
A Benchmark for Text Quantification Learning
Under Real-World Temporal Distribution Shift

Anonymous ACL submission

Abstract

Text quantification is a supervised learning task001
estimating the relative frequency of each class002
for a collection of uncategorized text docu-003
ments. Quantification learning has an increas-004
ing number of applications in practice and005
presents unique challenges that are often over-006
looked in classification problems, such as deal-007
ing with distribution shift. Many studies on008
quantification use artificially re-sampled test009
sets to evaluate models under varying target010
label distributions. Despite being a convenient011
solution, label-based biased sampling changes012
the underlying test data distribution and makes013
it hard to rely on the results to deploy models014
in practice. This paper introduces a text quan-015
tification benchmark consisting of 8 datasets016
across sentiment analysis, document categoriza-017
tion, and toxicity classification. We compare018
popular quantification baselines on the bench-019
mark and show that there is no model consis-020
tently outperforming others. Therefore, we be-021
lieve the benchmark should enable new com-022
munity research to tackle text quantification023
under temporal distribution shift and develop024
reliable models in real-world applications.025

1 Introduction026

In the classification setting, quantification is a su-027

pervised learning task that estimates the aggregated028

label distribution of a test population given labeled029

training examples. A typical application of quantifi-030

cation is to automatically estimate the prevalence031

of hate speech (Warner and Hirschberg, 2012; Mal-032

masi and Zampieri, 2017; Qian et al., 2018) during033

a period of time on a social platform. The plat-034

form could then use the estimation to determine035

the effectiveness of a certain feature with A/B test-036

ing. Another example in Epidemiology is to track037

the prevalence of clinical reports where a specific038

pathology is diagnosed (Stanfill et al., 2010). In039

both cases, an accurate estimation of the label dis-040

tribution provides actionable insights.041
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Figure 1: A standard setting for quantification learning.
Given annotated training data, a quantifier needs to give
prevalence estimates for unlabeled test sets.

Despite the many possible applications, quan- 042

tification is relatively understudied in the NLP 043

community. One common misunderstanding is 044

that these problems can be solved trivially us- 045

ing a straightforward Classify & Count (CC) ap- 046

proach (Forman, 2008) based on an off-the-shelf 047

classifier. However, classifiers are often trained 048

with the assumption that the training and test ex- 049

amples are drawn i.i.d. from a common data distri- 050

bution. In contrast, the underlying assumption of 051

quantification learning is that the data distribution 052

changes between the training and the testing phase. 053

Under severe distribution shift, naive aggregation 054

of classification results would yield unsatisfactory 055

performances. As a result, there is a strong connec- 056

tion between quantification learning and tasks that 057

deal with distribution shift. 058

Label shift (Lipton et al., 2018; Alexandari et al., 059

2019; Tachet des Combes et al., 2020) is a closely 060

related line of research that detects the shift in the 061

label distribution and adjusts to optimize for clas- 062

sification accuracy on the test examples. When 063

used for quantification, these approaches mostly 064

apply distribution matching in a latent space and 065

are in essence equivalent to earlier quantification 066

methods such as Adjusted Count (Forman, 2008; 067

1



65% Money transfer 
18% Digital wallet / virtual currency

37% Money transfer 
59% Digital wallet / virtual currency

Samples: 

Money transfer  
on Saturday X/XX/XX my employeer tried to direct deposit XXXX it was rejected
by my bank. 

Digital wallet / virtual currency 
I can not transfer money to a site where I can buy digital currency. Not being able
to use my own money is a huge problem.Quite a scam.

Figure 2: Prevalence change of the “Money transfer,
virtual currency” category across time in the Consumer
Complaint Database. Within the category, the com-
position of complaints also changes, creating further
challenges to quantifiers.

