A Benchmark for Text Quantification Learning
Under Real-World Temporal Distribution Shift

Anonymous ACL submission

Abstract

Text quantification is a supervised learning task
estimating the relative frequency of each class
for a collection of uncategorized text docu-
ments. Quantification learning has an increas-
ing number of applications in practice and
presents unique challenges that are often over-
looked in classification problems, such as deal-
ing with distribution shift. Many studies on
quantification use artificially re-sampled test
sets to evaluate models under varying target
label distributions. Despite being a convenient
solution, label-based biased sampling changes
the underlying test data distribution and makes
it hard to rely on the results to deploy models
in practice. This paper introduces a text quan-
tification benchmark consisting of 8 datasets
across sentiment analysis, document categoriza-
tion, and toxicity classification. We compare
popular quantification baselines on the bench-
mark and show that there is no model consis-
tently outperforming others. Therefore, we be-
lieve the benchmark should enable new com-
munity research to tackle text quantification
under temporal distribution shift and develop
reliable models in real-world applications.

1 Introduction

In the classification setting, quantification is a su-
pervised learning task that estimates the aggregated
label distribution of a test population given labeled
training examples. A typical application of quantifi-
cation is to automatically estimate the prevalence
of hate speech (Warner and Hirschberg, 2012; Mal-
masi and Zampieri, 2017; Qian et al., 2018) during
a period of time on a social platform. The plat-
form could then use the estimation to determine
the effectiveness of a certain feature with A/B test-
ing. Another example in Epidemiology is to track
the prevalence of clinical reports where a specific
pathology is diagnosed (Stanfill et al., 2010). In
both cases, an accurate estimation of the label dis-
tribution provides actionable insights.
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Figure 1: A standard setting for quantification learning.
Given annotated training data, a quantifier needs to give
prevalence estimates for unlabeled test sets.

Despite the many possible applications, quan-
tification is relatively understudied in the NLP
community. One common misunderstanding is
that these problems can be solved trivially us-
ing a straightforward Classify & Count (CC) ap-
proach (Forman, 2008) based on an off-the-shelf
classifier. However, classifiers are often trained
with the assumption that the training and test ex-
amples are drawn i.i.d. from a common data distri-
bution. In contrast, the underlying assumption of
quantification learning is that the data distribution
changes between the training and the testing phase.
Under severe distribution shift, naive aggregation
of classification results would yield unsatisfactory
performances. As a result, there is a strong connec-
tion between quantification learning and tasks that
deal with distribution shift.

Label shift (Lipton et al., 2018; Alexandari et al.,
2019; Tachet des Combes et al., 2020) is a closely
related line of research that detects the shift in the
label distribution and adjusts to optimize for clas-
sification accuracy on the test examples. When
used for quantification, these approaches mostly
apply distribution matching in a latent space and
are in essence equivalent to earlier quantification
methods such as Adjusted Count (Forman, 2008;
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Samples:

Money transfer

on Saturday X/XX/XX my employeer tried to direct deposit XXXX it was rejected
by my bank.

Digital wallet / virtual currency

I can not transfer money to a site where | can buy digital currency. Not being able
to use my own money is a huge problem.Quite a scam.

Figure 2: Prevalence change of the “Money transfer,
virtual currency” category across time in the Consumer
Complaint Database. Within the category, the com-
position of complaints also changes, creating further
challenges to quantifiers.

Hopkins and King, 2010; Saerens et al., 2002) and
Probabilistic Adjusted Count (Bella et al., 2010).
Compared to quantification learning, label shift lit-
erature focuses on performance optimization of the
underlying learner where the estimated test label
distribution is a by-product. Label shift caused by
temporal factors falls into this category but is never
explicitly studied.

