
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPECTRAL MULTIPLE-INSTANCE LEARNING
FOR EFFICIENT GIGAPIXEL IMAGE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

With ongoing advances in imaging technology, gigapixel images are now widely
utilized in both scientific research and industrial applications. However, their
extremely large scale presents significant challenges for conventional deep learning
workflows. A common approach involves partitioning the image into thousands
of smaller patches, processing each patch independently, and aggregating the
representations using a Multiple-Instance Learning (MIL) framework. Because the
label of a gigapixel image often depends on a small subset of informative regions,
identifying these key patches is essential. However, MIL faces a persistent multi-
resolution dilemma: low-magnification views offer global contextual information
but fail to capture fine-grained details, whereas high-magnification views retain
these details at a substantial computational cost. We introduce Multi-Instance
Learning with Spectral Methods (SpecMIL), which addresses this challenge by
capturing high-frequency features at low magnification and preserving geometric
relationships across scales using graph spectral theory. SpecMIL exploits spectral
features that remain informative even after down-sampling, guiding selective high-
resolution “zoom-in” only where necessary. Experiments on various whole slide
image benchmarks (e.g., tumor subtyping, grading, and metastasis detection)
demonstrate that spectral approaches offer a highly effective and efficient solution
for gigapixel image analysis.

1 INTRODUCTION

In recent years, the demand for processing high-resolution data has grown markedly across multiple
areas of computer vision, including image generation Wu et al. (2025), Vision–Language Models
(VLMs) Shi et al. (2024), large-scale scene understanding Ma et al. (2024), and medical image
analysis Kapse et al. (2024). A prominent example is the analysis of whole-slide images (WSIs) Lu
et al. (2021), whose gigapixel resolution can reach up to 150,000 × 150,000 pixels Zhang et al.
(2022). Such sheer size renders WSIs impractical to process with standard vision encoders under
current hardware constraints, creating bottlenecks for downstream tasks such as disease diagnosis,
tumor grading, and tissue classification.

A pragmatic workaround is the multiple-instance learning (MIL) pipeline, which partitions a gigapixel
image into smaller, computationally manageable patches. Each patch is encoded independently, and
the resulting embeddings are aggregated to form a slide-level representation. Despite its practicality,
this pipeline faces a fundamental challenge: the inherent trade-off between global context and local
resolution. Low-resolution views capture global tissue organization but miss fine-grained morphology,
whereas high-resolution patches reveal cellular details but lose broader context. Capturing both
simultaneously is therefore difficult.

This multi-resolution dilemma is not unique to WSIs; it arises in any gigapixel-scale image domain.
Balancing the preservation of global structure against the resolution needed for detailed analysis is a
pervasive problem across high-resolution imaging applications.

Prior work tackles the issue with hierarchical transformers Chen et al. (2022); Guo et al. (2023)
or by selectively sampling a small set of high-magnification patches guided by low-magnification
cues Thandiackal et al. (2022). While these strategies improve accuracy, they incur substantial
computational overhead or rely on identifying subtle signals that may vanish at low magnification.
Moreover, modern vision encoders that achieve state-of-the-art performance on benchmark datasets
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have a strong tendency to smooth out high-frequency features, making it even harder to retain fine
morphological cues in low-resolution views. Consequently, important signals become nearly invisible
at low magnification, whereas their corresponding high-magnification patches are prohibitively
expensive to enumerate exhaustively.

To overcome this dilemma, we introduce Multi-Instance Learning with Spectral Methods
(SpecMIL), a selective-magnification framework that harnesses spectral methods to preserve high-
frequency morphological cues while remaining computationally efficient. As detailed in Section 4,
SpecMIL operates in two steps: (1) it extracts high-frequency features from each low-magnification
patch, and (2) it encodes rotation-invariant geometric relationships among patches by constructing a
graph and applying a novel Learnable Geometric Position Encoding (LGPE). By detecting subtle
signals that usually require higher magnification, SpecMIL “zooms in” only on the most relevant
regions, dramatically reducing the explosion in patch count at higher magnifications. The patch-graph
edges capture both spatial proximity and similarity in high-frequency feature space, while LGPE
leverages graph spectral analysis to make the positional encoding robust to arbitrary slide rotations.

In this way, SpecMIL preserves diagnostic features that are otherwise lost at low magnification and
avoids the heavy cost of scanning an entire slide at maximum magnification. It also removes the need
for the differentiable top-k operation used in prior zoom-based MIL frameworks Thandiackal et al.
(2022), thereby lowering memory usage and computation. Together, these spectral- and geometry-
driven design choices enable SpecMIL to resolve the multi-resolution dilemma and to achieve
state-of-the-art accuracy with markedly improved efficiency, as demonstrated in our experiments.

2 RELATED WORK

Multiple Instance Learning. MIL has emerged as the dominant paradigm for any gigapixel-
scale image, where only image-level supervision is attainable and loading the full resolution would
overwhelm GPU memory. Early explicit MIL pipelines fused patch-level scores through mean or
max pooling Campanella et al. (2019); Zhang et al. (2022), but attention–based aggregation such as
ABMIL Ilse et al. (2018) quickly became the standard because it learns instance weights end-to-end
and yields interpretable region-importance maps. To improve the discriminative power of patch
representations, CLAM Lu et al. (2021) introduces an auxiliary task within the MIL framework to
evaluate instance relevance based on attention size for WSI classification. TransMIL Shao et al.
(2021) captures relationships among patches using self-attention Vaswani et al. (2017), addressing
the computational complexity of softmax in long sequences through linear Self-Attention Wang et al.
(2020b); Xiong et al. (2021).
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Figure 1: Normalized magnitude of the frequency
spectrum. Lower magnification images exhibit
higher magnitudes in the high-frequency spectrum
compared to higher magnification images (left).
When visual features at high magnification images
are compressed into smaller spatial areas at lower
magnification (right), the features are shifted into
higher frequency components within the frequency
domain.

Multi-resolution WSIs. To leverage the rich
information offered by multiple magnifications,
DSMIL Li et al. (2021) embeds multi-scale
representations by concatenating patch features
across different scales. H2-MIL Hou et al.
(2022) represents WSIs as hierarchical heteroge-
neous graphs, whereas HIPT Chen et al. (2022)
introduces a hierarchical pre-training framework
specifically designed for multi-resolution anal-
ysis. HIGT Guo et al. (2023) further expands
upon these ideas by incorporating a novel Bidi-
rectional Interaction module that captures both
local and global information from WSI pyra-
mids simultaneously. Despite these advances,
the above methods primarily emphasize either
local or global correlations within WSI pyra-
mids, limiting their capacity to fully exploit com-
plex, multi-resolution information. ZoomMIL
Thandiackal et al. (2022), our main baseline, pro-
poses a “zoom” process that selects key regions
at low magnification and retrieves correspond-
ing patches at higher magnification, effectively

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

mirroring a pathologist’s diagnostic workflow. Nonetheless, ZoomMIL still relies on a differentiable
top-k operation, which can be computationally expensive and risks missing fine morphological cues
if they are not adequately represented at low magnification.

High-Frequency Components in WSIs. In the context of WSIs and digital pathology, under-
standing the relationship between magnification and frequency components is crucial for accurate
image analysis and interpretation. High-frequency components in an image correspond to fine details
and sharp transitions, such as cellular structures and tissue boundaries, which are often critical for
diagnostic purposes. The morphology observed at high magnification corresponds to high-frequency
components when viewed at lower magnifications. This occurs because the same visual patterns that
occupy a larger spatial area at high magnification are compressed into a smaller spatial area in the
lower-magnification image, as illustrated on the right side of Fig. 1. As a result, the fine details and
sharp transitions inherent in these high-magnification features are translated into higher frequency
components within the frequency domain of the lower-magnification image. Understanding this
relationship is essential for ensuring the fidelity of morphological analysis across different levels of
magnification in WSIs. We provide a theoretical explanation of the relationship between frequency
and resolution in the appendix.

