

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IGU-LORA: ADAPTIVE RANK ALLOCATION VIA INTEGRATED GRADIENTS AND UNCERTAINTY-AWARE SCORING

Anonymous authors

Paper under double-blind review

ABSTRACT

As large language models (LLMs) scale to billions of parameters, full-parameter fine-tuning becomes compute- and memory-prohibitive. Parameter-efficient fine-tuning (PEFT) mitigates this issue by updating only a small set of task-specific parameters while keeping the base model frozen. Among PEFT approaches, low-rank adaptation (LoRA) is widely adopted; however, it enforces a uniform rank across layers despite substantial variation in layer importance, motivating layerwise rank allocation. Recent adaptive-rank variants (e.g., AdaLoRA) allocate ranks based on importance scores, yet typically rely on instantaneous gradients that capture only local sensitivity, overlooking non-local, pathwise effects within the same layer, which yields unstable and biased scores. To address this limitation, we introduce **IGU-LoRA**, an adaptive-rank LoRA that (i) computes within-layer Integrated Gradients (IG) sensitivities and aggregates them into a layer-level score for rank allocation, and (ii) applies an uncertainty-aware scheme using exponential moving averages with deviation tracking to suppress noisy updates and calibrate rank selection. Theoretically, we prove an upper bound on the composite trapezoidal rule approximation error for parameter-space IG under a pathwise Hessian-Lipschitz condition, which informs the quadrature budget. Across diverse tasks and architectures, IGU-LoRA consistently outperforms strong PEFT baselines at matched parameter budgets, improving downstream accuracy and robustness. Ablations confirm the contributions of pathwise within-layer sensitivity estimates and uncertainty-aware selection to effective rank allocation.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across a wide range of NLP tasks (Devlin et al., 2019; Brown et al., 2020a; Han et al., 2025). However, specialising these models for new downstream tasks remains challenging due to their large parameter counts and substantial computational and memory costs. Consequently, fine-tuning has emerged as the standard way to adapt pre-trained LLMs to particular downstream tasks.

Early efforts in fine-tuning primarily relied on full-parameter fine-tuning (FPFT) (Lv et al., 2024; Qiu et al., 2020; Raffel et al., 2020), where all model parameters are updated during training. While effective for small to medium-scale models, such as BERT (Devlin et al., 2019) and RoBERTa-large (Liu et al., 2019), FPFT becomes increasingly impractical as model size scales exponentially. For example, GPT-3 (Brown et al., 2020b) contains 175 billion parameters, making full fine-tuning prohibitively expensive in terms of computation and memory.

To alleviate these challenges, parameter-efficient fine-tuning (PEFT) methods have been proposed, which adapt pre-trained models by updating only a small subset of parameters while keeping most of the model frozen. Notable PEFT methods include Adapter Tuning (Houlsby et al., 2019; Rücklé et al., 2021; Pfeiffer et al., 2021; He et al., 2022; Wang et al., 2022), Prefix Tuning (Li & Liang, 2021; Wu et al., 2024), and Prompt Tuning (Liu et al., 2022b; Zhang et al., 2024; Yu et al., 2023; Cui et al., 2025). These methods significantly reduce the number of trainable parameters. However, they primarily affect shallow or intermediate layers, limiting their ability to capture deeper semantic representations.

Complementary to the above, weight-delta methods (e.g., Diff Pruning (Guo et al., 2020; Fang et al., 2023)) selectively update a sparse subset of important weights. While effective in reducing the scale of trainable parameters, these methods often rely on unstructured sparsity, which poses challenges for optimisation and is less compatible with modern hardware acceleration. A more structured alternative is Low-Rank Adaptation (LoRA) (Hu et al., 2022a), which models the weight update $\Delta\mathbf{W}$ as the product of two low-rank matrices. By preserving the pretrained model architecture and introducing only a small number of trainable parameters, LoRA achieves high efficiency without sacrificing model capacity. However, LoRA typically uses a fixed rank across all layers, ignoring the heterogeneous contribution of different weight matrices. This static configuration may limit the adaptability and expressiveness of the model.

Building on this observation, several adaptive-rank PEFT methods have been proposed (Zhang et al., 2023; Xu et al., 2023; Ding et al., 2023; Valipour et al., 2023). For example, AdaLoRA (Zhang et al., 2023) applies singular value decomposition (SVD) to the low-rank update matrices and dynamically adjusts rank sizes based on layer-wise importance scores. However, the scoring mechanism in AdaLoRA is primarily based on instantaneous gradient signals, which fail to capture long-term parameter contributions and inter-layer interactions. As a result, the rank allocation may be suboptimal in complex optimisation scenarios.

To overcome these limitations, we propose IGU-LoRA (Fig. 1(c)), an IG-driven PEFT framework that extends Integrated Gradients to the parameter space for scoring parameter importance. The IG path integral is efficiently approximated via a mini-batch stochastic quadrature that uniformly samples one node $\alpha \in [0, 1]$ per mini-batch, thereby avoiding the $O(N)$ forward-backward passes of trapezoidal integration—where N denotes the number of discretization steps along the IG path—and adding only batch-linear overhead. Compared with instantaneous-gradient heuristics, this yields stable and globally informed importance estimates. Robustness is further enhanced by modeling the predictive effect of parameter perturbations and by an uncertainty-aware score that couples an EMA mean with a dispersion term. On the theory side, we establish (i) a discretization-sampling error bound for the IG estimator of order $O(N^{-2}) + O(M^{-1/2})$, where M is the number of sampled mini-batches, and (ii) a high-probability stability guarantee for the EMA ratio score SNR_t , the signal-to-noise ratio at iteration t . Empirically, across datasets (BoolQ, GSM8K, GLUE, ...) and backbones (RoBERTa-large, Qwen-2.5-0.5B, Llama-2-7B, Llama-3-8B, DeepSeek-R1-Distill-Qwen-2.5-7B), IGU-LoRA consistently improves accuracy over strong PEFT baselines (LoRA, AdaLoRA, DoRA) while matching their memory footprint and decoding latency.

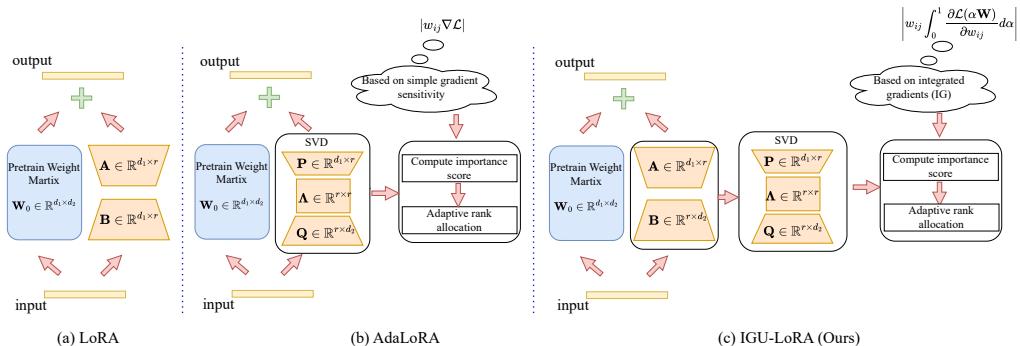


Figure 1: Comparison of frameworks: left to right—(a) LoRA, (b) AdaLoRA, (c) the proposed IGU-LoRA. IGU-LoRA builds on LoRA and AdaLoRA, introducing integrated gradients (IG) to compute parameter importance scores. Please zoom in 300% for better clarity.

2 RELATED WORKS

2.1 PARAMETER EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) received widespread attention for its effectiveness in efficiently adapting LLMs. Representative approaches included Adapter Tuning (Houlsby et al., 2019; Rücklé et al., 2021; Pfeiffer et al., 2021; He et al., 2022; Wang et al., 2022), Prefix Tuning (Li & Liang, 2021; Wu et al., 2024), Prompt Tuning (Liu et al., 2022b; Zhang et al., 2024; Yu et al., 2023; Cui et al., 2025), and P-Tuning v2 (Liu et al., 2021), which inserted lightweight trainable modules into different layers of the model to enable efficient task adaptation. In parallel, reparameterization-based PEFT approaches (Li et al., 2018; Aghajanyan et al., 2021; Liu et al., 2024a; Hu et al., 2022a; Zhang

108 et al., 2023) received increasing attention. Without modifying the model architecture, these methods
 109 modeled and optimized parameter updates in a low-dimensional and efficient manner. Among them,
 110 Low-Rank Adaptation (LoRA) (Hu et al., 2022a) has become a prominent method by expressing
 111 weight updates as the product of two low-rank matrices, which allows for tight control over the train-
 112 able parameter count while maintaining model performance. With the rapid release of open-source
 113 LLMs (Shao et al., 2024; Liu et al., 2019; Dubey et al., 2024) and their increasing use in instruction
 114 tuning and other real-world applications, PEFT has emerged as the mainstream paradigm for scalable
 115 fine-tuning and has been widely adopted in practical systems.

116 2.2 LOW-RANK ADAPTATION FINE-TUNING

117 LoRA (Hu et al., 2022a) is a representative PEFT method that freezes pretrained weights and injects
 118 low-rank matrices, reducing parameter overhead with minimal performance loss. Several LoRA-based
 119 methods have been proposed to enhance efficiency and scalability. For example, Delta-LoRA (Zi
 120 et al., 2023) improves LoRA’s expressiveness by updating weights with the temporal difference of
 121 \mathbf{AB} , addressing the limitations of small low-rank matrices. DoRA (Liu et al., 2024b) decouples
 122 optimization by factorizing \mathbf{W} into a magnitude vector \mathbf{m} and a direction matrix \mathbf{V} . MeLoRA (Ren
 123 et al., 2024) aggregates outputs from parallel low-rank adapters in a block-diagonal structure to
 124 improve model capacity. AutoLoRA (Xu et al., 2023) uses meta-learning to automatically assign
 125 optimal per-layer ranks, while AdaLoRA (Zhang et al., 2023) dynamically adjusts ranks during
 126 training using SVD and parameter importance scores. **SalientLoRA** (Ke et al., 2024) allocates ranks
 127 based on parameter saliency, optimizing the low-rank layers for improved performance. **GoRA** (He
 128 et al., 2025) adapts low-rank adjustments dynamically using gradient-driven methods to meet task
 129 requirements while maintaining efficiency. These techniques enable efficient fine-tuning with fewer
 130 trainable parameters and strong performance.

131 2.3 INTEGRATED GRADIENTS

132 In interpretability research for deep learning, Integrated Gradients (IG (Sundararajan et al., 2017))
 133 is a widely adopted attribution method that mitigates gradient saturation by computing the integral
 134 of gradients along the path from a baseline input to the actual input. IG satisfies two key axioms,
 135 completeness and sensitivity, which ensure that it quantitatively reflects the contribution of each input
 136 feature to the model’s output. Subsequent studies extend IG in various directions. Theoretically, Lund-
 137 berg & Lee (2017) show that IG is equivalent to Shapley values under certain conditions. From a
 138 computational perspective, Kapishnikov et al. (2021) propose an adaptive sampling strategy that
 139 improves runtime efficiency by $3\times$. IG also demonstrates practical utility in high-stakes domains such
 140 as medical imaging (Sayres et al., 2019), where it improves the localization of diabetic retinopathy
 141 markers. In this work, we extend IG to parameter importance estimation in large model fine-tuning.
 142 Our method addresses the limitations of instantaneous gradient signals, which are prone to vanishing
 143 in deep networks. It introduces a redefined sensitivity scoring mechanism that more accurately
 144 captures long-term parameter contributions during optimization.

145 3 METHOD

146 3.1 PRELIMINARIES

147 **Low-Rank Adaptation.** Low-Rank Adaptation (LoRA (Hu et al., 2022a)) injected trainable low-rank
 148 matrices into frozen pre-trained weights, substantially reducing the number of trainable parameters
 149 while preserving downstream task performance. Given a pre-trained parameter matrix $\mathbf{W}_0 \in \mathbb{R}^{d_1 \times d_2}$
 150 for a specific layer of an LLM, LoRA updated the parameter matrix as:

$$151 \quad \mathbf{W} = \mathbf{W}_0 + \mathbf{AB}, \quad (1)$$

152 where $\mathbf{A} \in \mathbb{R}^{d_1 \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_2}$ were low-rank trainable matrices with $r \ll \min\{d_1, d_2\}$.

153 **Adaptive LoRA.** A key limitation of LoRA is that it requires manually selecting the rank r , which is
 154 challenging due to the heterogeneity of intrinsic dimensionalities across layers and the lack of prin-
 155 cipled guidance for determining appropriate values. To enable adaptive rank selection, singular value
 156 decomposition (SVD) is typically applied to the trainable low-rank product \mathbf{AB} in Eq. (1) (Zhang
 157 et al., 2023):

$$158 \quad \mathbf{W} = \mathbf{W}_0 + \text{SVD}(\mathbf{AB}) = \mathbf{W}_0 + \mathbf{P}\Lambda\mathbf{Q}, \quad (2)$$

159 where $\mathbf{P} \in \mathbb{R}^{d_1 \times r}$, $\mathbf{Q} \in \mathbb{R}^{r \times d_2}$ are two orthogonal matrices, and the diagonal matrix $\Lambda =$
 160 $\text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_r\} \in \mathbb{R}^{r \times r}$ containing the singular values. We initialize r as an over-
 161 parameterized upper bound $r \ll \min\{d_1, d_2\}$, then prune redundant dimensions via spectral analysis.

