hand side to δ/2 and solving for ε gives

|s̄(t)e − µ| ≤ σ

√
2 log(4/δ)

neff(β1)
≤

√
2σ

√
log(4/δ)

neff
(29)

with probability at least 1− δ/2.

Step 2: concentration of Ū (t). We decompose Ū (t) around d = E|yt − µ| as

|Ū (t)−d| ≤ (1−β2)
∣∣∣∑
k≥0

βk
2

(
|yt−k−µ|−d

)∣∣∣ + (1−β2)
∑
k≥0

βk
2

∣∣|yt−k−s̄t−k|−|yt−k−µ|
∣∣. (30)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Define Xt = |yt−µ|−d, which is a centered, sub-exponential random variable whose tail parameters
depend only on (σ, d) (because yt is sub-Gaussian). Let w(2)

k = (1−β2)β
k
2 denote the EMA weights

for Ū (t). Then
∑

k≥0 w
(2)
k = 1 and

∥w(2)∥22 =
∑
k≥0

(1− β2)
2β2k

2 =
1− β2

1 + β2
=

1

neff(β2)
.

Applying a Bernstein-type concentration for weighted sums of i.i.d. sub-exponential variables (see,
e.g., standard results on Orlicz norms) yields the existence of an absolute constant c0 > 0 such that,
for any δ ∈ (0, 1),

Pr

∣∣∣(1− β2)
∑
k≥0

βk
2Xt−k

∣∣∣ ≥ c0(σ + d)

√
log(4/δ)

neff(β2)

 ≤ δ

2
. (31)

For the second term in Eq. (30), note that
∣∣|a− c| − |a− b|

∣∣ ≤ |b− c| for any a, b, c ∈ R, so∣∣|yt−k − s̄t−k| − |yt−k − µ|
∣∣ ≤ |s̄t−k − µ|.

Thus
(1− β2)

∑
k≥0

βk
2

∣∣|yt−k − s̄t−k| − |yt−k − µ|
∣∣ ≤ (1− β2)

∑
k≥0

βk
2 |s̄t−k − µ|. (32)

We now bound the right-hand side by splitting the sum into a recent window and its tail. Let

L =

⌈
c1

1− β2
log

c2
δ

⌉
(33)

for absolute constants c1, c2 > 0 chosen large enough. For t ≥ L, we have

(1− β2)
∑
k≥0

βk
2 |s̄t−k − µ| ≤ (1− β2)

L∑
k=0

βk
2 |s̄t−k − µ| + (1− β2)

∑
k>L

βk
2 |s̄t−k − µ|. (34)

For the tail sum, (1− β2)
∑

k>L βk
2 = βL+1

2 and, by choosing c1, c2 appropriately, we can ensure
βL+1
2 ≤ δ/(8c2). For the finite window {t, t− 1, . . . , t− L}, we apply Eq. (29) and a union bound

over these (L+ 1) indices to obtain, with probability at least 1− δ/2,

|s̄t−k − µ| ≤
√
2σ

√
log(4L/δ)

neff(β1)
for all 0 ≤ k ≤ L. (35)

Combining these bounds and using neff ≤ neff(β1) yields

(1− β2)
∑
k≥0

βk
2 |s̄t−k − µ| ≤ c̃ σ

√
log(2/δ)

neff
(36)

with probability at least 1− δ/2, for an absolute constant c̃ > 0.

