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Abstract

Density estimation is an important technique for characterizing distributions given observa-
tions. Much existing research on density estimation has focused on cases wherein the data
lies in a Euclidean space. However, some kinds of data are not well-modeled by supposing
that their underlying geometry is Euclidean. Instead, it can be useful to model such data
as lying on a manifold with some known structure. For instance, some kinds of data may
be known to lie on the surface of a sphere. We propose a method for estimating densities
on manifolds which combines normalized flows in a Euclidean space, a change of variables,
and marginalization. The method is applicable where the appropriate change of variables is
tractable, for example the sphere, tori, and the orthogonal group.

1 Introduction

Figure 1: To generate samples from a density on the
sphere S2, we use a normalizing flow to sample from
R3 and project to S2. To compute the density at y ∈
S2, we “dequantize” from the sphere to R3 using an
auxiliary density over r ∈ R+.

Certain kinds of data are not well-modeled under
the assumption of an underlying Euclidean geom-
etry. Examples include data with a fundamental
directional structure, data that represents transfor-
mations of Euclidean space (such as rotations and
reflections), data that has periodicity constraints or
data that represents hierarchical structures. In such
cases, it is important to explicitly model the data as
lying on a manifold with a suitable structure; for in-
stance a sphere would be appropriate for directional
data, the orthogonal group for rotations and reflec-
tions, and the torus captures structural properties
of periodicity.

The first contribution of this work is to express den-
sity estimation on manifolds as a form of dequan-
tization. Given a probability density in an ambient Euclidean space, one can obtain the density on the
manifold by performing a manifold change-of-variables in which the manifold structure appears and then
projecting out any auxiliary structures. This marginalization can be viewed as analogous to “quantization”
where, for instance, continuous values are discarded and only rounded integer values remain. In this view the
auxiliary structure defines how the manifold could be “dequantized” into the ambient Euclidean space. By
marginalizing the auxiliary dimensions, the marginal distribution on the manifold is obtained. In practice,
however, one has only the manifold-constrained observations from an unknown distribution on the mani-
fold. A second contribution of this work is to formulate the density estimation as a learning problem on
the ambient Euclidean space. We show how to invoke the manifold change-of-variables and perform the
marginalization along the auxiliary dimensions to obtain effective estimates of the density on the manifold.
An advantage of our dequantization approach is that it allows one to utilize any expressive density directly on
the ambient Euclidean space (e.g., RealNVP (Dinh et al., 2017), neural ODEs (Chen et al., 2018; Grathwohl
et al., 2018) or any other normalizing flow (Kobyzev et al., 2020)); the dequantization approach does not
require a practitioner to construct densities intrinsically on the manifold. We emphasize that our theory can
be applied to any embedded manifold, provided one can identify a suitable auxiliary manifold structure and
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Figure 2: The dequantization roadmap. In the first row, we begin with Rm. This Euclidean space is
transformed into the product of manifolds Y × Z via a change-of-variables G : Rm → Y ×Z. Quantization
takes the product manifold Y ×Z to its Y-component alone. In the second row, we begin with a probability
density πRm defined on Rm. Under the change-of-variables G we obtain a new probability density πY×Z
which is related to πRm by the manifold change-of-variables eq. (6). Quantizing Y × Z marginalizes out
the Z-component of πY×Z . We similarly introduce a dequantization density π̃Z and compute the marginal
density on Y via importance sampling.

manifold change-of-variables to Euclidean space; finding a suitable auxiliary structure may be a challenge in
some cases. We focus our attention on several important matrix manifolds which are common in practice
and provide suitable structures for them.

2 Illustrative Example: Sphere

We first offer a simple example to illustrate how the method may be applied to obtain densities on the
sphere. Let S2 ⊂ R3 represent the 2-dimensional sphere viewed naturally as an embedded manifold of 3-
dimensional Euclidean space. Excluding the point (0, 0, 0) ∈ R3, observe that every other point x ∈ R3 may
be uniquely identified with a point s ∈ S2 and positive real number r ∈ R+ such that x = rs. We note that
this isomorphism of R3 \ {0} and S2 × R+ is a smooth isomorphism with smooth inverse; therefore, it is a
diffeomorphism. Diffeomorphisms comprise the set of isomorphisms that we will primarily consider in this
work. Thus, S2 × R+ represents a spherical coordinate system for R3 \ {0}. If πR3(x) is a density on R3

(equivalent to R3 \{0} up to a set of Lebesgue measure zero), we can apply the standard change-of-variables
formula in order to obtain a density on S2 × R+:

πS2×R+(s, r) = r2 · πR3(rs), (1)

where r2 is the associated Jacobian determinant accounting for changes in volume; a derivation of this
Jacobian determinant is included in appendix N. We will refer to πR3 as the ambient Euclidean distribution.

By sampling x ∈ R3 with density πR3(x), converting to the spherical coordinate system and discarding the
radius r, we obtain a sample from the marginal distribution πS2 on the sphere S2. The density πS2 is given
by:

πS2(s) =
∫
R+

πR3(rs)r2 dr =
∫
R+

πS2×R+(s, r) dr (2)

This density can be evaluated using importance sampling using a non-vanishing density π̃R+ on R+,

πS2(s) = E
r∼π̃R+

πS2×R+(s, r)
π̃R+(r|s) . (3)

We note that π̃R+ may depend on s ∈ S2. A visualization of these concepts is presented in fig. 1.

Equation (2) quantizes S2 × R+ to S2 by integrating out the auxiliary dimension. Equation (3) describes
how to marginalize πS2×R+ over R+ to compute the density of a quantized point s ∈ S2; hence, we refer to
π̃R+ as the dequantization density. Taking the log of eq. (3), and invoking Jensen’s inequality we can also
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obtain the following lower bound on the marginal log-probability of s:

log πS2(s) ≥ E
r∼π̃R+

log
πS2×R+(s, r)
π̃R+(r) . (4)

Finally, we can use eq. (1) to express both eq. (3) and eq. (4) in terms of the density on the ambient Euclidean
space R3.

Learning the Distributions: Sphere Example. In order to make these densities learnable, we introduce
parameters θ ∈ Rnamb and φ ∈ Rndeq and write πR3(x) ≡ πR3(x|θ) and π̃R+(r) ≡ π̃R+(r|φ, s). For instance,
πR3(x|θ) could be a normalizing flow parameterized by θ and π̃R+(r|φ, s) could be a log-normal distribution
whose mean and variance parameters are determined by a neural network with parameters φ and input s.

We can use eq. (4) as an objective function for performing density estimation on the sphere. Given samples
D = (s1, . . . , snobs) we compute a lower bound on the marginal log-probability as,

E
s∼Unif(D)

log πS2(s) ≥ E
s∼Unif(D)

E
r∼π̃R+

log πR3(rs|θ)
π̃R+(r|s, φ)/r2 . (5)

We can then maximize the right-hand side with respect to θ and φ. This yields a procedure for estimating
the density on a sphere by transforming a density in an ambient Euclidean space and marginalizing over the
radial dimension. The learned distribution on the ambient space πR3(x|θ) is represented using a normalizing
flow. This allows us to sample x ∼ πR3(x|θ) and to evaluate the density πR3(x|θ). Therefore, to sample from
the learned πS2 we simply sample x ∼ πR3(x|θ), and then project it to the sphere: s = x/‖x‖.

Evaluating the Density: Sphere Example. Next, we may wish to evaluate the learned density πS2 .
The normalizing flow provides us with the learned density πR3(x|θ) in the ambient space, which immediately
gives us the density πS2×R+ through eq. (1), we must marginalize over R+ so as to obtain a density on S2. We
return to eq. (2) and use the dequantization distribution π̃R+ to evaluate πS2(s) using importance sampling.

3 Related Work

The general problem of density estimation is well studied and a full review is beyond the scope of this paper.
We note early work in Breitenberger (1963); Mardia et al. (2000) on projecting the normal distribution to
the circle and sphere. The most directly related work, however, is in the area of density estimation with
normalizing flows and we refer readers to the review articles by Papamakarios et al. (2019) and Kobyzev
et al. (2020). Recently, Horvat & Pfister (2022) used an inflation-deflation approach to modeling densities
on manifolds by adding random noise.

From the perspective of estimating general densities on smooth manifolds, our work is related to Rezende
et al. (2020), which considers normalizing flows on tori and spheres. Bose et al. (2020) defines a class of
normalizing flows on hyperbolic spaces. Wang & Gelfand (2013) considers the density of a multivariate
normal random variable projected to the sphere via the mapping x 7→ x/‖x‖. For methods on connected
Lie groups, one may use the exponential map in order to smoothly parameterize an element of the group
by a coordinate in Euclidean space; this was the approach adopted in Falorsi et al. (2019). Lou et al.
(2020) extended continuous normalizing flows to manifolds by defining and simulating ordinary differential
equations on the manifold. In contrast to these approaches, the method proposed here allows for the use of
any density estimation technique defined on the ambient Euclidean space. However, our procedure requires
that one derive the requisite Jacobian determinants to facilitate the change of volume; we provide several
examples of manifolds in which this is possible in section 5.

This work was inspired by dequantization techniques for normalizing flows. Originally introduced by Uria
et al. (2013) to account for the discrete nature of pixel intensities, the basic approach added (uniform)
continuous noise to discrete values. This prevented the pathological behaviour that is known to occur when
fitting continuous density models to discrete data (Theis et al., 2016). The technique was extended by
Ho et al. (2019) to allow the added noise distribution to be learned using a variational objective which has
become critical for strong quantitative performance in image modelling. Hoogeboom et al. (2020) generalized
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the variational objective used for learning the dequantization noise distribution. Recently Lippe & Gavves
(2021) extended normalizing flows to categorical distributions. Our work proposes a new perspective on
these approaches that the ambient Euclidean space (over which a continuous density model is learned) is
a product of a discrete space (e.g., pixel intensities or discrete categories) and a continuous space which is
projected (or “quantized”) when data is observed. Our work is a generalization of dequantization to consider
not only discrete spaces, but also other structured spaces, specifically non-Euclidean manifolds.

A previous version of this work appeared in a workshop.

4 Preliminaries

In order to make the discussion of the theory and algorithms more succinct, we provide in this section a brief
reminder of standard notation and properties of some standard manifolds.

4.1 Notation

Let Idn denote the n × n identity matrix. If X and Y are isomorphic sets we denote this by X ∼= Y. The
set of R-valued, full-rank n × p matrices (n ≥ p) is denoted FR(n, p). The set of full-rank n × n matrices
is denoted GL(n), the generalized linear group. A matrix P ∈ Rn×n is positive definite if for all x ∈ Rn
we have x>Px > 0 for ‖x‖ 6= 0. The set of all n × n positive definite matrices is denoted PD(n). When
P ∈ PD(n) is a positive-definite matrix we denote the principal matrix square root by

√
P.

4.2 Examples of Manifolds

We now consider several examples of embedded manifolds; see also appendix I for details on manifold
embeddings. We focus our discussion around these particular examples because of their importance in data
science applications.