To determine the final rank, we define an importance score S_i for each singular value λ_i , which guides the pruning process. Unlike conventional methods that rely solely on magnitude, our proposed scoring method incorporates both the singular value and the sensitivity of its associated parameters, namely the elements in the i -th column of \mathbf{P} and the i -th row of \mathbf{Q} . Specifically, for each $i \in \{1, \dots, r\}$, we estimate S_i by aggregating two components. First, $s_\lambda(\cdot)$ measures the intrinsic strength of the singular value; Second, $s_e(\cdot)$ quantifies the importance of the parameters with the i -th column of matrix \mathbf{P} and the i -th row of matrix \mathbf{Q} . The final score S_i is computed as Zhang et al. (2023):

$$S_i = s_\lambda(\lambda_i) + \frac{1}{d_1} \sum_{k=1}^{d_1} s_{snr}(P_{ki}) + \frac{1}{d_2} \sum_{k=1}^{d_2} s_{snr}(Q_{ik}), \quad (3)$$

where $s_\lambda(\lambda_i) = |\lambda_i|$ denotes the magnitude of the singular value, and $s_{snr}(\cdot)$ is a specific importance score function that measures the importance of individual weight on the training loss function. Existing methods (Zhang et al., 2023) for measuring parameter importance are primarily based on simple gradient sensitivity $|\partial L / \partial w_{ij}|$, where w_{ij} is a single parameter in model. However, this simple gradient sensitivity-based method suffers from the following limitations:

• **Lack of Structural Interpretability:** Simple gradient sensitivity-based method evaluate weights independently, ignoring the structured interactions among parameter groups. In settings like LoRA, where parameters operate collectively within subspaces, such element-wise assessments fail to capture their joint contribution, thereby limiting interpretability at the structural level.

• **Instantaneous Parameter Sensitivity:** Simple gradient sensitivity-based method capture only the instantaneous impact of a parameter on the loss function, overlooking its accumulated or long-term contribution throughout training. This limitation can result in unstable or misleading estimates.

• **Gradient Saturation:** In transformer-based LLMs, activation functions such as ReLU may lead to gradient saturation in inactive regions, where the gradient signal vanishes entirely. As a result, the estimated importance of the affected parameters becomes unreliable.

Figure 2 illustrates why (a) the simple gradient method fails in gradient-saturated regions, while (b) the integrated gradient method provides more reliable parameter importance estimation through a comparative demonstration. To address these limitations, we estimate parameter importance using Integrated Gradients (IG) in the parameter space. IG integrates the gradients along the path from 0 to 1, thereby capturing the non-local sensitivity and overall impact of the gradients. This method not only accounts for the cumulative effect of the parameter gradients along the integration path but also effectively bypasses saturation regions, where gradient signals typically vanish. By considering the entire path, this method ensures a more accurate estimation of parameter importance, particularly in regions where simple gradient-based methods may fail due to vanishing gradients or saturation.

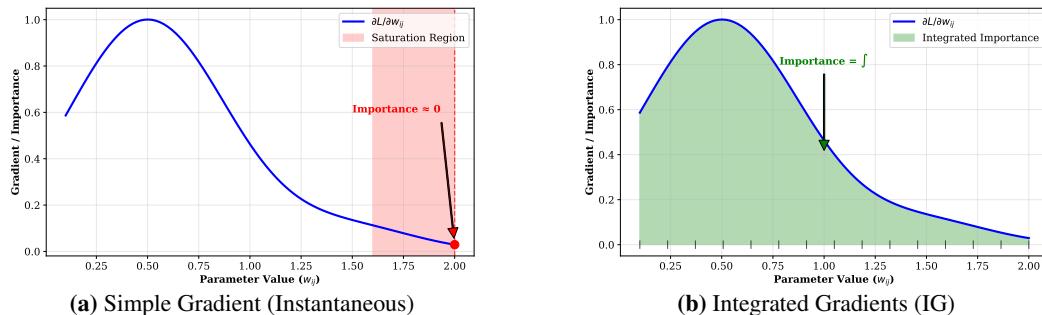


Figure 2: Comparison of parameter importance scoring methods. (a) The simple gradient method fails in saturated regions, assigning near-zero importance. (b) Integrated gradients compute importance by integrating along the path from initial to final parameter values, capturing the actual total contribution.

3.2 IMPORTANCE SCORING VIA INTEGRATED GRADIENTS

Integrated Gradients (IG (Sundararajan et al., 2017)) is an attribution method originally developed to improve the interpretability of deep neural networks by attributing a model’s output to its input features. It quantifies the contribution of each input feature by integrating the gradients of the output with respect to the input, along a path from a baseline to the actual input.

Inspired by this idea, we propose IGU-LoRA, which extends IG to the parameter space for importance estimation in LLMs. Specifically, we integrate the gradients of the loss function with respect to

model parameters along a continuous path from a baseline (e.g., zero) to the actual trained weights, thereby capturing the cumulative influence of each parameter on the training loss function. This parameter-space IG formulation addresses key limitations of conventional gradient-based importance scores, such as limited structural interpretability, over-reliance on local (instantaneous) sensitivity, and susceptibility to gradient saturation. Consequently, it provides more stable and comprehensive estimates of parameter importance for transformer-based LLMs.

Formally, given a weight matrix $\Delta\mathbf{W}$, we denote by w_{ij} its (i, j) -th entry, representing a specific weight. Let \mathcal{L} denote the loss function of the LLMs. Since Integrated Gradients (IG) requires a baseline representing a state of no information, we choose 0 as the value for $\Delta\mathbf{W}^{(0)}$ as the baseline, and compute the importance score of w_{ij} under IG as:

$$s_e(w_{ij}) = \left| (w_{ij} - \Delta w_{ij}^{(0)}) \int_{\alpha=0}^1 \frac{\partial \mathcal{L}(\alpha(\Delta\mathbf{W} - \Delta\mathbf{W}^{(0)}))}{\partial w_{ij}} d\alpha \right| = \left| w_{ij} \int_{\alpha=0}^1 \frac{\partial \mathcal{L}(\alpha\Delta\mathbf{W})}{\partial w_{ij}} d\alpha \right|, \quad (4)$$

where $\Delta w_{ij}^{(0)} \in \Delta\mathbf{W}^{(0)}$. Due to the massive number of parameters in LLMs, the loss function \mathcal{L} exhibits strong non-convexity and highly nonlinear dependencies in the parameter space. As a result, Eq. (4) involves a high-dimensional integral that lacks a closed-form solution. To approximate it, we discretize the path $[0, 1]$ into N equal intervals with nodes $\alpha_k = k/N$ ($k = 1, \dots, N - 1$) and apply the trapezoidal rule, yielding:

$$\hat{s}_e(w_{ij}) \approx \frac{|w_{ij}|}{2N} \left| \frac{\partial \mathcal{L}(0)}{\partial w_{ij}} + 2 \sum_{k=1}^{N-1} \frac{\partial \mathcal{L}(\alpha_k \Delta\mathbf{W})}{\partial w_{ij}} + \frac{\partial \mathcal{L}(\Delta\mathbf{W})}{\partial w_{ij}} \right|. \quad (5)$$

Note that Eq. (5) requires gradient evaluations at $N + 1$ points, which leads to $O(N)$ forward-backward passes for each weight w_{ij} , making it computationally expensive in large models. To mitigate this computational burden, we propose a **stochastic approximation** strategy: during fine-tuning, We randomly sample a single integration point $\alpha_k = k/N$ for each mini-batch from a set $\{1/N, \dots, (N-1)/N\}$ that follows a uniform distribution. Consequently, for the p -th mini-batch, the importance score of w_{ij} is approximated as:

$$\hat{s}_e^p(w_{ij}) \approx \frac{|w_{ij}|}{2N} \left| \frac{\partial \mathcal{L}(0)}{\partial w_{ij}} + 2 \frac{\partial \mathcal{L}(\alpha_k \Delta\mathbf{W})}{\partial w_{ij}} + \frac{\partial \mathcal{L}(\Delta\mathbf{W})}{\partial w_{ij}} \right|. \quad (6)$$

At the end of the t -th training epoch (which consists of M mini-batches), we compute the aggregated importance score of w_{ij} as follows:

$$s_{agg}(w_{ij}) = \frac{1}{M} \sum_{p=1}^M \hat{s}_e^p(w_{ij}). \quad (7)$$

Theorem 1 bounds the error of our estimator, quantifying the gap between the exact IG score in Eq. (4) and the epoch-level estimator in Eq. (7); the total error is $O(N^{-2})$ (discretization) + $O(M^{-1/2})$ (sampling).

Theorem 1. *Let $s_e(w_{ij})$ be the importance score based on Integrated Gradients (IG) as defined in Eq. (4), and let $s_{agg}(w_{ij})$ be the epoch-level estimator as defined in Eq. (7). Define $g_{ij}(\alpha) = \frac{\partial \mathcal{L}(\alpha \Delta\mathbf{W})}{\partial w_{ij}}$, $\alpha \in [0, 1]$.*

We assume the following:

1. *g_{ij} is twice continuously differentiable on $[0, 1]$, and there exists a constant $C_2 < \infty$ such that*

$$\sup_{\alpha \in [0, 1]} |g_{ij}''(\alpha)| \leq C_2. \quad (8)$$

2. *Let $\alpha_1, \alpha_2, \dots, \alpha_M$ be i.i.d. samples drawn from the discrete uniform distribution over $\{\frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}\}$, and let $s_{agg}(w_{ij})$ be defined as in Eq. (7).*

Then, for any $N, M \geq 1$ and $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following bound holds:

$$|s_e(w_{ij}) - s_{agg}(w_{ij})| \leq \frac{|w_{ij}|C_2}{12N^2} + c|w_{ij}|B\sqrt{\frac{\log(1/\delta)}{M}}, \quad (9)$$

where $c > 0$ is an absolute constant, and B is a constant such that $|g_{ij}(\alpha)| \leq B$ for all $\alpha \in \{\frac{1}{N}, \frac{2}{N}, \dots, \frac{N-1}{N}\}$. The proof is provided in Appendix A.1.

270 3.3 UNCERTAINTY-AWARE SCORING
271

272 Recent studies (Zhang et al., 2022) demonstrate that stochastic sampling and complex training
273 dynamics result in high variance in importance score estimates via Eq. (7), thereby undermining
274 their reliability. To alleviate this issue, we incorporate two complementary mechanisms: sensitivity
275 smoothing and uncertainty quantification, defined respectively as:

$$276 \bar{s}_e^{(t)}(w_{ij}) = \beta_1 \bar{s}_e^{(t-1)}(w_{ij}) + (1 - \beta_1) s_{agg}^{(t)}(w_{ij}), \quad (10)$$

$$277 \bar{U}^{(t)}(w_{ij}) = \beta_2 \bar{U}^{(t-1)}(w_{ij}) + (1 - \beta_2) \left| s_{agg}^{(t)}(w_{ij}) - \bar{s}_e^{(t)}(w_{ij}) \right|. \quad (11)$$

279 We define the final importance score as:

$$281 282 s_{snr}^{(t)}(w_{ij}) = \text{SNR}_t = \frac{\bar{s}_e^{(t)}(w_{ij})}{\bar{U}^{(t)}(w_{ij}) + \epsilon}, \quad (12)$$

284 where the numerator $\bar{s}_e^{(t)}(w_{ij})$ captures the persistent influence of the parameter w_{ij} via exponential
285 moving averaging of gradient-parameter correlations. The denominator $\bar{U}^{(t)}(w_{ij})$ quantifies
286 epistemic uncertainty by measuring deviations from the smoothed sensitivity across mini-batches.
287 ϵ is a very small number to prevent the denominator in Eq. (12) from being 0. This ratio can be
288 interpreted as a signal-to-noise ratio (SNR), providing a criterion for assessing the importance of
289 parameters. Specifically, a larger smoothed sensitivity $\bar{s}_e^{(t)}(w_{ij})$ indicates that w_{ij} consistently exerts
290 strong influence on the loss function. In contrast, a smaller uncertainty $\bar{U}^{(t)}(w_{ij})$ suggests lower
291 variability, reinforcing the reliability of the signal. A high-probability stability guarantee for the EMA
292 ratio score SNR_t is presented in Appendix A.2. We summarize the complete workflow of IGU-LoRA
293 in Algorithm 1.

294 **Algorithm 1** IGU-LoRA

295 **Input:** Dataset \mathcal{D} ; the number of total iterations T ; a pre-trained parameter matrix $\mathbf{W}_0 \in \mathbb{R}^{d_1 \times d_2}$ of a large
296 language model, number of mini-batches M ; budget of remaining singular values b ; randomly initialize
297 trainable low-rank matrices $\mathbf{A} \in \mathbb{R}^{d_1 \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times d_2}$; hyperparameters β_1, β_2 .