Hopkins and King, 2010; Saerens et al., 2002) and068

Probabilistic Adjusted Count (Bella et al., 2010).069

Compared to quantification learning, label shift lit-070

erature focuses on performance optimization of the071

underlying learner where the estimated test label072

distribution is a by-product. Label shift caused by073

temporal factors falls into this category but is never074

explicitly studied.075

One main problem with recent studies on quan-076

tification is the dataset, especially the testing sets,077

being used. As pointed out in González et al.078

(2017), quantification methods need to be evaluated079

on a set of testing splits with enough variations on080

the label distribution. Most of the abovementioned081

studies achieve this by artificially changing the test082

label distribution through biased sampling. For ex-083

ample, Forman (2008) uses a set of pre-specified084

positive prevalence values and constructs the test085

sets accordingly; Lipton et al. (2018) simulates la-086

bel shift by drawing the test set label distributions087

from a Dirichlet distribution. However, these strati-088

fied sampling strategies change the underlying data089

distribution and are problematic in assessing the090

actual performances of quantification models in091

practice.092

In this paper, we introduce the first text quan-093

tification benchmark with naturally occurred tem-094

poral distribution shift. Each dataset is split into095

subsets containing samples from the same month096

or year. The subsets are then grouped into train-097

ing and testing according to a specified point in098

time. We construct the training and testing sets 099

to mimic a practical use case in a realistic setting 100

where we need to predict the future class preva- 101

lence given historical annotated data. Due to the 102

long time span, the input distribution for each class 103

might change. For example, Figure 2 shows that 104

the “Money transfer, virtual currency” category in 105

one of the datasets has drastically different input 106

composition in early-2017 and mid-2020, which 107

presents more significant challenges to a candidate 108

quantifier. 109

A total of eight datasets are included in the 110

benchmark spanning sentiment analysis, document 111

categorization, and toxicity classification. We eval- 112

uate different quantification/label shift estimation 113

algorithms on the benchmark and find that no algo- 114

rithm consistently outperforms others. 115

The main contributions of this work are three- 116

fold: 117

• We create the first benchmark for text quan- 118

tification learning with temporal distribution 119

shift consisting of diverse tasks and domains 120

to evaluate model performances in a realistic 121

setting. 122

• We propose a new metric, Class-Averaged 123

Rank Correlation (CARC), for quantification 124

learning that measures models’ ability to pro- 125

duce prevalence estimates that are consistent 126

with ground-truth values in terms of ranking 127

order. 128

• We evaluate various baseline algorithms on 129

the benchmark and find that no algorithm con- 130

sistently outperforms others, strongly motivat- 131

ing future research in this area. 132

2 Related Work 133

Quantification Learning. Many of the experi- 134

ments reported in quantification learning literature 135

employ datasets taken from other classification 136

problems. For example, Gao and Sebastiani (2016) 137

use 11 sentiment classification datasets and aver- 138

age the performances of studied methods across 139

all 11 datasets. The problem is that only one test 140

set is available for each dataset. Qi et al. (2020) 141

use four text classification datasets for evaluation. 142

However, all four datasets have a balanced training 143

set, and the test splits are artificially created similar 144

to Forman (2008). Beijbom et al. (2015) create two 145

large-scale, image datasets from marine ecology. 146
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The experimental settings are more adequate with147