4.2.1 Example: Hypersphere (definitions)

The sphere in Rm is defined by, Sm−1 =
{
x ∈ Rm : x>x = 1

}
. The sphere is an important manifold for data

with a directional component (such as the line-of-sight of an optical receiver) or data that naturally lies on
the surface of a spherical body (such as occurrences of solar flares on a star).

4.2.2 Example: Torus (definition)

The torus is the product manifold of circles Tn def.= S1 × · · · × S1︸ ︷︷ ︸
n times

. The torus T2 = S1 × S1 can be embedded

in R4 by embedding each circle individually in R2. The torus is an important manifold for studying systems
with several angular degrees of freedom (such as applications to robotic arms) or systems with periodic
boundaries (Rezende et al., 2020).

4.2.3 Example: Stiefel Manifold and Orthogonal Group (definition)

The Stiefel manifold represents orthogonality constraints in a vector space. It may be regarded as the
manifold of orthonormal vectors within a larger ambient Euclidean space. The Stiefel manifold can be
leveraged for low-rank matrix completion. An important variant of the Stiefel manifold is the orthogonal
group, which is the collection of all linear transformations of Euclidean space that preserve distance. The
Stiefel manifold of order (n, p) is defined by, Stiefel(n, p) def.=

{
M ∈ Rn×p : M>M = Idn

}
. The n-dimensional

orthogonal group is defined by O(n) = Stiefel(n, n). Applications of the orthogonal group include the
Procrustes problem, which describes the optimal rotation and reflection transformations that best align
one cloud of particles toward another (Doucet et al., 2001). The special orthogonal group is a subgroup of
O(n) that satisfies the additional property that they have unit determinant. Formally, SO(n) def.= O(n) ∩
{M ∈ Rn×n : det(M) = 1}.

4



Under review as submission to TMLR

5 Theory

5.1 Change-of-Variables for Embedded Manifolds

For our theoretical development, the most important tool is the change-of-variables formula for embedded
manifolds; see inter alia Rezende et al. (2020).
Theorem 1 (change-of-variables formula for embedded manifolds). Let Y and Z be smooth manifolds
embedded in Rn and Rp, respectively. Let G : Rm → Y × Z be a smooth, invertible transformation. Let
πRm be a density on Rm. Under the change-of-variables G, the corresponding density on Y ×Z is given by,

πY×Z(y, z) = πRm(x)√
det(∇G(x)>∇G(x))

(6)

where x = G−1(y, z).

It follows as a consequence that because G is a diffeomorphism of non-empty manifolds that dim(Y ×Z) =
dim(Rm) = m. Even when G is not an invertible mapping, it may be possible to compute the change-of-
variables when G is invertible on partitions of Rm.
Corollary 1. Let O1, . . . ,Ol be a partition of Rm. Let G : Rm → Y × Z be a function and suppose
that there exist smooth and invertible functions Gi : Oi → Y × Z such that Gi = G|Oi for i = 1, . . . , l.
Then, if x ∼ πRm , the density of (y, z) = G(x) is given by πY×Z(y, z) =

∑l
i=1

πRm (xi)√
det(∇Gi(xi)>∇Gi(xi))

where

xi = G−1
i (y, z).

How does theorem 1 relate to the dequantization of smooth manifolds? Manifolds (such the sphere, the
torus, or the orthogonal group) can be introduced as elements of a new coordinate system for an ambient
Euclidean space. By marginalizing out the other dimensions of the new coordinate system, we obtain the
distribution on the manifold of interest. We have already seen an example of this in section 2 where R3 was
transformed into a spherical coordinate system. Alternatively, given a manifold Y, the auxiliary manifold
Z is an additional structure such that we can find a diffeomorphism G from Rm to Y × Z for some m ∈ N.
The auxiliary manifold can be thought of as facilitating the dequantization of Y into an ambient Euclidean
space. We generalize this as follows:

5.1.1 Example: Theorem 1 Applied to the Hypersphere

The hyperspherical coordinate transformation giving the isomorphism of Rm \{0} and Sm−1×R+ is defined
by, x 7→ (x/r, r) where r = ‖x‖2. The inverse transformation is (s, r) 7→ rs. The Jacobian determinant of the
hyperspherical coordinate transformation is 1/rm−1. Hence, given a density on Rm (equivalent to Rm \ {0}
up to a set of Lebesgue measure zero) we may compute the change-of-variables so as to obtain a density
on Sm−1 × R+ by applying theorem 1 and the fact that the Jacobian determinant of the transformation is
1/rm−1. In other words, given a density πRm on Rm, the manifold change-of-variables formula says that the
corresponding density on Sm−1 × R+ is

πSm−1×R+(s, r) = rm−1 · πRm(rs). (7)

5.1.2 Example: Theorem 1 Applied to the Torus

From the fact that R2 ∼= S1 ×R+ (a consequence of the polar coordinate transformation), we may similarly
develop a coordinate system of even-dimensional Euclidean space in which the torus appears. Recall that
Tm ∼= S1×· · ·×S1 (there are m terms in the product). Therefore, we have established that R2m\{0} ∼= Tm×
R+ × · · · × R+︸ ︷︷ ︸

m times

. The isomorphism can be explicitly constructed by writing x = (x1,1, x1,2, . . . , xm,1, xm,2)

and defining the map G : R2m \{0} → Tm×R+× . . .×R+ by G(x) def.= (x1/r1, . . . , xm/rm, r1, . . . , rm) where
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ri =
√
x2
i,1 + x2

i,2. As the concatenation of m polar coordinate transformations, the Jacobian determinant
of this transformation is

∏m
i=1 r

−1
i . The inverse transformation from Tm ×R+ × . . .×R+ back to R2m \ {0}

is given by G−1(s1, . . . , sm, r1, . . . , rm) = (r1s1, . . . , rmsm) where (s1, . . . , sm) ∈ S1 × . . .× S1 ∼= Tm. In the
case of the torus, the product R+ × . . . × R+ is the dequantization dimension of Tm into R2m \ {0}. In
other words, in the case of T2, if one has a density πR4 : R4 → R+ then the associated density under the
change-of-variables G is

πT2×R+×R+(s1, s2, r1, r2) = r1r2 · πR4((r1s1, r2s2)). (8)

We describe a different means of dequantization, called modulus dequantization, in appendix C.

5.1.3 Example: Theorem 1 Applied to the Stiefel Manifold

The coordinate transformation in which the Stiefel manifold appears requires a more involved construction
than was the case for the sphere or torus. We first recall the relationship between the Stiefel manifold, full-
rank matrices (FR), and positive definite matrices (PD): FR(n, p) ∼= Stiefel(n, p)×PD(p). The isomorphism
of these spaces is constructed by the polar decomposition. Given M ∈ FR(n, p), define, P def.=

√
M>M ∈

PD(p) and O def.= MP−1 ∈ Stiefel(n, p). Thus, the isomorphism is given by M 7→ (O,P). This isomorphism
is rigorously established in appendix D.

We further transform PD(n) in order to integrate over the manifold of positive-definite matrices. To do
this we use the isomorphism of PD(n) and Tri+(n), the set of n× n lower-triangular matrices with strictly
positive entries on the diagonal. This isomorphism is known as the Cholesky decomposition: If P ∈ PD(n)
then there is a unique matrix L ∈ Tri+(n) such that P = LL>. We have therefore proved FR(n, p) ∼=
Stiefel(n, p)×Tri+(p). One can use automatic differentiation in order to compute the Jacobian determinant
of the transformation defined by M 7→ (O,L). We call the transformation M 7→ (O,L) the Cholesky polar
decomposition. The inverse transformation is (O,L) 7→ OLL>

Finally we observe that almost all n × p matrices are full-rank. Therefore, if one has a density in Rn×p
then we may apply the polar decomposition coordinate transformation in order to obtain a density on
Stiefel(n, p) × PD(p). Here Tri+(p) plays the role of the dequantization dimension of Stiefel(n, p) into
FR(n, p). In summary, given a density in πRn×p : Rn×p → R+, we can construct the corresponding density
on Stiefel(n, p)× Tri+(p) by applying theorem 1:

πStiefel(n,p)×Tri+(p)(O,L) = πRn×p(OP)
J (OP) , (9)

where P = LL> and J (OP) def.=
√

det((∇G(OP))>(∇G(OP))).

An alternative coordinate transformation based on the QR decomposition instead of the polar decomposition
is given in appendix J.
Remark 1. The Stiefel manifold Stiefel(n, p) is a generalization of the orthogonal group O(n) and we
recover the latter exactly when n = p. In this case, we identify FR(n, n) as GL(n) so that we obtain
GL(n) ∼= O(n)× PD(n).

5.2 Dequantization

We have now seen how several manifolds appear in coordinate systems. In each case, the manifold appears
with an auxiliary manifold which may not be of immediate interest. Namely, (i) The sphere appears with
set of positive real numbers when defining a coordinate system for Rm \ {0} ∼= Sm−1 × R+; (ii) The torus
appears the product manifold of m copies of the positive real numbers when defining a coordinate system for
R2m \ {0} ∼= Tm×R+× . . .×R+; (iii) the Stiefel manifold appears with the set of lower-triangular matrices
with positive diagonal entries when defining a coordinate system of FR(n, p) ∼= Stiefel(n, p) × Tri+(p). We
would like to marginalize out these “nuisance manifolds” so as to obtain distributions on the manifold of
primary interest. A convenient means to achieve this is to introduce an importance sampling distribution
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over the nuisance manifold. Formally, we have the following result, which is an immediate consequence of
theorem 1.
Corollary 2. Let Y, Z, G, and πY×Z be as defined in theorem 1. Let π̃Z be a non-vanishing density on Z.
To obtain the marginal density on Y, let x = G−1(y, z) and it suffices to compute,

πY(y) = E
z∼π̃Z

πX (x)
π̃Z(z) ·

√
det(∇G(x)>∇G(x))

. (10)

We refer to the auxiliary distribution π̃Z as the importance sampling distribution. We consider some examples
of marginalizing out the nuisance manifolds in some cases of interest.

5.2.1 Dequantization of the Hypersphere

Let G : Rm → Sm−1 × R+ be the hyperspherical coordinate transformation described in section 5.1.1.
To obtain the marginal distribution πSm−1 we compute, πSm−1(s) =

∫
R+
rm−1 · πRm(rs) dr. Or, using an

importance sampling distribution π̃R+ whose support is R+, substituting (7) into (10) we obtain, πSm−1(s) =
E

r∼π̃R+

rm−1·πRm (rs)
π̃R+ (r) .

5.2.2 Dequantization of the Torus

Let G be the toroidal coordinate transformation described in section 5.1.2. Similar to section 5.2.1, one can
introduce an importance sampling distribution on R+×R+ so as to obtain the marginal distribution on the
torus as πT2(s1, s2) = E

r1,r2∼π̃R+×R+

πR4 ((r1s1,r2s2))
π̃R+×R+ (r1,r2)/r1r2

.