298 1: **for** $t = 1$ to T **do**
299 2: **for** $p = 1$ to M **do**
300 3: Sample a mini-batch from \mathcal{D} and train \mathbf{A} and \mathbf{B} .
301 4: Perform SVD on the matrix product \mathbf{AB} to obtain $\mathbf{P}\Lambda\mathbf{Q} = \text{SVD}(\mathbf{AB})$, where $\Lambda =$
302 $\text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_r\}$.
303 5: Compute the \hat{s}_e^p in Eq. (6) for every parameter in \mathbf{P}, \mathbf{Q} .
304 6: **end for**
305 7: Compute the aggregated importance score s_{agg} in Eq. (7) for every parameter in \mathbf{P}, \mathbf{Q} .
306 8: Compute the $\bar{s}_e^{(t)}$ in Eq. (10) and $\bar{U}^{(t)}$ in Eq. (11) for every parameter in \mathbf{P}, \mathbf{Q} .
307 9: Update the final importance score $s_{snr}^{(t)}$ in Eq. (12).
308 10: Compute the importance score of each singular value S_i in Eq. (3) for $\mathbf{P}\Lambda\mathbf{Q}$.
309 11: Find the top b eigen value: $\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_b$ by importance score S_i .
310 12: Set $\tilde{\Lambda} \leftarrow \text{diag}(\hat{\lambda}_1, \hat{\lambda}_2, \dots, \hat{\lambda}_b, 0, \dots, 0)$.
311 13: Update $\mathbf{A} \leftarrow \mathbf{P}_{:, \pi_{1:b}} \tilde{\Lambda}^{1/2}$, $\mathbf{B} \leftarrow \tilde{\Lambda}^{1/2} \mathbf{Q}_{\pi_{1:b}, :}$. ▷ The subscript π denotes the index set obtained by
312 sorting the columns of \mathbf{P} and \mathbf{Q} in descending order; $\pi_{1:k}$ represents the indices of the first b selected
313 columns; $\mathbf{P}_{1:\pi_{1:b}}$ represents selecting the first b columns according to the order defined by π .
314 14: **end for**
315 **Output:** $\mathbf{W} = \mathbf{W}_0 + \mathbf{AB}$

316 4 EXPERIMENTS

317 4.1 EXPERIMENTAL SETTINGS

318 **Computational Resources.** All experiments are implemented in PyTorch and conducted on an
319 NVIDIA L40 GPU (48GB) running Ubuntu 18.04.1.

320 **Pretrained Backbone Models.** We use RoBERTa-large model (Liu et al., 2019) as the backbone for
321 the GLUE tasks. For the remaining tasks, we adopt Qwen-2.5-0.5B model¹. We further validate the
322 robustness and generalization of IGU-LoRA via a backbone ablation, fine-tuning larger-parameter

323 ¹<https://huggingface.co/Qwen/Qwen2.5-0.5B>

backbones (Llama-2-7B (Touvron et al., 2023), Llama-3-8B (Dubey et al., 2024), DeepSeek-R1-Distill-Qwen-2.5-7B²) on multiple datasets.

IGU-LoRA Configuration. For the BoolQ, ARC, GSM8K, and AQuA tasks, we perform instruction tuning. The initial LoRA rank is set to $r^{(0)} = 32$, and pruned to an average rank of $r^{(1)} = 16$, achieving pruning 50% rank reduction. For the GLUE tasks, we follow AdaLoRA’s setup, using a classification or regression head, with $r^{(0)} = 2$ pruned to an average $r^{(1)} = 1$. During the fine-tuning, IGU-LoRA selects the scaling factor α from $N = 20$ uniformly spaced values in the interval $(0, 1)$. Rank pruning begins at epoch 2 and ends at epoch 5, performed at every one-fifth of an epoch. After pruning, we fine-tune the modules with early stopping (patience = 10 steps) to restore performance. Inference is performed using beam search with a width of 3.

Reproducibility. Each task is run with 5 different random seeds, and we report the median test performance. All predictions are generated using the model’s language modeling head, which is conditioned on a given prompt or instruction. Additional training configurations are available in Appendix C.

4.2 DATASETS AND EVALUATION METRICS

We group the tasks into 2 categories and compare the proposed IGU-LoRA against several baselines: (i) **GLUE Benchmark Datasets** (Wang et al., 2018) include a diverse set of language understanding tasks, such as paraphrase detection (MRPC, QQP), sentiment classification (SST-2), natural language inference (MNLI, RTE, QNLI), and linguistic acceptability (CoLA). (ii) **Mathematical and Common-Sense Reasoning Datasets** include two mathematical reasoning tasks: AQuA (Li et al., 2024) and GSM8K (Cobbe et al., 2021), and four common-sense question answering tasks: ARC-e, ARC-c (Clark et al., 2018), BoolQ (Clark et al., 2019) and COPA (Roemmele et al., 2011). Detailed dataset descriptions, statistical, and evaluation metrics are in Appendix I.

4.3 BASELINE METHODS

To evaluate the performance of the proposed IGU-LoRA method in fine-tuning LLMs, we compare it against the following representative baseline: (i) **LoRA and Its Variants.** We evaluate four LoRA-based approaches: LoRA (Hu et al., 2022a), AdaLoRA (Zhang et al., 2023), DoRA (Liu et al., 2024b), AutoLoRA (Xu et al., 2023) and GoRA (He et al., 2025). (ii) **Other PEFT Method.** We also evaluate the following non-LoRA parameter-efficient fine-tuning methods: Housbly-Adapter (Houlsby et al., 2019), P-Tuning v2 (Liu et al., 2021), (IA)³ (Liu et al., 2022a), and SSP (Hu et al., 2022b). (iii) **Full Fine-tuning Method.** For reference, we also include results from full-parameter fine-tuning (denoted as Full FT). All baseline methods are implemented using publicly available codebases. Hyperparameter settings are listed in Appendix C, and additional descriptions of baselines are provided in Appendix J.

4.4 MAIN RESULTS

Table 1: Performance comparison of fine-tuning methods on the GLUE task using RoBERTa-large. All results are reported as the median over 5 runs with different random seeds. Bold and Underline indicate the best and the second-best results. The metric for each task is explained in Appendix I.5.

Method	# Params	CoLA (mcc)	SST-2 (acc)	MRPC (acc-f1)	QQP (acc-f1)	STS-B (corr)	MNLI (acc)	QNLI (acc)	RTE (acc)	Avg.
Full FT	355M	69.19	95.63	89.46	91.10	91.60	90.01	94.03	86.94	88.50
Housbly-Adapter	0.35M	67.80	94.38	89.75	89.41	91.08	90.28	93.52	84.36	87.57
P-tuning v2	0.31M	67.35	93.13	88.49	88.63	90.41	89.19	91.94	82.42	86.45
(IA) ³	0.33M	68.62	93.82	89.54	89.78	90.84	89.87	92.60	82.75	87.23
SSP	0.36M	69.89	94.96	90.08	90.14	91.37	90.42	94.16	84.88	88.24
LoRA	0.33M	68.71	94.84	89.71	90.26	91.63	90.34	93.87	85.56	88.12
AdaLoRA	0.35M	70.04	95.62	<u>90.34</u>	90.37	91.57	90.18	<u>94.29</u>	87.06	88.68
DoRA	0.33M	70.26	<u>95.80</u>	90.12	90.16	<u>91.68</u>	<u>90.43</u>	94.17	87.38	88.75
AutoLoRA	0.34M	<u>70.47</u>	95.53	90.26	90.31	91.52	90.26	94.08	<u>87.64</u>	<u>88.76</u>
IGU-LoRA	0.33M	71.93	96.17	90.69	<u>90.68</u>	91.95	90.76	94.72	88.46	89.42

GLUE Benchmark Results. We evaluate the performance of IGU-LoRA against baseline methods on the GLUE development set using the RoBERTa-large model. The results are presented in Table 1.

²<https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B>

Under the constraint of fine-tuning only 1% of model parameters, IGU-LoRA achieves performance that is comparable to or surpasses existing approaches across all tasks. Notably, on the CoLA task, IGU-LoRA achieves a Matthews correlation coefficient (MCC) of 71.93%, outperforming the best baseline by 1.5%. On the RTE task, it exceeds the second-best method, AutoLoRA, by 0.8% in accuracy (acc). Similar improvements are also observed on the remaining tasks, demonstrating the robustness of IGU-LoRA. Averaged across all tasks, IGU-LoRA achieves the highest overall performance. Importantly, it maintains strong parameter efficiency, requiring only 0.33 million trainable parameters, comparable to leading PEFT methods, while significantly outperforming full-parameter fine-tuning in both accuracy and efficiency.

Table 2: Performance comparison of fine-tuning methods on the Mathematical and common-sense reasoning task using the Qwen-2.5-0.5B. All results are reported as the median over 5 runs with different random seeds. Bold and Underline indicate the best and the second-best results.

Method	# Params	BoolQ (acc)	ARC-e (acc)	ARC-c (acc)	GSM8K (acc)	AQuA (acc)	Avg.
Full FT	494.0M	81.74	74.82	54.98	34.64	48.72	58.98
Houlsby-Adapter	9.0M	78.36	71.04	53.26	28.67	42.85	54.84
LoRA	8.8M	78.94	72.78	54.38	31.42	45.33	56.57
AdaLoRA	8.9M	80.32	73.90	54.23	33.27	46.58	57.67
GoRA	8.8M	79.24	71.20	51.91	32.07	45.81	56.04
IGU-LoRA	8.8M	82.45	<u>74.62</u>	55.67	<u>34.16</u>	48.93	59.17

Mathematical and Common-Sense Reasoning Benchmark Results. We further systematically conduct mathematical and common-sense reasoning tasks using the Qwen-2.5-0.5B model, comparing four representative fine-tuning methods: Full Fine-tuning, Adapter, LoRA, AdaLoRA and GoRA. Table 2 summarizes the results, where IGU-LoRA consistently achieves performance advantages across most tasks. Specifically, IGU-LoRA achieves state-of-the-art results on BoolQ, ARC-c, and AQuA, outperforming the second-best method by 0.2% to 0.8% in accuracy. While it does not obtain the highest score on ARC-e and GSM8K, IGU-LoRA fine-tunes only 8.8M parameters, substantially fewer than full-parameter tuning (494.0M), yet delivering comparable performance. Across all evaluated datasets, IGU-LoRA consistently outperforms other parameter-efficient methods with similar parameter budgets, highlighting its strong generalization under tight resource constraints.

4.5 ABLATION STUDY AND ANALYSIS

Analysis of Training and Inference Efficiency. So far, we have shown that IGU-LoRA outperforms LoRA, AdaLoRA, and DoRA on BoolQ. A natural concern is whether these gains come at the expense of extra time or memory cost. We fine-tune the Qwen-2.5-0.5B model and report peak training GPU memory and wall-clock training time, as well as inference peak GPU memory and decoding latency, as shown in Table 3. All methods utilise a similar memory due to the frozen backbone. LoRA trains the fastest but yields smaller gains; DoRA is slower because it maintains normalized weight directions while updating an additional magnitude vector ρ , which involves adding normalization/rescaling operations and optimizer states each step. AdaLoRA improves accuracy via sensitivity-based rank pruning in a two-stage schedule; IGU-LoRA adopts a similar two-stage design and thus achieves comparable training time while delivering higher accuracy. For inference, IGU-LoRA matches LoRA, DoRA, and AdaLoRA in memory usage and decoding latency.

Table 3: The time cost, memory and speed for fine-tuning Qwen-2.5-0.5B on the BoolQ task with different PEFT methods.

Method	Training		Inference	
	Time cost (h)	GPU Mem (GB)	Speed (it/s)	GPU Mem (GB)
LoRA	0.42	10.21	5.50	10.3
AdaLoRA	0.73	10.60	5.21	10.4
DoRA	0.95	9.53	5.30	10.3
IGU-LoRA	0.87	10.32	5.23	10.3

Table 4: Comparison of the performance of different variants of IGU-LoRA on fine-tuning Qwen-2.5-0.5B across BoolQ and GSM8K tasks.

Method	BoolQ	GSM8K	Avg.
IGU-LoRA-1 (w/o α)	81.87	33.76	57.82
IGU-LoRA-2 ($N=10$)	82.14	<u>33.95</u>	58.05
IGU-LoRA-3 ($N=4$)	82.02	33.83	57.93
IGU-LoRA-4 ($s_e = \bar{s}_e \cdot \bar{U}$)	<u>82.28</u>	33.69	57.99
IGU-LoRA	82.45	<u>34.16</u>	58.31

Ablation Study on Hyperparameters and Importance Scoring. To assess the sensitivity of IGU-LoRA to its key hyperparameters and scoring components, we perform the ablation study by incrementally disabling or simplifying individual modules. Specifically, we evaluate the following variants: (1) IGU-LoRA-1 removes the gradient-integrated α coefficient used during both training and pruning; (2) IGU-LoRA-2 reduces candidate resolution of α from $N = 20$ to $N = 10$; (3) IGU-LoRA-3 further reduces the candidate set to $N = 4$; and (4) IGU-LoRA-4 replaces the final

importance score in Eq. (12) with the alternative formulation in Eq. (11) from Zhang et al. (2023), which combines sensitivity and uncertainty via AdaLoRA’s multiplicative strategy ³. As shown in Table 4, all variants exhibit performance degradation, particularly IGU-LoRA-3 and IGU-LoRA-4, which involve more aggressive simplifications. These results confirm that the default configuration of IGU-LoRA, with high-resolution integrated gradient and uncertainty-aware scoring, is critical in achieving strong performance.