One main problem with recent studies on quan-
tification is the dataset, especially the testing sets,
being used. As pointed out in Gonzdlez et al.
(2017), quantification methods need to be evaluated
on a set of testing splits with enough variations on
the label distribution. Most of the abovementioned
studies achieve this by artificially changing the test
label distribution through biased sampling. For ex-
ample, Forman (2008) uses a set of pre-specified
positive prevalence values and constructs the test
sets accordingly; Lipton et al. (2018) simulates la-
bel shift by drawing the test set label distributions
from a Dirichlet distribution. However, these strati-
fied sampling strategies change the underlying data
distribution and are problematic in assessing the
actual performances of quantification models in
practice.

In this paper, we introduce the first text quan-
tification benchmark with naturally occurred tem-
poral distribution shift. Each dataset is split into
subsets containing samples from the same month
or year. The subsets are then grouped into train-
ing and testing according to a specified point in

time. We construct the training and testing sets
to mimic a practical use case in a realistic setting
where we need to predict the future class preva-
lence given historical annotated data. Due to the
long time span, the input distribution for each class
might change. For example, Figure 2 shows that
the “Money transfer, virtual currency” category in
one of the datasets has drastically different input
composition in early-2017 and mid-2020, which
presents more significant challenges to a candidate
quantifier.

A total of eight datasets are included in the
benchmark spanning sentiment analysis, document
categorization, and toxicity classification. We eval-
uate different quantification/label shift estimation
algorithms on the benchmark and find that no algo-
rithm consistently outperforms others.

The main contributions of this work are three-
fold:

* We create the first benchmark for text quan-
tification learning with temporal distribution
shift consisting of diverse tasks and domains
to evaluate model performances in a realistic
setting.

* We propose a new metric, Class-Averaged
Rank Correlation (CARC), for quantification
learning that measures models’ ability to pro-
duce prevalence estimates that are consistent
with ground-truth values in terms of ranking
order.

* We evaluate various baseline algorithms on
the benchmark and find that no algorithm con-
sistently outperforms others, strongly motivat-
ing future research in this area.

2 Related Work

Quantification Learning. Many of the experi-
ments reported in quantification learning literature
employ datasets taken from other classification
problems. For example, Gao and Sebastiani (2016)
use 11 sentiment classification datasets and aver-
age the performances of studied methods across
all 11 datasets. The problem is that only one test
set is available for each dataset. Qi et al. (2020)
use four text classification datasets for evaluation.
However, all four datasets have a balanced training
set, and the test splits are artificially created similar
to Forman (2008). Beijbom et al. (2015) create two
large-scale, image datasets from marine ecology.



The experimental settings are more adequate with
21 and 15 test splits under various distribution shift.
Esuli and Sebastiani (2015) employ RCV1-v2, a
multi-label text classification benchmark with 52
weeks of data for testing. These datasets lack the
number of test splits or the diversity of the task
domains. In contrast, our benchmark comprises
more diverse tasks and domains; it involves tempo-
ral distribution shift across a long period of time;
it provides monthly/yearly splits that allow more
fine-grained analysis.

Learning under Distribution Shift. There has
been an increasing interest in studying the chal-
lenges arising from data distribution changes in the
machine learning community (Daumé II1, 2007;
Blitzer et al., 2007; Glorot et al., 2011; Ganin et al.,
2016). The focus of these studies is mainly on
adapting to covariate shift and improving the per-
formance of the underlying learner in a shifted
domain. Lipton et al. (2018) study the problem of
adapting a classifier under label shift, assuming the
feature distribution of each class stays the same.
Tachet des Combes et al. (2020) combine the idea
of label shift with adversarial domain adaption and
learn invariant representations in different domains.

Quantification learning shares the same distri-
bution shift challenges as domain adaptation and
label shift. However, the goal is inherently dif-
ferent. Direct utilization of domain adaptation
datasets for quantification is undesirable for two
reasons. Firstly, many quantification applications
are interested in distribution shift caused by tempo-
ral factors because quantifiers are primarily used
for prevalence monitoring. The very few datasets
that involve temporal distribution shift are mostly
vision datasets (Christie et al., 2018; David et al.,
2020). Secondly, quantification learning requires
test splits to reflect the actual ground truth preva-
lence for each class which is not a necessity for
domain adaptation.