5.2.3 Dequantization of the Stiefel Manifold

Let G be the Cholesky polar decomposition coordinate transformation described in section 5.1.3. To
construct an importance sampling distribution over Tri+(p), one could generate the diagonal entries of
Lii ∼ LogNormal(µi, σ2

i ) and the remaining entries in the lower triangle according to Lij ∼ Normal(µij , σ2
ij).

Applying corollary 2 gives the importance sampling formula for the marginal density on Stiefel(n, p):

πStiefel(n,p)(O) = E
L∼π̃Tri+

πRn×p(OP)
J (OP) · π̃Tri+(L) (11)

where P = LLT .

6 Proposed Method

We investigate the problem of density estimation given observations on a manifold using the dequantization
procedure described in section 5. Let Y be a manifold embedded in Rn and let πY be a density on Y. Given
observations of πY , we wish to construct an estimate π̂Y of the density πY . Algorithm 1 shows how we may
apply dequantization for the purposes of density estimation provided that we have samples from the target
density. We apply eq. (10) in order to obtain the density estimate on Y. Generating samples from πY may
be achieved by first sampling x ∼ πX , applying the transformation G(x) = (y, z), and taking y as a sample
from the approximated distribution π̂Y .

Densities on Rm. As Rm is a Euclidean space, we have available a wealth of possible mechanisms to
produce flexible densities in the ambient space. One popular choice is RealNVP (Dinh et al., 2017). In
this case θ is the parameters of the underlying RealNVP network. An alternative is neural ODEs wherein θ
parameterizes a vector field in the Euclidean space; the change in probability density under the vector field
flow is obtained by integrating the instantaneous change-of-variables formula (Chen et al., 2018; Grathwohl
et al., 2018).
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Algorithm 1 Training loop for dequantization inference. The target density πY is only relevant insofar as
we must have samples available from it. The algorithm produces θ and φ that parameterize a distribution
on Rm and a dequantization density on Z. Together, these two densities can be combined to compute an
estimate of the density using the right-hand side of eq. (10).

1: Input: Samples from target density D def.= (y1, . . . , yB) on an embedded manifold Y ⊂ Rm, step-size
ε ∈ R+.

2: Identify a smooth change-of-variables G : Rm → Y ×Z where Z ⊂ Rp is an auxiliary structure.
3: Let πRm be a density on Rm that is smoothly parameterized by θ ∈ Rnamb .
4: Let π̃Z be a density on Z that is continuously parameterized by y ∈ Y and smoothly parameterized by
φ ∈ Rndeq .

5: while Not Done do
6: Use eq. (13) or eq. (14) to compute an average loss over D:

L(θ, φ|D) = E
y∼Unif(D)

F(y|θ, φ) (12)

where F is the right-hand side of eq. (13) or eq. (14), respectively.
7: Update θ = θ + ε∇θL(θ, φ|D) and φ = φ+ ε∇φL(θ, φ|D).
8: end while
9: Output: Parameterized densities πRm(·|θ) and π̃Z(·|y, φ) that can be used to perform density estimation

on Y using eq. (10).

Objective Functions. We consider two possible objective functions for density estimation. The first is the
evidence lower bound of the observations {y1, . . . , ynobs}:

log π̂Y(yi) ≥ E
z∼π̃Z

log πRm(G−1(yi, z))
π̃Z(z) ·

√
det(∇G(x)>∇G(x))

. (13)

This follows as a consequence of Jensen’s inequality applied to eq. (10). Experimental results using this objec-
tive function are denoted with the suffix (ELBO). The second is the log-likelihood computed via importance
sampling:

log π̂Y(yi) = log E
z∼π̃Z

πRm(G−1(yi, z))
π̃Z(z) ·

√
det(∇G(x)>∇G(x))

. (14)

Because the calculation of eq. (14) requires an importance sampling estimate, experimental results using this
objective function are denoted with the suffix (I.S.).

7 Experimental Results

To demonstrate the effectiveness of the approach, we now show experimental results for density estimation
on three different manifolds: the sphere, the torus and the orthogonal group. In our comparison against
competing algorithms, we ensure that each method has a comparable number of learnable parameters. Our
evaluation metrics are designed to test the fidelity of the density estimate to the target distribution; details
on evaluation metrics are given in appendix G. We note that lower is better for all evaluation metrics except
for the relative effective sample size (ESS) for which larger values (closer to 100) are better. In all of our
examples we use rejection sampling in order to draw samples from the target distribution.

Sphere and Hypersphere. Our first experimental results concern the sphere S2 where we consider a
multimodal distribution with four modes. This density on S2 which is visualized in fig. 3. We consider
performing density estimation using the ELBO (eq. (13)) and log-likelihood objective functions (eq. (14));
we construct densities in the ambient space using RealNVP and neural ODEs. We use algorithm 1 to
learn the parameters of the ambient and dequantization distributions. As baselines we consider the Möbius
transform approach described in Rezende et al. (2020), which is a specialized normalizing flow method for
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(a) (b)

(c)

Figure 3: Figures (a) and (b): Comparison of the density on S2 learned via RealNVP dequantization with a
KL-divergence loss estimated via importance sampling. The dequantization procedure (a) is able to identify
all modes of the true density (b) correctly. Figure (c): Comparison of the density on S3 learned via RealNVP
dequantization with a KL-divergence loss. We visualize S2-slices of S3 by examining the density when one of
the hyperspherical coordinates is held fixed at different values. The top set of slices shows the approximate
density obtained via dequantization and the target density and the bottom slices show the true density. The
KL divergence is 0.01269 and the relative effective sample size is 97.70%.

Table 1: Comparison of dequantization to normalizing flows on the multimodal density on S2. Averages were
computed using ten random trials for the dequantization procedures and eight random trials for the normal-
izing flow (because two random trials exhibited divergent behavior and were excluded). The dequantization
procedure is illustrated for both the ELBO loss and the KL divergence loss.

Method Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Deq. ODE (ELBO) 0.0012 ± 0.0002 0.0006 ± 0.0001 0.0046 ± 0.0002 0.0046 ± 0.0002 99.0990 ± 0.0401
Deq. ODE (I.S.) 0.0014 ± 0.0002 0.0010 ± 0.0001 0.0029 ± 0.0001 0.0029 ± 0.0001 99.4170 ± 0.0225
Deq RealNVP (ELBO) 0.0004 ± 0.0001 0.0003 ± 0.0001 0.0231 ± 0.0010 0.0212 ± 0.0009 95.9540 ± 0.1688
Deq. RealNVP (I.S.) 0.0005 ± 0.0002 0.0002 ± 0.0000 0.0124 ± 0.0006 0.0115 ± 0.0006 97.8240 ± 0.1183
Man. ODE 0.0010 ± 0.0004 0.0009 ± 0.0002 0.0085 ± 0.0007 0.0083 ± 0.0007 98.3860 ± 0.1328
Möbius 0.0021 ± 0.0005 0.0019 ± 0.0005 0.0595 ± 0.0025 — 89.2575 ± 0.4888

tori and spheres, and the neural manifold ODE applied to the sphere as described in (Lou et al., 2020).
We give a comparison of performance metrics between these methods in table 1. In these experiments,
we find that parameterizing a neural ODE model in the ambient space gave the better KL-divergence and
effective sample size (ESS) metrics than RealNVP when our dequantization approach is used. We find that
our dequantization algorithm minimizing either eq. (13) or eq. (14) achieves similar performance in the
first and second moment metrics. However, when using eq. (14), slightly lower KL-divergence metrics are
achievable as well as slightly larger effective sample sizes. In either case, dequantization outperforms the
Möbius transform on this multimodal density on S2. The manifold ODE method is outperformed by the
ODE dequantization algorithms with both eq. (13) and eq. (14).

We next consider a multimodal density S3 ∼= SU(3) (the special unitary group). As before, we compare
dequantization to Möbius flow transformations and manifold neural ODEs and present results in table 2.

9
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Table 2: Comparison of dequantization to normalizing flows on the multimodal density on S3. Averages
were computed using ten random trials for the dequantization procedures and nine random trials for the
normalizing flow (one random trial exhibited divergent behavior and was excluded).

Method Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Deq. ODE (ELBO) 0.0009 ± 0.0001 0.0007 ± 0.0001 0.0072 ± 0.0002 0.0070 ± 0.0002 98.6490 ± 0.0388
Deq. ODE (I.S.) 0.0017 ± 0.0001 0.0022 ± 0.0002 0.0189 ± 0.0004 0.0180 ± 0.0004 96.6150 ± 0.0648
Deq. RealNVP (ELBO) 0.0003 ± 0.0001 0.0004 ± 0.0001 0.0384 ± 0.0010 0.0283 ± 0.0005 95.1880 ± 0.0771
Deq. RealNVP (I.S.) 0.0003 ± 0.0001 0.0003 ± 0.0000 0.0208 ± 0.0004 0.0180 ± 0.0004 96.6340 ± 0.0920
Man. ODE 0.0012 ± 0.0003 0.0008 ± 0.0002 0.0098 ± 0.0009 0.0094 ± 0.0007 98.1780 ± 0.1302
Möbius 0.0027 ± 0.0004 0.0014 ± 0.0003 0.0542 ± 0.0047 — 88.7290 ± 0.9332

Table 3: Comparison of Deq. RealNVP to Möbius Flow flows on the multimodal density on T2. Averages
were computed using ten random trials for the Deq. RealNVP procedures, direct, and Möbius Flow flow
procedures.

Density Method Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Correlated Deq. RealNVP (ELBO) 0.0019 ± 0.0007 0.0098 ± 0.0019 0.0072 ± 0.0005 0.0084 ± 0.0006 98.6510 ± 0.0958

Deq. RealNVP (I.S.) 0.0024 ± 0.0007 0.0121 ± 0.0041 0.0038 ± 0.0004 0.0040 ± 0.0004 99.2570 ± 0.0796
Modulus 0.0017 ± 0.0005 0.0072 ± 0.0021 0.0025 ± 0.0006 0.0025 ± 0.0006 99.5000 ± 0.1153
Möbius 0.0004 ± 0.0002 0.0083 ± 0.0029 0.0021 ± 0.0002 — 99.5850 ± 0.0332

Unimodal Deq. RealNVP (ELBO) 0.0010 ± 0.0003 0.0133 ± 0.0040 0.0066 ± 0.0004 0.0079 ± 0.0004 98.7240 ± 0.0761
Deq. RealNVP (I.S.) 0.0011 ± 0.0003 0.0081 ± 0.0020 0.0021 ± 0.0002 0.0023 ± 0.0002 99.5980 ± 0.0317
Modulus 0.0014 ± 0.0003 0.0164 ± 0.0028 0.0028 ± 0.0003 0.0028 ± 0.0003 99.4340 ± 0.0531
Möbius 0.0006 ± 0.0002 0.0055 ± 0.0037 0.0008 ± 0.0001 — 99.8490 ± 0.0293

Multimodal Deq. RealNVP (ELBO) 0.0024 ± 0.0006 0.0158 ± 0.0026 0.0065 ± 0.0002 0.0075 ± 0.0002 98.7800 ± 0.0379
Deq. RealNVP (I.S.) 0.0007 ± 0.0002 0.0061 ± 0.0014 0.0020 ± 0.0001 0.0022 ± 0.0002 99.6160 ± 0.0288
Modulus 0.0016 ± 0.0007 0.0063 ± 0.0024 0.0035 ± 0.0004 0.0035 ± 0.0004 99.3030 ± 0.0725
Möbius 0.0006 ± 0.0001 0.0070 ± 0.0039 0.0012 ± 0.0002 — 99.7600 ± 0.0358

Similar to the case of the multimodal density on S2, we find that dequantization with an ambient neural
ODE model is most effective, with ELBO maximization giving the smallest KL-divergence metrics. All
dequantization algorithms out-performed the Möbius transformation on the sphere but only dequantization
with an ambient ODE and ELBO minimization outperformed the manifold neural ODE method.