Learnable Structural and Positional Encoding. Positional encoding is a fundamental component
in modern deep learning models, particularly Transformer architectures, as it enables the model to
capture the order of elements within a sequence. This capability is essential for understanding contex-
tual relationships and maintaining sequence information in tasks like natural language processing.
Such encoding is crucial for allowing the model to learn patterns based on both content and position,
thereby improving performance in tasks where sequence order plays a significant role. LSPE Dwivedi
et al. (2021) has been proposed to enhance the representational power of positional encoding by
learning position representations separately, rather than merging them directly with node features.
However, LSPE treats the positional encoding topology as identical to the message-passing graph
topology. In our approach, we propose a refined positional encoding strategy that leverages spectral
positional encoding derived from both distance-based adjacency and feature-based adjacency for
geometric connectivity.

3 PRELIMINARY

In this preliminary, we start with a basic MIL pipeline for WSIs. Then, we explain the basic concepts
of Graph Neural Network (GNN) architecture that is utilized to incorporate inherent geometry of
MIL patches in our proposed Learnable Geometric Position Encoding (LGPE).

Multi-Instance Learning for WSI. Given a WSI X , the slide-level prediction Ŷ is obtained by
learning a classifier f(X; θ). Due to the extensive resolution of WSIs, X is patched into a bag
of small instances X = {x1, ..., xN}, where N is the number of instances. Then, the slide-level
prediction Ŷ is obtained by a global-pooling operation of the latent label ŷi for each instance xi,
which can be defined as:

Ŷ = max{ŷ1, ..., ŷN}. (1)

Since there are no labels for each instance ŷi under WSI-level supervision, conventional approaches
convert this problem into a MIL formulation with two steps: 1) Processing images into feature
representations Z = {z1, ..., zN} with a backbone fv as zi = fv(xi; θ1), zi ∈ RC where fv is a
model of any architecture such as CNN or ViT with parameters θ1. 2) Aggregating the features
of all patches within a slide and producing the slide-level prediction Y = g(Z; θ2), where g is an
attention-based pooling function followed by a linear classifier head as:

g(Z; θ2) = σ
( N∑
i=1

aizi
)
, (2)

where ai is attention weights and σ(·) is a linear head. Limited by computational cost, the parameters
θ1 and θ2 in f(X; θ) = g{fv(X; θ1); θ2} are learned separately by the following steps: 1) Initializing
θ1 from the pretrained model. 2) Freezing θ1 and learning θ2 under slide-level supervision.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Low�Magnification

𝑧!

𝑧"

𝑧#

… … …

𝑧$̅!

𝑧%̅&!

𝑧$̅#

…

Original�Features

…

HF�Features

High�Magnification

𝑧$̅'

…

LPGA

Aggregation

LGPE

Aligned�LGPE

:�Multiplication

𝑌"

LPGA

Original�Features HF�Features

Top-K

𝑧!(

𝑧"(

𝑧#(

𝑧$̅!(

𝑧$̅'(

𝑧$̅#(

𝑧%̅&!
(

(×𝑀)

𝑧)

𝑧)

𝑻

𝑍*

𝑍̅*

Figure 2: Overall architecture of SpecMIL.

WSIs as graph. Let G = (V, E) be a graph with V being the set of nodes and E the set of edges.
Each WSI image X and its patches can be represented as G and V , respectively. The graph has
N = |V| nodes and E = |E| edges. The connectivity of the graph is represented by the adjacency
matrix A ∈ RN×N where Aij = 1 if there exists an edge between the nodes i and j; otherwise
Aij = 0. The degree matrix is denoted D ∈ RN×N . The update equation for the node representaion
zi with a conventional GNN layer is defined as:

zℓ+1
i = fGNN(z

ℓ
i ,
{
zℓj
}
j∈Ni

), zℓ+1
i , zℓi ∈ RC , (3)

where fGNN is a function with learnable parameters, and Ni is the neighbor nodes of the node i.

4 METHOD

Here, we present SpecMIL, a selective magnification strategy designed to tackle the multi-resolution
dilemma of WSIs, specifically addressing the trade-off between information richness and complexity
at different magnification levels. SpecMIL employs two spectral methods for informative features:
1) Frequency analysis to extract high-frequency components from images, and 2) Graph spectral
analysis to capture and encode the geometric properties between patches. By selecting regions to
zoom based on high-frequency components and geometric positional encoding at low-magnification
patches, SpecMIL successfully mitigates the multi-resolution dilemma of WSIs, accurately capturing
morphological features that require higher magnification exploration at low magnification levels.
Through this hierarchical magnification selection architecture, SpecMIL significantly diminishes the
complexity of exploring high-magnification in a quadratic magnitude while improving performance.
The overall architecture of SpecMIL and our proposed Learnable Geometric Position Encoding
(LGPE) are illustrated in Fig 2 and Fig 3, respectively.

4.1 MULTI-RESOLUTION PATCH ENCODING

To begin, we crop the WSI X into multiple non-overlapping image patches under different magnifica-
tions (i.e., ×5,×10) with sliding windows. OTSU filtering is applied to filter out the background
patches. Then, we encode the original image patches for low magnification image as set Xlow and
patches from M times higher magnification as set Xhigh. Each Xlow and Xhigh is written as:

Xlow = {x1, x2, · · · , xN}, Xhigh = {x̄11, x̄12, · · · , x̄1M2 , · · · , x̄N1, x̄N2, · · · , x̄NM2}, (4)

where N is the total number of patches at low magnification, high magnification patches
{x̄i1, x̄i2, · · · , x̄iM2}i=1,2,··· ,N corresponds to the low magnification region xi since each patch
generates M2 patches at M times higher magnification. Then, the patches are encoded with a
vision encoder fv (e.g., ResNet50), resulting in features Zlow = {z1, z2, · · · , zN} and Zhigh =
{z̄11, z̄12, · · · , z̄1M2 , · · · , z̄N1, z̄N2, · · · , z̄NM2} where zi, z̄ij ∈ R1×C .

4
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4.2 SPECTRAL HIGH-FREQUENCY ENCODING

Given a patch image x, Fourier transform F(·), the high frequency component x̃h is written as:

x̃ = F(x), x̃h = t(x̃; r), (5)

where t(·; r) denotes the channel-wise thresholding function Wang et al. (2020a) that separates
the high frequency components from x̃ according to a hyperparameter radius r. Then, the final
high-frequency encoding from patch x becomes zh = fv(F−1(x̃h)) where F−1(·) denotes inverse
Fourier transform.

4.3 LEARNABLE GEOMETRIC POSITION ENCODING

We propose a positional encoding based on spectral graph theory and adjacency matrix calculated
by high-frequency features. LGPE is invariant to slide rotation, accurately encoding positional
information of patches in WSIs. By constructing a graph where image patches serve as nodes and
their global connectivity or geometric proximity as edges, LGPE is designed to encode inherent
geometry using distance-based adjacency Adis and capture geometry within the tissue using the
feature-based adjacency AHF, derived from the similarity of high-frequency features (e.g., patterns of
fat cells, cytoplasm, and metastasis).

Graph�
Neural�
Networks

LGPE

Node�feature�𝐗𝐏𝐄

Global�Positional�Encoding
(e.g. Graph�Laplacian,�Random�Walk)

Distance-based�Adjacency
(Euclidean�connectivity)

Feature-based�Adjacency
(Geometric�connectivity)

𝐀𝐝𝐢𝐬

𝐀𝐇𝐅

Figure 3: Illustration of LGPE. Visualizations of
Adis, AHF, and XPE are included in the appendix.
Additionally, a comparison between AHF and ALF
(i.e. adjacency based on low-frequency features) is
provided in the appendix to support the rationale
for using high-frequency feature similarity.

