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ABSTRACT

As large language models (LLMs) scale to billions of parameters, full-parameter
fine-tuning becomes compute- and memory-prohibitive. Parameter-efficient fine-
tuning (PEFT) mitigates this issue by updating only a small set of task-specific
parameters while keeping the base model frozen. Among PEFT approaches, low-
rank adaptation (LoRA) is widely adopted; however, it enforces a uniform rank
across layers despite substantial variation in layer importance, motivating layerwise
rank allocation. Recent adaptive-rank variants (e.g., AdaLoRA) allocate ranks
based on importance scores, yet typically rely on instantaneous gradients that
capture only local sensitivity, overlooking non-local, pathwise effects within the
same layer, which yields unstable and biased scores. To address this limitation,
we introduce IGU-LoRA, an adaptive-rank LoRA that (i) computes within-layer
Integrated Gradients (IG) sensitivities and aggregates them into a layer-level score
for rank allocation, and (ii) applies an uncertainty-aware scheme using exponential
moving averages with deviation tracking to suppress noisy updates and calibrate
rank selection. Theoretically, we prove an upper bound on the composite trape-
zoidal rule approximation error for parameter-space IG under a pathwise Hessian-
Lipschitz condition, which informs the quadrature budget. Across diverse tasks
and architectures, IGU-LoRA consistently outperforms strong PEFT baselines
at matched parameter budgets, improving downstream accuracy and robustness.
Ablations confirm the contributions of pathwise within-layer sensitivity estimates
and uncertainty-aware selection to effective rank allocation.

1 INTRODUCTION

Large language models (LLMs) have achieved remarkable success across a wide range of NLP
tasks (Devlin et al., 2019; Brown et al., 2020a; Han et al., 2025). However, specialising these models
for new downstream tasks remains challenging due to their large parameter counts and substantial
computational and memory costs. Consequently, fine-tuning has emerged as the standard way to
adapt pre-trained LLMs to particular downstream tasks.

Early efforts in fine-tuning primarily relied on full-parameter fine-tuning (FPFT) (Lv et al., 2024;
Qiu et al., 2020; Raffel et al., 2020), where all model parameters are updated during training. While
effective for small to medium-scale models, such as BERT (Devlin et al., 2019) and RoBERTa-
large (Liu et al., 2019), FPFT becomes increasingly impractical as model size scales exponentially.
For example, GPT-3 (Brown et al., 2020b) contains 175 billion parameters, making full fine-tuning
prohibitively expensive in terms of computation and memory.

To alleviate these challenges, parameter-efficient fine-tuning (PEFT) methods have been proposed,
which adapt pre-trained models by updating only a small subset of parameters while keeping most
of the model frozen. Notable PEFT methods include Adapter Tuning (Houlsby et al., 2019; Rücklé
et al., 2021; Pfeiffer et al., 2021; He et al., 2022; Wang et al., 2022), Prefix Tuning (Li & Liang,
2021; Wu et al., 2024), and Prompt Tuning (Liu et al., 2022b; Zhang et al., 2024; Yu et al., 2023;
Cui et al., 2025). These methods significantly reduce the number of trainable parameters. However,
they primarily affect shallow or intermediate layers, limiting their ability to capture deeper semantic
representations.
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Complementary to the above, weight-delta methods (e.g., Diff Pruning (Guo et al., 2020; Fang et al.,
2023)) selectively update a sparse subset of important weights. While effective in reducing the scale
of trainable parameters, these methods often rely on unstructured sparsity, which poses challenges for
optimisation and is less compatible with modern hardware acceleration. A more structured alternative
is Low-Rank Adaptation (LoRA) (Hu et al., 2022a), which models the weight update ∆W as the
product of two low-rank matrices. By preserving the pretrained model architecture and introducing
only a small number of trainable parameters, LoRA achieves high efficiency without sacrificing model
capacity. However, LoRA typically uses a fixed rank across all layers, ignoring the heterogeneous
contribution of different weight matrices. This static configuration may limit the adaptability and
expressiveness of the model.

Building on this observation, several adaptive-rank PEFT methods have been proposed (Zhang et al.,
2023; Xu et al., 2023; Ding et al., 2023; Valipour et al., 2023). For example, AdaLoRA (Zhang et al.,
2023) applies singular value decomposition (SVD) to the low-rank update matrices and dynamically
adjusts rank sizes based on layer-wise importance scores. However, the scoring mechanism in
AdaLoRA is primarily based on instantaneous gradient signals, which fail to capture long-term
parameter contributions and inter-layer interactions. As a result, the rank allocation may be suboptimal
in complex optimisation scenarios.

To overcome these limitations, we propose IGU-LoRA(Fig. 1(c)), an IG-driven PEFT framework
that extends Integrated Gradients to the parameter space for scoring parameter importance. The
IG path integral is efficiently approximated via a mini-batch stochastic quadrature that uniformly
samples one node α ∈ [0, 1] per mini-batch, thereby avoiding the O(N) forward-backward passes of
trapezoidal integration—where N denotes the number of discretization steps along the IG path—and
adding only batch-linear overhead. Compared with instantaneous-gradient heuristics, this yields
stable and globally informed importance estimates. Robustness is further enhanced by modeling
the predictive effect of parameter perturbations and by an uncertainty-aware score that couples an
EMA mean with a dispersion term. On the theory side, we establish (i) a discretization-sampling
error bound for the IG estimator of order O(N−2) +O(M−1/2), where M is the number of sampled
mini-batches, and (ii) a high-probability stability guarantee for the EMA ratio score SNRt, the signal-
to-noise ratio at iteration t. Empirically, across datasets (BoolQ, GSM8K, GLUE, . . . ) and backbones
(RoBERTa-large, Qwen-2.5-0.5B, Llama-2-7B, Llama-3-8B, DeepSeek-R1-Distill-Qwen-2.5-7B),
IGU-LoRA consistently improves accuracy over strong PEFT baselines (LoRA, AdaLoRA, DoRA)
while matching their memory footprint and decoding latency.

(a) LoRA (b) AdaLoRA (c) IGU-LoRA (Ours)
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Figure 1: Comparison of frameworks: left to right—(a) LoRA, (b) AdaLoRA, (c) the proposed IGU-LoRA. IGU-
LoRA builds on LoRA and AdaLoRA, introducing integrated gradients (IG) to compute parameter importance
scores. Please zoom in 300% for better clarity.

2 RELATED WORKS

2.1 PARAMETER EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) received widespread attention for its effectiveness in effi-
ciently adapting LLMs. Representative approaches included Adapter Tuning (Houlsby et al., 2019;
Rücklé et al., 2021; Pfeiffer et al., 2021; He et al., 2022; Wang et al., 2022), Prefix Tuning (Li &
Liang, 2021; Wu et al., 2024), Prompt Tuning (Liu et al., 2022b; Zhang et al., 2024; Yu et al., 2023;
Cui et al., 2025), and P-Tuning v2 (Liu et al., 2021), which inserted lightweight trainable modules into
different layers of the model to enable efficient task adaptation. In parallel, reparameterization-based
PEFT approaches (Li et al., 2018; Aghajanyan et al., 2021; Liu et al., 2024a; Hu et al., 2022a; Zhang
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et al., 2023) received increasing attention. Without modifying the model architecture, these methods
modeled and optimized parameter updates in a low-dimensional and efficient manner. Among them,
Low-Rank Adaptation (LoRA) (Hu et al., 2022a) has become a prominent method by expressing
weight updates as the product of two low-rank matrices, which allows for tight control over the train-
able parameter count while maintaining model performance. With the rapid release of open-source
LLMs (Shao et al., 2024; Liu et al., 2019; Dubey et al., 2024) and their increasing use in instruction
tuning and other real-world applications, PEFT has emerged as the mainstream paradigm for scalable
fine-tuning and has been widely adopted in practical systems.
2.2 LOW-RANK ADAPTATION FINE-TUNING

LoRA (Hu et al., 2022a) is a representative PEFT method that freezes pretrained weights and injects
low-rank matrices, reducing parameter overhead with minimal performance loss. Several LoRA-based
methods have been proposed to enhance efficiency and scalability. For example, Delta-LoRA (Zi
et al., 2023) improves LoRA’s expressiveness by updating weights with the temporal difference of
AB, addressing the limitations of small low-rank matrices. DoRA (Liu et al., 2024b) decouples
optimization by factorizing W into a magnitude vector m and a direction matrix V. MeLoRA (Ren
et al., 2024) aggregates outputs from parallel low-rank adapters in a block-diagonal structure to
improve model capacity. AutoLoRA (Xu et al., 2023) uses meta-learning to automatically assign
optimal per-layer ranks, while AdaLoRA (Zhang et al., 2023) dynamically adjusts ranks during
training using SVD and parameter importance scores. SalientLoRA (Ke et al., 2024) allocates ranks
based on parameter saliency, optimizing the low-rank layers for improved performance. GoRA (He
et al., 2025) adapts low-rank adjustments dynamically using gradient-driven methods to meet task
requirements while maintaining efficiency. These techniques enable efficient fine-tuning with fewer
trainable parameters and strong performance.
2.3 INTEGRATED GRADIENTS

In interpretability research for deep learning, Integrated Gradients (IG (Sundararajan et al., 2017))
is a widely adopted attribution method that mitigates gradient saturation by computing the integral
of gradients along the path from a baseline input to the actual input. IG satisfies two key axioms,
completeness and sensitivity, which ensure that it quantitatively reflects the contribution of each input
feature to the model’s output. Subsequent studies extend IG in various directions. Theoretically, Lund-
berg & Lee (2017) show that IG is equivalent to Shapley values under certain conditions. From a
computational perspective, Kapishnikov et al. (2021) propose an adaptive sampling strategy that
improves runtime efficiency by 3×. IG also demonstrates practical utility in high-stakes domains such
as medical imaging (Sayres et al., 2019), where it improves the localization of diabetic retinopathy
markers. In this work, we extend IG to parameter importance estimation in large model fine-tuning.
Our method addresses the limitations of instantaneous gradient signals, which are prone to vanishing
in deep networks. It introduces a redefined sensitivity scoring mechanism that more accurately
captures long-term parameter contributions during optimization.