3 The Text Quantification Benchmark

3.1 Problem Formulation

Given a labeled set of examples Dg =
{(x1,y1)s-- -, (Tn,yn)} where x; € X and y; €
Y ={li,...,l;}, denote P(X) as the powerset of
X, and A? as the standard d-simplex, the task is to
induce a quantifier b : P(X)\0) — AF~! from the
training data. For a test set X; = {«},...,2},},
h(X¢) produces a categorical distribution p where

each element in the predicted vector p; represents
the proportion of label /; in the set of input exam-
ples. The goal is to predict p that is as close as
possible to the ground truth label distribution p.

3.2 Dataset Identification and Preparation

There are several considerations when we identify
potential dataset candidates for the benchmark:

* The dataset must have instance-level time in-
formation to construct test splits based on the
time each example was produced.

* There should be no label-based biased sam-
pling in any test split so that the actual un-
derlying label distributions are available to be
compared.

* The dataset ideally should span a long period
of time so that there is enough label distribu-
tion variation in the test splits.

* The benchmark should cover both multi-class
and binary classification problems in multiple
text domains with various training data sizes.

There are in total eight datasets being included in
the benchmark, an overview of the dataset statistics
is shown in Table 1.

Amazon Review Data (Ni et al., 2019) con-
tains product reviews collected from Amazon in
the range of May 1996 to October 2018. We use
the “S-core” subsets for three categories: Clothing
Shoes and Jewelry, Electronics, and Office Prod-
ucts to account for different domains and data sizes.
There is a steady trend towards a higher percentage
of higher review ratings over time, making these
datasets suitable for quantification.

For all three categories, reviews made between
2008-08 and 2015-07 are used for training, and re-
views from 2015-08 to 2018-07 are split by month
and used for testing. The original review ratings are
on a scale of five stars. We create binary versions
of each category by changing the task to predict the
percentage of negative reviews, i.e., reviews with 1
star and 2 stars.

Consumer Complaint Database (CCD) is a col-
lection of complaints about consumer financial
products and services that the Consumer Finan-
cial Protection Bureau sent to companies for re-
sponse!. All complaints can be classified into nine

"https://www.consumerfinance.gov/
data-research/consumer-complaints/
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Amazon Reviews

Dataset Clothing Electronics Office CCD Wikipedia Toxicity

training splits Aug 2008 - Jul 2015 Apr 2015 - Jul 2019 2001 - 2010

test splits Aug 2015 - Jul 2018 Aug 2019 - Jul 2021 2011 - 2015

# classes S5or2 9 2

# training 3,749,569 3,283,304 316,302 434,482 109,277

# test 7,453,848 3,285,326 476,785 345914 25,809
m/%

label distribution

[P

Table 1: The text quantification benchmark contains 8 datasets (including three binary versions of the Amazon
Reviews datasets) across sentiment analysis, document categorization, and toxicity classification tasks. Each dataset
comprises data from a long period of time, and the benchmark is set up to evaluate models’ ability to accurately
estimate future test split label distributions under naturally occurred distribution shift.

categories based on product types. Due to the evolu-
tion of the financial market, the complaint category
distribution changes over time. For example, the
percentage of credit reporting-related complaints
increased from around 16% in 2017-01 to 57% in
2021-07.

We take all the records between 2015-04 and
2021-07 and filter out those without text content.
Complaints filed before 2019-07 are used for train-
ing, and the remaining data are grouped by month
as test splits. There are 434,482 training examples
and 345,914 test examples. Test split size ranges
from 5,127 to 18,495.