Torus. We next consider three densities from Rezende et al. (2020) on the torus T2. These densities
are, respectively, unimodal, multimodal, or exhibit strongly correlated dimensions. As in the case of the
sphere, we evaluate dequantization of the torus against the Möbius transform method. As a further point
of comparison, we also consider learning a normalizing flow density on R2 and simply identifying every 2π-
periodic point so as to induce distribution on T2; we call this the modulus dequantization method. Results
are reported in table 3. We find that the Möbius transformation performs strongest in this comparison.
The modulus method also performs well, particularly on the correlated toroidal density function. Of the
dequantization-based approaches, minimizing the negative log-likelihood produces the best performance,
which outperforms the modulus method in terms of KL-divergence and first- and second-moment metrics
(excepting the correlated density). We note, however, that all of these methods estimated effective sample
sizes at nearly 100%, indicating that the differences between each approach, while statistically significant,
are practically marginal.

Orthogonal Group. The previous two examples focused on manifolds composed of spheres and circles.
We now examine density estimation on the orthogonal group, where we consider inference in a probabilistic
variant of the orthogonal Procrustes problem; we seek to sample orthogonal transformations that transport
one point cloud towards another in terms of squared distance. We consider parameterizing a distribution
in the ambient Euclidean space using RealNVP in these experiments. Results are presented in table 4. We
observe that optimizing the ELBO objective function (eq. (13)) tended to produce better density estimates
than the log-likelihood (eq. (14)). Nevertheless, we find that either dequantization algorithm is effective at
matching the target density.
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Table 4: Metrics of the dequantization algorithm in application to the orthogonal Procrustes problem and
dequantization of a multimodal density on SO(3). When using the polar decomposition, results are averaged
over ten independent trials for the multimodal distribution on SO(3) and nine independent trials for the
orthogonal Procrustes problem.

Experiment Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Procrustes (ELBO) 0.0022 ± 0.0013 0.0014 ± 0.0009 0.0159 ± 0.0043 0.0122 ± 0.0030 97.1000 ± 0.6099
Procrustes (I.S.) 0.0032 ± 0.0017 0.0016 ± 0.0010 0.0220 ± 0.0070 0.0155 ± 0.0045 96.7322 ± 0.7752

SO(3) (ELBO) 0.0005 ± 0.0001 0.0024 ± 0.0002 0.0459 ± 0.0024 0.0357 ± 0.0024 96.3050 ± 0.1004
SO(3) (I.S.) 0.0007 ± 0.0003 0.0011 ± 0.0003 0.0198 ± 0.0025 0.0230 ± 0.0022 97.7550 ± 0.1588

We may also leverage corollary 1 so as to apply our method to the “dequantization” of SO(n). As an
example, we consider a multimodal density on SO(3). Results of applying our method to sampling from this
distribution are also shown in table 4. In this example we find that minimizing the negative log-likelihood
using importance sampling tended to produce the best approximation of the first- and second-moments of
the distribution, in addition to smaller KL-divergence metrics.

8 Conclusion

This paper proposed a new method for density estimation on manifolds called manifold dequantization. The
proposed approach allows us to make use of existing techniques for density estimation on Euclidean spaces
while still providing efficient, exact sampling of the distribution on the manifold as well as approximate
density calculation. We evaluated this method for densities on the sphere, the torus, and the orthogonal
group. Our results show that manifold dequantization is competitive with, or exceeds the performance of,
competing methods for density estimation on manifolds.

Broader Impact Statement

In terms of societal impact, matrix manifolds appear in various scientific disciples such as computational
biology, the earth sciences, and robotics. While our experimentation on dequantization are synthetic, we
expect that the techniques proposed here can be adapted to research in these scientific disciplines.
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A Evidence Lower Bound for Special Orthogonal Group

Let R be a reflection matrix. Then using the fact that O(n) = SO(n)× {Idn,R} we have,

log πSO(n)(O) = log E
S∼Unif(Idn,R)

πO(n)(SO) + log 2 (15)

≥ E
S∼Unif(Idn,R)

log πO(n)(SO) + log 2 (16)

≥ E
S∼Unif(Idn,R)

E
L∼π̃Tri+

log πRn×n(SOP)
J (OP) · π̃Tri+(L) + log 2 (17)

≥ E
S∼Unif(Idn,R)

E
L∼π̃Tri+

log πRn×n(SOP)
J (OP) · π̃Tri+(L) (18)

where J (OP) def.=
√

det((∇G(OP))>(∇G(OP))).
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B Dequantizing the Integers

We now consider how to apply corollary 1 and theorem 1 to the dequantization of integers and draw a
connection to dequantization in normalizing flows (Hoogeboom et al., 2020). Let πR be a probability density
on R. Consider the function T : R → Z× [0, 1) defined by T (x) = (bxc, x− bxc). Consider the partition of
R given by On = [n, n + 1); on each On we have that Tn(x) def.= (n, x − n) satisfies Tn = T |On; moreover,
on each On, the transformation Tn is invertible (the inverse map is (n, r) 7→ n + r) and preserves volume,
which implies a unit Jacobian determinant. Therefore, the associated density on Z × [0, 1) is given by
πZ×[0,1)(n, r) = πR(n+ r). We may view Z× [0, 1) as a coordinate system for R. If we wish to integrate out
the nuisance variables in the unit interval, we obtain the marginal density on Z as

πZ(n) =
∫ 1

0
πR(n+ r) dr. (19)

By choosing π̃[0,1) as, for example, a Uniform distribution, one obtains the traditional uniform dequantization.
Choosing a more complex distribution, for example, a Beta distribution (with parameters possibly depending
on n) one obtains an importance sampling formula for the marginal density as πZ(n) = E

r∼π̃[0,1)(r)
πR(n+r)
π̃[0,1)(r) .

This can be optimized through a variational bound, giving variational dequantization (Ho et al., 2019).
Optimizing it directing gives importance weighted dequantization (Hoogeboom et al., 2020).
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C Torus Modulus Dequantization

Taking inspiration from appendix B, we turn now to consider another dequantization of the torus. To begin,
identify the circle S1 with the interval [0, 2π). We can construct a map from R to Z× [0, 2π) by identifying
2π-periodic points. Define the map G̃(x) = (bxc, x ( mod 2π)). Let Ok = [2πk, 2π(k + 1)) for k ∈ Z; on
this interval we may define Gk : Ok → Z × [0, 2π) by Gk(x) = (k, x − 2πk) which satisfies G|Ok = Gk.
Because this map is nothing but a shift by 2πk, it is invertible and volume preserving. Moreover, we may
view Z × [0, 2π) as a coordinate system for R. Let πR be a density on R and let x ∼ πR. The associated
density on Z× [0, 2π) is therefore,

πZ×[0,2π)(k, y) = πR(y + 2πk). (20)

We may marginalize out the integers to obtain the density on [0, 2π) as

π[0,2π)(y) =
∑
k∈Z

πR(y + 2πk). (21)

This idea is readily extended to higher dimensions. Because the torus is nothing but the product manifold
of two circles, we may identify the torus with [0, 2π) × [0, 2π). Let πR2 be a density on R2 and let G :
R2 → [Z× [0, 2π)]2 be defined by G(x1, x2) = (G̃(x1), G̃(x2)). Following the precise reasoning from the
one-dimensional case, if x ∼ πR2 then the density of (x1 ( mod 2π), x2 ( mod 2π)) is,

π[0,2π)×[0,2π)(y1, y2) =
∑
k1∈Z

∑
k2∈Z

πR2(y1 + 2πk1, y2 + 2πk2). (22)

We call this approach modulus dequantization. This approach requires fewer dimensions than embedding the
torus in R2m. In practice, the infinite sums over the integers may be approximated by truncating to a finite
number of terms.
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D Polar Decomposition Isomorphism

Proposition 1. Let A be a real, positive semi-definite matrix. Then there exists a unique real, positive
semi-definite matrix B such that A = BB. We call B the principal square root of A and may write B =

√
A.

Definition 1 (Stiefel Manifold). The Stiefel(m,n) manifold is the subset of Rm×n of orthogonal matrices.
That is,

Stiefel(m,n) =
{

X ∈ Rm×n : X>X = Id
}

(23)

Definition 2. The set of n× n positive-definite matrices is denoted PD(n).
Definition 3 (Non-Square Polar Decomposition). Let A ∈ Rm×n with m ≥ n have the (thin) singular value
decomposition A = UΣV> where U ∈ Stiefel(m,n) and V> ∈ O(n). Then we define the non-square polar
decomposition to be A = OP where,

O def.= UV> (24)

P def.= VΣV>. (25)

Lemma 1. The quantity P in eq. (25) is uniquely defined.

Proof. The strategy is to show that P is the unique principal square root of a positive semi-definite matrix.
It is immediately clear from the definition that P is itself positive semi-definite. Consider the positive
semi-definite matrix

A>A = (VΣU>)(UΣV>) (26)
= VΣΣV> (27)
= (VΣV>)(VΣV>) (28)
= PP. (29)

By identification P is the principal square root of A>A so it is unique.

Proposition 2. Let Σ = diag(σ1, . . . , σn) and suppose that σ1 ≥ σ2 ≥ . . . ≥ σn > 0. Then, the quantity O
in eq. (24) is uniquely defined.

Proof. If σn > 0 then

det(P) = det(V) · det(Σ) · det(V>) (30)

=
n∏
i=1

σi (31)

> 0. (32)

Thus, P is invertible. Thus, O = AP−1.

Note that the condition on the singular values is equivalent to the statement that A has full-rank.
Lemma 2. If A has full-rank then P ∈ PD(n).

Proof. If A has full-rank then all the singular values are strictly positive. Thus, VΣV> is an eigen-
decomposition of P whose eigenvalues are all positive. Since a matrix is positive-definite if and only if
all of its eigenvalues are positive, we conclude that P ∈ PD(n).

Lemma 3. The quantity O in eq. (24) is an element of Stiefel(m,n).
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Proof.

O>O = VU>UV> (33)
= VV> (34)
= Id. (35)

Proposition 3. Given O ∈ Stiefel(m,n) and P ∈ PD(n), we may always write O and P in the form of
eqs. (24) and (25).