3 METHOD

3.1 PRELIMINARIES

Low-Rank Adaptation. Low-Rank Adaptation (LoRA (Hu et al., 2022a)) injected trainable low-rank
matrices into frozen pre-trained weights, substantially reducing the number of trainable parameters
while preserving downstream task performance. Given a pre-trained parameter matrix W0 ∈ Rd1×d2

for a specific layer of an LLM, LoRA updated the parameter matrix as:

W = W0 +AB, (1)

where A ∈ Rd1×r and B ∈ Rr×d2 were low-rank trainable matrices with r ≪ min{d1, d2}.

Adaptive LoRA. A key limitation of LoRA is that it requires manually selecting the rank r, which is
challenging due to the heterogeneity of intrinsic dimensionalities across layers and the lack of princi-
pled guidance for determining appropriate values. To enable adaptive rank selection, singular value
decomposition (SVD) is typically applied to the trainable low-rank product AB in Eq. (1) (Zhang
et al., 2023):

W = W0 + SVD(AB) = W0 +PΛQ, (2)
where P ∈ Rd1×r, Q ∈ Rr×d2 are two orthogonal matrices, and the diagonal matrix Λ =
diag{λ1, λ2, . . . , λr} ∈ Rr×r containing the singular values. We initialize r as an over-
parameterized upper bound r ≪ min{d1, d2}, then prune redundant dimensions via spectral analysis.
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To determine the final rank, we define an importance score Si for each singular value λi, which guides
the pruning process. Unlike conventional methods that rely solely on magnitude, our proposed scoring
method incorporates both the singular value and the sensitivity of its associated parameters, namely
the elements in the i-th column of P and the i-th row of Q. Specifically, for each i ∈ {1, . . . , r},
we estimate Si by aggregating two components. First, sλ(·) measures the intrinsic strength of the
singular value; Second, se(·) quantifies the importance of the parameters with the i-th column of
matrix P and the i-th row of matrix Q. The final score Si is computed as Zhang et al. (2023):

Si = sλ(λi) +
1

d1

d1∑
k=1

ssnr(Pki) +
1

d2

d2∑
k=1

ssnr(Qik), (3)

where sλ(λi) = |λi| denotes the magnitude of the singular value, and ssnr(·) is a specific importance
score function that measures the importance of individual weight on the training loss function.
Existing methods (Zhang et al., 2023) for measuring parameter importance are primarily based on
simple gradient sensitivity

∣∣wij∇wij
L
∣∣, where wij is a single parameter in model. However, this

simple gradient sensitivity-based method suffers from the following limitations:

• Lack of Structural Interpretability: Simple gradient sensitivity-based method evaluate weights
independently, ignoring the structured interactions among parameter groups. In settings like LoRA,
where parameters operate collectively within subspaces, such element-wise assessments fail to capture
their joint contribution, thereby limiting interpretability at the structural level.

• Instantaneous Parameter Sensitivity: Simple gradient sensitivity-based method capture only the
instantaneous impact of a parameter on the loss function, overlooking its accumulated or long-term
contribution throughout training. This limitation can result in unstable or misleading estimates.

• Gradient Saturation: In transformer-based LLMs, activation functions such as ReLU may lead to
gradient saturation in inactive regions, where the gradient signal vanishes entirely. As a result, the
estimated importance of the affected parameters becomes unreliable.

Figure 2 illustrates why (a) the simple gradient method fails in gradient-saturated regions, while (b)
the integrated gradient method provides more reliable parameter importance estimation through a
comparative demonstration. To address these limitations, we estimate parameter importance using
Integrated Gradients (IG) in the parameter space. IG integrates the gradients along the path from 0 to
1, thereby capturing the non-local sensitivity and overall impact of the gradients. This method not
only accounts for the cumulative effect of the parameter gradients along the integration path but also
effectively bypasses saturation regions, where gradient signals typically vanish. By considering the
entire path, this method ensures a more accurate estimation of parameter importance, particularly in
regions where simple gradient-based methods may fail due to vanishing gradients or saturation.
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(a) Simple Gradient (Instantaneous)
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(b) Integrated Gradients (IG)
Figure 2: Comparison of parameter importance scoring methods. (a) The simple gradient method fails in
saturated regions, assigning near-zero importance. (b) Integrated gradients compute importance by integrating
along the path from initial to final parameter values, capturing the actual total contribution.

3.2 IMPORTANCE SCORING VIA INTEGRATED GRADIENTS

Integrated Gradients (IG (Sundararajan et al., 2017)) is an attribution method originally developed
to improve the interpretability of deep neural networks by attributing a model’s output to its input
features. It quantifies the contribution of each input feature by integrating the gradients of the output
with respect to the input, along a path from a baseline to the actual input.

Inspired by this idea, we propose IGU-LoRA, which extends IG to the parameter space for importance
estimation in LLMs. Specifically, we integrate the gradients of the loss function with respect to
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model parameters along a continuous path from a baseline (e.g., zero) to the actual trained weights,
thereby capturing the cumulative influence of each parameter on the training loss function. This
parameter-space IG formulation addresses key limitations of conventional gradient-based importance
scores, such as limited structural interpretability, over-reliance on local (instantaneous) sensitivity,
and susceptibility to gradient saturation. Consequently, it provides more stable and comprehensive
estimates of parameter importance for transformer-based LLMs.

Formally, given a weight matrix ∆W, we denote by wij its (i, j)-th entry, representing a specific
weight. Let L denote the loss function of the LLMs. Since Integrated Gradients (IG) requires a
baseline representing a state of no information, we choose 0 as the value for ∆W(0) as the baseline,
and compute the importance score of wij under IG as:

se(wij) =

∣∣∣∣(wij −∆w
(0)
ij )

∫ 1

α=0

∂L(α(∆W −∆W(0)))

∂wij
dα

∣∣∣∣ = ∣∣∣∣wij

∫ 1

α=0

∂L(α∆W)

∂wij
dα

∣∣∣∣ , (4)

where ∆w
(0)
ij ∈ ∆W(0). Due to the massive number of parameters in LLMs, the loss function L

exhibits strong non-convexity and highly nonlinear dependencies in the parameter space. As a result,
Eq. (4) involves a high-dimensional integral that lacks a closed-form solution. To approximate it, we
discretize the path [0, 1] into N equal intervals with nodes αk = k/N (k = 1, . . . , N − 1) and apply
the trapezoidal rule, yielding:

ŝe(wij) ≈
|wij |
2N

∣∣∣∣∣∂L(0)∂wij
+ 2

N−1∑
k=1

∂L (αk∆W)

∂wij
+

∂L(∆W)

∂wij

∣∣∣∣∣ . (5)

Note that Eq. (5) requires gradient evaluations at N + 1 points, which leads to O(N) forward-
backward passes for each weight wij , making it computationally expensive in large models. To
mitigate this computational burden, we propose a stochastic approximation strategy: during fine-
tuning, We randomly sample a single integration point αk = k/N for each mini-batch from a set
{1/N, . . . , (N − 1)/N} that follows a uniform distribution. Consequently, for the p-th mini-batch,
the importance score of wij is approximated as:

ŝpe(wij) ≈
|wij |
2N

∣∣∣∣∂L(0)∂wij
+ 2

∂L (αk∆W)

∂wij
+

∂L(∆W)

∂wij

∣∣∣∣ . (6)

At the end of the t-th training epoch (which consists of M mini-batches), we compute the aggregated
importance score of wij as follows:

sagg(wij) =
1

M

M∑
p=1

ŝpe(wij). (7)

Theorem 1 bounds the error of our estimator, quantifying the gap between the exact IG score in Eq. (4)
and the epoch-level estimator in Eq. (7); the total error is O(N−2) (discretization) + O(M−1/2)
(sampling).
Theorem 1. Let se(wij) be the importance score based on Integrated Gradients (IG) as defined
in Eq. (4), and let sagg(wij) be the epoch-level estimator as defined in Eq. (7). Define gij(α) =
∂L(α∆W)

∂wij
, α ∈ [0, 1].

We assume the following:

1. gij is twice continuously differentiable on [0, 1], and there exists a constant C2 < ∞ such
that

sup
α∈[0,1]

∣∣g′′ij(α)∣∣ ≤ C2. (8)

2. Let α1, α2, . . . , αM be i.i.d. samples drawn from the discrete uniform distribution over{
1
N , 2

N , . . . , N−1
N

}
, and let sagg(wij) be defined as in Eq. (7).