Wikipedia Talk: Toxicity (Wulczyn et al.,
2017) includes labeled discussion comments from
English Wikipedia. Multiple annotators labeled
each comment via Crowdflower on whether it is a
toxic or healthy contribution. The original data was
collected using two sampling types: random and
blocked. The random dataset contains randomly
selected comments; therefore, it can be used to
evaluate the actual toxicity prevalences over time.
The blocked dataset is used to ensure a sufficient
number of toxic comments for training purposes.
We use blocked and random examples from 2001
to 2010 as the training set, random examples from
2011 to 2015 as the test splits. By construction, the
underlying distribution changes from training to
test significantly. As the up-sampling strategy for
imbalanced classification is ubiquitous in practice,
this dataset is perfect for evaluating quantification
methods with classifiers trained on re-sampled data.
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Figure 3: Distributions of the test split covariate shift
measured with MMD in the BERT embedding space.
Wikipedia Toxicity has milder covariate shift compared
to others.

3.3 Distribution Shift Analysis

We measure the distribution shift of each test split
compared with the corresponding training set in
terms of both covariate shift and label shift.

Covariate Shift. We capture the covariate shift
of the input distribution p(z) by encoding the text
documents with a pretrained BERT model (Devlin
et al., 2019). We then take the BERT embedding
of all input examples and evaluate the Maximum
Mean Discrepancy (MMD) (Gretton et al., 2012).
MMD allows us to compare two probability distri-
butions in a reproducing kernel Hilbert space based
on their samples. We use MMD with a radial basis
function (RBF) kernel and set ¢ to be the median
distance between points in the training set (Gretton
et al., 2012).
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Figure 4: Distributions of the test split label shift mea-
sured with KLD. CCD and Wikipedia Toxicity have a
higher average label shift as well as larger variations
among the test splits.
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A larger value measured by MMD indicates a
larger discrepancy between the training and testing
input embeddings.

We sample 10,000 examples from each test split
and measure the MMD for all test splits. The dis-
tribution of the test split covariate shifts for each
dataset is shown in Figure 3. All datasets have vary-
ing levels of covariate shift in their test splits except
for Wikipedia Toxicity. All five test splits in the
Toxicity dataset have similar levels of MMD values
compared to the training set. It is still interesting
to see how well models trained with up-sampling
estimate the true unbalanced label distribution.

Label Shift. We use Kullback—Leibler diver-
gence (KLD) to measure the difference between
the training label distribution and the test split la-
bel distributions. Ideally, the label shift of the test
splits should cover a range of values to better eval-
uate candidate methods under various scenarios.
The distributions of label shift values in the test
splits are plotted in Figure 4. CCD and Wikipedia
Toxicity have higher variations in the degrees of
label shift from the training set than Amazon Re-
view datasets. There are still reasonable label shift
variations in the Amazon Review data as shown in
Table 1.

3.4 Evaluation

We use two commonly reported quantification met-
rics for performance evaluation: Relative Absolute

Error (RAE) and Knullback-Leibler Divergence
(KLD). We propose a new metric, namely Class-
Average Rank Correlation (CARC), to measure the
ability to rank test splits by class label prevalences
correctly.

Relative Absolute Error. RAE measures the re-
lation between the absolute error and the ground
truth label distribution. Formally,

RAE(p

Z ’pz pz )

Intuitively, RAE measures the average percent-
age difference from an estimated class prevalence
to the ground truth. The lower the better.

Knullback-Leibler Divergence. KLD is a pop-
ular metric for measuring the difference between
two distributions.

KLD(p,p) =

sz log 2! 5 3)

A benefit of using KLD is that it is widely
adopted in the machine learning community and
quantification literature. However, it is less inter-
pretable than RAE and can be undefined when
p; = 0. As RAE and KLD values are closely
correlated, reporting both values is redundant in
most cases. Therefore, we only report RAE in our
experiments.

Class-Averaged Rank Correlation. In addition
to RAE and KLD, both of which measure the dif-
ference between the predicted label distribution
and the ground truth for each test split, we pro-
pose a new metric for quantification named Class-
Averaged Rank Correlation.