Hyperparameter Sensitivity Analysis. To investigate the sensitivity of IGU-LoRA to key hyperparameters, we varied one hyperparameter at a time while keeping others fixed. We analyzed the effects of mini-batch size M , the number of discrete points for α (denoted as N), and smoothing coefficients β_1 and β_2 . Experiments were conducted by fine-tuning the Qwen2.5-0.5B model on the Boolq and GSM8K datasets. The results, shown in Figure 3 and 4, demonstrate that IGU-LoRA performs stably across a range of values. Performance improves with larger M and N , suggesting better adaptability with finer granularity in scaling factor selection. The coefficients β_1 and β_2 show good robustness, with optimal performance in a moderate range. These findings indicate that M , N , β_1 , and β_2 are robust hyperparameters for IGU-LoRA.

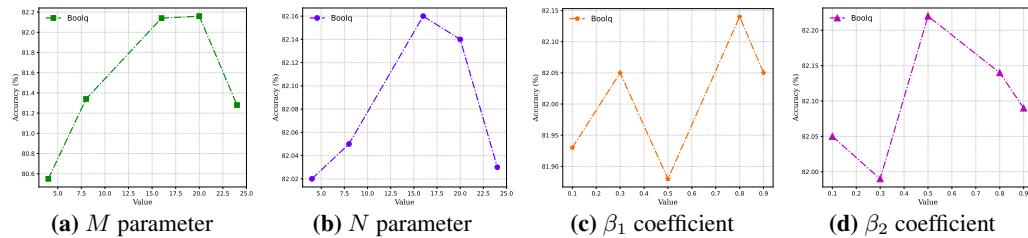


Figure 3: The impact of different hyperparameters M , N , β_1 , β_2 on performance when fine-tuning the Qwen2.5-0.5B model on the Boolq dataset. Please zoom in 300% for better clarity.

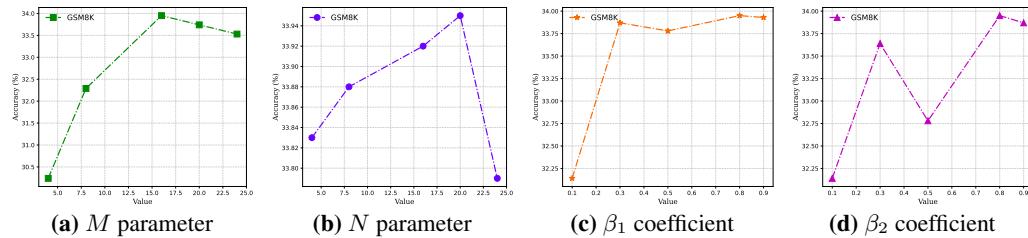


Figure 4: The impact of different hyperparameters M , N , β_1 , β_2 on performance when fine-tuning the Qwen2.5-0.5B model on the GSM8K dataset. Please zoom in 300% for better clarity.

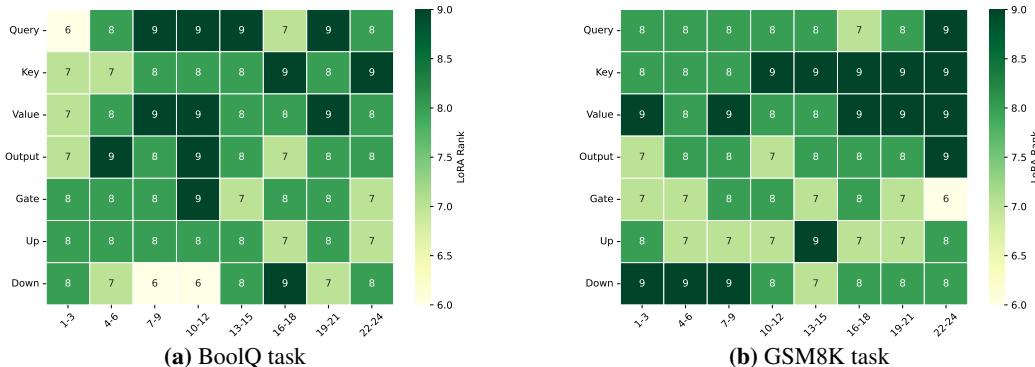


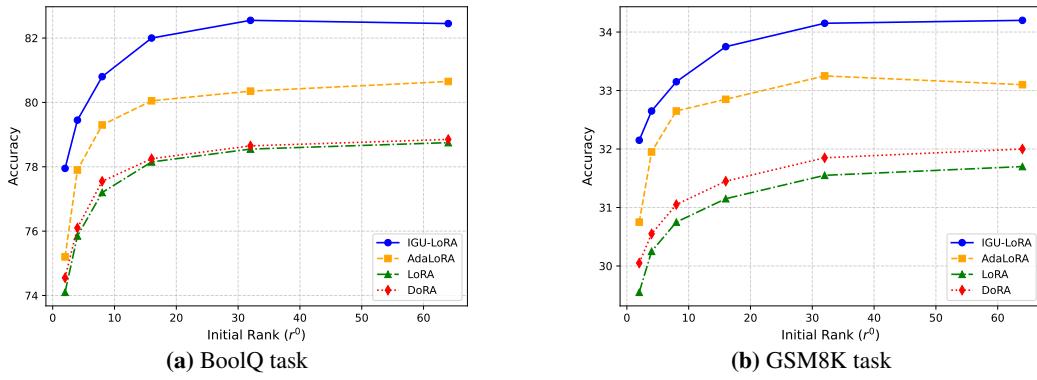
Figure 5: Rank allocation by IGU-LoRA on the Qwen-2.5-0.5B backbone after fine-tuning for the BoolQ and GSM8K tasks. Please zoom in 300% for better clarity.

Visualization of Rank Allocation in IGU-LoRA. Figure 5 visualizes the pruned LoRA rank allocation produced in IGU-LoRA. The rank distributions vary significantly across tasks, underscoring the need for task-specific adaptation to achieve optimal performance. Even within a single task, different Transformer layers allocate ranks differently, reflecting the fine-grained sensitivity of model

³AdaLoRA (Zhang et al., 2023) for details.

486 components to low-rank updates. Despite this heterogeneity, consistent structural patterns emerge:
 487 in the self-attention mechanism, the Query and Key projections are most frequently prioritized for
 488 adaptation, while in the feed-forward network (FFN), the Up and Down projection layers receive the
 489 highest ranks. These observations reveal structural preferences in LoRA-based fine-tuning, offering
 490 valuable insights for designing generalized and efficient low-rank adaptation strategies.

491 **Comparisons on Rank Budgets.** In the main experiments, we fixed the initial rank budget at $r^0 = 32$
 492 as a standard configuration. To further evaluate the robustness and adaptability of IGU-LoRA, we
 493 vary the initial rank budget across $\{2, 4, 8, 16, 32, 64\}$ and compare its performance with AdaLoRA,
 494 LoRA, and DoRA on the BoolQ and GSM8K tasks. The results, shown in Figure 6, demonstrate that
 495 IGU-LoRA consistently outperforms AdaLoRA, LoRA and DoRA under all budget settings. This is
 496 attributed to its ability to allocate LoRA dynamically across Transformer layers, which enables more
 497 effective adaptation.



500 **Figure 6:** Performances across different initial rank budgets. The x -axis denotes the initial rank r^0 , while the
 501 y -axis indicates the corresponding task performance. Please zoom in 300% for better clarity.

502 **Comparisons on Different Backbone Models.** To demonstrate the broad applicability of our method,
 503 we now conduct experiments on Llama-2-7B, Llama-3-8B and DeepSeek-R1-Distill-Qwen-2.5-7B.
 504 The results are reported in Table 5. We can see that on these three backbones, **IGU-LoRA** can also
 505 outperform the baseline methods.

506 **Table 5:** PEFT methods comparison on different backbones. Left: GLUE accuracy (%) with Llama-2-7B.
 507 Right: BoolQ and GSM8K accuracy (%) with Llama-3-8B and DeepSeek-R1-Distill-Qwen-2.5-7B. Results are
 508 reported as the median over 5 random seeds. Bold and underline indicate the best and the second-best results.

Llama-2-7B							
Method	# Params	SST-2	RTE	QNLI	BoolQ	COPA	Avg.
Full FT	6738M	95.83	92.11	92.54	87.30	93.01	92.16
Adapter	21.2M	94.15	82.12	93.10	87.03	91.10	89.50
P-tuning v2	20.9M	93.42	79.62	92.64	84.73	90.30	88.14
SSP	40.0M	94.14	83.11	93.10	87.11	91.65	89.82
LoRA	20.0M	94.12	83.37	93.10	87.34	91.33	89.85
AdaLoRA	20.0M	94.12	<u>83.51</u>	93.20	87.11	91.62	89.91
DoRA	40.0M	94.24	84.12	91.23	85.51	90.01	89.02
IGU-LoRA	40.0M	94.34	<u>84.33</u>	93.33	88.11	<u>92.10</u>	90.44

Llama-3-8B		
Method	BoolQ	GSM8K
LoRA	88.48	73.54
AdaLoRA	<u>91.65</u>	<u>75.82</u>
DoRA	88.07	74.75
IGU-LoRA	93.33	77.63

DeepSeek-R1-Distill-Qwen-2.5-7B		
Method	BoolQ	GSM8K
LoRA	88.38	74.60
AdaLoRA	<u>90.54</u>	73.30
DoRA	88.48	69.52
IGU-LoRA	92.82	<u>74.28</u>

5 CONCLUSION

531 In this work, we address the challenge of parameter importance estimation for efficient fine-tuning
 532 of LLMs. We propose IGU-LoRA, a robust scoring framework that integrates the concept of
 533 integrated gradients with an uncertainty-aware quantification mechanism. Unlike prior methods
 534 that rely solely on instantaneous gradient signals, IGU-LoRA captures each parameter’s global
 535 and long-term contribution to model performance. Experimental results across diverse tasks and
 536 model architectures demonstrate that IGU-LoRA consistently outperforms state-of-the-art baselines,
 537 validating its effectiveness and generality. Nevertheless, the method incurs non-trivial computational
 538 overhead in network models in networks with large parameter counts, and its performance can be
 539 influenced by the choice of integration paths and the precision of uncertainty estimation. In future
 work, we plan to extend IGU-LoRA to larger-scale models and cross-modal tasks to further explore
 its adaptability and generalization across architectures.

540 **6 ETHICS STATEMENT**
 541

542 This paper proposes an efficient fine-tuning framework, IGU-LoRA, that adaptively allocates LoRA
 543 ranks to alleviate the inaccuracy of gradient-sensitivity-based parameter importance estimation
 544 under gradient saturation, thereby enhancing the adaptability of large language models (LLMs)
 545 across diverse task domains. This study strictly adheres to ethical guidelines: no human subjects or
 546 sensitive data were involved. All experimental data are publicly available fine-tuning datasets, and no
 547 scenarios containing harmful content were used. While IGU-LoRA effectively improves the overall
 548 performance of LLMs, the models may still produce erroneous outputs or misjudgments; thus, we
 549 do not recommend deploying them in high-risk scenarios without thorough validation. We further
 550 declare that this work has no conflicts of interest, and all experiments and data processing comply
 551 with relevant ethical standards.
 552

553 **7 REPRODUCIBILITY STATEMENT**
 554

555 For clarity and reproducibility, we summarize the critical details of our method in the main text and
 556 Appendix as follows.
 557

- 558 • **Algorithmic Details:** We provide a detailed description of the IGU-LoRA algorithm in
 559 Section 3, including the integrated gradients computation (Section 3.2) and uncertainty-
 560 aware scoring mechanism (Section 3.3). Pseudocode is provided in Algorithm 1.
- 561 • **Theoretical Analysis:** We present a theoretical analysis of the approximation error for
 562 parameter-space integrated gradients Section 3.2, Appendix A.1 and Appendix A.2, includ-
 563 ing all necessary assumptions and proofs.
- 564 • **Experimental Setup:** We detail the experimental setup in Section 4.1 and Appendix C.
- 565 • **Code Availability:** We adopt the code proposed by Zheng et al. (2024) for model training,
 566 which is publicly available at <https://github.com/hiyouga/LLaMA-Factory>.
 567 In addition, if this work is accepted, we commit to releasing the source code of our method.

568 **REFERENCES**
 569

570 Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
 571 effectiveness of language model fine-tuning. In *Proceedings of the 59th Annual Meeting of the
 572 Association for Computational Linguistics and the 11th International Joint Conference on Natural
 573 Language Processing (Volume 1: Long Papers)*, pp. 7319–7328, 2021.

574 Nadav Benedek and Lior Wolf. Prilora: Pruned and rank-increasing low-rank adaptation. In *Findings*,
 575 2024.

576 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 577 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 578 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 579 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 580 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 581 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Advances in Neural
 582 Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
 583 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020a.

584 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
 585 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
 586 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
 587 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
 588 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
 589 Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of the 34th
 590 International Conference on Neural Information Processing Systems*, 2020b.

591 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 592 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In *Proceedings
 593 of the 2019 Conference of the North American Chapter of the Association for Computational*

594 *Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936,
 595 2019.

596

597 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 598 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 599 *ArXiv*, 2018.

600 Karl Cobbe, Vineet Kosaraju, Mo Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
 601 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
 602 Training verifiers to solve math word problems. *ArXiv*, 2021.

603

604 Chaoran Cui, Ziyi Liu, Shuai Gong, Lei Zhu, Chunyun Zhang, and Hui Liu. When adversarial
 605 training meets prompt tuning: Adversarial dual prompt tuning for unsupervised domain adaptation.
 606 *IEEE Transactions on Image Processing*, 34:1427–1440, 2025.