Putting Eq. (31) and Eq. (36) back into Eq. (30) and recalling that neff ≤ neff(β2), we obtain that,
for t ≥ tburn and with probability at least 1− δ,

|Ū (t) − d| ≤ C ′
2(σ + d)

√
log(2/δ)

neff
(37)

for an absolute constant C ′
2 > 0. By increasing c1 if necessary, we may ensure that the right-hand

side in Eq. (37) is at most d/2, so that Ū (t) ≥ d/2 holds on the same high-probability event.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Step 3: bounding the ratio SNRt. On the event {Ū (t) ≥ d/2} we can control the ratio SNRt =

s̄
(t)
e /Ū (t) via the deterministic inequality∣∣∣∣∣ s̄(t)e

Ū (t)
− µ

d

∣∣∣∣∣ ≤ 2

d
|s̄(t)e − µ| +

2µ

d2
|Ū (t) − d|. (38)

Combining Eq. (29) and Eq. (37) with Eq. (38), and noting that neff ≤ neff(β1), gives

∣∣SNRt − µ/d
∣∣ ≤

(
2
√
2σ

d
+ 2c0

µ

d2
(σ + d)

)√
log(2/δ)

neff
(39)

with probability at least 1− δ, for a suitable absolute constant c0 > 0. This is exactly the claimed
bound in Theorem 2 after setting C = 2

√
2σ
d +2c0

µ
d2 (σ+d) and tburn =

⌈
c1

1−min{β1,β2} log
c2
δ

⌉
.

B THE DISCUSSION OF THE ASSUMPTIONS IN THEOREM

B.1 THE ANALYSIS OF THE ASSUMPTION IN THEOREM 1

In this section, we focus on how the assumption in Theorem 1, that gij is twice continuously
differentiable on the interval [0, 1] with a bounded second derivative, leads to the conclusion that
gij(α) is bounded. First, consider the following form of gij(α):

gij(α) =
∂L(α∆W)

∂wij
, α ∈ [0, 1], (40)

The analysis of Theorem 1 relies solely on the assumption that gij is twice differentiable on the
interval [0, 1] and that its second derivative is bounded, which allows the application of the composite
trapezoidal rule, leading to a discretization error of O(N−2). Specifically, numerical analysis
typically assumes the existence of a constant C2 < ∞ such that:

sup
α∈[0,1]

∣∣g′′ij(α)∣∣ ≤ C2. (41)

Under this assumption, we can derive the following error bound:∣∣∣∣∫ 1

0

gij(α) dα− TN
∣∣∣∣ ≤ C2

12N2
, (42)

This equation provides the theoretical basis for the O(N−2) discretization error term in Theorem 1.
This requirement is essentially a standard smoothness assumption in trapezoidal integration and does
not involve any specific distributional assumptions. Furthermore, the condition of bounded second
derivatives directly implies that gij itself is bounded. By the fundamental theorem of calculus:

g′ij(α) = g′ij(0) +

∫ α

0

g′′ij(t) dt, gij(α) = gij(0) +

∫ α

0

g′ij(t) dt, (43)

We can obtain the bound for all α ∈ [0, 1]:

|g′ij(α)| ≤ |g′ij(0)|+
∫ 1

0

|g′′ij(t)| dt ≤ |g′ij(0)|+ C2, (44)

Thus,

|gij(α)| ≤ |gij(0)|+
∫ 1

0

|g′ij(t)| dt ≤ |gij(0)|+ |g′ij(0)|+ C2 ≜ B. (45)

This implies that gij(α) is bounded on [0, 1]. When we sample α from the finite set {1/N, . . . , (N −
1)/N}, the resulting random variable gij(α) is bounded by constant B.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.2 THE ANALYSIS OF THE I.I.D. ASSUMPTION IN THEOREM 2

Theorem 2 assumes that the per-epoch raw scores yt = sagg(wij) form an i.i.d. sub-Gaussian
sequence with a common mean µ and variance σ2. However, strictly speaking, yt depends on the
current model parameters W(t), which are updated across epochs, so exact i.i.d. is an idealization.

Our goal is to model the regime in which the training dynamics have stabilized: after an initial
transient phase (discarded via the burn-in time tburn), the statistics of the gradient noise around the
current solution change only slowly. Furthermore, within the effective EMA window neff(β1, β2),
the gradient sequence can be approximated as having nearly stationary mean and variance. In this
regime, standard extensions of EMA concentration results to weakly dependent or mixing sequences
apply. We chose the i.i.d. setting for clarity of presentation and to keep the notation simple. It is
important to note that Theorem 2 is derived under this stylized, locally stationary noise assumption,
and is meant to provide intuition about how the EMA window size and variance control the stability
of SNRt, rather than to capture every aspect of LLM training dynamics exactly.