We first uses Spearman’s p to measure the rank
correlation among the predicted prevalence for a
particular class across all test splits. CARC is de-
fined as the average rank correlation value across
all classes. Formally, let P = [p(), ... p®)] de-
note the list of ground truth label distributions for
the ¢ test splits. p represents the corresponding
list of predictions [p™), ... p®)]. Denote P; as
[pl(l), . ,pg )] i.e., the list of true prevalences for
class ¢ in all test splits. CARC is defined as:

CARC(P, P) ZpR Eorp) @
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Figure 5: An illustration of the CARC metric. A perfect
CARC score of 1 indicates that the model successfully
predicts which split has a higher prevalence for any pair
of test splits.

where p is the correlation coefficient applied to the
rank variables R(P;) and R(P;).

With a higher value of CARC, if test split A has
a higher prevalence of a specific class label than
test split B, the predicted prevalence in A is more
likely to be higher than that in B. CARC is a critical
metric because if a quantifier indicates a prevalence
increase, the ground truth prevalence should ideally

indeed be higher.

4 Baseline Algorithms

In addition to the straightforward Classify & Count
(CC) algorithm, we include several methods from
prior work on label shift estimation where predic-
tions from a black box classifier can be used as
inputs.

Classify & Count (CC) (Forman, 2008). Given
classification results from an existing classifier,
CC uses the aggregated distribution to predict the
test set label distribution. Probabilistic Classify &
Count (PCC) is a variant that aggregates the pre-
dicted probabilities instead of class assignments.

Black Box Shift Estimation (BBSE) (Lipton
et al., 2018). By making a label shift assumption
that the conditional distribution of p(z|y) remains
the same across training and testing, BBSE uses
the confusion matrix to adjust the predicted label
distribution from CC. BBSE is proven to be consis-
tent and error bounded even with biased black box
predictors as long as the confusion matrix is invert-
ible, and the label shift assumption holds. BBSE,
when used for quantification, is equivalent to the
Adjusted Count method (Forman, 2008; Hopkins
and King, 2010) in multi-class settings.

Regularized Learning under Label Shift (RLLS)
(Azizzadenesheli et al., 2019). To avoid arbitrarily
bad estimation of the confusion matrix due to lim-
ited data size, RLLS makes the final distribution
prediction less sensitive to the estimation perfor-
mance of the confusion matrix by regularizing the
ratio of test and training label distributions. RLLS
is primarily designed to improve classification per-
formance under label shift. The label distribution
estimate is often a compromise between the BBSE
result and the training distribution.

Maximum Likelihood Label Shift (MLLS)
(Alexandari et al., 2019). Like BBSE, MLLS also
takes a distribution matching approach to estimate
the test set label distribution. The original algo-
rithm uses an EM-based strategy (Saerens et al.,
2002) to perform distribution matching in the in-
put space of the test set. Alexandari et al. (2019)
show that in combination with a particular post-hoc
calibration method, MLLS outperforms BBSE.

5 Experiments and Results

5.1 Experimental Setup

We use the huggingface implementation of the
BERT classifier fine-tuned on the corresponding
dataset as the base predictor for all algorithms. The
predictor is further calibrated using bias-corrected
temperature scaling (BCTS) (Alexandari et al.,
2019) for the MLLS method. All models are
trained with AdamW optimizer (Loshchilov and
Hutter, 2018) with a learning rate of 2e-5. All mod-
els are trained on a single Titan RTX GPU with a
batch size of 32.

5.2 Main Results

We measure the RAE and CARC scores for all
methods on the benchmark. RAE scores are aver-
aged over all test splits for each dataset. We rank
the performances with respect to RAE and CARC
on each dataset and report the average ranking for
each algorithm. The results are summarized in
Table 2.
Some main observations from the table are:

* No algorithm outperforms others on all
datasets.

* CC and PCC are still strong baselines. PCC
performs better in most cases, but CC achieves
significantly better results on Wikipedia Toxi-
city, where the positive class is rare, and the
label shift is severe.