607 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 608 bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of*
 609 *the North American Chapter of the Association for Computational Linguistics: Human Language*
 610 *Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, 2019.

611

612 Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
 613 Sparse low-rank adaptation of pre-trained language models. In *Proceedings of the 2023 Conference*
 614 *on Empirical Methods in Natural Language Processing*, pp. 4133–4145, 2023.

615 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, and Ahmad Al-Dahle. The
 616 llama 3 herd of models. *ArXiv*, abs/2407.21783, 2024.

617

618 Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
 619 any structural pruning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 620 *Pattern Recognition*, pp. 16091–16101, 2023.

621 Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff pruning.
 622 *arXiv preprint arXiv:2012.07463*, 2020.

623

624 Simeng Han, Frank Palma Gomez, Tu Vu, Zefei Li, Daniel Cer, Hansi Zeng, Chris Tar, Arman Cohan,
 625 and Gustavo Hernandez Abrego. Ateb: Evaluating and improving advanced nlp tasks for text
 626 embedding models. *arXiv preprint arXiv:2502.16766*, 2025.

627

628 Haonan He, Peng Ye, Yuchen Ren, Yuan Yuan, Luyang Zhou, Shucun Ju, and Lei Chen. Gora:
 629 Gradient-driven adaptive low rank adaptation. *arXiv preprint arXiv:2502.12171*, 2025.

630

631 Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
 632 a unified view of parameter-efficient transfer learning. In *International Conference on Learning*
 633 *Representations*, 2022.

634

635 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 636 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 637 nlp. In *International conference on machine learning*, pp. 2790–2799, 2019.

638

639 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 640 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International*
 641 *Conference on Learning Representations*, 2022a.

642

643 Shengding Hu, Zhen Zhang, Ning Ding, Yadao Wang, Yasheng Wang, Zhiyuan Liu, and Maosong
 644 Sun. Sparse structure search for parameter-efficient tuning. *ArXiv*, abs/2206.07382, 2022b.

645

646 Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Yang Liu, Jing Lin, Yiwu Yao, and Rongrong Ji.
 647 Dynamic low-rank sparse adaptation for large language models. *ArXiv*, abs/2502.14816, 2025.

648

649 Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Ben Wedin, Michael Terry, and Tolga
 650 Bolukbasi. Guided integrated gradients: an adaptive path method for removing noise. In *2021*
 651 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5048–5056,
 652 2021.

648 Wenjun Ke, Jiahao Wang, Peng Wang, Jiajun Liu, Dong Nie, Guozheng Li, and Yining Li. Unveiling
 649 lora intrinsic ranks via salience analysis. In *Advances in Neural Information Processing Systems*,
 650 volume 37, pp. 131575–131595, 2024.

651

652 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 653 of objective landscapes. *ArXiv*, abs/1804.08838, 2018.

654

655 Ming Li, Yanhong Li, and Tianyi Zhou. What happened in llms layers when trained for fast vs. slow
 656 thinking: A gradient perspective. *ArXiv*, 2024.

657

658 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 659 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the*
 660 *11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*,
 661 pp. 4582–4597, 2021.

662

663 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin
 664 Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning.
 665 In *Proceedings of the 36th International Conference on Neural Information Processing Systems*,
 666 2022a.

667

668 Jiajun Liu, Wenjun Ke, Peng Wang, Jiahao Wang, Jinhua Gao, Ziyu Shang, Guozheng Li, Zijie Xu,
 669 Ke Ji, and Yining Li. Fast and continual knowledge graph embedding via incremental lora. In
 670 *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24*,
 671 pp. 2198–2206, 2024a.

672

673 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 674 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. *arXiv preprint*
 675 *arXiv:2402.09353*, 2024b.

676

677 Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
 678 tuning can be comparable to fine-tuning universally across scales and tasks. *CoRR*, abs/2110.07602,
 679 2021.

680

681 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
 682 Prompt tuning can be comparable to fine-tuning across scales and tasks. In *Proceedings of the 60th*
 683 *Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 684 61–68, 2022b.

685

686 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 687 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 688 approach. *arXiv preprint arXiv:1907.11692*, 2019.

689

690 Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. Alora: Allocating low-rank
 691 adaptation for fine-tuning large language models. *ArXiv*, abs/2403.16187, 2024c.

692

693 Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
 694 *Proceedings of the 31st International Conference on Neural Information Processing Systems*, pp.
 695 4768–4777, 2017.

696

697 Kai Lv, Yuqing Yang, Tengxiao Liu, Qipeng Guo, and Xipeng Qiu. Full parameter fine-tuning for
 698 large language models with limited resources. In *Proceedings of the 62nd Annual Meeting of the*
 699 *Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8187–8198, 2024.

700

701 Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
 702 Fusion: Non-destructive task composition for transfer learning. In *Proceedings of the 16th*
 703 *Conference of the European Chapter of the Association for Computational Linguistics: Main*
 704 *Volume*, pp. 487–503, 2021.

705

706 Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. Pre-trained
 707 models for natural language processing: A survey. *Science China Technological Sciences*, 63:
 708 1872–1897, 2020.

702 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 703 Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer learning with a unified text-to-text
 704 transformer. *J. Mach. Learn. Res.*, 21:1–67, 2020.

705

706 Pengjie Ren, Chengshun Shi, Shiguang Wu, Mengqi Zhang, Zhaochun Ren, Maarten de Rijke,
 707 Zhumin Chen, and Jiahuan Pei. MELoRA: Mini-ensemble low-rank adapters for parameter-efficient
 708 fine-tuning. In *Proceedings of the 62nd Annual Meeting of the Association for Computational
 709 Linguistics (Volume 1: Long Papers)*, pp. 3052–3064, 2024.

710

711 Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alterna-
 712 tives: An evaluation of commonsense causal reasoning. In *AAAI spring symposium: logical
 713 formalizations of commonsense reasoning*, pp. 90–95, 2011.

714

715 Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
 716 Gurevych. AdapterDrop: On the efficiency of adapters in transformers. In *Proceedings of the 2021
 717 Conference on Empirical Methods in Natural Language Processing*, pp. 7930–7946, 2021.

718

719 Rory Sayres, Ankur Taly, Ehsan Rahimy, Katy Blumer, David Coz, Naama Hammel, Jonathan Krause,
 720 Arunachalam Narayanaswamy, Zahra Rastegar, Derek Wu, Shawn Xu, Scott Barb, Anthony Joseph,
 721 Michael Shumski, Jesse Smith, Arjun B. Sood, Greg S. Corrado, Lily Peng, and Dale R. Webster.
 722 Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic
 723 retinopathy. *Ophthalmology*, 126:552–564, 2019.

724

725 Zhihong Shao, Damai Dai, Daya Guo, Bo Liu (Benjamin Liu), Zihan Wang, and Huajian Xin.
 726 Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model. *ArXiv*,
 727 2024.

728

729 Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. Vi-bert: Pre-training
 730 of generic visual-linguistic representations. *arXiv preprint arXiv:1908.08530*, 2019.

731

732 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 733 *Proceedings of the 34th International Conference on Machine Learning - Volume 70*, pp. 331–3328,
 2017.

734

735 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 736 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 737 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

738

739 Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzhev, and Ali Ghodsi. DyLoRA: Parameter-
 740 efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In *Pro-
 741 ceedings of the 17th Conference of the European Chapter of the Association for Computational
 742 Linguistics*, pp. 3274–3287, 2023.

743

744 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
 745 A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings
 746 of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
 747 NLP*, pp. 353–355, 2018.

748

749 Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
 750 Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model
 751 tuning. *arXiv preprint arXiv:2205.12410*, 2022.

752

753 Yue Wu, Yaoxiang Yu, Zhengming Yuan, Siwei Huang, and Bo Cai. Apt: Adaptive prefix-tuning
 754 on pretrained models for code intelligence. In *2024 International Joint Conference on Neural
 755 Networks (IJCNN)*, pp. 1–10, 2024.

756

757 Xilie Xu, Jingfeng Zhang, and Mohan S. Kankanhalli. Autolora: A parameter-free automated robust
 758 fine-tuning framework. *ArXiv*, 2023.

759

760 Lang Yu, Qin Chen, Jiaju Lin, and Liang He. Black-box prompt tuning for vision-language model
 761 as a service. In *Proceedings of the Thirty-Second International Joint Conference on Artificial
 762 Intelligence*, 2023.

756 Haozhen Zhang, Hualin Zhang, Bin Gu, and Yi Chang. Subspace selection based prompt tuning
757 with nonconvex nonsmooth black-box optimization. In *Proceedings of the 30th ACM SIGKDD*
758 *Conference on Knowledge Discovery and Data Mining*, pp. 4179–4190, 2024.

759
760 Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and
761 Tuo Zhao. Platon: Pruning large transformer models with upper confidence bound of weight
762 importance. In *International Conference on Machine Learning*, pp. 26809–26823, 2022.

763
764 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
765 Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In *The Eleventh International*
766 *Conference on Learning Representations*, 2023.

767
768 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
769 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
770 *preprint arXiv:2403.13372*, 2024.

771
772 Bojia Zi, Xianbiao Qi, Lingzhi Wang, Jianan Wang, Kam-Fai Wong, and Lei Zhang. Delta-lora:
773 Fine-tuning high-rank parameters with the delta of low-rank matrices. *ArXiv*, abs/2309.02411,
774 2023.

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. Fix w_{ij} and set $f(\alpha) \equiv f_{ij}(\alpha) = g_{ij}(\alpha) = \partial \mathcal{L}(\alpha \Delta \mathbf{W}) / \partial w_{ij}$. By Eq. (4), $s_e(w_{ij}) = |w_{ij}| \left| \int_0^1 f(\alpha) d\alpha \right|$. Define the composite trapezoidal approximation and its sampled variant:

$$\mathcal{T}_N = \frac{1}{2N} \left[f(0) + 2 \sum_{k=1}^{N-1} f\left(\frac{k}{N}\right) + f(1) \right], \quad \tilde{\mathcal{T}}_M = \frac{1}{2N} [f(0) + 2(N-1) \bar{f}_M + f(1)], \quad (13)$$

where $\bar{f}_M = \frac{1}{M} \sum_{p=1}^M f(\alpha_p)$ with α_p i.i.d. drawn from the discrete uniform distribution on $\{1/N, \dots, (N-1)/N\}$.

Since $s_{agg}(w_{ij}) = |w_{ij}| |\tilde{\mathcal{T}}_M|$ and $\|x\| - \|y\| \leq |x - y|$, the triangle inequality yields

$$|s_e(w_{ij}) - s_{agg}(w_{ij})| \leq |w_{ij}| \left| \int_0^1 f - \tilde{\mathcal{T}}_M \right| \leq |w_{ij}| \left(\left| \int_0^1 f - \mathcal{T}_N \right| + |\mathcal{T}_N - \tilde{\mathcal{T}}_M| \right). \quad (14)$$

Step 1: discretization error. By assumption, f is twice continuously differentiable on $[0, 1]$ and $\sup_{\alpha \in [0, 1]} |f''(\alpha)| \leq C_2$. The standard error bound for the composite trapezoidal rule on $[0, 1]$ (see, e.g., classical numerical analysis texts) yields

$$\left| \int_0^1 f(\alpha) d\alpha - \mathcal{T}_N \right| \leq \frac{C_2}{12N^2}. \quad (15)$$

Step 2: sampling error. Let $\mu = \frac{1}{N-1} \sum_{k=1}^{N-1} f\left(\frac{k}{N}\right)$ denote the average of f over the $(N-1)$ interior nodes. A simple algebraic manipulation gives

$$|\mathcal{T}_N - \tilde{\mathcal{T}}_M| = \frac{1}{N} \left| \sum_{k=1}^{N-1} f\left(\frac{k}{N}\right) - (N-1) \bar{f}_M \right| = \frac{N-1}{N} |\mu - \bar{f}_M| \leq |\mu - \bar{f}_M|. \quad (16)$$

By assumption, $f(\alpha)$ is uniformly bounded on the discretization nodes, which is discussed in detail in Appendix B.1: there exists $B < \infty$ such that $|f(\alpha)| \leq B$ for all $\alpha \in \{1/N, \dots, (N-1)/N\}$. Therefore, each sample $f(\alpha_p)$ lies in $[-B, B]$, and Hoeffding's inequality for bounded random variables implies that, for any $\delta \in (0, 1)$,

$$\Pr(|\mu - \bar{f}_M| \geq t) \leq 2 \exp\left(-\frac{2Mt^2}{(2B)^2}\right) = 2 \exp\left(-\frac{Mt^2}{2B^2}\right). \quad (17)$$

Setting the right-hand side equal to δ and solving for t yields that, with probability at least $1 - \delta$,

$$|\mu - \bar{f}_M| \leq B \sqrt{\frac{2 \log(2/\delta)}{M}} \leq c B \sqrt{\frac{\log(1/\delta)}{M}} \quad (18)$$

for an absolute constant $c > 0$. Combining with the previous display gives

$$|\mathcal{T}_N - \tilde{\mathcal{T}}_M| \leq |\mu - \bar{f}_M| \leq c B \sqrt{\frac{\log(1/\delta)}{M}} \quad (19)$$

with probability at least $1 - \delta$.