Distance-based Geometry. The distance-
based adjacency Adis is constructed by k-NN
on Euclidean distance between patches with dis-
tance thresholding applied (thus, Adis(i, j) = 1
if j-th patch is within the top-k nearest patches
of i-th patch and the distance between them does
not exceed the threshold; otherwise, Adis(i, j) =
0). The positional encoding (i.e., Laplacian
eigenvectors) is then obtained by Adis based
on spectral techniques Belkin & Niyogi (2003).
The graph Laplacian is decomposed as:

∆ = In −D
−1/2
dis AdisD

−1/2
dis = UTΛU, (6)

where In, Ddis, Λ, and U are the identity ma-
trix, the degree matrix, the eigenvalues, and the
eigenvectors, respectively, all in RN×N . The
eigenvectors are sorted by the magnitude of cor-
responding eigenvalues. Since these eigenvec-
tors are calculated from Adis based on the Eu-
clidean distance between patches, the positional
encoding holds key properties such as invariance to slide rotation, which is crucial for WSIs.

HF Feature-based Geometry. To capture the inherent geometry (formed by cells, cytoplasm, and
glandular structures) that extends beyond patch-level scopes or Euclidean distances, we utilize a
similarity matrix of high-frequency features encoded by our backbone fv . Given the similarity matrix
S ∈ RN×N , where Si,j is the similarity (e.g., cosine similarity) between patches hi and hj , the
connectivity is defined as:

ei,j =

{
1, if d(i, j) ≤ τ and j ∈ top- k(Si,:)

0, otherwise
(7)

where τ is a distance threshold, and top- k(·) is the function that returns the indices of the top k
similarity patches. Subsequently, we construct a symmetric adjacency matrix AHF .

LGPE: Combined Geometry. Based on the global eigenvectors U from Eq.(6) and the adjacency
matrix AHF, LGPE is obtained with:

XPE = tanh(U[:,:kPE ]W ), zp = GNN(XPE , AHF), (8)

5
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where tanh(·) is the hyperbolic tangent function, GNN(·) is a conventional GNN at Eq.(3), and kPE is
the number of selected eigenvectors. Additionally, other graph positional encodings, such as Random
Walk Li et al. (2020), can be used as XPE . Empirical results show that geometric connectivity (or
feature-based adjacency) with high-frequency components successfully encodes meaningful inherent
geometry, positively contributing to the final performance (see Table 4).

Invariance to Slide-level Rotation. A critical property of positional encoding in the context
of WSIs is its invariance to slide-level rotations. Since WSIs typically lack a consistent orienta-
tion—meaning there is no predefined “top,” “bottom,” “left,” or “right”—it is essential that the
positional encoding scheme remains robust to such variations. This invariance ensures that the
encoded positions of pixels or regions within the slide are not affected by arbitrary rotations of the
image, which is a common occurrence in histopathological analysis. Consequently, the positional
encoding must be designed in a manner that it provides a consistent and orientation-independent
representation of spatial information. When constructing the global positional encoding from the
distance-based adjacency matrix Adis, it satisfies rotation invariance as demonstrated in the following
proposition. The proof is provided in the appendix.
Proposition 1 (Rotation Invariance of the Adjacency Matrix Derived from Euclidean Distances). Let
P1, P2, . . . , Pn be the coordinates of n patches in a plane, and let d(Pi, Pj) denote the Euclidean
distance between patches Pi and Pj . Define the adjacency matrix A such that the (i, j)-th entry
Aij = d(Pi, Pj). If the slide is rotated by an angle θ around a point O, then the resulting adjacency
matrix A′ after rotation is identical to A, i.e., A′ = A.

LGPE-aware Gated Attention. LGPE-aware Gated Attention (LPGA) is a modified gated atten-
tion, which is widely used in attention-based MIL methods Ilse et al. (2018). To aggregate patch-level
features, the attention coefficients of LPGA are calculated as:

αi =
exp(w⊤(tanh(V zPE

i )⊙ η(UzPE
i )))∑N

j=1 exp(w
⊤(tanh(V zPE

j )⊙ η(UzPE
j )))

, (9)

where zPE
i = [zi; z

h
i ; z

p
i ], w ∈ RL×1, V ∈ RL×D, U ∈ RL×D are learnable parameters, η(·) is the

sigmoid function, and ⊙ is element-wise multiplication. For selected patches at higher magnification,
we use the LGPE corresponding to the lower-magnification (further referred to as Aligned LGPE).
Consequently, the input for LPGA at higher magnification is computed as z̄PE

ij = [z̄ij ; z̄
h
ij ; z

p
i ]. By

aligning LGPE between identical regions across different magnifications, SpecMIL ensures that
consistent geometric information are applied to heterogeneous patches while eliminating the need to
compute positional encoding on the huge amount of high magnification patches.

4.4 ZOOMING AND FEATURE AGGREGATION

Zooming of SpecMIL. SpecMIL addresses the multi-resolution dilemma in WSI analysis by
leveraging high-frequency domain components to determine where and when to zoom in. This
enables SpecMIL to discriminate whether to zoom or not at a lower magnification, serving more
detailed visual patterns for higher magnifications at a lower level.

Multi-magnification Aggregation. SpecMIL overcomes the dilemma of multi-resolution by re-
lying the zooming process on high-frequency features. We found that the features from different
magnifications result in very heterogeneous features. Therefore, instead of dealing with multiple
magnification features with a single network, SpecMIL features multiple networks, each of which
deals with its own magnification, then sums the results at the late layer.

g(Zc; θ2) = σ
( N∑
i=1

αiz
c
i

)
, ḡ(Z̄c; θ3) = σ

( N∑
i=1

M2∑
j=1

Tjαij z̄
c
ij

)
, (10)

where T ∈ {0, 1}M2

denotes the indicator matrix of the regions at high magnification corresponding
to the top-k region selected at low magnification. The final slide-level prediction is calculated as
Ŷ = f(g(Zc), ḡ(Z̄c)) where f is a linear projection.

5 EXPERIMENTS AND DISCUSSION
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Methods Weighted-F1 (%) Acc (%)

MAXMIL (20×) 68.9 ±9.0 74.7 ±3.6
MEANMIL (20×) 60.0 ±2.0 62.3 ±2.9
ABMIL (20×) 84.5 ±1.9 84.8 ±2.0
CLAM-SB (20×) 83.3 ±3.1 83.6 ±3.0
TRANSMIL (20×) 77.9 ±4.9 78.6 ±4.9
DSMIL-LC (10× + 20×) 81.1 ±2.3 81.5 ±2.3

R2T-MIL (10×) 76.7 ±1.9 77.5 ±2.1

R2T-MIL (20×) 80.3 ±5.1 80.6 ±5.2

R2T-MIL (10× + 20×) 77.1 ±6.0 78.1 ±6.0
WiKG (10×) 77.6 ±2.6 78.9 ±2.3
WiKG (20×) 86.9 ±2.7 87.3 ±2.7
WiKG (10× + 20×) 77.0 ±1.5 78.6 ±1.6

ZoomMIL (10× → 20×) 77.7 ±2.5 78.7 ±2.3
SpecMIL (10× → 20×) 87.0 ±1.3 87.5 ±1.2

Table 1: Performance comparison on the CAMELYON16
dataset. The symbol ‘+’ indicates that the method incorpo-
rates features from both magnifications, while the symbol
‘→’ represents the zooming process. Extended results, in-
cluding the multi-resolution adaptations of all baselines, are
provided in the appendix. These results highlight the non-
trivial challenges of leveraging multi-resolution approaches.
Note that the reported performance may differ from previ-
ously published results, as we conduct experiments using
a greater variety of data splits and random seeds to ensure
robustness.