21 and 15 test splits under various distribution shift.148

Esuli and Sebastiani (2015) employ RCV1-v2, a149

multi-label text classification benchmark with 52150

weeks of data for testing. These datasets lack the151

number of test splits or the diversity of the task152

domains. In contrast, our benchmark comprises153

more diverse tasks and domains; it involves tempo-154

ral distribution shift across a long period of time;155

it provides monthly/yearly splits that allow more156

fine-grained analysis.157

Learning under Distribution Shift. There has158

been an increasing interest in studying the chal-159

lenges arising from data distribution changes in the160

machine learning community (Daumé III, 2007;161

Blitzer et al., 2007; Glorot et al., 2011; Ganin et al.,162

2016). The focus of these studies is mainly on163

adapting to covariate shift and improving the per-164

formance of the underlying learner in a shifted165

domain. Lipton et al. (2018) study the problem of166

adapting a classifier under label shift, assuming the167

feature distribution of each class stays the same.168

Tachet des Combes et al. (2020) combine the idea169

of label shift with adversarial domain adaption and170

learn invariant representations in different domains.171

Quantification learning shares the same distri-172

bution shift challenges as domain adaptation and173

label shift. However, the goal is inherently dif-174

ferent. Direct utilization of domain adaptation175

datasets for quantification is undesirable for two176

reasons. Firstly, many quantification applications177

are interested in distribution shift caused by tempo-178

ral factors because quantifiers are primarily used179

for prevalence monitoring. The very few datasets180

that involve temporal distribution shift are mostly181

vision datasets (Christie et al., 2018; David et al.,182

2020). Secondly, quantification learning requires183

test splits to reflect the actual ground truth preva-184

lence for each class which is not a necessity for185

domain adaptation.186

3 The Text Quantification Benchmark187

3.1 Problem Formulation188

Given a labeled set of examples Ds =189

{(x1, y1), . . . , (xn, yn)} where xi ∈ X and yi ∈190

Y = {l1, . . . , lk}, denote P(X ) as the powerset of191

X , and ∆d as the standard d-simplex, the task is to192

induce a quantifier h : P(X )\∅ → ∆k−1 from the193

training data. For a test set Xt = {x′1, . . . , x′m},194

h(Xt) produces a categorical distribution p̂ where195

each element in the predicted vector p̂j represents 196

the proportion of label lj in the set of input exam- 197

ples. The goal is to predict p̂ that is as close as 198

possible to the ground truth label distribution p. 199

3.2 Dataset Identification and Preparation 200

There are several considerations when we identify 201

potential dataset candidates for the benchmark: 202

• The dataset must have instance-level time in- 203

formation to construct test splits based on the 204

time each example was produced. 205

• There should be no label-based biased sam- 206

pling in any test split so that the actual un- 207

derlying label distributions are available to be 208

compared. 209

• The dataset ideally should span a long period 210

of time so that there is enough label distribu- 211

tion variation in the test splits. 212

• The benchmark should cover both multi-class 213

and binary classification problems in multiple 214

text domains with various training data sizes. 215

There are in total eight datasets being included in 216

the benchmark, an overview of the dataset statistics 217

is shown in Table 1. 218

Amazon Review Data (Ni et al., 2019) con- 219

tains product reviews collected from Amazon in 220

the range of May 1996 to October 2018. We use 221

the “5-core” subsets for three categories: Clothing 222

Shoes and Jewelry, Electronics, and Office Prod- 223

ucts to account for different domains and data sizes. 224

There is a steady trend towards a higher percentage 225

of higher review ratings over time, making these 226

datasets suitable for quantification. 227

For all three categories, reviews made between 228

2008-08 and 2015-07 are used for training, and re- 229

views from 2015-08 to 2018-07 are split by month 230

and used for testing. The original review ratings are 231

on a scale of five stars. We create binary versions 232

of each category by changing the task to predict the 233

percentage of negative reviews, i.e., reviews with 1 234

star and 2 stars. 235

Consumer Complaint Database (CCD) is a col- 236

lection of complaints about consumer financial 237

products and services that the Consumer Finan- 238

cial Protection Bureau sent to companies for re- 239

sponse1. All complaints can be classified into nine 240

1https://www.consumerfinance.gov/
data-research/consumer-complaints/

3

https://www.consumerfinance.gov/data-research/consumer-complaints/
https://www.consumerfinance.gov/data-research/consumer-complaints/


Dataset Amazon Reviews CCD Wikipedia ToxicityClothing Electronics Office

training splits Aug 2008 - Jul 2015 Apr 2015 - Jul 2019 2001 - 2010
test splits Aug 2015 - Jul 2018 Aug 2019 - Jul 2021 2011 - 2015
# classes 5 or 2 9 2
# training 3,749,569 3,283,304 316,302 434,482 109,277
# test 7,453,848 3,285,326 476,785 345,914 25,809

label distribution

Table 1: The text quantification benchmark contains 8 datasets (including three binary versions of the Amazon
Reviews datasets) across sentiment analysis, document categorization, and toxicity classification tasks. Each dataset
comprises data from a long period of time, and the benchmark is set up to evaluate models’ ability to accurately
estimate future test split label distributions under naturally occurred distribution shift.