To support this approximation empirically, we provide a small diagnostic in Appendix G: for a
representative layer on BoolQ, we plot the time series of yt and its running mean/variance across
epochs. We observe that, after the early epochs, both the mean and variance of yt quickly settle into a
narrow band, and the lag-1 autocorrelation becomes small. Correspondingly, the SNRt curves are
nearly flat after burn-in. These observations suggest that, in the regime where EMA-based importance
is actually used for rank pruning, the i.i.d./local stationarity approximation is reasonably accurate.

Finally, we emphasize that these assumptions are used only in our theoretical analysis; the algorithm
itself does not rely on them. Even when the exact assumptions are relaxed, the qualitative conclusions
remain the same: (i) our IG estimator trades off discretization error O(N−2) and sampling error
O(M−1/2), and (ii) EMA-based SNRt scores become more stable as the effective sample size
increases and the process enters a locally stationary regime.

C HYPERPARAMETER SETTINGS

During the training process, we tune the learning rate from {5 × 10−4, 1 × 10−4, 5 × 10−4, 1 ×
10−3, 2×10−4} and pick the best learning rate for every method. For the MNLI, QNLI, and QQP, we
set the batch size to 128. For RTE, MRPC, CoLA, and STS-B, the batch size is set to 32. For SST-2,
we use a batch size of 64. For all other tasks, the batch size is set to 16. All baseline methods follow
the same settings as IGU-LoRA, as detailed in Table 6. In IGU-LoRA, several key hyperparameters
ϵ,M,N, β1, β2 are set to 1× 10−6, 16, 20, 0.85, and 0.85, respectively, as detailed in Table 7. They
remain constant throughout the experiment, and their sensitivity is discussed in the main text.

Table 6: Hyperparameter setup of IGU-LoRA for training on different datasets.
Dataset learning rate batch size Max. Sequence Length # epochs γ ti ∆T tf

MNLI 5× 10−4 128 512 25 0.1 500 20 10000
RTE 1× 10−3 32 512 25 0.1 300 5 2500
QNLI 5× 10−4 128 512 25 0.1 400 20 10000
MRPC 1× 10−3 32 512 25 0.1 300 5 2500
QQP 5× 10−4 128 512 25 0.1 500 20 10000

SST-2 1× 10−3 64 512 25 0.1 400 20 5000
CoLA 1× 10−3 32 512 25 0.1 300 5 2500
STS-B 2× 10−3 32 512 25 0.1 300 5 2500

BoolQ 5× 10−4 16 512 25 0.1 500 20 10000
ARC-e 5× 10−4 16 512 25 0.1 500 20 10000
ARC-c 5× 10−4 16 512 25 0.1 500 20 10000
COPA 1× 10−3 16 512 25 0.1 500 20 10000

AQuA 1× 10−4 16 512 25 0.1 500 20 10000

MMLU 1× 10−4 128 512 15 0.1 500 20 10000

VQA 2× 10−4 32 512 25 0.1 300 20 10000
GAQ 5× 10−4 32 512 25 0.1 300 20 10000

MVLR2 5× 10−4 32 512 25 0.1 300 20 10000
COCO 2× 10−4 32 512 25 0.1 300 20 10000

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Setting of the 5 hyperparameters (ϵ,M,N, β1, β2) in IGU-LoRA.