Binary

Multi-Class

Method Clothing  Electronics Office Toxicity Clothing Electronics Office =~ CCD Average Rank
(RAE)(%)|

CcC 3.05 2.07 3.93 243 9.87 12.61 11.02  9.20 3.63
PCC 2.63 2.44 343 32.79 6.74 7.14 8.65 1241 3.13
BBSE 2.19 1.90 4.61 50.68 5.60 8.89 19.00 8.71 3.50
RLLS 2.51 322 7.37 49.47 14.10 29.92 2823  8.56 5.25
MLLS 1.73 2.06 4.15 29.46 7.02 8.95 11.96  6.13 2.75
MLLS-BCTS 1.26 2.94 4.07 30.57 7.63 7.13 11.77  7.40 2.75
(CARC)t

CC 0.983 0.994 0.958 1.000 0.678 0.784 0.706  0.895 3.50
PCC 0.985 0.993 0.966 0.829 0.665 0.710 0.746  0.898 2.63
BBSE 0.985 0.993 0.965 nan* 0.699 0.695 0.616  0.892 4.13
RLLS 0.985 0.993 0.966 0.257 0.697 0.683 0.631 0.897 3.63
MLLS 0.985 0.993 0.967 0.314 0.685 0.721 0.733  0.900 2.13
MLLS-BCTS 0.986 0.993 0.967 0314 0.663 0.698 0.733  0.896 3.00

Table 2: Quantification model performances in terms of average RAE (lower is better) and CARC (higher is better).
MLLS-BCTS denotes MLLS with BCTS calibrated base predictor. Overall, MLLS performs the best, but not
consistently outperforming others. *BBSE fails to produce non-zero prevalence estimates on all test sets, leading to

an undefined CARC score.
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Figure 6: Distribution of RAE scores for test splits with the lowest 20% label shift (left) and with the highest 20%
label shift (right) on CCD. CC and PCC’s performances degrade significantly on test sets with a higher level of label

shift.

* The performance of the MLLS algorithm,
with or without BCTS calibration, is more
consistent across all datasets than other algo-
rithms.

e MLLS with BCTS calibration does not always
have superior performance than the base ver-
sion MLLS, contrary to what has been ob-

served in previous studies (Alexandari et al.,
2019).

* A better RAE score does not always indicate a
better CARC score. For example, CC achieves
a significantly better CARC score than other
methods with a second-worst RAE score of
12.61% on Amazon Reviews (Electronics).

» BBSE fails to produce a non-zero prevalence

estimate on all Wikipedia Toxicity test sets.
This failure hints that BBSE might be unstable
when predicting the prevalence of rare binary
events.

5.3 Effect of Distribution Shift

In Section 3.3, we analyze the distribution shift
estimates for each dataset across all the test splits.
A natural question to ask is: how model perfor-
mances change when the level of distribution shift
increases? We sort the CCD test splits by label
shift levels measured in KLD. We then take the
bottom 20% and top 20% and visualize the RAE
score distributions for all baseline algorithms in
Figure 6.

We observe a significant performance degrada-
tion of CC and PCC methods on test splits with



Method Standard Balanced % Change
(CCD)

CC 9.20 19.44 +111.3%
PCC 1241 19.77 +59.3%
BBSE 8.71 9.63 +10.6%
RLLS 8.56 13.84 +61.7%
MLLS 6.13 16.80 +174.1%
MLLS-BCTS 7.40 15.94 +115.4%
(Office)

CcC 11.02 14.09 +27.9%
PCC 8.65 19.94 +130.5%
BBSE 19.00 19.97 +5.1%
RLLS 28.23 27.34 -3.2%
MLLS 11.96 18.28 +52.8%
MLLS-BCTS 11.77 14.71 +25.0%

Table 3: Comparison of quantification performances
in RAE (lower is better) using base classifiers trained
with standard and balanced training set. Using a bal-
anced training strategy almost always hurts quantifica-
tion performance on CCD and Amazon Reviews (Of-
fice). BBSE is more robust to label distribution changes
from stratified sampling during training.

higher levels of label shift. MLLS and MLLS-
BCTS are less affected by the label shift. The
difference is expected because the underlying base
predictor is likely to overestimate or underestimate
the label probabilities when the test split has a sig-
nificantly different label distribution.