In this section, we evaluate the perfor-
mance of the proposed method inte-
grated with the latest WSI-MIL frame-
works. For a fair comparison, we
utilize ResNet50 as the fixed back-
bone fv, with its frozen parameters
θ1 pretrained on ImageNet 1K. It is
important to note that our method is
designed to be backbone-agnostic for
MIL, meaning the backbone can be re-
placed without causing any conflicts.

5.1 DATASETS

We validate SpecMIL on three H&E
stained, public WSI datasets. Fol-
lowing ZoomMIL Thandiackal et al.
(2022), SpecMIL utilizes all patches
at low magnification and selects k ×
M2 patches at high magnification,
where k represents the number of se-
lected patches. For reference of how
efficient our proposed SpecMIL is,
we also show the average number of
patches for each magnification and
each dataset.

CAMELYON16. The CAME-
LYON16 dataset comprises 270 WSIs
for training, including 160 normal slides and 110 with metastases, along with 129 slides designated
for testing. These slides were scanned at 40x magnification using 3DHISTECH and Hamamatsu
scanners at the Radboud University Medical Center and the University Medical Center Utrecht in the
Netherlands. For our study, we stratified the 270 training slides into a 90%/10% split for training and
validation purposes. On average, each image contains 2,472 patches at 10× magnification and 9,887
patches at 20× magnification.

Methods Weighted-F1 (%) Acc (%)

MAXMIL (2.5×) 64.9 ±3.9 65.5 ±4.6
MEANMIL (2.5×) 63.6 ±4.3 63.4 ±4.4
ABMIL (2.5×) 70.0 ±1.6 69.9 ±1.8
CLAM-SB (2.5×) 68.0 ±3.2 68.3 ±3.6
TRANSMIL (2.5×) 65.2 ±4.6 66.3 ±5.4
DSMIL-LC (1.25× + 2.5×) 67.1 ±1.3 68.2 ±2.6

R2T-MIL (1.25×) 62.9 ±2.0 63.4 ±2.4

R2T-MIL (2.5×) 69.6 ±2.2 69.8 ±2.9

R2T-MIL (1.25× + 2.5×) 68.1 ±2.3 68.9 ±3.0
WiKG (1.25×) 65.9 ±2.3 66.0 ±2.7
WiKG (2.5×) 68.8 ±2.0 69.0 ±2.9
WiKG (1.25× + 2.5×) 66.5 ±2.1 66.3 ±2.7

ZoomMIL (1.25× → 2.5×) 66.5 ±2.8 66.4 ±3.1
SpecMIL (1.25× → 2.5×) 70.7 ±4.7 71.7 ±4.8

Table 2: Performance on BRIGHT dataset.

BRIGHT. The BRIGHT dataset in-
cludes WSIs of breast tissue, cover-
ing non-cancerous, precancerous, and
cancerous subtypes. These slides
were collected at the Fondazione G.
Pascale in Italy and digitized using
an Aperio AT2 scanner at 40x mag-
nification. For our work, we utilized
the BRIGHT challenge splits, which
provide 423 WSIs for training, 80 for
validation, and 200 for testing. Each
image contains an average of 61 and
246 patches at 1.25× and 2.5× mag-
nifications, respectively.

CRC. The CRC dataset comprises
1,133 digitized colorectal biopsy and
polypectomy slides, categorized into
nonneoplastic, low-grade, and high-
grade lesions, which make up 26.5%, 48.7%, and 24.8% of the data, respectively. These slides were
collected at the IMP Diagnostics laboratory in Portugal and digitized using a Leica GT450 scanner at
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40x magnification. The average number of patches at 5× and 10× magnifications is 213 and 853,
respectively.

5.2 BASELINES
Methods Weighted-F1 (%) Acc (%)

MAXMIL (10×) 87.9 ±1.9 87.8 ±2.1
MEANMIL (10×) 87.3 ±0.9 87.3 ±0.9
ABMIL (10×) 90.3 ±1.7 90.2 ±1.8
CLAM-SB (10×) 91.6 ±1.3 91.6 ±1.4
TRANSMIL (10×) 90.4 ±2.5 90.3 ±2.7
DSMIL-LC (5× + 10×) 90.6 ±1.7 90.6 ±1.8

R2T-MIL (5×) 90.4 ±1.4 90.4 ±1.4

R2T-MIL (10×) 91.4 ±0.9 91.4 ±0.9

R2T-MIL (5× + 10×) 92.3 ±1.3 92.3 ±1.3
WiKG (5×) 88.7 ±1.8 88.7 ±1.8
WiKG (10×) 91.9 ±1.4 91.9 ±1.4
WiKG (5× + 10×) 91.7 ±2.1 91.6 ±2.2

ZoomMIL (5× →10×) 91.6 ±1.1 91.6 ±1.1
SpecMIL (5× →10×) 92.3 ±0.8 92.4 ±0.8

Table 3: Performance on CRC dataset.

We compare SpecMIL with MIL
methods in literature. Specifically, we
compare with ABMIL, which uses a
gated-attention pooling, and its vari-
ant CLAM, which also includes an
instance-level clustering loss. We fur-
ther compare with two spatially-aware
methods, namely, TransMIL which
models instance-level dependencies
using transformer-based pooling. In
addition, we compare with multi-scale
methods DSMIL, which is a multi-
magnification approach that encodes
all patches in a WSI across all con-
sidered magnifications. For complete-
ness, we also include vanilla MIL
methods such as MaxMIL and MeanMIL. R2T-MIL Tang et al. (2024) enhances representations by
re-embedding instance features with regional and cross-region attention. Recently, WiKG Li et al.
(2024) has been proposed that utilizes a dynamic graph representation algorithm for WSIs. Note that
SpecMIL operates efficiently with a small number of patches and low GPU usage (see Fig 4), indicat-
ing its potential for integrating additional techniques from existing literature, such as updating zi by
their methodologies. ZoomMIL Thandiackal et al. (2022) is set as a notable baseline since it employs
a strategy similar to SpecMIL, utilizing hierarchical patch selection from low to high magnification
(e.g., 10× → 20×). At low magnification, patches are selected using a differentiable top-k approach
Cordonnier et al. (2021) combined with a perturbed optimizer Berthet et al. (2020). Additional
implementation details and hyper-parameters are provided in the supplemental material. For a fair
comparison, we perform identical preprocessing, including the extraction of patch embeddings.

Figure 4: Comparison of GPU usage between SpecMIL and
ZoomMIL, which both deploys hierarchical patch selection
strategy from low to high magnification (10× → 20× on the
CAMELYON16 dataset). Our approach, which integrates
rich information (e.g., geometry and high-frequency features)
at low magnification and removes the need for a complex
top-k selection module, significantly reduces GPU memory
usage. This efficiency allows for the potential integration of
additional modules. Additional metrics, including FLOPs
and computation time, are provided in the appendix.

Preprocessing. For each WSI, we
detect the tissue area using a Gaus-
sian tissue detector and divide the
tissue into 256 × 256 patches at all
considered magnifications. Subse-
quently, we encode the patches into
1024-dimensional embeddings using
the pre-trained ResNet50 fv, with
adaptive average pooling applied after
the third residual block.