Hyperparameter ϵ M N β1 β2

Value 1× 10−6 16 20 0.85 0.85

D ABLATION STUDY ON HIGH-IMPACT PARAMETERS

To further validate the effectiveness of IGU-LoRA in identifying high-impact parameters, we conduct
an ablation study on high-impact parameters. Specifically, we remove the high-rank and low-rank
modules with the highest IGU-LoRA scores from different layers of the Qwen2.5-0.5B model and
evaluate the performance drop on the Boolq and GSM8K datasets. As shown in Table 8, removing
the high-rank modules from the K module in Layer 3 (L3 K) and the V module in Layer 10 (L10 V)
results in a performance drop of 1.30 and 1.33 points on Boolq, respectively. Similarly, removing the
high-rank modules from the Q module in Layer 22 (L22 Q) and the K module in Layer 17 (L17 K)
results in performance drops of 1.80 and 1.73 points on GSM8K, respectively. In contrast, removing
the low-rank modules from the K module in Layer 1 (L1 K) and the V module in Layer 3 (L3 V)
results in only minor performance drops of 0.05 and 0.10 points on Boolq, respectively. The same
trend is observed on GSM8K when removing the low-rank modules from the Q module in Layer 8
(L8 Q) and the K module in Layer 6 (L6 K), resulting in performance drops of 0.11 and 0.15 points,
respectively. These results demonstrate that IGU-LoRA effectively identifies high-impact parameters,
as their removal leads to significant performance degradation compared to low-impact parameters.
Table 8: Ablation study on the impact of removing high-rank and low-rank modules from different layers on
Qwen2.5-0.5B model performance. The numbers in parentheses indicate the performance drop compared to
the model with no modules removed. The left table and the right table represent results on Boolq and GSM8K,
respectively.

Module Removed Rank Boolq

1 L3 K 10 81.15 (-1.30)
2 L10 V 10 81.12 (-1.33)
3 L3 K / L10 V 10 / 10 80.44 (-2.01)

4 L1 K 5 82.40 (-0.05)
5 L3 V 5 82.35 (-0.10)
6 L1 K / L3 V 5 / 5 82.30 (-0.15)

7 - - 82.45

Module Removed Rank GSM8K

1 L22 Q 12 32.35 (-1.80)
2 L17 K 11 32.42 (-1.73)
3 L22 Q / L17 K 12 / 11 31.15 (-3.00)

4 L8 Q 6 34.05 (-0.11)
5 L6 K 6 34.01 (-0.15)
6 L8 Q / L6 K 6 / 6 33.84 (-0.32)

7 - - 34.16

E GENERALIZATION SUPPLEMENTARY EXPERIMENTS

To further validate the generalization performance of IGU-LoRA, we conduct additional experiments
on the MMLU benchmark using the Llama2-7B model. As shown in Table 9, IGU-LoRA achieves
an average accuracy of 51.07%, which is very close to the full fine-tuning method (51.54%) and
outperforms LoRA (49.94%). Notably, IGU-LoRA demonstrates superior performance in Science,
Technology, Engineering, and Mathematics (STEM) and Social Science subjects, achieving accuracies
of 41.71% and 58.12%, respectively. These results further confirm the effectiveness of IGU-LoRA in
enhancing the generalization capabilities of fine-tuned models across diverse subject areas.
Table 9: The generalization performance of fine-tuning the Llama2-7B model on the MMLU benchmark using
different methods, reporting the average results over 5 random seeds.

Method Humanities STEM Social. Other Avg.
Full FT 49.91 41.70 57.53 57.02 51.54
LoRA 46.15 40.84 56.63 56.23 49.94

IGU-LoRA 47.33 41.71 58.12 57.10 51.07

F MULTIMODAL BENCHMARK SUPPLEMENTARY EXPERIMENTS

To further demonstrate the effectiveness of IGU-LoRA in multimodal tasks, we conduct additional
experiments on the VQAv2, GAQ, NVLR2 and COCO Captioning datasets using the VL-BART (Su
et al., 2019). As shown in Table 10, IGU-LoRA achieves an average score of 77.47, outperforming

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

LoRA (74.31) and DoRA (77.40), and closely approaching the performance of full fine-tuning
(77.35). These results further validate the capability of IGU-LoRA to effectively adapt multimodal
models while maintaining high performance across different tasks.
Table 10: Performance comparison of different fine-tuning methods on the VQA, GAQ, NVLR2 and COCO
datasets using the VL-BART model. The results are averaged over 5 random seeds.