Then, for any N,M ≥ 1 and δ ∈ (0, 1), with probability at least 1− δ, the following bound holds:

|se(wij)− sagg(wij)| ≤
|wij |C2

12N2
+ c|wij |B

√
log(1/δ)

M
, (9)

where c > 0 is an absolute constant, and B is a constant such that |gij(α)| ≤ B for all α ∈{
1
N , 2

N , . . . , N−1
N

}
. The proof is provided in Appendix A.1.
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3.3 UNCERTAINTY-AWARE SCORING

Recent studies (Zhang et al., 2022) demonstrate that stochastic sampling and complex training
dynamics result in high variance in importance score estimates via Eq. (7), thereby undermining
their reliability. To alleviate this issue, we incorporate two complementary mechanisms: sensitivity
smoothing and uncertainty quantification, defined respectively as:

s̄(t)e (wij) = β1s̄
(t−1)
e (wij) + (1− β1)s

(t)
agg(wij), (10)

Ū (t)(wij) = β2Ū
(t−1)(wij) + (1− β2)

∣∣∣s(t)agg(wij)− s̄(t)e (wij)
∣∣∣ . (11)

We define the final importance score as:

s(t)snr(wij) = SNRt =
s̄
(t)
e (wij)

Ū (t)(wij)+ϵ
, (12)

where the numerator s̄(t)e (wij) captures the persistent influence of the parameter wij via exponen-
tial moving averaging of gradient-parameter correlations. The denominator Ū (t)(wij) quantifies
epistemic uncertainty by measuring deviations from the smoothed sensitivity across mini-batches.
ϵ is a very small number to prevent the denominator in Eq. (12) from being 0. This ratio can be
interpreted as a signal-to-noise ratio (SNR), providing a criterion for assessing the importance of
parameters. Specifically, a larger smoothed sensitivity s̄

(t)
e (wij) indicates that wij consistently exerts

strong influence on the loss function. In contrast, a smaller uncertainty Ū (t)(wij) suggests lower
variability, reinforcing the reliability of the signal. A high-probability stability guarantee for the EMA
ratio score SNRt is presented in Appendix A.2. We summarize the complete workflow of IGU-LoRA
in Algorithm 1.

Algorithm 1 IGU-LoRA

Input: Dataset D; the number of total iterations T ; a pre-trained parameter matrix W0 ∈ Rd1×d2 of a large
language model, number of mini-batches M ; budget of remaining singular values b; randomly initialize
trainable low-rank matrices A ∈ Rd1×r and B ∈ Rr×d2 ; hyperparameters β1, β2.

1: for t = 1 to T do
2: for p = 1 to M do
3: Sample a mini-batch from D and train A and B.
4: Perform SVD on the matrix product AB to obtain PΛQ = SVD(AB), where Λ =

diag{λ1, λ2, . . . , λr}.
5: Compute the ŝpe in Eq. (6) for every parameter in P,Q.
6: end for
7: Compute the aggregated importance score sagg in Eq. (7) for every parameter in P,Q.
8: Compute the s̄

(t)
e in Eq. (10) and Ū (t) in Eq. (11) for every parameter in P,Q.

9: Update the final importance score s
(t)
snr in Eq. (12).

10: Compute the importance score of each singular value Si in Eq. (3) for PΛQ.
11: Find the top b eigen value: λ̂1, λ̂2, . . . , λ̂b by importance score Si.
12: Set Λ̃← diag(λ̂1, λ̂2, . . . , λ̂b, 0, . . . , 0) .
13: Update A ← P:,π1:bΛ̃

1/2, B ← Λ̃1/2Q⊤
π1:b,: ▷ The subscript π denotes the index set obtained by

sorting the columns of P and Q in descending order; π1:k represents the indices of the first b selected
columns; P1:π1:b represents selecting the first b columns according to the order defined by π.

14: end for
Output: W = W0 +AB

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Computational Resources. All experiments are implemented in PyTorch and conducted on an
NVIDIA L40 GPU (48GB) running Ubuntu 18.04.1.

Pretrained Backbone Models. We use RoBERTa-large model (Liu et al., 2019) as the backbone for
the GLUE tasks. For the remaining tasks, we adopt Qwen-2.5-0.5B model 1. We further validate the
robustness and generalization of IGU-LoRA via a backbone ablation, fine-tuning larger-parameter

1https://huggingface.co/Qwen/Qwen2.5-0.5B
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backbones (Llama-2-7B (Touvron et al., 2023), Llama-3-8B (Dubey et al., 2024), DeepSeek-R1-
Distill-Qwen-2.5-7B 2) on multiple datasets.

IGU-LoRA Configuration. For the BoolQ, ARC, GSM8K, and AQuA tasks, we perform instruction
tuning. The initial LoRA rank is set to r(0) = 32, and pruned to an average rank of r(1) = 16,
achieving pruning 50% rank reduction. For the GLUE tasks, we follow AdaLoRA’s setup, using a
classification or regression head, with r(0) = 2 pruned to an average r(1) = 1. During the fine-tuning,
IGU-LoRA selects the scaling factor α from N = 20 uniformly spaced values in the interval (0, 1).
Rank pruning begins at epoch 2 and ends at epoch 5, performed at every one-fifth of an epoch. After
pruning, we fine-tune the modules with early stopping (patience = 10 steps) to restore performance.
Inference is performed using beam search with a width of 3.

Reproducibility. Each task is run with 5 different random seeds, and we report the median test
performance. All predictions are generated using the model’s language modeling head, which is
conditioned on a given prompt or instruction. Additional training configurations are available in
Appendix C.

4.2 DATASETS AND EVALUATION METRICS

We group the tasks into 2 categories and compare the proposed IGU-LoRA against several baselines:
(i) GLUE Benchmark Datasets (Wang et al., 2018) include a diverse set of language understanding
tasks, such as paraphrase detection (MRPC, QQP), sentiment classification (SST-2), natural lan-
guage inference (MNLI, RTE, QNLI), and linguistic acceptability (CoLA). (ii) Mathematical and
Common-Sense Reasoning Datasets include two mathematical reasoning tasks: AQuA (Li et al.,
2024) and GSM8K (Cobbe et al., 2021), and four common-sense question answering tasks: ARC-e,
ARC-c (Clark et al., 2018), BoolQ (Clark et al., 2019) and COPA (Roemmele et al., 2011). Detailed
dataset descriptions, statistical, and evaluation metrics are in Appendix I.

4.3 BASELINE METHODS

To evaluate the performance of the proposed IGU-LoRA method in fine-tuning LLMs, we compare it
against the following representative baseline: (i) LoRA and Its Variants. We evaluate four LoRA-
based approaches: LoRA (Hu et al., 2022a), AdaLoRA (Zhang et al., 2023), DoRA (Liu et al., 2024b),
AutoLoRA (Xu et al., 2023) and GoRA (He et al., 2025). (ii) Other PEFT Method. We also evaluate
the following non-LoRA parameter-efficient fine-tuning methods: Housbly-Adapter (Houlsby et al.,
2019), P-Tuning v2 (Liu et al., 2021), (IA)3 (Liu et al., 2022a), and SSP (Hu et al., 2022b). (iii)
Full Fine-tuning Method. For reference, we also include results from full-parameter fine-tuning
(denoted as Full FT). All baseline methods are implemented using publicly available codebases.
Hyperparameter settings are listed in Appendix C, and additional descriptions of baselines are
provided in Appendix J.

4.4 MAIN RESULTS

Table 1: Performance comparison of fine-tuning methods on the GLUE task using RoBERTa-large. All results
are reported as the median over 5 runs with different random seeds. Bold and Underline indicate the best and the
second-best results. The metric for each task is explained in Appendix I.5.

Method # Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.(mcc) (acc) (acc-f1) (acc-f1) (corr) (acc) (acc) (acc)
Full FT 355M 69.19 95.63 89.46 91.10 91.60 90.01 94.03 86.94 88.50

Housbly-Adapter 0.35M 67.80 94.38 89.75 89.41 91.08 90.28 93.52 84.36 87.57
P-tuning v2 0.31M 67.35 93.13 88.49 88.63 90.41 89.19 91.94 82.42 86.45
(IA)3 0.33M 68.62 93.82 89.54 89.78 90.84 89.87 92.60 82.75 87.23
SSP 0.36M 69.89 94.96 90.08 90.14 91.37 90.42 94.16 84.88 88.24

LoRA 0.33M 68.71 94.84 89.71 90.26 91.63 90.34 93.87 85.56 88.12
AdaLoRA 0.35M 70.04 95.62 90.34 90.37 91.57 90.18 94.29 87.06 88.68
DoRA 0.33M 70.26 95.80 90.12 90.16 91.68 90.43 94.17 87.38 88.75
AutoLoRA 0.34M 70.47 95.53 90.26 90.31 91.52 90.26 94.08 87.64 88.76

IGU-LoRA 0.33M 71.93 96.17 90.69 90.68 91.95 90.76 94.72 88.46 89.42

GLUE Benchmark Results. We evaluate the performance of IGU-LoRA against baseline methods
on the GLUE development set using the RoBERTa-large model. The results are presented in Table 1.

2https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
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Under the constraint of fine-tuning only 1% of model parameters, IGU-LoRA achieves performance
that is comparable to or surpasses existing approaches across all tasks. Notably, on the CoLA task,
IGU-LoRA achieves a Matthews correlation coefficient (MCC) of 71.93%, outperforming the best
baseline by 1.5%. On the RTE task, it exceeds the second-best method, AutoLoRA, by 0.8% in
accuracy (acc). Similar improvements are also observed on the remaining tasks, demonstrating
the robustness of IGU-LoRA. Averaged across all tasks, IGU-LoRA achieves the highest overall
performance. Importantly, it maintains strong parameter efficiency, requiring only 0.33 million
trainable parameters, comparable to leading PEFT methods, while significantly outperforming full-
parameter fine-tuning in both accuracy and efficiency.
Table 2: Performance comparison of fine-tuning methods on the Mathematical and common-sense reasoning
task using the Qwen-2.5-0.5B. All results are reported as the median over 5 runs with different random seeds.
Bold and Underline indicate the best and the second-best results.