Configuration. The experiments in
our paper are conducted on the
code base of ZoomMIL on a sin-
gle NVIDIA A100 GPU. For base-
lines, we use the reported best con-
figurations including learning rate,
scheduler, weight decay, number of
epochs, and dropout probability. For
SpecMIL, the number of eigenvectors
kPE is set to 8, with the projection di-
mension defined as 2kPE . For CRC,
BRIGHT, and CAMELYON16, we se-
lect 16, 20, and 600 patches at low
magnification, respectively (denoted
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as K in Fig 4). Therefore, SpecMIL takes a maximum of 64, 80, and 2,400 patches at high magnifi-
cation for CAMELYON16 (20×), BRIGHT (2.5×), and CRC (10×), respectively. In constructing
Adis and AHF, the distance threshold is set to 2, and k = 8 is used for the top-k function. We follow
the best model selection criteria from ZoomMIL: validation loss for CRC and CAMELYON16, and
validation weighted-F1 for BRIGHT.

vs. ZoomMIL. The most distinctive advantage of SpecMIL is its ability to sample relevant patches
at low magnification using fully informed high-frequency features and geometric positional encoding,
while eliminating the need for a differentiable top-k operation. This approach significantly reduces
GPU usage, as shown in Fig 4, making it feasible for many downstream tasks, including end-to-end
training. Additionally, contrary to the results reported in the ZoomMIL paper, where the non-
differentiable top-k method led to reduced performance, our approach significantly outperforms
ZoomMIL across all benchmark datasets. This demonstrates that if sufficient information, such as
high-frequency features and geometric positional encoding, is provided at low magnification, it is
possible to achieve meaningful improvements in the selection of high magnification patches.

Weighted-F1 (%) Acc (%)

SpecMIL (k = 600) 87.0 ±1.3 87.5 ±1.2

w/ k = 300 84.6 ±1.8 85.3 ±1.6
w/o HF 80.0 ±3.3 81.0 ±2.8
w/o LGPE 80.5 ±3.6 80.8 ±3.2
w/ LGPE-MLP (w/o AHF) 79.8 ±4.4 80.4 ±4.1
w/ misaligned LGPE 82.5 ±4.7 83.2 ±4.8

Table 4: Ablation studies on the CAMELYON16 dataset.
LGPE-MLP refers to the LGPE module that uses an MLP in-
stead of a GNN, thereby eliminating geometry based on high-
frequency features (local connectivity). Misaligned LGPE
refers to the LGPE module where the indices for positional
encoding zp are not aligned across different magnifications,
such that z̄PE

ij = [z̄ij ; z̄
h
ij ; z

p
k] with a random index k instead

of zpi .

Ablation Study. To assess the im-
pact of each component in our model,
we performed a series of ablation stud-
ies, as summarized in Table 4. Reduc-
ing the number of selected patches k
to 300 leads to a decrease in perfor-
mance, but the model still achieves
comparable results due to the inclu-
sion of all modules. Both the HF fea-
tures and the LGPE module prove to
be critical, as their inclusion leads to
significant performance gains, high-
lighting their essential roles. The
LGPE-MLP module, which leverages
global positional encoding without
utilizing the feature-based adjacency
matrix AHF, further demonstrates the
careful design and effectiveness of the
LGPE. The misaligned LGPE module,
which assigns positional encoding zpk with a random index k at the high magnification, shows that
while performance diminishes, it does not collapse entirely. This outcome is likely attributed to the
fact that accurate positional encoding at lower magnifications still provides valuable information.

6 CONCLUSION

We have presented Multi-Instance Learning with Spectral Methods (SpecMIL), a spectral multiple-
instance learning framework that resolves the long-standing multi-resolution dilemma in gigapixel
image analysis. By extracting scale-resilient spectral features and encoding geometric relationships
in graph-spectral features, SpecMIL identifies the most informative regions at low magnification
and zooms in only where additional detail is essential. This strategy preserves high-frequency cues
that conventional pipelines discard, while avoiding the prohibitive cost of exhaustively scanning
every high-resolution patch. The proposed approach is conceptually simple, hardware-friendly, and
broadly applicable to any domain where images far exceed the receptive field of modern vision
encoders—including remote sensing, large-scale scene understanding, high-resolution microscopy,
and digital pathology. We believe these findings open new avenues for scalable analysis of ever-
growing visual data and lay the groundwork for future work in multi-resolution representation
learning.
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A FREQUENCY ANALYSIS FROM THE MAIN TEXT

To analyze the frequency components of Whole Slide Images (WSIs) with RGB channels, we apply
a two-dimensional Fast Fourier Transform (2D FFT) to each color channel (R, G, B) of the image.
The steps involved in obtaining and plotting the frequency spectrum (Figure 1 of the main text) are
detailed below.

A.1 2D FFT CALCULATION AND SHIFT

Given an RGB image I(x, y) of size N ×M , where x, y represent the spatial coordinates and each
pixel has three values corresponding to the R, G, and B channels, the image can be represented as:

I(x, y) = [IR(x, y), IG(x, y), IB(x, y)]

where IR(x, y), IG(x, y), and IB(x, y) represent the Red, Green, and Blue channels, respectively.

A 2D FFT is applied to each channel separately to transform the image from the spatial domain to the
frequency domain. The 2D FFT for each channel is computed as:

FC(u, v) =

N−1∑
x=0

M−1∑
y=0

IC(x, y) · exp
(
−i2π

(ux
N

+
vy

M

))
where C ∈ {R,G,B} denotes the color channel, FC(u, v) represents the frequency domain repre-
sentation, and u, v are the frequency coordinates.

The output of the 2D FFT has the low-frequency components located at the corners of the spectrum.
To center the zero-frequency component (DC component), we apply a shift operation using:

F ′
C(u, v) = fftshift(FC(u, v))

where F ′
C(u, v) is the shifted spectrum with the DC component at the center.

A.2 MAGNITUDE CALCULATION

For each color channel, the magnitude of the frequency components is computed as:

MagnitudeC(u, v) =
√

Re(F ′
C(u, v))

2 + Im(F ′
C(u, v))

2

where Re(F ′
C(u, v)) and Im(F ′

C(u, v)) are the real and imaginary parts of F ′
C(u, v), respectively.

A.3 NORMALIZATION

To normalize the magnitude values, we divide each magnitude by the magnitude of the DC component:

Normalized MagnitudeC(u, v) =
MagnitudeC(u, v)
MagnitudeC(0, 0)

This step ensures that the magnitude values are normalized relative to the DC component.

A.4 FREQUENCY SPECTRUM

We compute the distance from the center (DC component) for each frequency component, which we
consider as the frequency value:

d(u, v) =
√

(u− u0)2 + (v − v0)2

where u0 = N
2 and v0 = M

2 represent the center coordinates of the frequency spectrum.
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A.5 AVERAGING MAGNITUDES FOR EACH FREQUENCY

For each unique distance d, the magnitudes across all channels and all points equidistant from the
center are averaged:

Average Magnitude(d) =
1

Nd

1

|C|
∑
(u,v)

s.t. d(u,v)=d

∑
C

Normalized MagnitudeC(u, v)

where Nd is the number of frequency components at distance d.

A.6 PLOTTING THE FREQUENCY SPECTRUM

Finally, the frequency spectrum (Figure 1 in the main text) is plotted by setting the x-axis as
the frequency distance d and the y-axis as the corresponding averaged normalized magnitude
Average Magnitude(d). This plot represents the distribution of frequency components in the image.

B RELATIONSHIP BETWEEN MAGNIFICATION AND FREQUENCY
COMPONENTS IN WHOLE SLIDE IMAGES

In WSIs, observing tissue morphology at different magnifications reveals how the image’s frequency
components change. Specifically, an identical morphological feature viewed at high magnification
(e.g., 20×) becomes a high-frequency component when viewed at a lower magnification (e.g.,
10×). This section explains this phenomenon mathematically and underscores the significance of
high-frequency components at lower magnifications in preserving morphological details.

B.1 SPATIAL RESOLUTION AND FREQUENCY COMPONENTS

Consider an image I(x, y) of size N ×M pixels, representing tissue morphology at a high magnifi-
cation M1 (e.g., 20×). The corresponding frequency domain representation is obtained using a 2D
Fourier transform:

FM1
(u, v) =

N−1∑
x=0

M−1∑
y=0

I(x, y) · exp
(
−i2π

(ux
N

+
vy

M

))
At this high magnification, fine morphological details are distributed across a broader range of spatial
frequencies, where lower frequencies represent coarse structures, and higher frequencies capture fine
details.