Method VQAv2 GAQ NVLR2 COCO Captioning Avg.

Full FT 66.91 56.72 73.71 112.04 77.35

LoRA 64.32 54.10 71.25 109.56 74.31
DoRA 65.81 54.71 73.14 115.93 77.40

IGU-LoRA 65.78 55.32 73.42 115.36 77.47

G THE VERIFICATION OF THE I.I.D./LOCAL STATIONARITY APPROXIMATION
IN THEOREM 2.

To validate the i.i.d. / local stationarity approximation used in Theorem 2, we conduct an empirical
analysis of the importance score statistics during the fine-tuning process. Specifically, we monitor
several representative modules (e.g., the L16 Q module for the 16-th layer’s Q component and the
L5 K module for the 5-th layer’s K component) across multiple training iterations on the BoolQ
dataset. We observe that, after the initial epochs, the mean and variance of yt quickly stabilize
within a narrow range, and the first-order lag autocorrelation becomes very small. Correspondingly,
the SNRt curve becomes nearly flat after the burn-in period. These observations suggest that the
i.i.d./local stationarity approximation is reasonable and accurate during the stage when EMA-based
importance-ranking pruning is applied in practice.

0 10 20 30 40 50
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

y t

yt Time Series

L16_Q
L5_K
L12_V
L9_Q
L10_K
L15_V
Burn-in Period

0 10 20 30 40 50
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Va
lu

e

Running Mean and Variance
Mean (L16_Q)
Variance (L16_Q)
Mean (L5_K)
Variance (L5_K)
Mean (L12_V)
Variance (L12_V)
Mean (L9_Q)
Variance (L9_Q)
Mean (L10_K)
Variance (L10_K)
Mean (L15_V)
Variance (L15_V)

0 10 20 30 40 50
Epoch

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n
Va

lu
e

Lag-1 Autocorrelation

Autocorr (L16_Q)
Autocorr (L5_K)
Autocorr (L12_V)
Autocorr (L9_Q)
Autocorr (L10_K)
Autocorr (L15_V)

0 10 20 30 40 50
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

SN
R t

SNRt Curve
SNR (L16_Q)
SNR (L5_K)
SNR (L12_V)
SNR (L9_Q)
SNR (L10_K)
SNR (L15_V)

Figure 7: Empirical analysis of importance score statistics during fine-tuning. The plots show the changes
in yt, the mean and variance of yt, the first-order lag autocorrelation, and SNRt across training iterations for
representative module parameters.

H EFFECTS OF SAMPLE ORDER AND BATCH SIZE

To investigate the effects of sample order and batch size on the performance of IGU-LoRA, we conduct
experiments using the Qwen-2.5-0.5B model on the BoolQ dataset. The results are summarized as
follows:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Sample Order / Random Seed. we trained with a fixed batch size using five different random
seeds. These seeds control the data shuffling and the sampled integration nodes αk. The downstream
accuracy varies slightly across seeds (within ∆acc absolute points, indicating a small change), which
demonstrates that the sample order has high stability on the results.

Batch Size. We further vary the batch size (e.g., 2, 4, 8, 16, 32) while keeping all other hyperparame-
ters fixed. The resulting test accuracy again shows only minor variation. This proves that batch size
does not have a significant impact on the results. The detailed results are presented in Table 11.

Table 11: Effect of Batch Size on BoolQ Accuracy across Different Random Seeds

Batch Size Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
2 82.46 82.47 82.45 82.46 82.45
4 82.45 82.46 82.44 82.45 82.44
8 82.44 82.45 82.43 82.44 82.43

16 82.45 82.46 82.44 82.45 82.44
32 82.40 82.41 82.39 82.40 82.39

I DATASETS AND METRICS

I.1 GLUE BENCHMARK TASKS

Single-sentence Classification Tasks. (1) CoLA (Corpus of Linguistic Acceptability): Determine
whether a sentence adheres to grammatical rules (binary classification). (2) SST-2 (Stanford Sentiment
Treebank): Movie review sentiment analysis (positive/negative binary classification).