Method # Params BoolQ ARC-e ARC-c GSM8K AQuA Avg.(acc) (acc) (acc) (acc) (acc)

Full FT 494.0M 81.74 74.82 54.98 34.64 48.72 58.98
Housbly-Adapter 9.0M 78.36 71.04 53.26 28.67 42.85 54.84
LoRA 8.8M 78.94 72.78 54.38 31.42 45.33 56.57
AdaLoRA 8.9M 80.32 73.90 54.23 33.27 46.58 57.67
GoRA 8.8M 79.24 71.20 51.91 32.07 45.81 56.04

IGU-LoRA 8.8M 82.45 74.62 55.67 34.16 48.93 59.17

Mathematical and Common-Sense Reasoning Benchmark Results. We further systematically
conduct mathematical and common-sense reasoning tasks using the Qwen-2.5-0.5B model, comparing
four representative fine-tuning methods: Full Fine-tuning, Adapter, LoRA, AdaLoRA and GoRA.
Table 2 summarizes the results, where IGU-LoRA consistently achieves performance advantages
across most tasks. Specifically, IGU-LoRA achieves state-of-the-art results on BoolQ, ARC-c, and
AQuA, outperforming the second-best method by 0.2% to 0.8% in accuracy. While it does not obtain
the highest score on ARC-e and GSM8K, IGU-LoRA fine-tunes only 8.8M parameters, substantially
fewer than full-parameter tuning (494.0M), yet delivering comparable performance. Across all
evaluated datasets, IGU-LoRA consistently outperforms other parameter-efficient methods with
similar parameter budgets, highlighting its strong generalization under tight resource constraints.

4.5 ABLATION STUDY AND ANALYSIS

Analysis of Training and Inference Efficiency. So far, we have shown that IGU-LoRA outperforms
LoRA, AdaLoRA, and DoRA on BoolQ. A natural concern is whether these gains come at the
expense of extra time or memory cost. We fine-tune the Qwen-2.5-0.5B model and report peak
training GPU memory and wall-clock training time, as well as inference peak GPU memory and
decoding latency, as shown in Table 3. All methods utilise a similar memory due to the frozen
backbone. LoRA trains the fastest but yields smaller gains; DoRA is slower because it maintains
normalized weight directions while updating an additional magnitude vector ρ, which involves adding
normalization/rescaling operations and optimizer states each step. AdaLoRA improves accuracy
via sensitivity-based rank pruning in a two-stage schedule; IGU-LoRA adopts a similar two-stage
design and thus achieves comparable training time while delivering higher accuracy. For inference,
IGU-LoRA matches LoRA, DoRA, and AdaLoRA in memory usage and decoding latency.
Table 3: The time cost, memory and speed for fine-
tuning Qwen-2.5-0.5B on the BoolQ task with different
PEFT methods.

Method Training Inference
Time cost (h) GPU Mem (GB) Speed (it/s) GPU Mem (GB)

LoRA 0.42 10.21 5.50 10.3
AdaLoRA 0.73 10.60 5.21 10.4
DoRA 0.95 9.53 5.30 10.3

IGU-LoRA 0.87 10.32 5.23 10.3

Table 4: Comparison of the performance of dif-
ferent variants of IGU-LoRA on fine-tuning Qwen-
2.5-0.5B across BoolQ and GSM8K tasks.

Method BoolQ GSM8K Avg.

IGU-LoRA-1 (w/o α) 81.87 33.76 57.82
IGU-LoRA-2 (N=10) 82.14 33.95 58.05
IGU-LoRA-3 (N=4) 82.02 33.83 57.93
IGU-LoRA-4 (se = s̄e · Ū ) 82.28 33.69 57.99

IGU-LoRA 82.45 34.16 58.31

Ablation Study on Hyperparameters and Importance Scoring. To assess the sensitivity of
IGU-LoRA to its key hyperparameters and scoring components, we perform the ablation study by
incrementally disabling or simplifying individual modules. Specifically, we evaluate the following
variants: (1) IGU-LoRA-1 removes the gradient-integrated α coefficient used during both training
and pruning; (2) IGU-LoRA-2 reduces candidate resolution of α from N = 20 to N = 10; (3)
IGU-LoRA-3 further reduces the candidate set to N = 4; and (4) IGU-LoRA-4 replaces the final
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importance score in Eq. (12) with the alternative formulation in Eq. (11) from Zhang et al. (2023),
which combines sensitivity and uncertainty via AdaLoRA’s multiplicative strategy 3. As shown in
Table 4, all variants exhibit performance degradation, particularly IGU-LoRA-3 and IGU-LoRA-4,
which involve more aggressive simplifications. These results confirm that the default configuration
of IGU-LoRA, with high-resolution integrated gradient and uncertainty-aware scoring, is critical in
achieving strong performance.

Hyperparameter Sensitivity Analysis. To investigate the sensitivity of IGU-LoRA to key hyperpa-
rameters, we varied one hyperparameter at a time while keeping others fixed. We analyzed the effects
of mini-batch size M , the number of discrete points for α (denoted as N ), and smoothing coefficients
β1 and β2. Experiments were conducted by fine-tuning the Qwen2.5-0.5B model on the Boolq and
GSM8K datasets. The results, shown in Figure 3 and 4, demonstrate that IGU-LoRA performs stably
across a range of values. Performance improves with larger M and N , suggesting better adaptability
with finer granularity in scaling factor selection. The coefficients β1 and β2 show good robustness,
with optimal performance in a moderate range. These findings indicate that M , N , β1, and β2 are
robust hyperparameters for IGU-LoRA.
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Figure 3: The impact of different hyperparameters M,N, β1, β2 on performance when fine-tuning the Qwen2.5-
0.5B model on the Boolq dataset. Please zoom in 300% for better clarity.
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Figure 4: The impact of different hyperparameters M,N, β1, β2 on performance when fine-tuning the Qwen2.5-
0.5B model on the GSM8K dataset. Please zoom in 300% for better clarity.
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(a) BoolQ task
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(b) GSM8K task
Figure 5: Rank allocation by IGU-LoRA on the Qwen-2.5-0.5B backbone after fine-tuning for the BoolQ and
GSM8K tasks. Please zoom in 300% for better clarity.

Visualization of Rank Allocation in IGU-LoRA. Figure 5 visualizes the pruned LoRA rank
allocation produced in IGU-LoRA. The rank distributions vary significantly across tasks, underscoring
the need for task-specific adaptation to achieve optimal performance. Even within a single task,
different Transformer layers allocate ranks differently, reflecting the fine-grained sensitivity of model

3AdaLoRA (Zhang et al., 2023) for details.
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components to low-rank updates. Despite this heterogeneity, consistent structural patterns emerge:
in the self-attention mechanism, the Query and Key projections are most frequently prioritized for
adaptation, while in the feed-forward network (FFN), the Up and Down projection layers receive the
highest ranks. These observations reveal structural preferences in LoRA-based fine-tuning, offering
valuable insights for designing generalized and efficient low-rank adaptation strategies.

Comparisons on Rank Budgets. In the main experiments, we fixed the initial rank budget at r0 = 32
as a standard configuration. To further evaluate the robustness and adaptability of IGU-LoRA, we
vary the initial rank budget across {2, 4, 8, 16, 32, 64} and compare its performance with AdaLoRA,
LoRA, and DoRA on the BoolQ and GSM8K tasks. The results, shown in Figure 6, demonstrate that
IGU-LoRA consistently outperforms AdaLoRA, LoRA and DoRA under all budget settings. This is
attributed to its ability to allocate LoRA dynamically across Transformer layers, which enables more
effective adaptation.
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Figure 6: Performances across different initial rank budgets. The x-axis denotes the initial rank r0, while the
y-axis indicates the corresponding task performance. Please zoom in 300% for better clarity.

Comparisons on Different Backbone Models. To demonstrate the broad applicability of our method,
we now conduct experiments on Llama-2-7B, Llama-3-8B and DeepSeek-R1-Distill-Qwen-2.5-7B.
The results are reported in Table 5. We can see that on these three backbones, IGU-LoRA can also
outperform the baseline methods.
Table 5: PEFT methods comparison on different backbones. Left: GLUE accuracy (%) with Llama-2-7B.
Right: BoolQ and GSM8K accuracy (%) with Llama-3-8B and DeepSeek-R1-Distill-Qwen-2.5-7B. Results are
reported as the median over 5 random seeds. Bold and underline indicate the best and the second-best results.

Llama-2-7B
Method # Params SST-2 RTE QNLI BoolQ COPA Avg.