categories based on product types. Due to the evolu-241

tion of the financial market, the complaint category242

distribution changes over time. For example, the243

percentage of credit reporting-related complaints244

increased from around 16% in 2017-01 to 57% in245

2021-07.246

We take all the records between 2015-04 and247

2021-07 and filter out those without text content.248

Complaints filed before 2019-07 are used for train-249

ing, and the remaining data are grouped by month250

as test splits. There are 434,482 training examples251

and 345,914 test examples. Test split size ranges252

from 5,127 to 18,495.253

Wikipedia Talk: Toxicity (Wulczyn et al.,254

2017) includes labeled discussion comments from255

English Wikipedia. Multiple annotators labeled256

each comment via Crowdflower on whether it is a257

toxic or healthy contribution. The original data was258

collected using two sampling types: random and259

blocked. The random dataset contains randomly260

selected comments; therefore, it can be used to261

evaluate the actual toxicity prevalences over time.262

The blocked dataset is used to ensure a sufficient263

number of toxic comments for training purposes.264

We use blocked and random examples from 2001265

to 2010 as the training set, random examples from266

2011 to 2015 as the test splits. By construction, the267

underlying distribution changes from training to268

test significantly. As the up-sampling strategy for269

imbalanced classification is ubiquitous in practice,270

this dataset is perfect for evaluating quantification271

methods with classifiers trained on re-sampled data.272

Clothing Electronics Office CCD Toxicity
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Figure 3: Distributions of the test split covariate shift
measured with MMD in the BERT embedding space.
Wikipedia Toxicity has milder covariate shift compared
to others.

3.3 Distribution Shift Analysis 273

We measure the distribution shift of each test split 274

compared with the corresponding training set in 275

terms of both covariate shift and label shift. 276

Covariate Shift. We capture the covariate shift 277

of the input distribution p(x) by encoding the text 278

documents with a pretrained BERT model (Devlin 279

et al., 2019). We then take the BERT embedding 280

of all input examples and evaluate the Maximum 281

Mean Discrepancy (MMD) (Gretton et al., 2012). 282

MMD allows us to compare two probability distri- 283

butions in a reproducing kernel Hilbert space based 284

on their samples. We use MMD with a radial basis 285

function (RBF) kernel and set σ to be the median 286

distance between points in the training set (Gretton 287

et al., 2012). 288
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Figure 4: Distributions of the test split label shift mea-
sured with KLD. CCD and Wikipedia Toxicity have a
higher average label shift as well as larger variations
among the test splits.