Sentence-pair Classification Tasks. (1) MRPC (Microsoft Research Paraphrase Corpus): Determine
whether two sentences are semantically equivalent (binary classification). (2) QQP (Quora Question
Pairs): Determine whether two Quora questions are semantically identical (binary classification).
(3) RTE (Recognizing Textual Entailment): Determine whether a sentence pair entails a relationship
(three-class classification: entailment/contradiction/neutral).

Similarity and Regression Task. STS-B (Semantic Textual Similarity Benchmark): Calculate the
semantic similarity between two sentences (continuous value from 1 to 5).

Question-answering Task. QNLI (Question-answering NLI). Determine whether a sentence contains
the answer to a given question (binary classification).

Natural Language Inference Task. MNLI (Multi-Genre Natural Language Inference). Large-scale
cross-domain textual entailment classification (three-class classification).

I.2 MATHEMATICAL AND COMMON-SENSE REASONING TASKS

Mathematical Reasoning Tasks. (1) AQuA (Algebra question answering): Derive the correct answer
from a given algebraic problem (multiple-choice) and generate the corresponding solution process
(Rationales). (2) GSM8K (Grade school math 8K): Perform multi-step reasoning on mathematical
problems described in natural language.

Common-Sense Reasoning Tasks. (1) BoolQ (Boolean questions). Determine whether the answer
to a given question, based on the provided paragraph, is ”Yes” (True) or ”No” (False). (2) ARC-e
(AI2 reasoning challenge - easy): Select the most reasonable answer from a given set of scientific
questions (Multiple-choice question). (3) ARC-c (AI2 reasoning challenge - challenge): Combine
multi-step reasoning and cross-domain knowledge to provide answers. (4) COPA (Choice of plausible
alternatives). Select the most plausible cause or effect for a given premise from two provided
alternatives. The task requires understanding of causal relationships and commonsense reasoning in
everyday scenarios.

I.3 MULTIMODAL BENCHMARK TASKS

Visual Question Answering Tasks. (1) VQAv2 (Visual Question Answering v2). Given an image and
a related question, select the most appropriate answer from multiple choices. (2) GAQ (Generalized

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Question Answering). This task extends VQA to a more generalized setting, where the model is asked
to answer a wider range of questions based on visual context.

Visual-Linguistic Reasoning Task. (1) NLVR2 (Natural Language for Visual Reasoning 2). Given a
pair of images and a natural language statement, determine whether the statement accurately describes
the relationship between the two images.

Image Captioning Task. (1) COCO Captioning. Generate descriptive captions for images in the
COCO dataset, evaluating the model’s ability to understand and describe visual content accurately.

Table 12: Summary of the benchmark datasets.

Datasets # train # dev # test Type Metrics

Common-Sense reasoning tasks
BoolQ 9427 - 3270 Common-Sense reasoning Acc
ARC-e 2251 570 2376 Common-Sense reasoning Acc
ARC-c 1119 299 1172 Common-Sense reasoning Acc
COPA 400 100 500 Common-Sense reasoning Acc

Mathematical reasoning tasks
AQuA 97467 254 254 Mathematical reasoning Acc

GSM8K 7473 - 1319 Mathematical reasoning Acc

GLUE benchmark tasks
SST-2 67k 872 1.8k Sentiment Acc
MNLI 393k 20k 20k NLU Acc
QQP 364k 40k 391k Paraphrase Acc-F1

MRPC 3.7k 408 107k Paraphrase Acc-F1
RTE 2.5k 176 3k NLU Acc
QNLI 108k 5.7k 5.7k QA/NLI Acc
CoLA 8.5k 1k 1k Acceptability Mcc
STS-B 7k 1.5k 1.4k Similarity Corr

I.4 DATASET STATISTICS

In our experiments, we compare performance across multiple tasks, including the GLUE benchmark,
which consists of eight datasets: CoLA, SST-2, MRPC, QQP, STS-B, MNLI, QNLI, and RTE; three
common-sense reasoning tasks (BoolQ, ARC-e, and ARC-c); and two mathematical reasoning tasks
(AQuA and GSM8K). The dataset statistics are presented in Table 12.