Full FT 6738M 95.83 92.11 92.54 87.30 93.01 92.16
Adapter 21.2M 94.15 82.12 93.10 87.03 91.10 89.50
P-tuning v2 20.9M 93.42 79.62 92.64 84.73 90.30 88.14
SSP 40.0M 94.14 83.11 93.10 87.11 91.65 89.82

LoRA 20.0M 94.12 83.37 93.10 87.34 91.33 89.85
AdaLoRA 20.0M 94.12 83.51 93.20 87.11 91.62 89.91
DoRA 40.0M 94.24 84.12 91.23 85.51 90.01 89.02

IGU-LoRA 40.0M 94.34 84.33 93.33 88.11 92.10 90.44

Llama-3-8B
Method BoolQ GSM8K Avg.
LoRA 88.48 73.54 81.01
AdaLoRA 91.65 75.82 83.74
DoRA 88.07 74.75 81.41
IGU-LoRA 93.33 77.63 85.48

DeepSeek-R1-Distill-Qwen-2.5-7B
Method BoolQ GSM8K Avg.
LoRA 88.38 74.60 81.49
AdaLoRA 90.54 73.30 81.92
DoRA 88.48 69.52 79.00
IGU-LoRA 92.82 74.28 83.55

5 CONCLUSION

In this work, we address the challenge of parameter importance estimation for efficient fine-tuning
of LLMs. We propose IGU-LoRA, a robust scoring framework that integrates the concept of
integrated gradients with an uncertainty-aware quantification mechanism. Unlike prior methods
that rely solely on instantaneous gradient signals, IGU-LoRA captures each parameter’s global
and long-term contribution to model performance. Experimental results across diverse tasks and
model architectures demonstrate that IGU-LoRA consistently outperforms state-of-the-art baselines,
validating its effectiveness and generality. Nevertheless, the method incurs non-trivial computational
overhead in network models in networks with large parameter counts, and its performance can be
influenced by the choice of integration paths and the precision of uncertainty estimation. In future
work, we plan to extend IGU-LoRA to larger-scale models and cross-modal tasks to further explore
its adaptability and generalization across architectures.
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6 ETHICS STATEMENT

This paper proposes an efficient fine-tuning framework, IGU-LoRA, that adaptively allocates LoRA
ranks to alleviate the inaccuracy of gradient-sensitivity-based parameter importance estimation
under gradient saturation, thereby enhancing the adaptability of large language models (LLMs)
across diverse task domains. This study strictly adheres to ethical guidelines: no human subjects or
sensitive data were involved. All experimental data are publicly available fine-tuning datasets, and no
scenarios containing harmful content were used. While IGU-LoRA effectively improves the overall
performance of LLMs, the models may still produce erroneous outputs or misjudgments; thus, we
do not recommend deploying them in high-risk scenarios without thorough validation. We further
declare that this work has no conflicts of interest, and all experiments and data processing comply
with relevant ethical standards.

7 REPRODUCIBILITY STATEMENT

For clarity and reproducibility, we summarize the critical details of our method in the main text and
Appendix as follows.

• Algorithmic Details: We provide a detailed description of the IGU-LoRA algorithm in
Section 3, including the integrated gradients computation (Section 3.2) and uncertainty-
aware scoring mechanism (Section 3.3). Pseudocode is provided in Algorithm 1.

• Theoretical Analysis: We present a theoretical analysis of the approximation error for
parameter-space integrated gradients Section 3.2, Appendix A.1 and Appendix A.2, includ-
ing all necessary assumptions and proofs.

• Experimental Setup: We detail the experimental setup in Section 4.1 and Appendix C.
• Code Availability: We adopt the code proposed by Zheng et al. (2024) for model training,

which is publicly available at https://github.com/hiyouga/LLaMA-Factory.
In addition, if this work is accepted, we commit to releasing the source code of our method.
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A THEORETICAL PROOFS

A.1 PROOF OF THEOREM 1

Proof. Fix wij and set f(α) ≡ fij(α) = gij(α) = ∂L(α∆W)/∂wij . By Eq. (4), se(wij) =

|wij |
∣∣ ∫ 1

0
f(α) dα

∣∣. Define the composite trapezoidal approximation and its sampled variant:

TN =
1

2N

[
f(0) + 2

N−1∑
k=1

f
(

k
N

)
+ f(1)

]
, T̃M =

1

2N

[
f(0) + 2(N−1) fM + f(1)

]
, (13)

where fM = 1
M

∑M
p=1 f(αp) with αp i.i.d. drawn from the discrete uniform distribution on

{1/N, . . . , (N−1)/N}.

Since sagg(wij) = |wij | |T̃M | and ||x| − |y|| ≤ |x− y|, the triangle inequality yields∣∣ se(wij)− sagg(wij)
∣∣ ≤ |wij |

∣∣ ∫ 1

0
f − T̃M

∣∣ ≤ |wij |
(∣∣ ∫ 1

0
f − TN

∣∣+ |TN − T̃M |
)
. (14)

Step 1: discretization error. By assumption, f is twice continuously differentiable on [0, 1] and
supα∈[0,1] |f ′′(α)| ≤ C2. The standard error bound for the composite trapezoidal rule on [0, 1] (see,
e.g., classical numerical analysis texts) yields∣∣ ∫ 1

0
f(α) dα− TN

∣∣ ≤ C2

12N2 . (15)

Step 2: sampling error. Let µ = 1
N−1

∑N−1
k=1 f( k

N ) denote the average of f over the (N−1) interior
nodes. A simple algebraic manipulation gives

|TN − T̃M | = 1

N

∣∣∣N−1∑
k=1

f
(

k
N

)
− (N−1) fM

∣∣∣ = N − 1

N
|µ− fM | ≤ |µ− fM |. (16)

By assumption, f(α) is uniformly bounded on the discretization nodes, which is discussed in detail
in Appendix B.1: there exists B < ∞ such that |f(α)| ≤ B for all α ∈ {1/N, . . . , (N−1)/N}.
Therefore, each sample f(αp) lies in [−B,B], and Hoeffding’s inequality for bounded random
variables implies that, for any δ ∈ (0, 1),

Pr
(
|µ− fM | ≥ t

)
≤ 2 exp

(
− 2Mt2

(2B)2

)
= 2 exp

(
−Mt2

2B2

)
. (17)

Setting the right-hand side equal to δ and solving for t yields that, with probability at least 1− δ,

|µ− fM | ≤ B

√
2 log(2/δ)

M
≤ cB

√
log(1/δ)

M
(18)

for an absolute constant c > 0. Combining with the previous display gives

|TN − T̃M | ≤ |µ− fM | ≤ cB

√
log(1/δ)

M
(19)

with probability at least 1− δ.

Step 3: combining the bounds. Plugging Eq. (15) and Eq. (19) into the decomposition in Eq. (14)
yields that, with probability at least 1− δ,∣∣ se(wij)− sagg(wij)

∣∣ ≤ |wij |
( C2

12N2
+ cB

√
log(1/δ)

M

)
, (20)

which is exactly the claimed bound in Eq. (9).

A.2 HIGH-PROBABILITY STABILITY OF SNRt

The resulting SNR-based score favors parameters with consistent, high-impact contributions and
suppresses those with volatile or transient behavior. While the above formulation provides an intuitive
interpretation of SNR, it remains essential to ensure its statistical stability with high probability,
which is formally addressed in Theorem 2.
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Theorem 2. Let yt = sagg(wij) be the per-epoch raw importance defined in Eq. (7). Since ϵ in
Eq. (12) is a very small constant, it can be ignored. Therefore, we have:

SNRt =
s̄
(t)
e

Ū (t) + ϵ
≈ s̄

(t)
e

Ū (t)
, (21)

Assume that (yt) is an i.i.d. sequence of sub-Gaussian random variables with mean µ and variance
σ2, and let d = E

[
|yt − µ|

]
> 0. For β1, β2 ∈ (0, 1), define the effective EMA window lengths

neff(β1) =
1 + β1

1− β1
, neff(β2) =

1 + β2

1− β2
, neff = min{neff(β1), neff(β2)}. (22)

Then there exist universal constants c1, c2, c0 > 0 such that, for any δ ∈ (0, 1) and all

t ≥ tburn =

⌈
c1

1−min{β1, β2}
log

c2
δ

⌉
, (23)

the following holds with probability at least 1− δ:

∣∣SNRt − µ/d
∣∣ ≤ C

√
log(2/δ)

neff
, C =

2
√
2σ

d
+ 2c0

µ

d2
(σ + d). (24)

Proof. We analyze the EMA under the stylized assumption stated in Theorem 2: (yt) is an i.i.d.
sub-Gaussian sequence with mean µ, variance proxy σ2, and d = E|yt − µ| > 0.

Recall that Eq. (10) and Eq. (11) define the EMAs

s̄(t)e = β1s̄t−1 + (1− β1)yt, Ū (t) = β2Ūt−1 + (1− β2)
∣∣yt − s̄(t)e

∣∣. (25)

Unrolling the recursions (for t large enough so that transients are negligible) shows that

s̄(t)e =
∑
k≥0

w
(1)
k yt−k, w

(1)
k = (1− β1)β

k
1 , Ū (t) = (1− β2)

∑
k≥0

βk
2

∣∣yt−k − s̄t−k

∣∣. (26)

Note that (w(1)
k )k≥0 is a geometric weight sequence with

∑
k w

(1)
k = 1 and

∥w(1)∥22 =
∑
k≥0

(1− β1)
2β2k

1 =
1− β1

1 + β1
=

1

neff(β1)
. (27)

Below we write neff = min{neff(β1), neff(β2)}.

Step 1: concentration of s̄(t)e . Since (yt) are i.i.d. sub-Gaussian with mean µ and variance proxy
σ2, any fixed weighted sum

∑
k w

(1)
k yt−k is also sub-Gaussian with mean µ and variance proxy

σ2∥w(1)∥22 = σ2/neff(β1). Standard sub-Gaussian tail bounds then yield

Pr
(
|s̄(t)e − µ| ≥ ε

)
≤ 2 exp

(
−c neff(β1) ε

2

σ2

)
(28)

for an absolute constant c > 0. Setting the right-hand side to δ/2 and solving for ε gives

|s̄(t)e − µ| ≤ σ

√
2 log(4/δ)

neff(β1)
≤

√
2σ

√
log(4/δ)

neff
(29)

with probability at least 1− δ/2.