When the same morphological feature is observed at a lower magnification M2 (e.g., 10×) while
maintaining the same image size N ×M , the spatial extent of the feature within the image is reduced.
Since the image size remains constant, this reduction results in a denser packing of the morphology
into the same pixel grid, effectively increasing the frequency of the corresponding components:

IM2(x, y) = I
(x
k
,
y

k

)
with k =

M1

M2

where k > 1 represents the scaling factor between the magnifications.

By maintaining the same image size N ×M at lower magnification M2, the morphological features
that were previously spread out at M1 now occupy fewer pixels. This compression of spatial
information into the smaller number of pixels results in an increase in the image’s high-frequency
components. Mathematically, this can be represented as:

FM2
(u, v) =

N−1∑
x=0

M−1∑
y=0

IM2
(x, y) · exp

(
−i2π

(ux
N

+
vy

M

))
Because the same morphological feature is now represented within a smaller spatial region (due to
lower magnification), the rate of intensity change across pixels increases, leading to a shift in energy
towards higher frequencies in the Fourier domain.
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B.2 COMPRESSION AND HIGH-FREQUENCY COMPONENTS

The compression of morphological features into a smaller space at lower magnification increases
their associated frequency components. In particular, the Fourier transform of the lower magnifi-
cation image IM2

(x, y) results in a frequency spectrum where the high-frequency components are
more prominent compared to the higher magnification image I(x, y). This can be mathematically
understood as a redistribution of the image’s energy towards higher frequencies:

FM2
(u, v) = k2 · FM1

(ku, kv)

This equation shows that when reducing magnification from M1 to M2, the frequency components
(u, v) are effectively scaled by the factor k, causing high-frequency components to dominate the
spectrum.

B.3 IMPORTANCE OF HIGH-FREQUENCY COMPONENTS AT LOW MAGNIFICATION

High-frequency components in the lower magnification image M2 are critical because they retain
information about the fine morphological details that would otherwise be visible only at higher
magnifications. While the low-frequency components capture general shapes and structures, the
high-frequency components contain details about edges, textures, and small-scale features that are
essential for accurate interpretation of the tissue morphology.

These high-frequency components serve as vital clues to the underlying morphology at higher
magnifications. For instance, subtle changes in tissue structure that are easily detectable at 20×
magnification manifest as high-frequency variations at 10× magnification. Analyzing these high-
frequency components at lower magnifications allows pathologists and automated systems to infer
important morphological characteristics, potentially identifying regions of interest that warrant further
investigation at higher magnification.

In summary, when maintaining the same image size (considering the consistent input size for a vision
encoder) while lowering magnification, the resulting image inherently contains more high-frequency
components due to the compression of morphological features. These components are essential for
preserving and interpreting fine morphological details across different levels of magnification in
WSIs.

C HIGH-PASS FILTERING PROCESS

High-pass filtering is a process used to remove or attenuate low-frequency components of an image
while preserving or enhancing high-frequency components. This technique is particularly useful for
edge detection, sharpening, and enhancing fine details in an image. The steps involved in applying a
high-pass filter to a 256x256 RGB image using its 2D Fourier transform are outlined as follows:

C.1 FREQUENCY DOMAIN REPRESENTATION

Given the frequency spectrum FC(u, v) of each color channel C ∈ {R,G,B} of the image, the
frequency domain representation is shifted such that the DC component (low frequencies) is centered.
This shifted representation is denoted as F ′

C(u, v).

C.2 HIGH-PASS FILTER DESIGN

A high-pass filter is designed by creating a filter matrix H(u, v) of the same size as the frequency
domain representation. The filter matrix is defined such that low-frequency components are attenuated
(i.e., set to zero or reduced), and high-frequency components are preserved or passed through:

H(u, v) =

{
0, if d(u, v) < D0

1, if d(u, v) ≥ D0

where d(u, v) =
√
(u− u0)2 + (v − v0)2 is the distance from the center (DC component), and D0

is a threshold frequency that determines the cutoff between low and high frequencies. Frequencies
with d(u, v) less than D0 are attenuated, while those greater than or equal to D0 are retained.
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Original�image	" Filtered�image	"′

Figure 5: (Left) Original image and (right) high-frequency filtered image.

Gaussian Filter. A high-pass Gaussian filter is defined by inverting a standard Gaussian filter, which
smoothly attenuates the low frequencies while preserving the high frequencies. This is mathematically
expressed as:

H(u, v) = 1− e−
d(u,v)2

2σ2

where σ is the standard deviation that controls the spread of the Gaussian function.

In this filter, frequencies close to the center (low frequencies) are heavily attenuated, while higher
frequencies are preserved or passed through. The parameter σ determines the cutoff and transition
between low and high frequencies; a smaller σ results in a sharper transition, making the filter more
selective towards high frequencies.

C.3 APPLYING THE HIGH-PASS FILTER

The high-pass filter is applied to the frequency domain representation by element-wise multiplication:

F ′′
C(u, v) = F ′

C(u, v) ·H(u, v)

where F ′′
C(u, v) is the filtered frequency domain representation for each color channel.

C.4 INVERSE FOURIER TRANSFORM

To convert the filtered frequency domain representation back to the spatial domain, an inverse 2D
FFT is applied:

I ′C(x, y) = Re

{
N−1∑
u=0

M−1∑
v=0

F ′′
C(u, v) · exp

(
i2π

(ux
N

+
vy

M

))}
where I ′C(x, y) is the high-pass filtered image in the spatial domain for each color channel, and Re{·}
denotes taking the real part of the inverse transform.

C.5 COMBINING THE CHANNELS

The final high-pass filtered image is obtained by combining the filtered channels:

I ′(x, y) = [I ′R(x, y), I ′G(x, y), I ′B(x, y)]

where I ′R(x, y), I
′
G(x, y), and I ′B(x, y) are the high-pass filtered Red, Green, and Blue channels,

respectively.
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Figure 6: Visualization of two types of global positional encodings. LapPE and RWPE show the
visualization of positional encoding corresponding to indices 0, 1, 2, ..., 9, 10, 11 of the graph
Laplacian positional encoding and Random Walk, respectively. LapPE illustrates the transition from
smooth, large-scale patterns at lower indices to more intricate, rapidly varying patterns at higher
indices, capturing both global and local structural features of the graph. This pattern is analogous to
the sinusoidal function commonly used as positional encoding in Euclidean space.

C.6 RESULTING IMAGE

The resulting image I ′(x, y) emphasizes the high-frequency components, such as edges and fine
details, while reducing or removing the low-frequency components. This effect can be visualized
as a sharper, more detailed version of the original image, with less influence from gradual intensity
changes and smooth regions.
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D GLOBAL POSITIONAL ENCODING

Global positional encoding helps to identify the relative position of each patch within irregular
structures and to preserve structural information. By incorporating the spatial relationships between
patches into a graph structure, positional encoding captures both local and global tissue architecture,
enabling a more nuanced understanding of complex biological patterns. This approach preserves the
geometric continuity and contextual information that are often lost when analyzing WSIs. Conse-
quently, the model can better recognize patterns such as tumor boundaries, infiltrative growth, and
other morphological features that rely on the spatial arrangement of tissue components, leading to
more accurate and robust pathological assessments. We visualize two types of global positional
encodings in Figure 6.