Proof. Since P ∈ PD(n), by the spectral theorem there exists an orthonormal basis {v1, . . . , vn} of Rn and
real, positive eigenvalues λ1, . . . , λn, such that P = VΣV−1 = VΣV> where V ∈ Rn×n is the collection of
{v1, . . . , vn} as columns and Σ = diag(λ1, . . . , λn).

Using this V we may compute U = OV, which is an orthogonal matrix:

U>U = V>O>OV (36)
= V>V (37)
= Id. (38)

Define the matrix A = OP. By inspection, a (thin) singular value decomposition of A is

A = UΣV> (39)

since

OP = UV>VΣV> (40)
= UΣV>. (41)

Finally, U ∈ Stiefel(m,n), Σ has only positive entries, and V ∈ O(n), which are the conditions of a thin
singular value decomposition.
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E Experimental Details

Here we include additional information about our experimental design.

E.1 Sphere

We consider the following unnormalized density on S2 given by

πS2(y) ∝
4∑
i=1

exp(10y>µi) (42)

where µ1 = (0.763, 0.643, 0.071), µ2 = (0.455,−0.708, 0.540), µ3 = (0.396, 0.271, 0.878), and µ4 =
(−0.579, 0.488,−0.654).

When using RealNVP, the total number of learnable parameters in our dequantization model is 5, 894;
dequantization with an ambient ODE has 5, 705 learnable parameters; in the case of the Möbius transform
the total number of learnable parameters is 5, 943; for the manifold ODE implementation, we have 5, 533
parameters.

On S3, we consider an unnormalized density proportional to

πS3(y) ∝
4∑
i=1

exp(10y>µi) (43)

µ1 = (−0.129, 0.070, 0.659,−0.738) (44)
µ2 = (−0.990,−0.076, 0.118,−0.017) (45)
µ3 = (0.825,−0.484, 0.061, 0.285) (46)
µ4 = (−0.801, 0.592,−0.024, 0.081). (47)

When using RealNVP, the total number of learnable parameters in our dequantization model is 21, 854;
dequantization with an ambient ODE has 21, 386 learnable parameters; in the case of the Möbius transform
the total number of learnable parameters is 25, 406; for the manifold ODE implementation, we have 21, 204
parameters. For dequantization we use 100 samples per batch and use rejection sampling to draw samples
from the unnormalized target density at each iteration.

E.2 Torus

Expressed in terms of their angular coordinates (as opposed to their embedding into R4), the densities on
the torus are as follows:

Unimodal πuni
T2 (θ1, θ2|φ) ∝ exp(cos(θ1 − φ1) + cos(θ2 − φ2)) with φ = (4.18, 5.96).

Multimodal πmul
T2 (θ1, θ2) ∝

∑3
i=1 π

uni
T2 (θ1, θ2|φi) where φ1 = (0.21, 2.85), φ2 = (1.89, 6.18), and φ3 =

(3.77, 1.56).

Correlated πcor
T2 (θ1, θ2) ∝ exp(cos(θ1 + θ2 − 1.94)).

The number of learnable parameters in the dequantization models is 6, 106; in the Möbius flow model, the
number of learnable parameters is 5, 540; for the direct method, the number of learnable parameters is
5, 406. For dequantization we use 100 samples per batch and use rejection sampling to draw samples from
the unnormalized target density at each iteration.

E.3 Orthogonal Group

Drawing inspiration from the orthogonal Procrustes problem, we define the unnormalized density by

πO(n)(O) ∝ exp
(
− 1

2σ2 ‖B−OA‖2
fro

)
, (48)
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where A,B ∈ Rn×p. Given samples from eq. (48), we may apply our dequantization procedure to perform
density estimation. In our experiments we take p = 10 and n = 3. For dequantization we use rejection
sampling to draw samples from the posterior. Then, with these fixed samples, we use batches of 100 samples
to train the ambient and dequantization distributions.

E.4 Special Orthogonal Group

Let R ∈ Rn×n be a reflection matrix and notice that {SO(n),RSO(n)} is partition of O(n). Given a density
on Rn×n, using the methods described in section 5.1.3, we may obtain a density on O(n). Then, we define
the function S : O(n)→ SO(n) by

S(O) def.=
{

O if det(O) = +1
RO if det(O) = −1

, (49)

where R is a reflection matrix. Now, define S1(O) def.= O and S2(O) def.= RO, which satisfy S1 = S|SO(n) and
S2 = S|RSO(n). Both S1 and S2 are self-inverse and volume-preserving maps on their respective domains
so we may obtain a density on SO(n) as

πSO(n)(O) = πO(n)(O) + πO(n)(RO). (50)

One may immediately seek to minimize the negative log-likelihood of data using eq. (50). Alternatively, we
use the following ELBO in our our experiments:

log πSO(n)(O) ≥ E
S∼Unif(Idn,R)

E
L∼π̃Tri+

πRn×n(SOP)
det(∇G(SOP)) · π̃Tri+(L) , (51)

where, as in section 5.2.3, P = LL>. For a short derivation of this ELBO, see appendix A.

We consider the following multimodal density on SO(3):

πSO(3)(O) ∝
3∑
i=1

exp(− 1
2σ2 ‖O− Ωi‖2

fro) (52)

where in our experiments we set σ = 1/2, Ω1 = diag(1, 1, 1), Ω2 = diag(−1,−1, 1), and Ω3 = diag(−1, 1,−1).
For dequantization we use rejection sampling to draw samples from the posterior. Then, with these fixed
samples, we use batches of 100 samples to train the ambient and dequantization distributions.
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F Practical Considerations

Element Notation Description

Ambient Euclidean Space X = Rm Euclidean space in which the manifold of interest is embedded
Ambient Density πX (·|θ) A flexible family of densities parameterized by θ ∈ Rnamb on X

Change-of-Variables Mapping G : X → Y × Z A smooth mappingsatisfying the conditions of corollary 1 or theorem 1
where Z is an auxiliary manifold.

Dequantization Density π̃Z(·|φ, y) A non-vanishing family of dequantization distributions parameterized
by φ ∈ Rndeq and possibly depending on y ∈ Y.

Loss Function L : Rnamb×ndeq → R
A loss function depending on

{
y1, . . . , ynobs

}
, πX , and π̃Z that

is differentiable in θ and φ and captures the quality of the density
estimate.

Table 5: The five elements that we use to dequantize a manifold into an ambient Euclidean space using a
change-of-variables and dequantization density for marginalization.

F.1 The Ambient Euclidean Space

It is frequently the case that a manifold has a natural embedding into Euclidean space. For instance,
the sphere Sm−1 is naturally embedded into Rm. The Stiefel manifold is a subset of Rn×p satisfying an
orthonormality condition; therefore, it is naturally embedded into Rn×p. For some manifolds, the choice
may require some consideration. For instance, a torus T2 may be regarded as a product manifold of two
circles, each of which are naturally embedded into R2 so that the entire torus is embedded into R4 (this
is called the Clifford torus). An alternative is the familiar embedding of the torus as a “doughnut” in R3,
although in this case it may be non-obvious how to construct a suitable mapping G between R3, the doughnut
torus, and some auxiliary choice of one-dimensional manifold.

F.2 The Change-of-Variables and Auxiliary Manifold

We have seen several examples wherein manifolds of interest appear alongside an auxiliary manifold when an
ambient Euclidean space is transformed under a change-of-variables. In general, one would like to identify
a transformation G : X → Y × Z, satisfying the conditions of theorem 1 or corollary 1, such that it will
be straightforward to formulate importance sampling random variables on Z so as to obtain the marginal
density on Y.

F.3 Dequantization Density

Dequantization densities π̃Z on Z has to respect the constraints of the auxiliary manifold. For instance, if
Z = R+ we must choose a dequantization density whose support is the positive real numbers and which is
non-vanishing. The requirement that π̃Z be non-vanishing (that is, π̃Z(z) > 0 for all z ∈ Z) is important so
as to avoid division-by-zero singularities in the importance sampling formula eq. (10). We have already seen
some examples of dequantization densities that respect the constraints of the auxiliary manifold in section 5.
In each of these cases, the dequantization distribution is parameterized (for example, the Gamma distribution
is parameterized by its shape and scale); it may be desirable to choose these parameters to depend on the
location y ∈ Y. To accomplish this, one may construct a neural network with parameters φ and input y whose
output is the parameterization of the dequantization distribution. Thus the dequantization distribution may
be in general expressed as φ̃Z(·|φ, y).
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G Evaluation Metrics

Given a density πY(y) ∝ exp(−u(y)), known up to proportionality, we consider several performance metrics
for the dequantization method we propose. The error of the first order moment is defined by,

‖ E
y∼πY

[y]− E
ŷ∼π̂Y

[ŷ] ‖2. (53)

The error of the second (centered) moment is defined by

‖Cov
y∼πY

(y)− Cov
ŷ∼π̂Y

(ŷ) ‖fro. (54)

The Kullback-Leibler divergence of π̂Y and πY is

KL(π̂Y‖πY) def.= E
ŷ∼π̂Y

log π̂Y(ŷ)
πY(ŷ) (55)

= E
ŷ∼π̂Y

[log π̂Y(ŷ) + u(ŷ)] + logZ, (56)

where Z is the normalizing constant of πY(y). We can estimate Z via importance sampling according to

Z = E
ŷ∼π̂Y

[
exp(−u(ŷ)))

π̂Y(ŷ)

]
, (57)

which permits us to compute a Monte Carlo estimate of the Kullback-Leibler divergence. The reverse
direction of the KL-divergence KL(πY‖π̂Y) may be similarly computed.

Let {ŷ1, . . . , ŷn} be a collection of independent identically-distributed samples from π̂Y . The number of
effective independent samples is the quantity,

ESS def.=
(
∑n
i=1 ωi)

2∑n
i=1 ω

2
i

(58)

where ωi = exp(−u(ŷi))/π̂Y(ŷi). See (Liu, 2008; Gower & Dijksterhuis, 2004) for details on the ESS metric.
Following (Rezende et al., 2020), we report the relative ESS, which the ratio of the effective sample size and
n, the number of samples. When a Monte Carlo approximation of the evaluation metric is required, we use
rejection sampling in order to obtain samples from the density πY .
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H Proof of Manifold Change-of-Variables Formula

Proposition 4. Let A ⊆ Rm and let G : A → Rn be a smooth function. Suppose m < n. Define the
embedded manifold M def.= G(A). Let π be a real-valued, continuous function on M . Then,∫

M

π(x) dVol(x) =
∫
A

π(G(t)) ·
√

det((∇G(t))>(∇G(t))) dt (59)

where dVol is the volume measure on M .

Proof. See (Jones, 2004).

Corollary 3. Define,

πRm(t) def.= π(G(t)) ·
√

det((∇G(t))>(∇G(t))). (60)

Then rearranging immediately implies,

π(G(t)) = πRm(t)√
det((∇G(t))>(∇G(t)))

, (61)

which is the manifold change-of-variables formula.