Step 2: concentration of Ū (t). We decompose Ū (t) around d = E|yt − µ| as

|Ū (t)−d| ≤ (1−β2)
∣∣∣∑
k≥0

βk
2

(
|yt−k−µ|−d

)∣∣∣ + (1−β2)
∑
k≥0

βk
2

∣∣|yt−k−s̄t−k|−|yt−k−µ|
∣∣. (30)
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Define Xt = |yt−µ|−d, which is a centered, sub-exponential random variable whose tail parameters
depend only on (σ, d) (because yt is sub-Gaussian). Let w(2)

k = (1−β2)β
k
2 denote the EMA weights

for Ū (t). Then
∑

k≥0 w
(2)
k = 1 and

∥w(2)∥22 =
∑
k≥0

(1− β2)
2β2k

2 =
1− β2

1 + β2
=

1

neff(β2)
.

Applying a Bernstein-type concentration for weighted sums of i.i.d. sub-exponential variables (see,
e.g., standard results on Orlicz norms) yields the existence of an absolute constant c0 > 0 such that,
for any δ ∈ (0, 1),

Pr

∣∣∣(1− β2)
∑
k≥0

βk
2Xt−k

∣∣∣ ≥ c0(σ + d)

√
log(4/δ)

neff(β2)

 ≤ δ

2
. (31)

For the second term in Eq. (30), note that
∣∣|a− c| − |a− b|

∣∣ ≤ |b− c| for any a, b, c ∈ R, so∣∣|yt−k − s̄t−k| − |yt−k − µ|
∣∣ ≤ |s̄t−k − µ|.

Thus
(1− β2)

∑
k≥0

βk
2

∣∣|yt−k − s̄t−k| − |yt−k − µ|
∣∣ ≤ (1− β2)

∑
k≥0

βk
2 |s̄t−k − µ|. (32)

We now bound the right-hand side by splitting the sum into a recent window and its tail. Let

L =

⌈
c1

1− β2
log

c2
δ

⌉
(33)

for absolute constants c1, c2 > 0 chosen large enough. For t ≥ L, we have

(1− β2)
∑
k≥0

βk
2 |s̄t−k − µ| ≤ (1− β2)

L∑
k=0

βk
2 |s̄t−k − µ| + (1− β2)

∑
k>L

βk
2 |s̄t−k − µ|. (34)

For the tail sum, (1− β2)
∑

k>L βk
2 = βL+1

2 and, by choosing c1, c2 appropriately, we can ensure
βL+1
2 ≤ δ/(8c2). For the finite window {t, t− 1, . . . , t− L}, we apply Eq. (29) and a union bound

over these (L+ 1) indices to obtain, with probability at least 1− δ/2,

|s̄t−k − µ| ≤
√
2σ

√
log(4L/δ)

neff(β1)
for all 0 ≤ k ≤ L. (35)

Combining these bounds and using neff ≤ neff(β1) yields

(1− β2)
∑
k≥0

βk
2 |s̄t−k − µ| ≤ c̃ σ

√
log(2/δ)

neff
(36)

with probability at least 1− δ/2, for an absolute constant c̃ > 0.

Putting Eq. (31) and Eq. (36) back into Eq. (30) and recalling that neff ≤ neff(β2), we obtain that,
for t ≥ tburn and with probability at least 1− δ,

|Ū (t) − d| ≤ C ′
2(σ + d)

√
log(2/δ)

neff
(37)

for an absolute constant C ′
2 > 0. By increasing c1 if necessary, we may ensure that the right-hand

side in Eq. (37) is at most d/2, so that Ū (t) ≥ d/2 holds on the same high-probability event.
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Step 3: bounding the ratio SNRt. On the event {Ū (t) ≥ d/2} we can control the ratio SNRt =

s̄
(t)
e /Ū (t) via the deterministic inequality∣∣∣∣∣ s̄(t)e

Ū (t)
− µ

d

∣∣∣∣∣ ≤ 2

d
|s̄(t)e − µ| +

2µ

d2
|Ū (t) − d|. (38)

Combining Eq. (29) and Eq. (37) with Eq. (38), and noting that neff ≤ neff(β1), gives

∣∣SNRt − µ/d
∣∣ ≤

(
2
√
2σ

d
+ 2c0

µ

d2
(σ + d)

)√
log(2/δ)

neff
(39)

with probability at least 1− δ, for a suitable absolute constant c0 > 0. This is exactly the claimed
bound in Theorem 2 after setting C = 2

√
2σ
d +2c0

µ
d2 (σ+d) and tburn =

⌈
c1

1−min{β1,β2} log
c2
δ

⌉
.

B THE DISCUSSION OF THE ASSUMPTIONS IN THEOREM

B.1 THE ANALYSIS OF THE ASSUMPTION IN THEOREM 1

In this section, we focus on how the assumption in Theorem 1, that gij is twice continuously
differentiable on the interval [0, 1] with a bounded second derivative, leads to the conclusion that
gij(α) is bounded. First, consider the following form of gij(α):

gij(α) =
∂L(α∆W)

∂wij
, α ∈ [0, 1], (40)

The analysis of Theorem 1 relies solely on the assumption that gij is twice differentiable on the
interval [0, 1] and that its second derivative is bounded, which allows the application of the composite
trapezoidal rule, leading to a discretization error of O(N−2). Specifically, numerical analysis
typically assumes the existence of a constant C2 < ∞ such that:

sup
α∈[0,1]

∣∣g′′ij(α)∣∣ ≤ C2. (41)

Under this assumption, we can derive the following error bound:∣∣∣∣∫ 1

0

gij(α) dα− TN
∣∣∣∣ ≤ C2

12N2
, (42)

This equation provides the theoretical basis for the O(N−2) discretization error term in Theorem 1.
This requirement is essentially a standard smoothness assumption in trapezoidal integration and does
not involve any specific distributional assumptions. Furthermore, the condition of bounded second
derivatives directly implies that gij itself is bounded. By the fundamental theorem of calculus:

g′ij(α) = g′ij(0) +

∫ α

0

g′′ij(t) dt, gij(α) = gij(0) +

∫ α

0

g′ij(t) dt, (43)

We can obtain the bound for all α ∈ [0, 1]:

|g′ij(α)| ≤ |g′ij(0)|+
∫ 1

0

|g′′ij(t)| dt ≤ |g′ij(0)|+ C2, (44)

Thus,

|gij(α)| ≤ |gij(0)|+
∫ 1

0

|g′ij(t)| dt ≤ |gij(0)|+ |g′ij(0)|+ C2 ≜ B. (45)

This implies that gij(α) is bounded on [0, 1]. When we sample α from the finite set {1/N, . . . , (N −
1)/N}, the resulting random variable gij(α) is bounded by constant B.
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B.2 THE ANALYSIS OF THE I.I.D. ASSUMPTION IN THEOREM 2

Theorem 2 assumes that the per-epoch raw scores yt = sagg(wij) form an i.i.d. sub-Gaussian
sequence with a common mean µ and variance σ2. However, strictly speaking, yt depends on the
current model parameters W(t), which are updated across epochs, so exact i.i.d. is an idealization.

Our goal is to model the regime in which the training dynamics have stabilized: after an initial
transient phase (discarded via the burn-in time tburn), the statistics of the gradient noise around the
current solution change only slowly. Furthermore, within the effective EMA window neff(β1, β2),
the gradient sequence can be approximated as having nearly stationary mean and variance. In this
regime, standard extensions of EMA concentration results to weakly dependent or mixing sequences
apply. We chose the i.i.d. setting for clarity of presentation and to keep the notation simple. It is
important to note that Theorem 2 is derived under this stylized, locally stationary noise assumption,
and is meant to provide intuition about how the EMA window size and variance control the stability
of SNRt, rather than to capture every aspect of LLM training dynamics exactly.

To support this approximation empirically, we provide a small diagnostic in Appendix G: for a
representative layer on BoolQ, we plot the time series of yt and its running mean/variance across
epochs. We observe that, after the early epochs, both the mean and variance of yt quickly settle into a
narrow band, and the lag-1 autocorrelation becomes small. Correspondingly, the SNRt curves are
nearly flat after burn-in. These observations suggest that, in the regime where EMA-based importance
is actually used for rank pruning, the i.i.d./local stationarity approximation is reasonably accurate.

Finally, we emphasize that these assumptions are used only in our theoretical analysis; the algorithm
itself does not rely on them. Even when the exact assumptions are relaxed, the qualitative conclusions
remain the same: (i) our IG estimator trades off discretization error O(N−2) and sampling error
O(M−1/2), and (ii) EMA-based SNRt scores become more stable as the effective sample size
increases and the process enters a locally stationary regime.

C HYPERPARAMETER SETTINGS

During the training process, we tune the learning rate from {5 × 10−4, 1 × 10−4, 5 × 10−4, 1 ×
10−3, 2×10−4} and pick the best learning rate for every method. For the MNLI, QNLI, and QQP, we
set the batch size to 128. For RTE, MRPC, CoLA, and STS-B, the batch size is set to 32. For SST-2,
we use a batch size of 64. For all other tasks, the batch size is set to 16. All baseline methods follow
the same settings as IGU-LoRA, as detailed in Table 6. In IGU-LoRA, several key hyperparameters
ϵ,M,N, β1, β2 are set to 1× 10−6, 16, 20, 0.85, and 0.85, respectively, as detailed in Table 7. They
remain constant throughout the experiment, and their sensitivity is discussed in the main text.