I.5 EVALUATION METRICS

As shown in Table 12, we strictly follow the official settings of GLUE and use the same metrics
as Wang et al. (2018). For MNLI, we report the average of the accuracy scores on the matched and
mismatched test sets. For MRPC and QQP, we report Acc-F1, the average accuracy, and F1 scores.
For STS-B, we report Corr, which denotes the average of the Pearson and Spearman correlation
coefficients. For CoLA, we report Mcc, which is the Matthews correlation. For all other tasks,
we report accuracy (Acc). Since the common sense and math reasoning tasks usually come with a
definite answer choice, we will directly consider the correctness of the final answers. Thus, we report
accuracy (denoted as Acc).

J BASELINE DETAILS

• Full fine-tuning is the most common approach for adaptation. During fine-tuning, the model is
initialized with pre-trained weights and biases, and all model parameters undergo gradient updates.

• LoRA (Hu et al., 2022a) is a representative parameter-efficient fine-tuning (PEFT) method. It
introduces two low-rank matrices to parameterize the incremental weight updates, and only these
lightweight components are updated during fine-tuning. The number of trainable parameters is

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

determined by the rank r and the number of inserted adaptation matrices n, allowing for fine-grained
control over the adaptation budget.

• AdaLoRA (Zhang et al., 2023) extends the conventional LoRA framework by introducing a dy-
namic rank adaptation mechanism. It parameterizes the low-rank adapters using singular value
decomposition (SVD), and evaluates the importance of each parameter based on the magnitude of its
corresponding singular value. This importance score then guides a progressive rank pruning process,
allowing the model to dynamically reallocate its limited parameter budget to more critical layers or
modules.

• DoRA (Liu et al., 2024b) enhances the learning capacity and adaptability of pretrained models by
decoupling weight matrices into two distinct components: magnitude and direction. The key idea is to
keep the magnitude fixed and apply LoRA-style low-rank updates only to the directional component.
This separation allows for more expressive and geometry-aware adaptation while preserving the norm
of the original weights, which helps stabilize training and maintain alignment with the pretrained
model. Since only the direction is modified, DoRA introduces no additional inference overhead,
making it efficient and scalable for deployment.

• AutoLoRA (Xu et al., 2023) is a meta-learning-based fine-tuning approach designed to automatically
determine the optimal rank for each layer in Low-Rank Adaptation (LoRA). It introduces a learnable
selection variable for each rank-1 matrix and dynamically adjusts these variables using a meta-
learning strategy. By jointly optimizing the rank configuration along with the LoRA parameters,
AutoLoRA significantly improves fine-tuning efficiency and overall performance.

• Adapter (Houlsby et al., 2019) inserts lightweight bottleneck modules between each layer of the
pretrained model, updating only these newly introduced modules during fine-tuning while keeping
the original model parameters frozen.

• P-tuning v2 (Liu et al., 2021) is an improved prompt tuning method that inserts trainable prompt
tokens at the input layer and across multiple model layers. This design increases the trainable
parameters from approximately 0.01% to 0.1%-3% of the full model, while maintaining parameter
efficiency. P-tuning v2 enhances optimization stability and improves performance across various
tasks by integrating task-specific information deeper into the model.

• (IA)3 (Liu et al., 2022a) introduces learnable scaling vectors at key locations in the Transformer
architecture, such as the keys and values in the self-attention mechanism and the intermediate
activations in the feed-forward networks. These vectors are applied via element-wise multiplication to
modulate the internal activations, enabling flexible control over the model’s output without modifying
the original model parameters.