What follows now is a more detailed exposition on this result using Riemannian geometry.

Let U be an open subset of Rm. Let G be a continuous function from U → Rn that is a homeomorphism on
its image. That is, definingM def.= {G(x) : x ∈ U} ⊂ Rn, we find that G has a continuous inverse onM. As
a subset of Rn, we can equipM with the subspace topology and find thatM is a topological m-manifold.
Under these assumptions, it immediately follows that (M, G−1) is a global coordinate chart in the sense of
differential geometry.

If we further assume that G and its inverse are smooth functions (in the sense of ordinary calculus), then
it follows that M is globally diffeomorphic to U . Evidently, our discussion allows m ≤ n. If the Jacobian
(in the sense of ordinary calculus) of G, denoted ∇G : U → Rn×m, has the property that at every x ∈ U ,
rank(∇G(x)) = m, then G is called a smooth immersion; this is equivalent to ∇G having full-rank at each
x ∈ U . Moreover, because G is homeomorphic onto its image, G is also a smooth embedding.

The tangent space of a smooth manifold can be constructed as the vector space of velocities that a particle
moving along the manifold may exhibit at a point. Formally, let (a, b) ⊂ R be an open interval and let
x : (a, b) → U be a parameterized smooth curve in U . The composition y def.= G ◦ x : (a, b) →M is then a
parameterized smooth curve onM. The velocity of y is then computed as,

d
dty(t) = d

dt (G ◦ x)(t) = ∇G(x(t))ẋ(t). (62)

From the preceding discussion, ∇G(x(t)) ∈ Rn×m is a matrix of full-rank and therefore has m linearly-
independent n-dimensional columns. Since ẋ(t) ∈ Rm can be arbitrary, we find that the tangent space of
M at y(t) is the vector space spanned by the columns of ∇G(x(t)); note that these basis vectors depend
only on the position in U and not on time. Given y ∈ M, we denote the tangent space by TyM ={
∇G(x)c : c ∈ Rm, x = G−1(y)

}
which is a vector subspace of Rn. In the following, we make use of the

common identification TxRm ∼= Rm.

A smooth manifold can be turned into a Riemannian manifold by equipping its tangent spaces with an inner
product called the Riemannian metric. Formally, given y ∈M, g(y) 7→ 〈·, ·〉y where 〈·, ·〉y : TyM×TyM→ R
is an inner product. Given the discussion so far, there is no prescription for a Riemannian metric. However,
we may “prefer” the Riemannian metric that is induced from the ambient Euclidean space Rn. For ỹ ∈ Rn,
the Euclidean metric is defined by 〈u, v〉ỹ = u>v where u, v ∈ TỹRn ∼= Rn. The induced metric onM⊂ Rn
is then defined by 〈u, v〉y = u>v where u and v are viewed as vectors in Rn satisfying u, v ∈ TyM.
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Given a metric onM, we can compute an associated metric on U called the pullback metric. The pullback
metric is defined by,

g̃(x)(ũ, ṽ) = g(G(x))(∇G(x)ũ,∇G(x)ṽ) (63)
= ũ>∇G(x)>∇G(x)ṽ (64)

where ũ, ṽ ∈ TxRm ∼= Rm. From the condition that ∇G(x) is a matrix of full-rank for each x ∈ U , it can
be shown that ∇G(x)>∇G(x) is a positive definite matrix. Hence the pullback metric is a proper inner
product. Unlike the induced metric on M which has no real dependency on y ∈ M, the pullback metric
does depend on x ∈ U through ∇G(x)>∇G(x). The pullback metric can be regarded as the expression of
the induced metric on M in the global coordinates of U . Indeed, if y = G(x), recall that every u ∈ TyM
can be expressed as u = ∇G(x)ũ where ũ ∈ Rm; the unique ũ can be computed from

ũ = (∇G(x)>∇G(x))−1∇G(x)>u. (65)

In our construction, we have described how to induce a metric on M via the Euclidean metric in the
embedding space. We then described how the metric materializes in the global coordinate system via the
pullback metric. We are now in a position to state how these objects inform integration on Riemannian
manifolds. We have the following theorem.
Theorem 2. Let dVol denote the Riemannian volume element onM when the metric onM is the induced
Euclidean metric from Rn. Given a smooth function f : M → R, its integral over M can be expressed in
terms of the global coordinate system as,∫

M
f(y) dVol(y) =

∫
U

f(G(x)) ·
√

det(∇G(x)>∇G(x)) dx. (66)

A proof of this result may be found in (Jones, 2004). More sophisticated variants of this result may be found
textbooks on differential geometry; see, inter alia, (Lee, 2003).

If πM is a density onM, y ∼ πM and A ⊂M, then we have,

Pr
y∼πM

[y ∈ A] =
∫
M

1 {y ∈ A} · πM(y) dVol(y) (67)

=
∫
U

πM(G(x)) · 1 {G(x) ∈ A} ·
√

det(∇G(x)>∇G(x)) dx (68)

= Pr
x∼πU

[
x ∈ G−1(A)

]
(69)

where

πU (x) = πM(G(x)) ·
√

det(∇G(x)>∇G(x)) (70)

which, upon rearrangement, is the manifold change-of-variables formula.

Given a subset A ⊂M, we define its volume by,∫
A

dVol(y) =
∫
G−1(A)

√
det(∇G(x)>∇G(x)) dx. (71)

Such a definition of volume is sometimes called the “surface measure” and it is a generalization of arclength
in the one-dimensional setting. Moreover, this notion of volume coincides with the m-dimensional Hausdorff
area of A; this is a consequence of the area formula and a detailed discussion can be found in (Federer, 1969).
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I Embedded Manifolds

A smooth manifold X of dimension k is a second-countable Hausdorff space such that for every x ∈ X there
is a homeomorphism between a neighborhood of x and Rk. By the Whitney Embedding Theorem (see, inter
alia, (Lee, 2003)), every smooth manifold can be smoothly embedded into Euclidean space of dimension 2k.
It is frequently possible to express an embedded manifold as the zero level-set of a constraint function: Let
g : Rm → Rk be a smooth function and define X def.= {x ∈ Rm : g(x) = 0}. If ∇g(x) ∈ Rk×m is a matrix of
full-rank for every x ∈ X , we say that X is an embedded manifold of rank k. To see how these definitions
apply, let us consider some examples.

I.1 Hypersphere

The sphere in R3 is the zero level-set of the constraint function g(x) def.= x>x− 1.

I.2 Torus

The torus is the preimage of the constraint function g : R4 → R2 defined by

g(x) def.=
(
x2

1 + x2
2 − 1

x2
3 + x2

4 − 1

)
. (72)

I.3 Stiefel Manifold

A constraint function for the Stiefel(n, p) manifold is g : Rn×p → Rn×n defined by g(M) = M>M − Idn.
Using the vec : Rm×n → Rmn isomorphism, Stiefel(n, p) may also be embedded into Rnp.

25



Under review as submission to TMLR

J Stiefel QR Decomposition

In appendix D we discussed computing the positive definite component P as the principal square root of
A>A. In our algorithm, P is represented according to its Cholesky factor, which is unique because P is
(assuming A is full-rank). An alternative would be to compute a Cholesky factor of A>A directly; such an
approach allows us to use the QR decomposition in place of the polar decomposition.
Proposition 5. Suppose A ∈ Rm×n is a matrix of full-rank. The (unique) QR decomposition of A is

A = QR (73)

where

L def.= Cholesky(A>A) (74)

R def.= L> (75)

Q def.= AR−1. (76)

Moreover Q ∈ Stiefel(m,n).

Proof. The uniqueness of L (and consequently R) follows from the fact that the Cholesky decomposition of
positive definite matrices is unique. Since A is of full-rank, A>A is a positive definite matrix. Since L has
positive diagonal entries, its determinant is non-zero and therefore has a unique inverse. This implies the
uniqueness of Q. The fact that Q is an element of the Stiefel manifold follows from direct evaluation:

Q>Q = (R−1)>A>AR−1 (77)
= L−1LL>(L>)−1 (78)
= Id. (79)

Proposition 6. Let (Q,L) ∈ Stiefel(m,n) × Tri+(n). The Jacobian determinant of the transformation
(Q,L) 7→ QL> is

n∏
i=1

Lm−iii . (80)

Proof. See page 31 of (Edelman, 1989).
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K Overview of Normalizing Flows

This section describes the Euclidean normalizing flows used in this paper.

K.1 RealNVP

Let x ∈ Rm and let n, p ∈ N satisfym = n+p. Consider partitioning x into components xa ∈ Rn and xb ∈ Rp
by taking the first n and last p components from x, respectively. Let µ(·; θ) : Rn → Rp and σ : Rn → Rp+ be
a functions parameterized by θ ∈ Rdµ and φ ∈ Rdσ , respectively. Compute the affine transformation of xb
according to

yb
def.= σ(xa)� xb + µ(xa) (81)

y
def.= (xa, yb). (82)

The transformation x 7→ y has a Jacobian of the form,

∇xy =
(

Idn 0n×p
∇xayb diag(σ(xa))

)
. (83)

The key observation about this Jacobian is that it has a lower-triangular structure. Therefore, its determinant
is the product of its diagonal elements.

The transformation x 7→ y is also invertible. Let (ya, yb) be the corresponding partition of y. The inverse
map is given by,

xb = (yb − µ(ya))� σ(ya) (84)
xa = ya. (85)

With the inverse and Jacobian determinant available, we may apply the transformation x 7→ y in the
Euclidean change-of-variables formula. This transformation is called RealNVP. In practice, it is common
to chain multiple RealNVP transformations together in order to obtain a more expressive flow. One may
also permute the elements of y after each application of the RealNVP transformation (which is, of course,
an invertible, volume-preserving transformation) in order to construct affine transformations of different
variables.

K.2 Neural ODE

Let x ∈ Rm and let f(·, ·; θ) : Rm × R → Rm be a smooth function parameterized by θ ∈ Rd. Consider
solving the initial value problem defined by,

d
dtφt(x) = f(φt(x), t; θ) (86)

φ0(x) = x. (87)

The map φ(·)(·) : R×Rm → Rm is called the flow of f . The existence and uniqueness of differential equations
leads to the group property of flows:

φt+s(x) = φt(φs(x)). (88)

In particular, since φ0(x) = x, we have φ−t ◦ φt = Id or φ−1
t = φ−t so that the inverse flow map is obtained

from the flow map with a negated time index.