Table 6: Hyperparameter setup of IGU-LoRA for training on different datasets.
Dataset learning rate batch size Max. Sequence Length # epochs γ ti ∆T tf

MNLI 5× 10−4 128 512 25 0.1 500 20 10000
RTE 1× 10−3 32 512 25 0.1 300 5 2500
QNLI 5× 10−4 128 512 25 0.1 400 20 10000
MRPC 1× 10−3 32 512 25 0.1 300 5 2500
QQP 5× 10−4 128 512 25 0.1 500 20 10000

SST-2 1× 10−3 64 512 25 0.1 400 20 5000
CoLA 1× 10−3 32 512 25 0.1 300 5 2500
STS-B 2× 10−3 32 512 25 0.1 300 5 2500

BoolQ 5× 10−4 16 512 25 0.1 500 20 10000
ARC-e 5× 10−4 16 512 25 0.1 500 20 10000
ARC-c 5× 10−4 16 512 25 0.1 500 20 10000
COPA 1× 10−3 16 512 25 0.1 500 20 10000

AQuA 1× 10−4 16 512 25 0.1 500 20 10000

MMLU 1× 10−4 128 512 15 0.1 500 20 10000

VQA 2× 10−4 32 512 25 0.1 300 20 10000
GAQ 5× 10−4 32 512 25 0.1 300 20 10000

MVLR2 5× 10−4 32 512 25 0.1 300 20 10000
COCO 2× 10−4 32 512 25 0.1 300 20 10000
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Table 7: Setting of the 5 hyperparameters (ϵ,M,N, β1, β2) in IGU-LoRA.

Hyperparameter ϵ M N β1 β2

Value 1× 10−6 16 20 0.85 0.85

D ABLATION STUDY ON HIGH-IMPACT PARAMETERS

To further validate the effectiveness of IGU-LoRA in identifying high-impact parameters, we conduct
an ablation study on high-impact parameters. Specifically, we remove the high-rank and low-rank
modules with the highest IGU-LoRA scores from different layers of the Qwen2.5-0.5B model and
evaluate the performance drop on the Boolq and GSM8K datasets. As shown in Table 8, removing
the high-rank modules from the K module in Layer 3 (L3 K) and the V module in Layer 10 (L10 V)
results in a performance drop of 1.30 and 1.33 points on Boolq, respectively. Similarly, removing the
high-rank modules from the Q module in Layer 22 (L22 Q) and the K module in Layer 17 (L17 K)
results in performance drops of 1.80 and 1.73 points on GSM8K, respectively. In contrast, removing
the low-rank modules from the K module in Layer 1 (L1 K) and the V module in Layer 3 (L3 V)
results in only minor performance drops of 0.05 and 0.10 points on Boolq, respectively. The same
trend is observed on GSM8K when removing the low-rank modules from the Q module in Layer 8
(L8 Q) and the K module in Layer 6 (L6 K), resulting in performance drops of 0.11 and 0.15 points,
respectively. These results demonstrate that IGU-LoRA effectively identifies high-impact parameters,
as their removal leads to significant performance degradation compared to low-impact parameters.
Table 8: Ablation study on the impact of removing high-rank and low-rank modules from different layers on
Qwen2.5-0.5B model performance. The numbers in parentheses indicate the performance drop compared to
the model with no modules removed. The left table and the right table represent results on Boolq and GSM8K,
respectively.

Module Removed Rank Boolq

1 L3 K 10 81.15 (-1.30)
2 L10 V 10 81.12 (-1.33)
3 L3 K / L10 V 10 / 10 80.44 (-2.01)

4 L1 K 5 82.40 (-0.05)
5 L3 V 5 82.35 (-0.10)
6 L1 K / L3 V 5 / 5 82.30 (-0.15)

7 - - 82.45

Module Removed Rank GSM8K

1 L22 Q 12 32.35 (-1.80)
2 L17 K 11 32.42 (-1.73)
3 L22 Q / L17 K 12 / 11 31.15 (-3.00)

4 L8 Q 6 34.05 (-0.11)
5 L6 K 6 34.01 (-0.15)
6 L8 Q / L6 K 6 / 6 33.84 (-0.32)

7 - - 34.16

E GENERALIZATION SUPPLEMENTARY EXPERIMENTS

To further validate the generalization performance of IGU-LoRA, we conduct additional experiments
on the MMLU benchmark using the Llama2-7B model. As shown in Table 9, IGU-LoRA achieves
an average accuracy of 51.07%, which is very close to the full fine-tuning method (51.54%) and
outperforms LoRA (49.94%). Notably, IGU-LoRA demonstrates superior performance in Science,
Technology, Engineering, and Mathematics (STEM) and Social Science subjects, achieving accuracies
of 41.71% and 58.12%, respectively. These results further confirm the effectiveness of IGU-LoRA in
enhancing the generalization capabilities of fine-tuned models across diverse subject areas.
Table 9: The generalization performance of fine-tuning the Llama2-7B model on the MMLU benchmark using
different methods, reporting the average results over 5 random seeds.

Method Humanities STEM Social. Other Avg.
Full FT 49.91 41.70 57.53 57.02 51.54
LoRA 46.15 40.84 56.63 56.23 49.94

IGU-LoRA 47.33 41.71 58.12 57.10 51.07

F MULTIMODAL BENCHMARK SUPPLEMENTARY EXPERIMENTS

To further demonstrate the effectiveness of IGU-LoRA in multimodal tasks, we conduct additional
experiments on the VQAv2, GAQ, NVLR2 and COCO Captioning datasets using the VL-BART (Su
et al., 2019). As shown in Table 10, IGU-LoRA achieves an average score of 77.47, outperforming
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LoRA (74.31) and DoRA (77.40), and closely approaching the performance of full fine-tuning
(77.35). These results further validate the capability of IGU-LoRA to effectively adapt multimodal
models while maintaining high performance across different tasks.
Table 10: Performance comparison of different fine-tuning methods on the VQA, GAQ, NVLR2 and COCO
datasets using the VL-BART model. The results are averaged over 5 random seeds.

Method VQAv2 GAQ NVLR2 COCO Captioning Avg.

Full FT 66.91 56.72 73.71 112.04 77.35

LoRA 64.32 54.10 71.25 109.56 74.31
DoRA 65.81 54.71 73.14 115.93 77.40

IGU-LoRA 65.78 55.32 73.42 115.36 77.47

G THE VERIFICATION OF THE I.I.D./LOCAL STATIONARITY APPROXIMATION
IN THEOREM 2.

To validate the i.i.d. / local stationarity approximation used in Theorem 2, we conduct an empirical
analysis of the importance score statistics during the fine-tuning process. Specifically, we monitor
several representative modules (e.g., the L16 Q module for the 16-th layer’s Q component and the
L5 K module for the 5-th layer’s K component) across multiple training iterations on the BoolQ
dataset. We observe that, after the initial epochs, the mean and variance of yt quickly stabilize
within a narrow range, and the first-order lag autocorrelation becomes very small. Correspondingly,
the SNRt curve becomes nearly flat after the burn-in period. These observations suggest that the
i.i.d./local stationarity approximation is reasonable and accurate during the stage when EMA-based
importance-ranking pruning is applied in practice.
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Figure 7: Empirical analysis of importance score statistics during fine-tuning. The plots show the changes
in yt, the mean and variance of yt, the first-order lag autocorrelation, and SNRt across training iterations for
representative module parameters.

H EFFECTS OF SAMPLE ORDER AND BATCH SIZE

To investigate the effects of sample order and batch size on the performance of IGU-LoRA, we conduct
experiments using the Qwen-2.5-0.5B model on the BoolQ dataset. The results are summarized as
follows:
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Sample Order / Random Seed. we trained with a fixed batch size using five different random
seeds. These seeds control the data shuffling and the sampled integration nodes αk. The downstream
accuracy varies slightly across seeds (within ∆acc absolute points, indicating a small change), which
demonstrates that the sample order has high stability on the results.

Batch Size. We further vary the batch size (e.g., 2, 4, 8, 16, 32) while keeping all other hyperparame-
ters fixed. The resulting test accuracy again shows only minor variation. This proves that batch size
does not have a significant impact on the results. The detailed results are presented in Table 11.

Table 11: Effect of Batch Size on BoolQ Accuracy across Different Random Seeds

Batch Size Seed 1 Seed 2 Seed 3 Seed 4 Seed 5
2 82.46 82.47 82.45 82.46 82.45
4 82.45 82.46 82.44 82.45 82.44
8 82.44 82.45 82.43 82.44 82.43

16 82.45 82.46 82.44 82.45 82.44
32 82.40 82.41 82.39 82.40 82.39

I DATASETS AND METRICS

I.1 GLUE BENCHMARK TASKS

Single-sentence Classification Tasks. (1) CoLA (Corpus of Linguistic Acceptability): Determine
whether a sentence adheres to grammatical rules (binary classification). (2) SST-2 (Stanford Sentiment
Treebank): Movie review sentiment analysis (positive/negative binary classification).

Sentence-pair Classification Tasks. (1) MRPC (Microsoft Research Paraphrase Corpus): Determine
whether two sentences are semantically equivalent (binary classification). (2) QQP (Quora Question
Pairs): Determine whether two Quora questions are semantically identical (binary classification).
(3) RTE (Recognizing Textual Entailment): Determine whether a sentence pair entails a relationship
(three-class classification: entailment/contradiction/neutral).