• SSP (Hu et al., 2022b) leverages structural sparsity to guide the automatic search for parameter
insertion locations, activating trainable parameters only in the most important substructures. This
enables higher efficiency without sacrificing model performance.

• GoRA (He et al., 2025) leverages gradient-driven adaptive low-rank adjustment to dynamically
adjust the rank of low-rank adaptation layers during training. By using gradient information, GoRA
ensures that the model can allocate computational resources more efficiently, adjusting the rank
based on the importance of each layer for different tasks and training stages. This method maintains
computational efficiency while improving model performance, adapting the low-rank configuration
to meet the specific needs of the training process.

K ADDITIONAL RELATED WORKS

K.1 DYNAMIC RANK ALLOCATION

Dynamic rank allocation gains increasing attention in deep learning model optimization, with various
methods proposed to improve adaptability and efficiency. Several other notable approaches are intro-
duced beyond AdaLoRA (Zhang et al., 2023) and AutoLoRA (Xu et al., 2023). LoSA (Huang et al.,
2025) integrates sparsity and low-rank adaptation, dynamically adjusting both using representation
mutual information and reconstruction error. PRILoRA (Benedek & Wolf, 2024) employs a heuristic
strategy that linearly increases ranks from lower to higher layers, motivated by the observation that
higher layers often require greater adaptability in transfer learning. ALoRA (Liu et al., 2024c) further
incorporates a novel mechanism, AB-LoRA, which assesses the importance of individual LoRA

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

ranks and incrementally prunes redundant components, reallocating the freed budget to more critical
Transformer modules. These methods provide diverse rank allocation strategies that contribute to
more efficient fine-tuning of large models.

L THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were employed in several
auxiliary capacities. First, at the writing stage, LLMs were utilized to refine and translate the text,
thereby enhancing the overall fluency, readability, and precision of academic expression. Second,
in relation to experiments and results presentation, LLMs assisted in generating parts of the code
for data visualization and figure plotting, which facilitated a more efficient presentation of research
findings. Third, in surveying the research landscape and related work, LLMs provided support for
literature searches, helping us to locate and summarize relevant studies in the field systematically.
Finally, in the theoretical component of this work, LLMs offered auxiliary support in structuring
complex proofs and verifying critical derivation steps, contributing to the clarity and rigor of our
theoretical analysis. It should be emphasized that all uses of LLMs were strictly auxiliary in nature;
the formulation of research questions, the design of methods, the core theoretical derivations, and the
experimental analyses were all carried out independently by the authors.

26

	Introduction
	Related Works
	Parameter Efficient Fine-tuning
	Low-rank Adaptation Fine-tuning
	Integrated Gradients

	Method
	Preliminaries
	Importance Scoring via Integrated Gradients
	Uncertainty-Aware Scoring

	Experiments
	Experimental Settings
	Datasets and Evaluation Metrics
	Baseline Methods
	Main Results
	Ablation Study and Analysis

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Theoretical Proofs
	proof of Theorem 1
	High-probability stability of SNRt

	The Discussion of the Assumptions in Theorem
	The Analysis of the Assumption in Theorem 1
	The Analysis of the i.i.d. Assumption in Theorem 2

	Hyperparameter Settings
	Ablation Study on High-Impact Parameters
	Generalization supplementary experiments
	Multimodal benchmark supplementary experiments
	The verification of the i.i.d./local stationarity approximation in Theorem 2.
	Effects of Sample Order and Batch Size
	Datasets and Metrics
	GLUE Benchmark Tasks
	Mathematical and Common-sense Reasoning Tasks
	MultiModal Benchmark Tasks
	Dataset Statistics
	Evaluation Metrics

	Baseline Details
	Additional Related Works
	Dynamic Rank Allocation

	The Use of Large Language Models