k(x,x′) = e−
∥x−x′∥2

2σ2 (1)289

A larger value measured by MMD indicates a290

larger discrepancy between the training and testing291

input embeddings.292

We sample 10,000 examples from each test split293

and measure the MMD for all test splits. The dis-294

tribution of the test split covariate shifts for each295

dataset is shown in Figure 3. All datasets have vary-296

ing levels of covariate shift in their test splits except297

for Wikipedia Toxicity. All five test splits in the298

Toxicity dataset have similar levels of MMD values299

compared to the training set. It is still interesting300

to see how well models trained with up-sampling301

estimate the true unbalanced label distribution.302

Label Shift. We use Kullback–Leibler diver-303

gence (KLD) to measure the difference between304

the training label distribution and the test split la-305

bel distributions. Ideally, the label shift of the test306

splits should cover a range of values to better eval-307

uate candidate methods under various scenarios.308

The distributions of label shift values in the test309

splits are plotted in Figure 4. CCD and Wikipedia310

Toxicity have higher variations in the degrees of311

label shift from the training set than Amazon Re-312

view datasets. There are still reasonable label shift313

variations in the Amazon Review data as shown in314

Table 1.315

3.4 Evaluation316

We use two commonly reported quantification met-317

rics for performance evaluation: Relative Absolute318

Error (RAE) and Knullback-Leibler Divergence 319

(KLD). We propose a new metric, namely Class- 320

Average Rank Correlation (CARC), to measure the 321

ability to rank test splits by class label prevalences 322

correctly. 323

Relative Absolute Error. RAE measures the re- 324

lation between the absolute error and the ground 325

truth label distribution. Formally, 326

RAE(p, p̂) =
1

k

k∑
i=1

|p̂i − pi|
pi

(2) 327

Intuitively, RAE measures the average percent- 328

age difference from an estimated class prevalence 329

to the ground truth. The lower the better. 330

Knullback-Leibler Divergence. KLD is a pop- 331

ular metric for measuring the difference between 332

two distributions. 333

KLD(p, p̂) =
k∑

i=1

pi log
pi

p̂i
(3) 334

A benefit of using KLD is that it is widely 335

adopted in the machine learning community and 336

quantification literature. However, it is less inter- 337

pretable than RAE and can be undefined when 338

p̂i = 0. As RAE and KLD values are closely 339

correlated, reporting both values is redundant in 340

most cases. Therefore, we only report RAE in our 341

experiments. 342

Class-Averaged Rank Correlation. In addition 343

to RAE and KLD, both of which measure the dif- 344

ference between the predicted label distribution 345

and the ground truth for each test split, we pro- 346

pose a new metric for quantification named Class- 347

Averaged Rank Correlation. 348

We first uses Spearman’s ρ to measure the rank 349

correlation among the predicted prevalence for a 350

particular class across all test splits. CARC is de- 351

fined as the average rank correlation value across 352

all classes. Formally, let P = [p(1), . . . ,p(t)] de- 353

note the list of ground truth label distributions for 354

the t test splits. P̂ represents the corresponding 355

list of predictions [p̂(1), . . . , p̂(t)]. Denote Pi as 356

[p
(1)
i , . . . ,p

(t)
i ], i.e., the list of true prevalences for 357

class i in all test splits. CARC is defined as: 358

CARC(P , P̂ ) =
1

k

k∑
i=1

ρR(Pi),R(P̂i)
(4) 359
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Jan     Feb      Mar      Apr      May Jan     Feb      Mar      Apr      May

true prevalence predicted prevalence

CARC=1 CARC<1

Figure 5: An illustration of the CARC metric. A perfect
CARC score of 1 indicates that the model successfully
predicts which split has a higher prevalence for any pair
of test splits.

where ρ is the correlation coefficient applied to the360

rank variables R(Pi) and R(P̂i).361

With a higher value of CARC, if test split A has362

a higher prevalence of a specific class label than363

test split B, the predicted prevalence in A is more364

likely to be higher than that in B. CARC is a critical365

metric because if a quantifier indicates a prevalence366

increase, the ground truth prevalence should ideally367

indeed be higher.368

4 Baseline Algorithms369

In addition to the straightforward Classify & Count370

(CC) algorithm, we include several methods from371

prior work on label shift estimation where predic-372

tions from a black box classifier can be used as373

inputs.374

Classify & Count (CC) (Forman, 2008). Given375

classification results from an existing classifier,376

CC uses the aggregated distribution to predict the377

test set label distribution. Probabilistic Classify &378

Count (PCC) is a variant that aggregates the pre-379

dicted probabilities instead of class assignments.380

Black Box Shift Estimation (BBSE) (Lipton381

et al., 2018). By making a label shift assumption382

that the conditional distribution of p(x|y) remains383

the same across training and testing, BBSE uses384

the confusion matrix to adjust the predicted label385

distribution from CC. BBSE is proven to be consis-386

tent and error bounded even with biased black box387

predictors as long as the confusion matrix is invert-388

ible, and the label shift assumption holds. BBSE,389

when used for quantification, is equivalent to the390

Adjusted Count method (Forman, 2008; Hopkins391

and King, 2010) in multi-class settings.392

Regularized Learning under Label Shift (RLLS) 393

(Azizzadenesheli et al., 2019). To avoid arbitrarily 394

bad estimation of the confusion matrix due to lim- 395

ited data size, RLLS makes the final distribution 396

prediction less sensitive to the estimation perfor- 397

mance of the confusion matrix by regularizing the 398

ratio of test and training label distributions. RLLS 399

is primarily designed to improve classification per- 400

formance under label shift. The label distribution 401

estimate is often a compromise between the BBSE 402

result and the training distribution. 403

Maximum Likelihood Label Shift (MLLS) 404

(Alexandari et al., 2019). Like BBSE, MLLS also 405

takes a distribution matching approach to estimate 406

the test set label distribution. The original algo- 407

rithm uses an EM-based strategy (Saerens et al., 408

2002) to perform distribution matching in the in- 409

put space of the test set. Alexandari et al. (2019) 410

show that in combination with a particular post-hoc 411

calibration method, MLLS outperforms BBSE. 412

5 Experiments and Results 413

5.1 Experimental Setup 414

We use the huggingface implementation of the 415

BERT classifier fine-tuned on the corresponding 416

dataset as the base predictor for all algorithms. The 417

predictor is further calibrated using bias-corrected 418

temperature scaling (BCTS) (Alexandari et al., 419

2019) for the MLLS method. All models are 420

trained with AdamW optimizer (Loshchilov and 421

Hutter, 2018) with a learning rate of 2e-5. All mod- 422

els are trained on a single Titan RTX GPU with a 423

batch size of 32. 424

5.2 Main Results 425

We measure the RAE and CARC scores for all 426

methods on the benchmark. RAE scores are aver- 427

aged over all test splits for each dataset. We rank 428

the performances with respect to RAE and CARC 429

on each dataset and report the average ranking for 430

each algorithm. The results are summarized in 431

Table 2. 432

Some main observations from the table are: 433

• No algorithm outperforms others on all 434

datasets. 435

• CC and PCC are still strong baselines. PCC 436

performs better in most cases, but CC achieves 437

significantly better results on Wikipedia Toxi- 438

city, where the positive class is rare, and the 439

label shift is severe. 440
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Method Binary Multi-Class Average RankClothing Electronics Office Toxicity Clothing Electronics Office CCD