How does the flow of a vector field affect probability? This is an important question that can be answered
at varying levels of sophistication. One elegant analysis uses techniques from fluid mechanics and the Lie
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derivative theorem. In the following we adopt a simpler, if more mechanical, derivation of the rate of change
of the Jacobian determinant.

d
dtdet(∇xφt(x)) = det(∇xφt(x)) trace

(
[∇xφt(x)]−1 d

dt∇xφt(x)
)

(89)

= det(∇xφt(x)) trace
(

[∇xφt(x)]−1 Dxf(φt(x), t; θ)
)

(90)

= det(∇xφt(x)) trace
(

[∇xφt(x)]−1∇xf(φt(x), t; θ)∇xφt(x)
)

(91)

= det(∇xφt(x)) trace (∇xf(φt(x), t; θ)) (92)
= det(∇xφt(x)) div(f(φt(x), t; θ)) (93)

From which it follows that,

d
dt log |det(∇xφt(x))| = div(f(φt(x), t; θ)). (94)

Let π : Rm → R+ be a probability density and let x ∼ π. Let πt(φt(x)) be the density of φt(x). Because
log πt(φt(x)) = log π(x)− log |det(∇xφt(x))|, we have,

d
dt log πt(φt(x)) = −div(f(φt(x), t; θ)). (95)

This formula is sometimes called the instantaneous change-of-variables formula. From the initial condition
φ0(x) = x, we obtain that log |det(∇xφ0(x))| = 0, which gives an initial condition for the time evolution of
the Jacobian determinant.

In general, none of the initial value problems described so far have analytical solutions. This necessitates the
use of numerical integrators to compute the map φt(·), its inverse, and the Jacobian determinant correction
from the instantaneous change-of-variables formula. The method is called neural ODE because f(·, ·; θ) is
often chosen to be a neural network parameterized by θ.
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L Universal Approximation for the Dequantized Density

The purpose of this section is to give sufficient conditions on the dequantization of a distribution on a
manifold into an ambient Euclidean space such that a suitably expressive normalizing flow on the Euclidean
space could, in principle, learn the density to an arbitrary precision. The conclusion of this section is that
it is sufficient that the distribution on the manifold and auxiliary structure be measurable with respect to
the natural Borel σ-algebra and that the transformation between Euclidean space and the product space of
the manifold and auxiliary structure be continuously differentiable. After stating this result, the remainder
of the section is devoted to explaining what is meant by universal approximation of Euclidean densities.
Definition 4. Let X be a topological space. The smallest σ-algebra containing all the open sets of X is
called the Borel σ-algebra. The Borel σ-algebra is denoted B(X ). An element A ⊂ B(X ) is called a Borel
set.
Definition 5. A measure µ on Rm is said to be absolutely continuous with respect to the Lebesgue measure
if there exists a measurable function π : Rm → R+ such that

µ(A) =
∫
A

π(x) dx, (96)

where A ∈ B(Rm).
Definition 6. Let X and Y be topological spaces. A function f : X → Y is said to be Borel measurable if
for all E ∈ B(Y)

f−1(E) = {x ∈ X : f(x) ∈ E} ∈ B(X ). (97)

Proposition 7. Let f : X → Y and g : X → Y be two Borel measurable functions. Then the product
function h(x) def.= g(x)f(x) is also Borel measurable. Moreover, if k : Y → Z is another Borel measurable
function then the composition k ◦ f : X → Z is also Borel measurable.
Proposition 8. Let U be an open subset of Rm and let G : U → Rn be a homeomorphism on its image.
Let M def.= {G(x) : x ∈ U}. Assume further that G is a continuously differentiable function. Let µM be a
measure onM that is absolutely continuous with respect to the volume measure onM; that is,

µM(A) =
∫
A

πM(y) dVol(y) (98)

where πM :M→ R+ is a measurable function and A ⊂M is a Borel subset. Then, if y ∼ πM, the random
variable x def.= G−1(y) has a measurable density with respect the the Lebesgue measure given by

πU (x) def.= πM(G(x)) ·
√

det(∇G(x)>∇G(x)). (99)

Proof. By the manifold change-of-variables formula, the measure µM is related to the Lebesgue measure on
Rm according to,

µM(A) =
∫
G−1(A)

πM(G(x)) ·
√

det(∇G(x)>∇G(x)) dx. (100)

Now we apply the results of proposition 7 to show that the integrand on the right-hand side of eq. (100)
is a measurable function. Because G is smooth it is continuous, and continuous functions are measurable.
Therefore, when A ∈ B(M) we obtain that G−1(A) ∈ B(U). Moreover, πM ◦ G is a measurable function
with respect to the Borel σ-algebra on U because the composition of measurable functions is measurable.
Finally, since G is continuously differentiable, and since the determinant and square-root are continuous
functions,

√
det(∇G(x)>∇G(x)) is also a measurable function.

Thus, if y ∼ πM, the random variable x def.= G−1(y) has a measurable density with respect the the Lebesgue
measure given by

πU (x) def.= πM(G(x)) ·
√

det(∇G(x)>∇G(x)). (101)
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Corollary 4. The measure

µU (A) def.=
∫
A

πU (x) dx (102)

is absolutely continuous with respect to the Lebesgue measure.

In the context of dequantization, we would like to understand the conditions under which the dequantization
of a density on an embedded manifold Y via an auxiliary embedded manifold Z and a smooth, invertible
function G : U → Y ×Z produces a Lebesgue measurable density on U ⊂ Rm.
Proposition 9. Let Y and Z be embedded manifolds. Let πY be the density on Y defined with respect
to the Riemannian volume element dVolY and let πZ(·|y) be a density on Z (which may depend on y ∈ Y)
defined with respect to the Riemannian volume element dVolZ . Suppose further that Y ×Z = G(U), where
U is an open set of Rm and G : U → Y × Z is continuously differentiable homeomorphism. If (y, z) are
random variables having density function πY(y)πZ(·|y) with respect to the product element dVolY × dVolZ ,
then the random variable x = G−1(y, z) has a density with respect to Lebesgue measure if πY(y) · πZ(z|y)
is measurable with respect to B(Y × Z) = B(Y)×B(Z).

Proof. This follows as a result of proposition 8 whenM = Y × Z and µM = µY×Z is defined by

µY×Z(A) =
∫
A

πY(y) · πZ(z|y) dVolZ(z) dVolY(y) (103)

where A ∈ B(Y × Z). The conditions of the proposition are met because U is an open subset of Rm by
assumption and G is a continuously differentiable homeomorphism by assumption.

The importance of the open set U is best seen through an example.
Example 1. Let U = R3 \ {0} and consider the transformation G : U → S2 × R+ by defined by

G(x) = (x/r, r). (104)

where r = ‖x‖. Thus, we see that G is the spherical coordinate representation of the point x ∈ U . The
inverse of G is given by G−1(s, r) = rs. Notice that by choosing U to exclude the zero vector, we ensure that
G is indeed a homeomorphism; if the zero vector had not been included we would find that G−1(s, 0) = 0
for all s ∈ S2 so that the inverse is not unique.

To see that G is continuously differentiable, we compute

∂r

∂xj
= xj

r
(105)

∂

∂xj

(xi
r

)
= δij

r
− xixj

r3 (106)

both of which are continuous for x ∈ U . Therefore, if (r, s) is a random variable on S2 × R+ with Borel-
measurable density, then the random variable G−1(r, s) has a density in U with respect to Lebesgue measure
by proposition 9.

The existence of a Lebesgue measurable density in Euclidean space allows us to apply the theory of uni-
versal approximations of certain normalizing flows to guarantee that the dequantized distribution can be
approximated arbitrarily well by a sufficiently expressive normalizing flow in Euclidean space.

The remaining discussion in this appendix is paraphrased from Section 3.4.3 in (Kobyzev et al., 2020), which
itself draws from (Jaini et al., 2019) and (Huang et al., 2018). The essential idea is that one can produce
auto-regressive normalizing flows whose couplings are dense in a space of functions that are guaranteed to
have a universality property.
Definition 7. Let T : Rm → Rm be a function and write T (x) = (T1(x), . . . , Tm(x)) where Tk : Rm → R.
Such a function is called triangular if Tk(x) depends only on (x1, . . . , xk)
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Definition 8. Let T : Rm → Rm be a function and write T (x) = (T1(x), . . . , Tm(x)) where Tk : Rm → R.
Such a function is called increasing if Tk is an increasing function of xk.
Definition 9. An auto-regressive normalizing flow is a triangular map (x1, . . . , xm) 7→ (y1, . . . , ym) of the
form

yk = h(xk|Θk(x1, . . . , xk−1)) (107)

where h(·|θ) : R→ R is a bijection parameterized by θ ∈ Rd and Θk : Rk−1 → Rd is a map that parameterizes
h according to (x1, . . . , xk−1).

In our experimentation on dequantization, we have not considered using auto-regressive flows in the ambient
Euclidean space; neither RealNVP nor neural ODEs are auto-regressive in the sense of definition 9. Therefore,
this discussion is primarily of theoretical interest.
Definition 10. Let µ be a probability measure on a measurable space X and let x be a random variable
taking values in X . We say that the law of x is µ if for all Borel sets A ∈ B(X ) we have

Pr(x ∈ A) =
∫
A

dµ(x). (108)

The following result is from (Bogachev et al., 2007).
Proposition 10. Let µ and µ′ be probability measures that are absolutely continuous with respect to the
Lebesgue measure. Let x be a random variable whose law is µ. Then there exists a triangular-increasing
function T such that the law of T (x) is µ′.

A construction of such a map in proposition 10 is given by the Knothe-Rosenblatt rearrangement (Villani,
2008).

The following result is from (Huang et al., 2018).
Lemma 4. Let µ be a probability measure that is absolutely continuous with respect to Lebesgue measure.
Let Tn be a sequence of measurable maps converging pointwise to a map T . If the law of a random variable
x is µ, then the random variables Tn(x) converge in law to to the random variable T (x).

The universality of auto-regressive normalizing flows can therefore be established by demonstrating that the
functions h appearing in definition 9 are dense in the set of increasing monotone functions. One then applies
proposition 10 and lemma 4 to demonstrate that any random variable x with law µ can be transformed by
an auto-regressive flow using the function h into an approximation of a random variable x′ with law µ′; the
approximation has arbitrarily high fidelity as measured by convergence in law. See (Huang et al., 2018; Jaini
et al., 2019) for a discussion of parameterized families of functions h that are known to possess this property.

In conclusion, proposition 9 gives the necessary conditions on product manifold densities and the change-of-
variables G to ensure the existence of a Lebesgue measurable density in an open subset of Euclidean space.
We saw in example 1 how the choice of open set allows us to avoid pathological points in Euclidean space.
Using the existence of the Lebesgue-measurable density, we may apply the theory of universal approximation
of Lebesgue-measurable densities using auto-regressive normalizing flows to guarantee that the dequantized
distribution can be approximated arbitrarily well. We note, however, that our experiments have not used
auto-regressive normalizing flows.
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M Theory of Dequantization of Embedded Manifolds

Definition 11. Let M be an embedded m-dimensional sub-manifold of Rn. Let U be an open subset of Rn
and let S be a (n −m)-dimensional manifold. We say that M × S can be dequantized into U if there is a
diffeomorphism from (M × S) \NM×S into U \NU where NM×S and NU are negligible sets inside M × S
and U , respectively.
Definition 12 (Lee (2003) (page 106)). A regular level set is a level set consisting entirely of points x ∈ Rn
such that ∇Φ(x) ∈ R(n−m)×n has full-rank.
Theorem 3. Let M be a closed embedded m-dimensional sub-manifold of Rn and suppose that there exists
an open neighborhood U of M in Rn and a smooth function Φ : U → Rn−m such that M is a regular level
set of Φ. Then M × Rn−m can be dequantized into an open subset of Rn.