Similarity and Regression Task. STS-B (Semantic Textual Similarity Benchmark): Calculate the
semantic similarity between two sentences (continuous value from 1 to 5).

Question-answering Task. QNLI (Question-answering NLI). Determine whether a sentence contains
the answer to a given question (binary classification).

Natural Language Inference Task. MNLI (Multi-Genre Natural Language Inference). Large-scale
cross-domain textual entailment classification (three-class classification).

I.2 MATHEMATICAL AND COMMON-SENSE REASONING TASKS

Mathematical Reasoning Tasks. (1) AQuA (Algebra question answering): Derive the correct answer
from a given algebraic problem (multiple-choice) and generate the corresponding solution process
(Rationales). (2) GSM8K (Grade school math 8K): Perform multi-step reasoning on mathematical
problems described in natural language.

Common-Sense Reasoning Tasks. (1) BoolQ (Boolean questions). Determine whether the answer
to a given question, based on the provided paragraph, is ”Yes” (True) or ”No” (False). (2) ARC-e
(AI2 reasoning challenge - easy): Select the most reasonable answer from a given set of scientific
questions (Multiple-choice question). (3) ARC-c (AI2 reasoning challenge - challenge): Combine
multi-step reasoning and cross-domain knowledge to provide answers. (4) COPA (Choice of plausible
alternatives). Select the most plausible cause or effect for a given premise from two provided
alternatives. The task requires understanding of causal relationships and commonsense reasoning in
everyday scenarios.

I.3 MULTIMODAL BENCHMARK TASKS

Visual Question Answering Tasks. (1) VQAv2 (Visual Question Answering v2). Given an image and
a related question, select the most appropriate answer from multiple choices. (2) GAQ (Generalized
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Question Answering). This task extends VQA to a more generalized setting, where the model is asked
to answer a wider range of questions based on visual context.

Visual-Linguistic Reasoning Task. (1) NLVR2 (Natural Language for Visual Reasoning 2). Given a
pair of images and a natural language statement, determine whether the statement accurately describes
the relationship between the two images.

Image Captioning Task. (1) COCO Captioning. Generate descriptive captions for images in the
COCO dataset, evaluating the model’s ability to understand and describe visual content accurately.

Table 12: Summary of the benchmark datasets.

Datasets # train # dev # test Type Metrics

Common-Sense reasoning tasks
BoolQ 9427 - 3270 Common-Sense reasoning Acc
ARC-e 2251 570 2376 Common-Sense reasoning Acc
ARC-c 1119 299 1172 Common-Sense reasoning Acc
COPA 400 100 500 Common-Sense reasoning Acc

Mathematical reasoning tasks
AQuA 97467 254 254 Mathematical reasoning Acc

GSM8K 7473 - 1319 Mathematical reasoning Acc

GLUE benchmark tasks
SST-2 67k 872 1.8k Sentiment Acc
MNLI 393k 20k 20k NLU Acc
QQP 364k 40k 391k Paraphrase Acc-F1

MRPC 3.7k 408 107k Paraphrase Acc-F1
RTE 2.5k 176 3k NLU Acc
QNLI 108k 5.7k 5.7k QA/NLI Acc
CoLA 8.5k 1k 1k Acceptability Mcc
STS-B 7k 1.5k 1.4k Similarity Corr

I.4 DATASET STATISTICS

In our experiments, we compare performance across multiple tasks, including the GLUE benchmark,
which consists of eight datasets: CoLA, SST-2, MRPC, QQP, STS-B, MNLI, QNLI, and RTE; three
common-sense reasoning tasks (BoolQ, ARC-e, and ARC-c); and two mathematical reasoning tasks
(AQuA and GSM8K). The dataset statistics are presented in Table 12.

I.5 EVALUATION METRICS

As shown in Table 12, we strictly follow the official settings of GLUE and use the same metrics
as Wang et al. (2018). For MNLI, we report the average of the accuracy scores on the matched and
mismatched test sets. For MRPC and QQP, we report Acc-F1, the average accuracy, and F1 scores.
For STS-B, we report Corr, which denotes the average of the Pearson and Spearman correlation
coefficients. For CoLA, we report Mcc, which is the Matthews correlation. For all other tasks,
we report accuracy (Acc). Since the common sense and math reasoning tasks usually come with a
definite answer choice, we will directly consider the correctness of the final answers. Thus, we report
accuracy (denoted as Acc).

J BASELINE DETAILS

• Full fine-tuning is the most common approach for adaptation. During fine-tuning, the model is
initialized with pre-trained weights and biases, and all model parameters undergo gradient updates.

• LoRA (Hu et al., 2022a) is a representative parameter-efficient fine-tuning (PEFT) method. It
introduces two low-rank matrices to parameterize the incremental weight updates, and only these
lightweight components are updated during fine-tuning. The number of trainable parameters is
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determined by the rank r and the number of inserted adaptation matrices n, allowing for fine-grained
control over the adaptation budget.

• AdaLoRA (Zhang et al., 2023) extends the conventional LoRA framework by introducing a dy-
namic rank adaptation mechanism. It parameterizes the low-rank adapters using singular value
decomposition (SVD), and evaluates the importance of each parameter based on the magnitude of its
corresponding singular value. This importance score then guides a progressive rank pruning process,
allowing the model to dynamically reallocate its limited parameter budget to more critical layers or
modules.

• DoRA (Liu et al., 2024b) enhances the learning capacity and adaptability of pretrained models by
decoupling weight matrices into two distinct components: magnitude and direction. The key idea is to
keep the magnitude fixed and apply LoRA-style low-rank updates only to the directional component.
This separation allows for more expressive and geometry-aware adaptation while preserving the norm
of the original weights, which helps stabilize training and maintain alignment with the pretrained
model. Since only the direction is modified, DoRA introduces no additional inference overhead,
making it efficient and scalable for deployment.

• AutoLoRA (Xu et al., 2023) is a meta-learning-based fine-tuning approach designed to automatically
determine the optimal rank for each layer in Low-Rank Adaptation (LoRA). It introduces a learnable
selection variable for each rank-1 matrix and dynamically adjusts these variables using a meta-
learning strategy. By jointly optimizing the rank configuration along with the LoRA parameters,
AutoLoRA significantly improves fine-tuning efficiency and overall performance.

• Adapter (Houlsby et al., 2019) inserts lightweight bottleneck modules between each layer of the
pretrained model, updating only these newly introduced modules during fine-tuning while keeping
the original model parameters frozen.

• P-tuning v2 (Liu et al., 2021) is an improved prompt tuning method that inserts trainable prompt
tokens at the input layer and across multiple model layers. This design increases the trainable
parameters from approximately 0.01% to 0.1%-3% of the full model, while maintaining parameter
efficiency. P-tuning v2 enhances optimization stability and improves performance across various
tasks by integrating task-specific information deeper into the model.

• (IA)3 (Liu et al., 2022a) introduces learnable scaling vectors at key locations in the Transformer
architecture, such as the keys and values in the self-attention mechanism and the intermediate
activations in the feed-forward networks. These vectors are applied via element-wise multiplication to
modulate the internal activations, enabling flexible control over the model’s output without modifying
the original model parameters.

• SSP (Hu et al., 2022b) leverages structural sparsity to guide the automatic search for parameter
insertion locations, activating trainable parameters only in the most important substructures. This
enables higher efficiency without sacrificing model performance.

• GoRA (He et al., 2025) leverages gradient-driven adaptive low-rank adjustment to dynamically
adjust the rank of low-rank adaptation layers during training. By using gradient information, GoRA
ensures that the model can allocate computational resources more efficiently, adjusting the rank
based on the importance of each layer for different tasks and training stages. This method maintains
computational efficiency while improving model performance, adapting the low-rank configuration
to meet the specific needs of the training process.

K ADDITIONAL RELATED WORKS

K.1 DYNAMIC RANK ALLOCATION

Dynamic rank allocation gains increasing attention in deep learning model optimization, with various
methods proposed to improve adaptability and efficiency. Several other notable approaches are intro-
duced beyond AdaLoRA (Zhang et al., 2023) and AutoLoRA (Xu et al., 2023). LoSA (Huang et al.,
2025) integrates sparsity and low-rank adaptation, dynamically adjusting both using representation
mutual information and reconstruction error. PRILoRA (Benedek & Wolf, 2024) employs a heuristic
strategy that linearly increases ranks from lower to higher layers, motivated by the observation that
higher layers often require greater adaptability in transfer learning. ALoRA (Liu et al., 2024c) further
incorporates a novel mechanism, AB-LoRA, which assesses the importance of individual LoRA
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ranks and incrementally prunes redundant components, reallocating the freed budget to more critical
Transformer modules. These methods provide diverse rank allocation strategies that contribute to
more efficient fine-tuning of large models.

L THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were employed in several
auxiliary capacities. First, at the writing stage, LLMs were utilized to refine and translate the text,
thereby enhancing the overall fluency, readability, and precision of academic expression. Second,
in relation to experiments and results presentation, LLMs assisted in generating parts of the code
for data visualization and figure plotting, which facilitated a more efficient presentation of research
findings. Third, in surveying the research landscape and related work, LLMs provided support for
literature searches, helping us to locate and summarize relevant studies in the field systematically.
Finally, in the theoretical component of this work, LLMs offered auxiliary support in structuring
complex proofs and verifying critical derivation steps, contributing to the clarity and rigor of our
theoretical analysis. It should be emphasized that all uses of LLMs were strictly auxiliary in nature;
the formulation of research questions, the design of methods, the core theoretical derivations, and the
experimental analyses were all carried out independently by the authors.
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