5.4 Effect of Balanced Training

In practice, when the training data is highly skewed
in terms of label distribution, we often manually
up-sample the rare class examples or assign more
weights to them to facilitate training. This proce-
dure changes the underlying data distribution and
could significantly impact the quantification results
if we use the classifier as our base predictor.

To analyze the effect of a balanced training pro-
cedure on the quantification performance, we fine-
tune the same BERT classifier on both CCD and
Amazon Reviews (Office) with a weighted random
sampler so that all class examples are balanced. We
then use this classifier as the base predictor for all
baseline algorithms and compare the performances
to the main results in Table 3.

When using a base predictor trained with a man-
ually balanced dataset, the quantification perfor-
mance almost always degrades. However, we can
see from the percentage changes that BBSE is more
robust to such performance degradation than other
methods. For example, on CCD, BBSE is out-
performed by MLLS when using a base classifier
trained on the original training set. When switch-

ing to a balanced training setup, BBSE maintains
a similar level of performance and betters MLLS.
This property makes BBSE more preferable when
label balancing is present during training.

5.5 Effect of Invariant Representation
Learning

BBSE, RLLS, and MLLS all make a label shift
assumption where the conditional distribution of
p(z|y) remains the same across training and test.
However, this assumption does not always hold
in practice. The content of a 1-star review on a
product posted five years ago could be significantly
different from a 1-star review posted today due
to many factors, such as a change of consumer
expectations in similar products.

To relax the label shift assumption, Tachet des
Combes et al. (2020) propose to learn a domain-
invariant representation and use a similar approach
to BBSE to estimate the test set label distribution by
performing distribution matching in the invariant
latent space. Supposedly, such methods should per-
form better on test splits where the conditional dis-
tribution of the input features for each class drifts
heavily from the training set. A significant draw-
back of the method is that the underlying model
needs to be retrained for each test split.

We experiment with IWDAN model (Tachet des
Combes et al., 2020) on both CCD and Wikipedia
Toxicity datasets. On CCD, IWDAN shows a much
worse RAE score of 49.18%. On Wikipedia Tox-
icity, however, IWDAN achieves an RAE score
of 19.40%, the second-best result after CC. As
the training and testing splits of Wikipedia Toxi-
city come from different sampling strategies, and
considering IWDAN is devised mainly for do-
main adaption, the performance discrepancy might
be due to a more significant domain change in
Wikipedia Toxicity compared to CCD.

6 Conclusions

Quantification learning has an increasing number
of applications yet is still less studied in the NLP
community. In this paper, we propose the first text
quantification benchmark with temporal distribu-
tion shift. Our experiments show that there is no
baseline algorithm consistently outperforming oth-
ers. We believe the proposed benchmark should
enable new research into devising methods that can
adapt to temporal changes and be reliably applied
in practice.



7 Ethical Considerations

Data Access and License We develop our bench-
mark based on three publicly available datasets.
Wikipedia Toxicity (Wulczyn et al., 2017) is pub-
lished under the CC0? license. To the best of our
knowledge, the Amazon review dataset (Ni et al.,
2019) and the consumer complaint database are not
associated with a license, but they are available for
research purposes. The benchmark presented in
this work is intended for research purpose only.

Data Anonymization For all datasets in the
benchmark, we only preserve the information nec-
essary for a quantification task: timestamp, input
text, and the label. No user identifier or other infor-
mation is present in the derived datasets. Time and
currency value information have being anonymized
by the original source for CCD.
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