Step 3: combining the bounds. Plugging Eq. (15) and Eq. (19) into the decomposition in Eq. (14) yields that, with probability at least $1 - \delta$,

$$|s_e(w_{ij}) - s_{agg}(w_{ij})| \leq |w_{ij}| \left(\frac{C_2}{12N^2} + c B \sqrt{\frac{\log(1/\delta)}{M}} \right), \quad (20)$$

which is exactly the claimed bound in Eq. (9). \square

A.2 HIGH-PROBABILITY STABILITY OF SNR_t

The resulting SNR-based score favors parameters with consistent, high-impact contributions and suppresses those with volatile or transient behavior. While the above formulation provides an intuitive interpretation of SNR, it remains essential to ensure its statistical stability with high probability, which is formally addressed in Theorem 2.

864 **Theorem 2.** Let $y_t = s_{agg}(w_{ij})$ be the per-epoch raw importance defined in Eq. (7). Since ϵ in
 865 Eq. (12) is a very small constant, it can be ignored. Therefore, we have:
 866

$$867 \quad \text{SNR}_t = \frac{\bar{s}_e^{(t)}}{\bar{U}^{(t)} + \epsilon} \approx \frac{\bar{s}_e^{(t)}}{\bar{U}^{(t)}}, \quad (21)$$

869 Assume that (y_t) is an i.i.d. sequence of sub-Gaussian random variables with mean μ and variance
 870 σ^2 , and let $d = \mathbb{E}[|y_t - \mu|] > 0$. For $\beta_1, \beta_2 \in (0, 1)$, define the effective EMA window lengths
 871

$$872 \quad n_{\text{eff}}(\beta_1) = \frac{1 + \beta_1}{1 - \beta_1}, \quad n_{\text{eff}}(\beta_2) = \frac{1 + \beta_2}{1 - \beta_2}, \quad n_{\text{eff}} = \min\{n_{\text{eff}}(\beta_1), n_{\text{eff}}(\beta_2)\}. \quad (22)$$

875 Then there exist universal constants $c_1, c_2, c_0 > 0$ such that, for any $\delta \in (0, 1)$ and all
 876

$$877 \quad t \geq t_{\text{burn}} = \left\lceil \frac{c_1}{1 - \min\{\beta_1, \beta_2\}} \log \frac{c_2}{\delta} \right\rceil, \quad (23)$$

879 the following holds with probability at least $1 - \delta$:

$$881 \quad |\text{SNR}_t - \mu/d| \leq C \sqrt{\frac{\log(2/\delta)}{n_{\text{eff}}}}, \quad C = \frac{2\sqrt{2}\sigma}{d} + 2c_0 \frac{\mu}{d^2} (\sigma + d). \quad (24)$$

884 *Proof.* We analyze the EMA under the stylized assumption stated in Theorem 2: (y_t) is an i.i.d.
 885 sub-Gaussian sequence with mean μ , variance proxy σ^2 , and $d = \mathbb{E}|y_t - \mu| > 0$.
 886

887 Recall that Eq. (10) and Eq. (11) define the EMAs

$$888 \quad \bar{s}_e^{(t)} = \beta_1 \bar{s}_{t-1} + (1 - \beta_1) y_t, \quad \bar{U}^{(t)} = \beta_2 \bar{U}_{t-1} + (1 - \beta_2) |y_t - \bar{s}_e^{(t)}|. \quad (25)$$

890 Unrolling the recursions (for t large enough so that transients are negligible) shows that
 891

$$892 \quad \bar{s}_e^{(t)} = \sum_{k \geq 0} w_k^{(1)} y_{t-k}, \quad w_k^{(1)} = (1 - \beta_1) \beta_1^k, \quad \bar{U}^{(t)} = (1 - \beta_2) \sum_{k \geq 0} \beta_2^k |y_{t-k} - \bar{s}_{t-k}|. \quad (26)$$

894 Note that $(w_k^{(1)})_{k \geq 0}$ is a geometric weight sequence with $\sum_k w_k^{(1)} = 1$ and
 895

$$896 \quad \|w^{(1)}\|_2^2 = \sum_{k \geq 0} (1 - \beta_1)^2 \beta_1^{2k} = \frac{1 - \beta_1}{1 + \beta_1} = \frac{1}{n_{\text{eff}}(\beta_1)}. \quad (27)$$

899 Below we write $n_{\text{eff}} = \min\{n_{\text{eff}}(\beta_1), n_{\text{eff}}(\beta_2)\}$.
 900

901 **Step 1: concentration of $\bar{s}_e^{(t)}$.** Since (y_t) are i.i.d. sub-Gaussian with mean μ and variance proxy
 902 σ^2 , any fixed weighted sum $\sum_k w_k^{(1)} y_{t-k}$ is also sub-Gaussian with mean μ and variance proxy
 903 $\sigma^2 \|w^{(1)}\|_2^2 = \sigma^2 / n_{\text{eff}}(\beta_1)$. Standard sub-Gaussian tail bounds then yield
 904

$$905 \quad \Pr\left(|\bar{s}_e^{(t)} - \mu| \geq \varepsilon\right) \leq 2 \exp\left(-\frac{c n_{\text{eff}}(\beta_1) \varepsilon^2}{\sigma^2}\right) \quad (28)$$

908 for an absolute constant $c > 0$. Setting the right-hand side to $\delta/2$ and solving for ε gives
 909

$$910 \quad |\bar{s}_e^{(t)} - \mu| \leq \sigma \sqrt{\frac{2 \log(4/\delta)}{n_{\text{eff}}(\beta_1)}} \leq \sqrt{2} \sigma \sqrt{\frac{\log(4/\delta)}{n_{\text{eff}}}} \quad (29)$$

913 with probability at least $1 - \delta/2$.
 914

915 **Step 2: concentration of $\bar{U}^{(t)}$.** We decompose $\bar{U}^{(t)}$ around $d = \mathbb{E}|y_t - \mu|$ as
 916

$$917 \quad |\bar{U}^{(t)} - d| \leq (1 - \beta_2) \left| \sum_{k \geq 0} \beta_2^k (|y_{t-k} - \mu| - d) \right| + (1 - \beta_2) \sum_{k \geq 0} \beta_2^k |y_{t-k} - \bar{s}_{t-k}| - |y_{t-k} - \mu|. \quad (30)$$

Define $X_t = |y_t - \mu| - d$, which is a centered, sub-exponential random variable whose tail parameters depend only on (σ, d) (because y_t is sub-Gaussian). Let $w_k^{(2)} = (1 - \beta_2)\beta_2^k$ denote the EMA weights for $\bar{U}^{(t)}$. Then $\sum_{k \geq 0} w_k^{(2)} = 1$ and

$$\|w^{(2)}\|_2^2 = \sum_{k \geq 0} (1 - \beta_2)^2 \beta_2^{2k} = \frac{1 - \beta_2}{1 + \beta_2} = \frac{1}{n_{\text{eff}}(\beta_2)}.$$

Applying a Bernstein-type concentration for weighted sums of i.i.d. sub-exponential variables (see, e.g., standard results on Orlicz norms) yields the existence of an absolute constant $c_0 > 0$ such that, for any $\delta \in (0, 1)$,

$$\Pr \left(\left| (1 - \beta_2) \sum_{k \geq 0} \beta_2^k X_{t-k} \right| \geq c_0(\sigma + d) \sqrt{\frac{\log(4/\delta)}{n_{\text{eff}}(\beta_2)}} \right) \leq \frac{\delta}{2}. \quad (31)$$

For the second term in Eq. (30), note that $\| |a - c| - |a - b| \| \leq |b - c|$ for any $a, b, c \in \mathbb{R}$, so

$$\| |y_{t-k} - \bar{s}_{t-k}| - |y_{t-k} - \mu| \| \leq \|\bar{s}_{t-k} - \mu\|.$$

Thus

$$(1 - \beta_2) \sum_{k \geq 0} \beta_2^k \| |y_{t-k} - \bar{s}_{t-k}| - |y_{t-k} - \mu| \| \leq (1 - \beta_2) \sum_{k \geq 0} \beta_2^k \|\bar{s}_{t-k} - \mu\|. \quad (32)$$

We now bound the right-hand side by splitting the sum into a recent window and its tail. Let

$$L = \left\lceil \frac{c_1}{1 - \beta_2} \log \frac{c_2}{\delta} \right\rceil \quad (33)$$

for absolute constants $c_1, c_2 > 0$ chosen large enough. For $t \geq L$, we have

$$(1 - \beta_2) \sum_{k \geq 0} \beta_2^k \|\bar{s}_{t-k} - \mu\| \leq (1 - \beta_2) \sum_{k=0}^L \beta_2^k \|\bar{s}_{t-k} - \mu\| + (1 - \beta_2) \sum_{k>L} \beta_2^k \|\bar{s}_{t-k} - \mu\|. \quad (34)$$

For the tail sum, $(1 - \beta_2) \sum_{k>L} \beta_2^k = \beta_2^{L+1}$ and, by choosing c_1, c_2 appropriately, we can ensure $\beta_2^{L+1} \leq \delta/(8c_2)$. For the finite window $\{t, t-1, \dots, t-L\}$, we apply Eq. (29) and a union bound over these $(L+1)$ indices to obtain, with probability at least $1 - \delta/2$,

$$|\bar{s}_{t-k} - \mu| \leq \sqrt{2} \sigma \sqrt{\frac{\log(4L/\delta)}{n_{\text{eff}}(\beta_1)}} \quad \text{for all } 0 \leq k \leq L. \quad (35)$$

Combining these bounds and using $n_{\text{eff}} \leq n_{\text{eff}}(\beta_1)$ yields

$$(1 - \beta_2) \sum_{k \geq 0} \beta_2^k \|\bar{s}_{t-k} - \mu\| \leq \tilde{c} \sigma \sqrt{\frac{\log(2/\delta)}{n_{\text{eff}}}} \quad (36)$$

with probability at least $1 - \delta/2$, for an absolute constant $\tilde{c} > 0$.

Putting Eq. (31) and Eq. (36) back into Eq. (30) and recalling that $n_{\text{eff}} \leq n_{\text{eff}}(\beta_2)$, we obtain that, for $t \geq t_{\text{burn}}$ and with probability at least $1 - \delta$,

$$|\bar{U}^{(t)} - d| \leq C'_2(\sigma + d) \sqrt{\frac{\log(2/\delta)}{n_{\text{eff}}}} \quad (37)$$

for an absolute constant $C'_2 > 0$. By increasing c_1 if necessary, we may ensure that the right-hand side in Eq. (37) is at most $d/2$, so that $\bar{U}^{(t)} \geq d/2$ holds on the same high-probability event.

972 **Step 3: bounding the ratio SNR_t .** On the event $\{\bar{U}^{(t)} \geq d/2\}$ we can control the ratio $\text{SNR}_t =$
 973 $\bar{s}_e^{(t)} / \bar{U}^{(t)}$ via the deterministic inequality
 974

$$975 \quad \left| \frac{\bar{s}_e^{(t)}}{\bar{U}^{(t)}} - \frac{\mu}{d} \right| \leq \frac{2}{d} |\bar{s}_e^{(t)} - \mu| + \frac{2\mu}{d^2} |\bar{U}^{(t)} - d|. \quad (38)$$

978 Combining Eq. (29) and Eq. (37) with Eq. (38), and noting that $n_{\text{eff}} \leq n_{\text{eff}}(\beta_1)$, gives
 979

$$980 \quad |\text{SNR}_t - \mu/d| \leq \left(\frac{2\sqrt{2}\sigma}{d} + 2c_0 \frac{\mu}{d^2} (\sigma + d) \right) \sqrt{\frac{\log(2/\delta)}{n_{\text{eff}}}} \quad (39)$$

984 with probability at least $1 - \delta$, for a suitable absolute constant $c_0 > 0$. This is exactly the claimed
 985 bound in Theorem 2 after setting $C = \frac{2\sqrt{2}\sigma}{d} + 2c_0 \frac{\mu}{d^2} (\sigma + d)$ and $t_{\text{burn}} = \lceil \frac{c_1}{1 - \min\{\beta_1, \beta_2\}} \log \frac{c_2}{\delta} \rceil$. \square
 986

987 B THE DISCUSSION OF THE ASSUMPTIONS IN THEOREM

989 B.1 THE ANALYSIS OF THE ASSUMPTION IN THEOREM 1

991 In this section, we focus on how the assumption in Theorem 1, that g_{ij} is twice continuously
 992 differentiable on the interval $[0, 1]$ with a bounded second derivative, leads to the conclusion that
 993 $g_{ij}(\alpha)$ is bounded. First, consider the following form of $g_{ij}(\alpha)$:

$$994 \quad g_{ij}(\alpha) = \frac{\partial \mathcal{L}(\alpha \Delta \mathbf{W})}{\partial w_{ij}}, \quad \alpha \in [0, 1], \quad (40)$$

997 The analysis of Theorem 1 relies solely on the assumption that g_{ij} is twice differentiable on the
 998 interval $[0, 1]$ and that its second derivative is bounded, which allows the application of the composite
 999 trapezoidal rule, leading to a discretization error of $\mathcal{O}(N^{-2})$. Specifically, numerical analysis
 1000 typically assumes the existence of a constant $C_2 < \infty$ such that:

$$1002 \quad \sup_{\alpha \in [0, 1]} |g_{ij}''(\alpha)| \leq C_2. \quad (41)$$

1004 Under this assumption, we can derive the following error bound:
 1005

$$1006 \quad \left| \int_0^1 g_{ij}(\alpha) d\alpha - \mathcal{T}_N \right| \leq \frac{C_2}{12N^2}, \quad (42)$$

1009 This equation provides the theoretical basis for the $\mathcal{O}(N^{-2})$ discretization error term in Theorem 1.
 1010 This requirement is essentially a standard smoothness assumption in trapezoidal integration and does
 1011 not involve any specific distributional assumptions. Furthermore, the condition of bounded second
 1012 derivatives directly implies that g_{ij} itself is bounded. By the fundamental theorem of calculus:

$$1014 \quad g_{ij}'(\alpha) = g_{ij}'(0) + \int_0^\alpha g_{ij}''(t) dt, \quad g_{ij}(\alpha) = g_{ij}(0) + \int_0^\alpha g_{ij}'(t) dt, \quad (43)$$

1016 We can obtain the bound for all $\alpha \in [0, 1]$:

$$1018 \quad |g_{ij}'(\alpha)| \leq |g_{ij}'(0)| + \int_0^1 |g_{ij}''(t)| dt \leq |g_{ij}'(0)| + C_2, \quad (44)$$

1021 Thus,

$$1022 \quad |g_{ij}(\alpha)| \leq |g_{ij}(0)| + \int_0^1 |g_{ij}'(t)| dt \leq |g_{ij}(0)| + |g_{ij}'(0)| + C_2 \triangleq B. \quad (45)$$

1025 This implies that $g_{ij}(\alpha)$ is bounded on $[0, 1]$. When we sample α from the finite set $\{1/N, \dots, (N-1)/N\}$, the resulting random variable $g_{ij}(\alpha)$ is bounded by constant B .