We will now set about proving this theorem. In all of the examples considered in the main paper U = Rn
and later we will show that U can always be taken to be the whole of Rn.
Definition 13 (Lee (2003) (page 138)). Let M be a properly embedded m-dimensional sub-manifold of
Rn. Let TM be the tangent bundle of M with TxM , the tangent space at x, an embedded m-dimensional
vector space within Rn. Denote the orthogonal complement of TxM within Rn by NxM , which is an
(n−m)-dimensional vector space. The normal bundle is

NM = {(x, v) ∈ Rn × Rn : x ∈M and v ∈ NxM} . (109)

Definition 14 (Lee (2003) (page 139)). LetM be an embedded sub-manifold of Rn. A tubular neighborhood
of M is a neighborhood U of M in Rn that is the diffeomorphic image under addition of an open subset
V ⊂ NM of the form,

V = {(x, v) ∈ NM : ‖v‖ < δ(x)} (110)

where δ : M → R+ is a continuous function.
Lemma 5. Let V be as in eq. (110). There exists an open subset V ′ ⊂ V of the form,

V ′ = {(x, v) ∈ NM : ‖v‖ < δ′(x)} (111)

where δ′ : M → R+ is a smooth function.

Proof. Consider the function δ̃(x) = δ(x)/2, which is also a continuous function. Define the continuous
“error function” ε(x) = δ(x)/4. By the Whitney Approximation Theorem, there is a smooth function δ′ that
is within ε of δ̃. Moverover, because δ is positive, δ′(x) is at least δ(x)/4 > 0, hence δ′ is also positive.

Definition 15 (Lee (2003) (page 250)). The normal bundle is said to be smoothly trivial if it is diffeomorphic
to M × Rn−m.
Proposition 11 (Lee (2003) (page 271)). Let M be a properly embedded m-dimensional sub-manifold of
Rn and suppose that there exists an open neighborhood U of S in Rn and a smooth function Φ : U 7→ Rn−m
such that M is a regular level set of Φ. Then M has smoothly trivial normal bundle.

Proof. Given x ∈ M , it suffices to construct a smooth basis of NxM . By assumption ∇Φ(x) has full-rank
and therefore possesses n − m independent rows. Without loss of generality, we may assume that M is
the zero level-set of Φ; i.e. M = Φ−1({0}) or M = {x ∈ Rn : Φ(x) = 0}. By differentiating the constraint,
we see that all tangent vectors satisfy v ∈ TxM ⇐⇒ ∇Φ(x)v = 0, which immediately yields that the
rows of ∇Φ(x) are orthogonal to the tangent space. Therefore, they are a basis of the normal space NxM .
Smoothness of this basis then follows from the assumed smoothness of Φ.

Lemma 6. The subset pre-image of the tubular neighborhood in eq. (111) is diffeomorphic to NM .

The following proof strategy is adapted from the proof of Proposition 2.8 from Usher (2011).
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Proof. Let g : [0,∞) → [0, 1) be a continuous function satisfying the following properties (i) there is ε > 0
such that g(s) = 1 when s < ε, (ii) g(s) > 0 for every s ∈ [0,∞), and (iii)

∫∞
0 g(s) ds = 1. We define the

following function,

f(t) =
∫ t

0
g(s) ds. (112)

It follows from the inverse function theorem that f has a continuously differentiable inverse. Now consider
the map,

NM 3 (x, v) 7→
(
x,

{
δ′(x)f(‖v‖) v

‖v‖ if ‖v‖ 6= 0
0 otherwise

)
∈ V ′. (113)

where δ′ is the smooth function defined in lemma 5. This is a smooth map because it is nothing but
scalar multiplication by δ′(x) on a neighborhood of {(x, 0) : x ∈M} (when ‖v‖ < ε) and otherwise is the
multiplication of several smooth functions. In either case, the smooth inverse transformation is seen to be,

V ′ 3 (x, v′) 7→
(
x,

{
f−1

(
‖v′‖
δ′(x)

)
v′

‖v′‖ if ‖v′‖ 6= 0
0 otherwise

)
∈ NM. (114)

Proof of Theorem 3. Let V be as in definition 14, the subset of NM that is diffeomorphic under addition to
a tubular neighborhood of M . Let V ′ be as in lemma 5, which is diffeomorphic to an open neighborhood of
M under addition. By lemma 6, V ′ is itself diffeomorphic to NM . By proposition 11, NM is diffeomorphic
to M × Rn−m. Therefore, by chaining these diffeomorphisms together, we obtain a diffeomorphism from
M × Rn−m to an open neighborhood of M in Rn.

Now we will show that the open set into which M × Rn−m can be dequantized in theorem 3 is almost
diffeomorphic to Rn.
Theorem 4. Every open subset U of Rn is almost diffeomorphic to Rn; that is, there exists Lebesgue-
negligible sets NU and NRn and a diffeomorphism ψ : U \NU → Rn \NRn .

We require the following result.
Theorem 5 (Stein & Shakarchi (2005) (page 7)). Every open set U of Rn can be written as a countable
union of almost disjoint closed cubes.
Corollary 5. Every non-empty open set U of Rn can be written as a countably infinite union of almost
disjoint closed cubes.

Proof. If the construction in theorem 5 is already countably infinite then there is nothing to prove. Therefore
assume that U is a finite union of, say, k almost disjoint closed cubes. Take the kth cube and sub-divide it
into 2n sub-cubes by splitting it at the midpoint of each side dimension. This leaves us with k − 1 + 2n > k
cubes and U is the finite union of k − 1 + 2n almost disjoint closed cubes. This process is then iterated ad
infinitum, thereby producing a countably infinite set of almost disjoint closed cubes whose union is U .

Proof of Theorem 4. We will use the fact that Zn is countable. We will denote the interior of a set O ⊂ Rn
by Int(O). Consider placing at each x ∈ Zn a closed unit cube, cx, whose center is x; the collection of
these cubes is countable because Zn is. Then Rn =

⋃
x∈Zn cx and Rn \

⋃
x∈Zn Int(cx) is a set with Lebesgue

measure zero. Let Q denote the countably infinite set of almost disjoint closed cubes whose union is U .
Since Q is countable, let Qk denote the kth cube; we have U =

⋃
k∈NQk and U \

⋃
k∈N Int(Qk) is Lebesgue

negligible. Since Zn is countable, there exists a bijection ω : N→ Zn. By shifting and scaling Int(Qk) (which
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are, of course, smooth and invertible operations) we can transform it into Int(cω(k)). In particular, suppose
Qk is a closed cube of side-length `k ∈ R+ centered at q(k) ∈ Rn. Then we write,

Int(Qk) =
{
x ∈ Rn : max

i∈{1,...,n}

∣∣∣xi − q(k)
i

∣∣∣ < `k

}
. (115)

By scaling Int(Qk) be 1/`k we obtain,

1
`k

Int(Qk) =
{
x ∈ Rn : max

i∈{1,...,n}

∣∣∣∣∣xi − q
(k)
i

`k

∣∣∣∣∣ < 1
}
, (116)

which is the cube of unit side-length whose center is q(k)/`k. Now shift this cube by ω(k)−q(k)/`k to produce
Int(cω(k)). Applying this transformation for every k allows us to construct the map,

ψ(y) =


y
`1

+ ω(1)− q(1)

`1
if y ∈ Int(Q1)

y
`2

+ ω(2)− q(2)

`2
if y ∈ Int(Q2)

...

(117)

and this function is a diffeomorphism from
⋃
k∈N Int(Qk) to

⋃
x∈Zn Int(cx), which are equivalent to U and

Rn, respectively, up to sets of Lebesgue measure zero.

Theorem 4 allows us to give the following modification of theorem 3.
Corollary 6. LetM be a closed embedded m-dimensional sub-manifold of Rn and suppose that there exists
an open neighborhood U of M in Rn and a smooth function Φ : U → Rn−m such that M is a regular level
set of Φ. Then M × Rn−m can be dequantized into Rn.

Proof. By theorem 3, there is an open subset of Rn into which M × Rn−m may be dequantized. Apply
theorem 4 to this open subset.
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N Derivation of the Jacobian Determinant for Hyperspherical Coordinates

Definition 16 (Hyperspherical Coordinates). Let x = (x1, . . . , xn) be an element of Rn such that x 6= 0.
The hyperspherical coordinates of x are (y, r) ∈ Sn−1 × R+ where

r
def.=
√
x2

1 + . . .+ x2
n (118)

y
def.= (x1/r, . . . , xn/r) (119)

Via the natural inclusion of Sn−1 into Rn, hyperspherical coordinates may be viewed as a subset of Rn+1.
Proposition 12. As a mapping from Rn to Sn−1 × R+, the transformation x 7→ (y, r) has Jacobian deter-
minant 1/rn−1.

To prove this result, we require the matrix determinant lemma as follows.
Lemma 7 (Matrix Determinant Lemma). Let A be an invertible n× n matrix and let u, v ∈ Rn. Then

det(A+ uv>) = (1 + u>A−1v) · det(A). (120)

Our proof now proceeds by computing the Jacobian of the transformation in the ambient space and apply
theorem 1.
Lemma 8 (Partial Derivatives).

∂r

∂xj
= xj

r
(121)

∂

∂xj

(xi
r

)
= δij

r
− xixj

r3 (122)

Proof. For the first equality:

∂

∂xj
r = 1

2r2xj = xj
r

(123)

For the second equality:

∂

∂xj

(xi
r

)
=

(
∂
∂xj

xi

)
r − xi

(xj
r

)
r2 (124)

= δij
r
− xixj

r3 (125)

Corollary 7. The Jacobian of the coordinate transformation may be expressed as,

J =
(
A
b>

)
(126)

A
def.=
(

1
r Id−

xx>

r3

)
(127)

b>
def.=
(
x1
r · · · xn

r

)
(128)

Proof. By the preceding corrolary and observing that A is a symmetric matrix, we have

J>J = AA+ bb>. (129)
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Expanding AA gives:

AA =
(

1
r Id−

xx>

r3

)(
1
r Id−

xx>

r3

)
(130)

= Id
r2 −

xx>x>x

r6 (131)

= Id
r2 −

xx>

r4 (132)

since x>x = r2. Moreover bb> = xx>

r2 . Therefore,

J>J = 1
r2 Id−

xx>

r4 + xx>

r2 (133)

= 1
r2 Id +

(
1
r2 −

1
r4

)
xx> (134)

Now applying the matrix determinant lemma, we have,

det(J>J) =
(

1 + r4
(

1
r2 −

1
r4

))
1
r2n (135)

= r2

r2n (136)

= 1
r2n−2 . (137)

Taking the square-root completes the proof.
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