Invariance to slide-level rotation. A critical property of positional encoding in the context of WSIs
is its invariance to slide-level rotations. Since WSIs typically lack a consistent orientation—meaning
there is no predefined “top,” “bottom,” “left,” or “right”—it is essential that the positional encoding
scheme remains robust to such variations. This invariance ensures that the encoded positions of pixels
or regions within the slide are not affected by arbitrary rotations of the image, which is a common
occurrence in histopathological analysis. Consequently, the positional encoding must be designed in a
manner that it provides a consistent and orientation-independent representation of spatial information.
When constructing the global positional encoding from the distance-based adjacency matrix Adis, it
satisfies rotation invariance as demonstrated in the following proposition.
Proposition 2 (Rotation Invariance of the Adjacency Matrix Derived from Euclidean Distances). Let
P1, P2, . . . , Pn be the coordinates of n patches in a plane, and let d(Pi, Pj) denote the Euclidean
distance between patches Pi and Pj . Define the adjacency matrix A such that the (i, j)-th entry
Aij = d(Pi, Pj). If the slide is rotated by an angle θ around a point O, then the resulting adjacency
matrix A′ after rotation is identical to A, i.e., A′ = A.

Proof. Let the coordinates of patch Pi be (xi, yi) before rotation. The distance between two patches
Pi and Pj is given by:

d(Pi, Pj) =
√

(xi − xj)2 + (yi − yj)2

After rotating the slide by an angle θ around a point O, the new coordinates (x′
i, y

′
i) of patch Pi are

given by the rotation matrix: (
x′
i

y′i

)
=

(
cos θ − sin θ
sin θ cos θ

)(
xi

yi

)
This results in:

x′
i = xi cos θ − yi sin θ

y′i = xi sin θ + yi cos θ
The distance between the rotated patches P ′

i and P ′
j is:

d(P ′
i , P

′
j) =

√
(δx)2 + (δy)2

δx = (x′
i − x′

j), δy = (y′i − y′j)
Substituting the rotated coordinates:

(δx)2 = [(xi cos θ − yi sin θ)− (xj cos θ − yj sin θ)]
2

= [(xi − xj) cos θ − (yi − yj) sin θ]
2

(δy)2 = [(xi sin θ + yi cos θ)− (xj sin θ + yj cos θ)]
2

= [(xi − xj) sin θ + (yi − yj) cos θ]
2

Expanding and combining like terms:
(δx)2 + (δy)2 =(xi − xj)

2(cos2 θ + sin2 θ)

+ (yi − yj)
2(cos2 θ + sin2 θ)

Using the trigonometric identity cos2 θ + sin2 θ = 1:

d(P ′
i , P

′
j) =

√
(xi − xj)2 + (yi − yj)2 = d(Pi, Pj)

Since d(P ′
i , P

′
j) = d(Pi, Pj) for all i, j, the adjacency matrix A′ after rotation is identical to the

original adjacency matrix A. Thus, the adjacency matrix is invariant under rotation.
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D.1 GRAPH LAPLACIAN POSITIONAL ENCODING

Given a distance-based adjacency matrix, we calculate the graph Laplacian and apply a spectral
graph technique to extract eigenvectors Belkin & Niyogi (2003), which are used as global positional
encodings.

1. Construct the Adjacency Matrix A: For a graph with n nodes, the adjacency matrix A is
an n× n matrix where Aij represents the weight of the edge between node i and node j. If
there is no edge between them, Aij = 0.

2. Compute the Degree Matrix D: The degree matrix D is a diagonal matrix where each
diagonal element Dii is the degree of node i, i.e., the sum of the weights of all edges
connected to node i:

Dii =
∑
j

Aij

3. Calculate the Graph Laplacian ∆: The unnormalized graph Laplacian is computed as:

∆ = D −A

Alternatively, the normalized graph Laplacian that we used can be computed as:

∆sym = I −D− 1
2AD− 1

2 ,

or:
∆rw = I −D−1A,

where here I is the identity matrix.

4. Compute the Eigenvectors of the Graph Laplacian: Perform eigen decomposition of the
Laplacian matrix ∆:

∆ = U⊤ΛU

where Λ represents the eigenvalues and U represents the corresponding eigenvectors. The
eigenvectors corresponding to the smallest non-zero eigenvalues (excluding the zero eigen-
value, which corresponds to the all-ones vector) are used as the positional encodings.

5. Select the Positional Encodings: Choose the top kPE eigenvectors (excluding the first
eigenvector if it corresponds to the zero eigenvalue) to form the positional encodings (i.e.
XPE = U[:,:kPE ]). These eigenvectors provide a low-dimensional representation of the
nodes’ positions relative to the graph structure.

D.2 RANDOM WALK POSITIONAL ENCODING

Random Walk is a method for initializing the positional representations of nodes in a graph Dwivedi
et al. (2021). Random Walk Positional Encoding (RWPE) is based on the random walk diffusion
process and serves as a XPE in the proposed Learnable Geometric Positional Encodings (LGPE)
module.

D.2.1 DEFINITION OF RWPE

RWPE is defined using the random walk operator, denoted as RW = AD−1, where A is the
adjacency matrix of the graph, and D is the degree matrix. The RWPE for a node i is a vector that
captures the probabilities of returning to node i after k steps of a random walk.

Formally, the RWPE for node i is defined as:

XPE,i =
[
RWii, RW 2

ii, . . . , RW k
ii

]
∈ Rk

Here, RW k
ii represents the probability of returning to node i after k steps of the random walk.
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E ADJACENCY MATRIX BASED ON HIGH-FREQUENCY FEATURES

As shown in Figure 7, high-frequency feature-based adjacency in the context of WSIs effectively
captures the geometry and spatial arrangement of various tissue components, such as fat cells,
metastatic cells, cytoplasm, and glandular structures. High-frequency features are sensitive to fine
details, including edges, textures, and small-scale variations within the tissue, which are crucial for
representing the distinct boundaries and complex geometries of these biological components. For
instance, the well-defined boundaries of fat cells, the irregular structures introduced by metastasis,
the textural variations within cytoplasm, and the intricate architecture of glandular structures all
contribute to high-frequency signals. When a graph is constructed where patches are nodes and edges
are based on high-frequency feature similarity, the resulting adjacency structure can accurately reflect
the local geometric relationships between these components. This makes high-frequency feature-
based adjacency particularly useful for mapping the tissue’s microarchitecture and understanding the
spatial organization of its constituent elements.

In AHF of LGPE, the edges between nodes are determined by feature-based similarity using a top-k
approach with distance thresholding. The nature of the features used—specifically, whether they are
low-frequency or high-frequency—plays a critical role in determining the localization of adjacency
within the graph.

CRC
ABMIL CLAM-SB TransMIL WiKG DSMIL ZoomMIL SpecMIL

TFLOPs 13.63 13.63 13.63 13.63 17.94 1.06 2.24
Time (s) 4.85 4.85 4.85 4.85 6.37 0.38 0.41

BRIGHT
ABMIL CLAM-SB TransMIL WiKG DSMIL ZoomMIL SpecMIL

TFLOPs 16.45 16.45 16.46 16.45 21.66 0.40 0.83
Time (s) 5.86 5.86 5.86 5.86 7.69 0.14 0.16

CAMELYON16
ABMIL CLAM-SB TransMIL WiKG DSMIL ZoomMIL SpecMIL

TFLOPs 39.12 39.12 39.12 39.12 48.95 14.94 30.11
Time (s) 13.92 13.92 13.92 13.92 17.41 5.32 5.64

Table 5: Comparison of various models in terms of TFLOPs and Time (seconds).

E.1 LOW-FREQUENCY FEATURE-BASED ADJACENCY

Low-frequency features capture broad, global structures in the image, such as large homogeneous
regions, shapes, and general color distributions. When patches are connected based on low-frequency
similarity, the graph reflects broader, more widespread similarities across the image, often linking
spatially distant patches. As a result, the adjacency between patches is less localized, aligning with
the widespread nature of low-frequency information.