1026 B.2 THE ANALYSIS OF THE I.I.D. ASSUMPTION IN THEOREM 2
10271028 Theorem 2 assumes that the per-epoch raw scores $y_t = s_{agg}(w_{ij})$ form an i.i.d. sub-Gaussian
1029 sequence with a common mean μ and variance σ^2 . However, strictly speaking, y_t depends on the
1030 current model parameters $\mathbf{W}^{(t)}$, which are updated across epochs, so exact i.i.d. is an idealization.
10311032 Our goal is to model the regime in which the training dynamics have *stabilized*: after an initial
1033 transient phase (discarded via the burn-in time t_{burn}), the statistics of the gradient noise around the
1034 current solution change only slowly. Furthermore, within the effective EMA window $n_{\text{eff}}(\beta_1, \beta_2)$,
1035 the gradient sequence can be approximated as having nearly stationary mean and variance. In this
1036 regime, standard extensions of EMA concentration results to weakly dependent or mixing sequences
1037 apply. We chose the i.i.d. setting for clarity of presentation and to keep the notation simple. It is
1038 important to note that Theorem 2 is derived under this stylized, locally stationary noise assumption,
1039 and is meant to provide intuition about how the EMA window size and variance control the stability
1040 of SNR_t , rather than to capture every aspect of LLM training dynamics exactly.
10411042 To support this approximation empirically, we provide a small diagnostic in Appendix G: for a
1043 representative layer on BoolQ, we plot the time series of y_t and its running mean/variance across
1044 epochs. We observe that, after the early epochs, both the mean and variance of y_t quickly settle into a
1045 narrow band, and the lag-1 autocorrelation becomes small. Correspondingly, the SNR_t curves are
1046 nearly flat after burn-in. These observations suggest that, in the regime where EMA-based importance
1047 is actually used for rank pruning, the i.i.d./local stationarity approximation is reasonably accurate.
10481049 Finally, we emphasize that these assumptions are used only in our theoretical analysis; the algorithm
1050 itself does not rely on them. Even when the exact assumptions are relaxed, the qualitative conclusions
1051 remain the same: (i) our IG estimator trades off discretization error $O(N^{-2})$ and sampling error
1052 $O(M^{-1/2})$, and (ii) EMA-based SNR_t scores become more stable as the effective sample size
1053 increases and the process enters a locally stationary regime.
10541055 C HYPERPARAMETER SETTINGS
10561057 During the training process, we tune the learning rate from $\{5 \times 10^{-4}, 1 \times 10^{-4}, 5 \times 10^{-4}, 1 \times$
1058 $10^{-3}, 2 \times 10^{-4}\}$ and pick the best learning rate for every method. For the MNLI, QNLI, and QQP, we
1059 set the batch size to 128. For RTE, MRPC, CoLA, and STS-B, the batch size is set to 32. For SST-2,
1060 we use a batch size of 64. For all other tasks, the batch size is set to 16. All baseline methods follow
1061 the same settings as IGU-LoRA, as detailed in Table 6. In IGU-LoRA, several key hyperparameters
1062 $\epsilon, M, N, \beta_1, \beta_2$ are set to $1 \times 10^{-6}, 16, 20, 0.85$, and 0.85 , respectively, as detailed in Table 7. They
1063 remain constant throughout the experiment, and their sensitivity is discussed in the main text.
10641065 **Table 6:** Hyperparameter setup of IGU-LoRA for training on different datasets.

Dataset	learning rate	batch size	Max. Sequence Length	# epochs	γ	t_i	Δ_T	t_f
MNLI	5×10^{-4}	128	512	25	0.1	500	20	10000
RTE	1×10^{-3}	32	512	25	0.1	300	5	2500
QNLI	5×10^{-4}	128	512	25	0.1	400	20	10000
MRPC	1×10^{-3}	32	512	25	0.1	300	5	2500
QQP	5×10^{-4}	128	512	25	0.1	500	20	10000
SST-2	1×10^{-3}	64	512	25	0.1	400	20	5000
CoLA	1×10^{-3}	32	512	25	0.1	300	5	2500
STS-B	2×10^{-3}	32	512	25	0.1	300	5	2500
BoolQ	5×10^{-4}	16	512	25	0.1	500	20	10000
ARC-e	5×10^{-4}	16	512	25	0.1	500	20	10000
ARC-c	5×10^{-4}	16	512	25	0.1	500	20	10000
COPA	1×10^{-3}	16	512	25	0.1	500	20	10000
AQuA	1×10^{-4}	16	512	25	0.1	500	20	10000
MMLU	1×10^{-4}	128	512	15	0.1	500	20	10000
VQA	2×10^{-4}	32	512	25	0.1	300	20	10000
GAQ	5×10^{-4}	32	512	25	0.1	300	20	10000
MVLR ²	5×10^{-4}	32	512	25	0.1	300	20	10000
COCO	2×10^{-4}	32	512	25	0.1	300	20	10000

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
Table 7: Setting of the 5 hyperparameters ($\epsilon, M, N, \beta_1, \beta_2$) in IGU-LoRA.

Hyperparameter	ϵ	M	N	β_1	β_2
Value	1×10^{-6}	16	20	0.85	0.85

D ABLATION STUDY ON HIGH-IMPACT PARAMETERS

To further validate the effectiveness of IGU-LoRA in identifying high-impact parameters, we conduct an ablation study on high-impact parameters. Specifically, we remove the high-rank and low-rank modules with the highest IGU-LoRA scores from different layers of the Qwen2.5-0.5B model and evaluate the performance drop on the Boolq and GSM8K datasets. As shown in Table 8, removing the high-rank modules from the K module in Layer 3 (L3_K) and the V module in Layer 10 (L10_V) results in a performance drop of 1.30 and 1.33 points on Boolq, respectively. Similarly, removing the high-rank modules from the Q module in Layer 22 (L22_Q) and the K module in Layer 17 (L17_K) results in performance drops of 1.80 and 1.73 points on GSM8K, respectively. In contrast, removing the low-rank modules from the K module in Layer 1 (L1_K) and the V module in Layer 3 (L3_V) results in only minor performance drops of 0.05 and 0.10 points on Boolq, respectively. The same trend is observed on GSM8K when removing the low-rank modules from the Q module in Layer 8 (L8_Q) and the K module in Layer 6 (L6_K), resulting in performance drops of 0.11 and 0.15 points, respectively. These results demonstrate that IGU-LoRA effectively identifies high-impact parameters, as their removal leads to significant performance degradation compared to low-impact parameters.

Table 8: Ablation study on the impact of removing high-rank and low-rank modules from different layers on Qwen2.5-0.5B model performance. The numbers in parentheses indicate the performance drop compared to the model with no modules removed. The left table and the right table represent results on Boolq and GSM8K, respectively.

	Module Removed	Rank	Boolq		Module Removed	Rank	GSM8K
1	L3_K	10	81.15 (-1.30)	1	L22_Q	12	32.35 (-1.80)
2	L10_V	10	81.12 (-1.33)	2	L17_K	11	32.42 (-1.73)
3	L3_K / L10_V	10 / 10	80.44 (-2.01)	3	L22_Q / L17_K	12 / 11	31.15 (-3.00)
4	L1_K	5	82.40 (-0.05)	4	L8_Q	6	34.05 (-0.11)
5	L3_V	5	82.35 (-0.10)	5	L6_K	6	34.01 (-0.15)
6	L1_K / L3_V	5 / 5	82.30 (-0.15)	6	L8_Q / L6_K	6 / 6	33.84 (-0.32)
7	-	-	82.45	7	-	-	34.16

E GENERALIZATION SUPPLEMENTARY EXPERIMENTS

To further validate the generalization performance of IGU-LoRA, we conduct additional experiments on the MMLU benchmark using the Llama2-7B model. As shown in Table 9, IGU-LoRA achieves an average accuracy of 51.07%, which is very close to the full fine-tuning method (51.54%) and outperforms LoRA (49.94%). Notably, IGU-LoRA demonstrates superior performance in Science, Technology, Engineering, and Mathematics (STEM) and Social Science subjects, achieving accuracies of 41.71% and 58.12%, respectively. These results further confirm the effectiveness of IGU-LoRA in enhancing the generalization capabilities of fine-tuned models across diverse subject areas.

Table 9: The generalization performance of fine-tuning the Llama2-7B model on the MMLU benchmark using different methods, reporting the average results over 5 random seeds.

Method	Humanities	STEM	Social.	Other	Avg.
Full FT	49.91	41.70	57.53	57.02	51.54
LoRA	46.15	40.84	56.63	56.23	49.94
IGU-LoRA	<u>47.33</u>	41.71	58.12	57.10	<u>51.07</u>

F MULTIMODAL BENCHMARK SUPPLEMENTARY EXPERIMENTS

To further demonstrate the effectiveness of IGU-LoRA in multimodal tasks, we conduct additional experiments on the VQAv2, GAQ, NVR² and COCO Captioning datasets using the VL-BART (Su et al., 2019). As shown in Table 10, IGU-LoRA achieves an average score of 77.47, outperforming

1134 LoRA (74.31) and DoRA (77.40), and closely approaching the performance of full fine-tuning
 1135 (77.35). These results further validate the capability of IGU-LoRA to effectively adapt multimodal
 1136 models while maintaining high performance across different tasks.

1137 **Table 10:** Performance comparison of different fine-tuning methods on the VQA, GAQ, NVLR² and COCO
 1138 datasets using the VL-BART model. The results are averaged over 5 random seeds.

Method	VQAv2	GAQ	NVLR ²	COCO Captioning	Avg.
Full FT	66.91	56.72	73.71	112.04	77.35
LoRA	64.32	54.10	71.25	109.56	74.31
DoRA	65.81	54.71	73.14	115.93	77.40
IGU-LoRA	65.78	55.32	73.42	115.36	77.47

G THE VERIFICATION OF THE I.I.D./LOCAL STATIONARITY APPROXIMATION IN THEOREM 2.

1150 To validate the i.i.d. / local stationarity approximation used in Theorem 2, we conduct an empirical
 1151 analysis of the importance score statistics during the fine-tuning process. Specifically, we monitor
 1152 several representative modules (e.g., the L16.Q module for the 16-th layer’s Q component and the
 1153 L5.K module for the 5-th layer’s K component) across multiple training iterations on the BoolQ
 1154 dataset. We observe that, after the initial epochs, the mean and variance of y_t quickly stabilize
 1155 within a narrow range, and the first-order lag autocorrelation becomes very small. Correspondingly,
 1156 the SNR_t curve becomes nearly flat after the burn-in period. These observations suggest that the
 1157 i.i.d./local stationarity approximation is reasonable and accurate during the stage when EMA-based
 1158 importance-ranking pruning is applied in practice.



1179 **Figure 7:** Empirical analysis of importance score statistics during fine-tuning. The plots show the changes
 1180 in y_t , the mean and variance of y_t , the first-order lag autocorrelation, and SNR_t across training iterations for
 1181 representative module parameters.

H EFFECTS OF SAMPLE ORDER AND BATCH SIZE

1186 To investigate the effects of sample order and batch size on the performance of IGU-LoRA, we conduct
 1187 experiments using the Qwen-2.5-0.5B model on the BoolQ dataset. The results are summarized as
 1188 follows:

1188
 1189 **Sample Order / Random Seed.** we trained with a fixed batch size using five different random
 1190 seeds. These seeds control the data shuffling and the sampled integration nodes α_k . The downstream
 1191 accuracy varies slightly across seeds (within Δ_{acc} absolute points, indicating a small change), which
 1192 demonstrates that the sample order has high stability on the results.