(RAE)(%)↓
CC 3.05 2.07 3.93 2.43 9.87 12.61 11.02 9.20 3.63
PCC 2.63 2.44 3.43 32.79 6.74 7.14 8.65 12.41 3.13
BBSE 2.19 1.90 4.61 50.68 5.60 8.89 19.00 8.71 3.50
RLLS 2.51 3.22 7.37 49.47 14.10 29.92 28.23 8.56 5.25
MLLS 1.73 2.06 4.15 29.46 7.02 8.95 11.96 6.13 2.75
MLLS-BCTS 1.26 2.94 4.07 30.57 7.63 7.13 11.77 7.40 2.75

(CARC)↑
CC 0.983 0.994 0.958 1.000 0.678 0.784 0.706 0.895 3.50
PCC 0.985 0.993 0.966 0.829 0.665 0.710 0.746 0.898 2.63
BBSE 0.985 0.993 0.965 nan* 0.699 0.695 0.616 0.892 4.13
RLLS 0.985 0.993 0.966 0.257 0.697 0.683 0.631 0.897 3.63
MLLS 0.985 0.993 0.967 0.314 0.685 0.721 0.733 0.900 2.13
MLLS-BCTS 0.986 0.993 0.967 0.314 0.663 0.698 0.733 0.896 3.00

Table 2: Quantification model performances in terms of average RAE (lower is better) and CARC (higher is better).
MLLS-BCTS denotes MLLS with BCTS calibrated base predictor. Overall, MLLS performs the best, but not
consistently outperforming others. *BBSE fails to produce non-zero prevalence estimates on all test sets, leading to
an undefined CARC score.

CC PCC
BBSE

RLLS
MLLS

MLLS-BCTS
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MLLS-BCTS

Figure 6: Distribution of RAE scores for test splits with the lowest 20% label shift (left) and with the highest 20%
label shift (right) on CCD. CC and PCC’s performances degrade significantly on test sets with a higher level of label
shift.

• The performance of the MLLS algorithm,441

with or without BCTS calibration, is more442

consistent across all datasets than other algo-443

rithms.444

• MLLS with BCTS calibration does not always445

have superior performance than the base ver-446

sion MLLS, contrary to what has been ob-447

served in previous studies (Alexandari et al.,448

2019).449

• A better RAE score does not always indicate a450

better CARC score. For example, CC achieves451

a significantly better CARC score than other452

methods with a second-worst RAE score of453

12.61% on Amazon Reviews (Electronics).454

• BBSE fails to produce a non-zero prevalence455

estimate on all Wikipedia Toxicity test sets. 456

This failure hints that BBSE might be unstable 457

when predicting the prevalence of rare binary 458

events. 459

5.3 Effect of Distribution Shift 460

In Section 3.3, we analyze the distribution shift 461

estimates for each dataset across all the test splits. 462

A natural question to ask is: how model perfor- 463

mances change when the level of distribution shift 464

increases? We sort the CCD test splits by label 465

shift levels measured in KLD. We then take the 466

bottom 20% and top 20% and visualize the RAE 467

score distributions for all baseline algorithms in 468

Figure 6. 469

We observe a significant performance degrada- 470

tion of CC and PCC methods on test splits with 471
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Method Standard Balanced % Change

(CCD)
CC 9.20 19.44 +111.3%
PCC 12.41 19.77 +59.3%
BBSE 8.71 9.63 +10.6%
RLLS 8.56 13.84 +61.7%
MLLS 6.13 16.80 +174.1%
MLLS-BCTS 7.40 15.94 +115.4%

(Office)
CC 11.02 14.09 +27.9%
PCC 8.65 19.94 +130.5%
BBSE 19.00 19.97 +5.1%
RLLS 28.23 27.34 -3.2%
MLLS 11.96 18.28 +52.8%
MLLS-BCTS 11.77 14.71 +25.0%