E.2 HIGH-FREQUENCY FEATURE-BASED ADJACENCY

Conversely, high-frequency features capture fine details within the image, such as edges, textures,
and small-scale variations. These features vary more rapidly across spatial dimensions and are
typically more specific to smaller, localized regions of the image. When graph edges are based
on high-frequency feature similarity, the resulting adjacency is driven by more specific, localized
characteristics. This means that patches need to be in closer proximity to share similar high-frequency
features, leading to a graph structure where connections are primarily made between nearby patches.
As a result, the adjacency in this graph is more localized, reflecting the detailed and localized nature
of high-frequency information as visualized in Figure 8.
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Resolution CAMELYON16 BRIGHT CRC
Weighted-F1 Acc Weighted-F1 Acc Weighted-F1 Acc

MeanMIL

Low 59.77 61.50 61.93 61.55 85.82 85.85
±2.17 ±3.08 ±1.96 ±2.18 ±1.23 ±1.25

High 60.03 62.27 63.61 63.40 87.32 87.32
±2.02 ±2.93 ±4.26 ±4.36 ±0.88 ±0.93

Low + High (Naive) 61.54 63.82 63.34 62.96 86.81 86.88
±1.38 ±1.98 ±2.72 ±2.72 ±1.11 ±1.03

MaxMIL

Low 68.01 69.51 65.49 65.47 88.92 88.89
±12.51 ±12.07 ±2.13 ±2.54 ±1.79 ±1.80

High 68.85 74.68 64.92 65.47 87.93 87.81
±9.04 ±3.64 ±3.92 ±4.57 ±1.90 ±2.07

Low + High (Naive) 69.47 70.97 66.49 67.10 88.64 88.60
±17.43 ±16.95 ±2.64 ±2.20 ±1.32 ±1.35

ABMIL

Low 76.00 76.92 65.88 65.58 88.85 88.84
±1.84 ±1.77 ±2.83 ±2.27 ±0.93 ±0.96

High 84.51 84.76 70.04 69.94 90.25 90.16
±1.93 ±2.01 ±1.57 ±1.77 ±1.74 ±1.84

Low + High (Naive) 82.24 82.52 68.46 68.63 90.34 90.36
±2.13 ±2.06 ±2.70 ±3.50 ±1.05 ±1.11

CLAM-SB

Low 76.53 77.18 65.91 67.32 89.65 89.62
±4.90 ±5.33 ±3.07 ±2.82 ±0.97 ±1.04

High 83.34 83.64 68.01 68.30 91.60 91.58
±3.06 ±3.01 ±3.20 ±3.57 ±1.33 ±1.35

Low + High (Naive) 81.64 82.00 67.65 67.76 91.06 91.09
±4.54 ±4.42 ±3.19 ±2.79 ±1.61 ±1.65

TransMIL

Low 75.16 75.71 62.94 64.05 88.94 88.89
±3.86 ±4.25 ±3.96 ±3.95 ±2.84 ±2.88

High 77.90 78.55 65.19 66.34 90.40 90.31
±4.92 ±4.89 ±4.64 ±5.41 ±2.54 ±2.65

Low + High (Naive) 74.68 76.23 61.15 61.87 87.88 87.91
±3.50 ±3.36 ±5.45 ±5.79 ±2.87 ±2.61

R2T-MIL

Low 76.73 77.52 62.94 63.40 90.44 90.41
±1.89 ±2.05 ±2.02 ±2.39 ±1.38 ±1.41

High 80.25 80.62 69.64 69.83 91.44 91.43
±5.05 ±5.19 ±2.18 ±2.89 ±0.91 ±0.91

Low + High (Naive) 77.13 78.12 68.09 68.85 92.26 92.27
±5.95 ±6.03 ±2.28 ±2.95 ±1.33 ±1.34

WiKG

Low 77.62 78.90 65.93 66.01 88.72 88.69
±2.60 ±2.32 ±2.30 ±2.73 ±1.76 ±1.83

High 86.92 87.25 68.76 68.95 91.93 91.92
±2.68 ±2.72 ±2.01 ±2.86 ±1.39 ±1.43

Low + High (Naive) 77.04 78.55 66.46 66.34 91.65 91.58
±1.49 ±1.64 ±2.14 ±2.73 ±2.09 ±2.23

Table 6: Performance of MIL methods designed for single-resolution setting, including standard
deviation values. The multi-resolution adaptation setting, denoted as Low + High (Naive), represents
the concatenation of features from different resolutions. These results underscore the significant
challenges involved in utilizing multi-resolution approaches.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F IMPLEMENTATION DETAILS

For our experiments, we employed different learning rates depending on the dataset. Specifically,
we used a learning rate of 2× 10−4 for the CAMELYON16 dataset and 1× 10−4 for the CRC and
BRIGHT datasets. The Adam optimizer was utilized across all experiments, with a weight decay of
5× 10−4 for CAMELYON16 and no weight decay (0) for the CRC and BRIGHT datasets.

For positional encoding, we set kPE = 8 for LapPE across all datasets. For the RWPE with
concatenation, kPE was also set to 8, but this was only applied to the CAMELYON16 dataset. In
the case of LGPE, we employed a single layer of SAGEConv Hamilton et al. (2017) for the Graph
Neural Network (GNN). The hidden dimension was set to 256, with an output embedding dimension
of 512, and the positional encoding dimension was 2× kPE . When constructing Adis and AHF with
top-k, we select top 8 nodes (patches) and make them symmetric. For radius of high-frequency filter,
we conducted a grid search over {10, 20, 30} for the radius parameter and selected 10 as the optimal
value.

We trained our models for 100 epochs, following the methodology outlined in the ZoomMIL paper
Thandiackal et al. (2022). However, unlike ZoomMIL, which utilizes a single train/validation/test
split, we conducted our experiments using three distinct splits to ensure robust experimental results.

Thandiackal et al. also highlight that the computational cost of the MIL modules is minimal compared
to the dominant overhead introduced by patch feature extraction. Consequently, differences in FLOPs
and processing time across methods are negligible and typically only detectable at very fine decimal
levels. Our method follows a similar patch processing strategy (from low to high magnification)
and requires a comparable number of high-magnification patches as ZoomMIL. While our approach
introduces slightly higher computational demands due to the incorporation of HF features, this
overhead is mitigated by efficient GPU parallelization. This allows for substantially larger batch sizes
compared to ZoomMIL. In Table 5, we present the computational metrics on the CRC dataset.

We also present extended results in Table 6, including the multi-resolution configurations for baseline
methods originally designed for single-resolution analysis. This includes traditional MIL approaches
with instance-level pooling mechanisms, such as max-pooling (MaxMIL) and mean-pooling (Mean-
MIL) Campanella et al. (2019), implemented through instance concatenation (i.e. patch-level
concatenation). Additionally, we evaluate widely adopted MIL models for WSI analysis, including
ABMIL Ilse et al. (2018), CLAM-SB Lu et al. (2021), and TransMIL Shao et al. (2021), using
bag-level concatenation (i.e. slide-level concatenation). To further demonstrate the robustness and
adaptability of our method, we validate its performance in combination with more recent approaches,
such as R2T-MIL Tang et al. (2024) and WiKG Li et al. (2024), also utilizing bag concatenation.

G PROCESS THREE MAGNIFICATIONS

Our method is capable of handling three magnifications, just like ZoomMIL. However, even when
using their framework, we found ZoomMIL’s performance with three magnifications to be non-
reproducible. For instance, on the CAMELYON16 dataset, ZoomMIL achieved an F1 score of
68.0 ± 2.8 and accuracy of 69.9 ± 3.2. In contrast, our proposed method, SpecMIL, achieved
significantly better results with an F1 score of 87.3± 1.2 and accuracy of 87.8± 1.1.
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Figure 7: (Left) WSI with distance-based adjacency Adis and (right) visualization of AHF . While
Adis provides global connectivity, AHF encodes inherent geometry with localized patterns.
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Figure 8: (Left) WSI with a distance-based adjacency Adis and (right) comparison of feature-based
adjacency between low-frequency (ALF ) and high-frequency (AHF ). AHF exhibits more localized
connectivity.
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