1193 **Batch Size.** We further vary the batch size (e.g., 2, 4, 8, 16, 32) while keeping all other hyperparameters
 1194 fixed. The resulting test accuracy again shows only minor variation. This proves that batch size
 1195 does not have a significant impact on the results. The detailed results are presented in Table 11.

1196 **Table 11:** Effect of Batch Size on BoolQ Accuracy across Different Random Seeds

1197 Batch Size	1198 Seed 1	1199 Seed 2	1200 Seed 3	1201 Seed 4	1202 Seed 5
1203 2	1204 82.46	1205 82.47	1206 82.45	1207 82.46	1208 82.45
1209 4	1210 82.45	1211 82.46	1212 82.44	1213 82.45	1214 82.44
1215 8	1216 82.44	1217 82.45	1218 82.43	1219 82.44	1220 82.43
1221 16	1222 82.45	1223 82.46	1224 82.44	1225 82.45	1226 82.44
1227 32	1228 82.40	1229 82.41	1230 82.39	1231 82.40	1232 82.39

1204 I DATASETS AND METRICS

1205 I.1 GLUE BENCHMARK TASKS

1206 **Single-sentence Classification Tasks.** (1) *CoLA (Corpus of Linguistic Acceptability)*: Determine
 1207 whether a sentence adheres to grammatical rules (binary classification). (2) *SST-2 (Stanford Sentiment
 1208 Treebank)*: Movie review sentiment analysis (positive/negative binary classification).

1209 **Sentence-pair Classification Tasks.** (1) *MRPC (Microsoft Research Paraphrase Corpus)*: Determine
 1210 whether two sentences are semantically equivalent (binary classification). (2) *QQP (Quora Question
 1211 Pairs)*: Determine whether two Quora questions are semantically identical (binary classification).
 1212 (3) *RTE (Recognizing Textual Entailment)*: Determine whether a sentence pair entails a relationship
 1213 (three-class classification: entailment/contradiction/neutral).

1214 **Similarity and Regression Task.** *STS-B (Semantic Textual Similarity Benchmark)*: Calculate the
 1215 semantic similarity between two sentences (continuous value from 1 to 5).

1216 **Question-answering Task.** *QNLI (Question-answering NLI)*: Determine whether a sentence contains
 1217 the answer to a given question (binary classification).

1218 **Natural Language Inference Task.** *MNLI (Multi-Genre Natural Language Inference)*: Large-scale
 1219 cross-domain textual entailment classification (three-class classification).

1220 I.2 MATHEMATICAL AND COMMON-SENSE REASONING TASKS

1221 **Mathematical Reasoning Tasks.** (1) *AQuA (Algebra question answering)*: Derive the correct answer
 1222 from a given algebraic problem (multiple-choice) and generate the corresponding solution process
 1223 (Rationales). (2) *GSM8K (Grade school math 8K)*: Perform multi-step reasoning on mathematical
 1224 problems described in natural language.

1225 **Common-Sense Reasoning Tasks.** (1) *BoolQ (Boolean questions)*: Determine whether the answer
 1226 to a given question, based on the provided paragraph, is "Yes" (True) or "No" (False). (2) *ARC-e
 1227 (AI2 reasoning challenge - easy)*: Select the most reasonable answer from a given set of scientific
 1228 questions (Multiple-choice question). (3) *ARC-c (AI2 reasoning challenge - challenge)*: Combine
 1229 multi-step reasoning and cross-domain knowledge to provide answers. (4) *COPA (Choice of plausible
 1230 alternatives)*: Select the most plausible cause or effect for a given premise from two provided
 1231 alternatives. The task requires understanding of causal relationships and commonsense reasoning in
 1232 everyday scenarios.

1233 I.3 MULTIMODAL BENCHMARK TASKS

1234 **Visual Question Answering Tasks.** (1) *VQAv2 (Visual Question Answering v2)*: Given an image and
 1235 a related question, select the most appropriate answer from multiple choices. (2) *GAQ (Generalized*

1242 *Question Answering*). This task extends VQA to a more generalized setting, where the model is asked
 1243 to answer a wider range of questions based on visual context.

1244 **Visual-Linguistic Reasoning Task.** (1) *NLVR2 (Natural Language for Visual Reasoning 2)*. Given a
 1245 pair of images and a natural language statement, determine whether the statement accurately describes
 1246 the relationship between the two images.

1247 **Image Captioning Task.** (1) *COCO Captioning*. Generate descriptive captions for images in the
 1248 COCO dataset, evaluating the model’s ability to understand and describe visual content accurately.

1249 **Table 12:** Summary of the benchmark datasets.

1251 Datasets	1251 # train	1251 # dev	1251 # test	1251 Type	1251 Metrics
Common-Sense reasoning tasks					
1254 BoolQ	1254 9427	1254 -	1254 3270	1254 Common-Sense reasoning	1254 Acc
1255 ARC-e	1255 2251	1255 570	1255 2376	1255 Common-Sense reasoning	1255 Acc
1256 ARC-c	1256 1119	1256 299	1256 1172	1256 Common-Sense reasoning	1256 Acc
1257 COPA	1257 400	1257 100	1257 500	1257 Common-Sense reasoning	1257 Acc
Mathematical reasoning tasks					
1259 AQuA	1259 97467	1259 254	1259 254	1259 Mathematical reasoning	1259 Acc
1260 GSM8K	1260 7473	1260 -	1260 1319	1260 Mathematical reasoning	1260 Acc
GLUE benchmark tasks					
1263 SST-2	1263 67k	1263 872	1263 1.8k	1263 Sentiment	1263 Acc
1264 MNLI	1264 393k	1264 20k	1264 20k	1264 NLU	1264 Acc
1265 QQP	1265 364k	1265 40k	1265 391k	1265 Paraphrase	1265 Acc-F1
1266 MRPC	1266 3.7k	1266 408	1266 107k	1266 Paraphrase	1266 Acc-F1
1267 RTE	1267 2.5k	1267 176	1267 3k	1267 NLU	1267 Acc
1268 QNLI	1268 108k	1268 5.7k	1268 5.7k	1268 QA/NLI	1268 Acc
1269 CoLA	1269 8.5k	1269 1k	1269 1k	1269 Acceptability	1269 Mcc
1270 STS-B	1270 7k	1270 1.5k	1270 1.4k	1270 Similarity	1270 Corr

I.4 DATASET STATISTICS

1274 In our experiments, we compare performance across multiple tasks, including the GLUE benchmark,
 1275 which consists of eight datasets: CoLA, SST-2, MRPC, QQP, STS-B, MNLI, QNLI, and RTE; three
 1276 common-sense reasoning tasks (BoolQ, ARC-e, and ARC-c); and two mathematical reasoning tasks
 1277 (AQuA and GSM8K). The dataset statistics are presented in Table 12.

I.5 EVALUATION METRICS

1281 As shown in Table 12, we strictly follow the official settings of GLUE and use the same metrics
 1282 as Wang et al. (2018). For MNLI, we report the average of the accuracy scores on the matched and
 1283 mismatched test sets. For MRPC and QQP, we report Acc-F1, the average accuracy, and F1 scores.
 1284 For STS-B, we report Corr, which denotes the average of the Pearson and Spearman correlation
 1285 coefficients. For CoLA, we report Mcc, which is the Matthews correlation. For all other tasks,
 1286 we report accuracy (Acc). Since the common sense and math reasoning tasks usually come with a
 1287 definite answer choice, we will directly consider the correctness of the final answers. Thus, we report
 1288 accuracy (denoted as Acc).

J BASELINE DETAILS

- 1292 • *Full fine-tuning* is the most common approach for adaptation. During fine-tuning, the model is
 1293 initialized with pre-trained weights and biases, and all model parameters undergo gradient updates.
- 1294 • *LoRA* (Hu et al., 2022a) is a representative parameter-efficient fine-tuning (PEFT) method. It
 1295 introduces two low-rank matrices to parameterize the incremental weight updates, and only these
 1296 lightweight components are updated during fine-tuning. The number of trainable parameters is

1296 determined by the rank r and the number of inserted adaptation matrices n , allowing for fine-grained
 1297 control over the adaptation budget.

1298 • *AdaLoRA* (Zhang et al., 2023) extends the conventional LoRA framework by introducing a dy-
 1299 namic rank adaptation mechanism. It parameterizes the low-rank adapters using singular value
 1300 decomposition (SVD), and evaluates the importance of each parameter based on the magnitude of its
 1301 corresponding singular value. This importance score then guides a progressive rank pruning process,
 1302 allowing the model to dynamically reallocate its limited parameter budget to more critical layers or
 1303 modules.

1304 • *DoRA* (Liu et al., 2024b) enhances the learning capacity and adaptability of pretrained models by
 1305 decoupling weight matrices into two distinct components: magnitude and direction. The key idea is to
 1306 keep the magnitude fixed and apply LoRA-style low-rank updates only to the directional component.
 1307 This separation allows for more expressive and geometry-aware adaptation while preserving the norm
 1308 of the original weights, which helps stabilize training and maintain alignment with the pretrained
 1309 model. Since only the direction is modified, DoRA introduces no additional inference overhead,
 1310 making it efficient and scalable for deployment.

1311 • *AutoLoRA* (Xu et al., 2023) is a meta-learning-based fine-tuning approach designed to automatically
 1312 determine the optimal rank for each layer in Low-Rank Adaptation (LoRA). It introduces a learnable
 1313 selection variable for each rank-1 matrix and dynamically adjusts these variables using a meta-
 1314 learning strategy. By jointly optimizing the rank configuration along with the LoRA parameters,
 1315 AutoLoRA significantly improves fine-tuning efficiency and overall performance.

1316 • *Adapter* (Houlsby et al., 2019) inserts lightweight bottleneck modules between each layer of the
 1317 pretrained model, updating only these newly introduced modules during fine-tuning while keeping
 1318 the original model parameters frozen.

1319 • *P-tuning v2* (Liu et al., 2021) is an improved prompt tuning method that inserts trainable prompt
 1320 tokens at the input layer and across multiple model layers. This design increases the trainable
 1321 parameters from approximately 0.01% to 0.1%-3% of the full model, while maintaining parameter
 1322 efficiency. P-tuning v2 enhances optimization stability and improves performance across various
 1323 tasks by integrating task-specific information deeper into the model.

1324 • *(IA)³* (Liu et al., 2022a) introduces learnable scaling vectors at key locations in the Transformer
 1325 architecture, such as the keys and values in the self-attention mechanism and the intermediate
 1326 activations in the feed-forward networks. These vectors are applied via element-wise multiplication to
 1327 modulate the internal activations, enabling flexible control over the model’s output without modifying
 1328 the original model parameters.

1329 • *SSP* (Hu et al., 2022b) leverages structural sparsity to guide the automatic search for parameter
 1330 insertion locations, activating trainable parameters only in the most important substructures. This
 1331 enables higher efficiency without sacrificing model performance.

1332 • *GoRA* (He et al., 2025) leverages gradient-driven adaptive low-rank adjustment to dynamically
 1333 adjust the rank of low-rank adaptation layers during training. By using gradient information, GoRA
 1334 ensures that the model can allocate computational resources more efficiently, adjusting the rank
 1335 based on the importance of each layer for different tasks and training stages. This method maintains
 1336 computational efficiency while improving model performance, adapting the low-rank configuration
 1337 to meet the specific needs of the training process.

K ADDITIONAL RELATED WORKS

K.1 DYNAMIC RANK ALLOCATION

1343 Dynamic rank allocation gains increasing attention in deep learning model optimization, with various
 1344 methods proposed to improve adaptability and efficiency. Several other notable approaches are intro-
 1345 duced beyond AdaLoRA (Zhang et al., 2023) and AutoLoRA (Xu et al., 2023). LoSA (Huang et al.,
 1346 2025) integrates sparsity and low-rank adaptation, dynamically adjusting both using representation
 1347 mutual information and reconstruction error. PRILoRA (Benedek & Wolf, 2024) employs a heuristic
 1348 strategy that linearly increases ranks from lower to higher layers, motivated by the observation that
 1349 higher layers often require greater adaptability in transfer learning. ALoRA (Liu et al., 2024c) further
 incorporates a novel mechanism, AB-LoRA, which assesses the importance of individual LoRA

1350 ranks and incrementally prunes redundant components, reallocating the freed budget to more critical
1351 Transformer modules. These methods provide diverse rank allocation strategies that contribute to
1352 more efficient fine-tuning of large models.
1353

1354 L THE USE OF LARGE LANGUAGE MODELS 1355

1356 During the preparation of this manuscript, large language models (LLMs) were employed in several
1357 auxiliary capacities. First, at the writing stage, LLMs were utilized to refine and translate the text,
1358 thereby enhancing the overall fluency, readability, and precision of academic expression. Second,
1359 in relation to experiments and results presentation, LLMs assisted in generating parts of the code
1360 for data visualization and figure plotting, which facilitated a more efficient presentation of research
1361 findings. Third, in surveying the research landscape and related work, LLMs provided support for
1362 literature searches, helping us to locate and summarize relevant studies in the field systematically.
1363 Finally, in the theoretical component of this work, LLMs offered auxiliary support in structuring
1364 complex proofs and verifying critical derivation steps, contributing to the clarity and rigor of our
1365 theoretical analysis. It should be emphasized that all uses of LLMs were strictly auxiliary in nature;
1366 the formulation of research questions, the design of methods, the core theoretical derivations, and the
1367 experimental analyses were all carried out independently by the authors.
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403