Table 3: Comparison of quantification performances
in RAE (lower is better) using base classifiers trained
with standard and balanced training set. Using a bal-
anced training strategy almost always hurts quantifica-
tion performance on CCD and Amazon Reviews (Of-
fice). BBSE is more robust to label distribution changes
from stratified sampling during training.

higher levels of label shift. MLLS and MLLS-472

BCTS are less affected by the label shift. The473

difference is expected because the underlying base474

predictor is likely to overestimate or underestimate475

the label probabilities when the test split has a sig-476

nificantly different label distribution.477

5.4 Effect of Balanced Training478

In practice, when the training data is highly skewed479

in terms of label distribution, we often manually480

up-sample the rare class examples or assign more481

weights to them to facilitate training. This proce-482

dure changes the underlying data distribution and483

could significantly impact the quantification results484

if we use the classifier as our base predictor.485

To analyze the effect of a balanced training pro-486

cedure on the quantification performance, we fine-487

tune the same BERT classifier on both CCD and488

Amazon Reviews (Office) with a weighted random489

sampler so that all class examples are balanced. We490

then use this classifier as the base predictor for all491

baseline algorithms and compare the performances492

to the main results in Table 3.493

When using a base predictor trained with a man-494

ually balanced dataset, the quantification perfor-495

mance almost always degrades. However, we can496

see from the percentage changes that BBSE is more497

robust to such performance degradation than other498

methods. For example, on CCD, BBSE is out-499

performed by MLLS when using a base classifier500

trained on the original training set. When switch-501

ing to a balanced training setup, BBSE maintains 502

a similar level of performance and betters MLLS. 503

This property makes BBSE more preferable when 504

label balancing is present during training. 505

5.5 Effect of Invariant Representation 506

Learning 507

BBSE, RLLS, and MLLS all make a label shift 508

assumption where the conditional distribution of 509

p(x|y) remains the same across training and test. 510

However, this assumption does not always hold 511

in practice. The content of a 1-star review on a 512

product posted five years ago could be significantly 513

different from a 1-star review posted today due 514

to many factors, such as a change of consumer 515

expectations in similar products. 516

To relax the label shift assumption, Tachet des 517

Combes et al. (2020) propose to learn a domain- 518

invariant representation and use a similar approach 519

to BBSE to estimate the test set label distribution by 520

performing distribution matching in the invariant 521

latent space. Supposedly, such methods should per- 522

form better on test splits where the conditional dis- 523

tribution of the input features for each class drifts 524

heavily from the training set. A significant draw- 525

back of the method is that the underlying model 526

needs to be retrained for each test split. 527

We experiment with IWDAN model (Tachet des 528

Combes et al., 2020) on both CCD and Wikipedia 529

Toxicity datasets. On CCD, IWDAN shows a much 530

worse RAE score of 49.18%. On Wikipedia Tox- 531

icity, however, IWDAN achieves an RAE score 532

of 19.40%, the second-best result after CC. As 533

the training and testing splits of Wikipedia Toxi- 534

city come from different sampling strategies, and 535

considering IWDAN is devised mainly for do- 536

main adaption, the performance discrepancy might 537

be due to a more significant domain change in 538

Wikipedia Toxicity compared to CCD. 539

6 Conclusions 540

Quantification learning has an increasing number 541

of applications yet is still less studied in the NLP 542

community. In this paper, we propose the first text 543

quantification benchmark with temporal distribu- 544

tion shift. Our experiments show that there is no 545

baseline algorithm consistently outperforming oth- 546

ers. We believe the proposed benchmark should 547

enable new research into devising methods that can 548

adapt to temporal changes and be reliably applied 549

in practice. 550
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7 Ethical Considerations551

Data Access and License We develop our bench-552

mark based on three publicly available datasets.553

Wikipedia Toxicity (Wulczyn et al., 2017) is pub-554

lished under the CC02 license. To the best of our555

knowledge, the Amazon review dataset (Ni et al.,556

2019) and the consumer complaint database are not557

associated with a license, but they are available for558

research purposes. The benchmark presented in559

this work is intended for research purpose only.560

Data Anonymization For all datasets in the561

benchmark, we only preserve the information nec-562

essary for a quantification task: timestamp, input563

text, and the label. No user identifier or other infor-564

mation is present in the derived datasets. Time and565

currency value information have being anonymized566

by the original source for CCD.567
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