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ABSTRACT Deep neural networks can be fooled by small imperceptible perturbations called adversarial
examples. Although these examples are carefully crafted, they involve two major concerns. In some cases,
adversarial examples generated are much larger than minimal adversarial perturbations while in others the
attack method involves an extensive number of iterations making it infeasible. Moreover, the sparse attacks
are either too complex or are not sparse enough to achieve imperceptibility. Therefore, attacks designed
should be fast and minimum in terms of ℓ2-norm. In this research, we used a dictionary learning technique
to generate sparse adversarial examples based on feature maps of target images. We present two novel
algorithms to tune the dictionary learning process and feature map selection. The results on MNIST and
Imagenet show our attack is better or competitive with the state-of-the-art methods. We also compared our
method with sparse attacks recently introduced in literature. As a result, we have achieved comparable attack
success rate when compared to the state-of-the-art with smaller ℓ2-norm. We also tested the efficacy of our
attack in the presence of defense mechanisms and none of the defenses were able to combat the effect of
our proposed attack

INDEX TERMS adversarial attacks, dictionary learning, sparse representation

I. INTRODUCTION

DEEP Neural Networks have gained a lot of success and
reached human-level performance in image recogni-

tion, detecting faces and objects, autonomous driving, read-
ing addresses, solving captchas, and many more [1], [2]. The
convolutional neural networks particularly have been useful
since 2012, after giving promising results on Imagenet Large
Scale Visual Recognition Challenge [3]. Since that time
improvements from researchers are coming at a high pace in
the form of a wide range of applications, more complex and
deep architectures, and improving the overall classification
process.
Despite the success of CNN on image recognition tasks,
we still lack in complete understanding of these complex
networks. Szegedy et al. [4] explored the unusual mistake
that deep networks-based classifiers can make. They can
be fooled by carefully computed images called adversarial
images, revealing the unstable nature of these architectures.
These images are indistinguishable from humans when com-
pared to the original images.
This area has received a lot of interest from researchers
and practitioners all over the world. One stream of research

focuses on generating adversarial attacks with the lowest
imperceptibility while the other focuses on creating defenses
for such attacks. The researchers are still working on the
precise inner workings and reasoning of deep networks. The
attacks help understand the internal working of these archi-
tectures and thus motivate extensive research on designing
robust classifiers. For this purpose, a lot of attacks have been
introduced by different researchers in the literature.
Fast Gradient Sign Method [5] and C&W [6] are among the
famous state-of-the-art attack methods. The current main-
stream possesses certain problems: In terms of ℓ2-norm dis-
tortions, the C&W is argued to be the most effective attack
but is slow since it requires thousands of iterations making it
unsuitable for adversarial training too [7]. Researchers have
argued perturbations estimated using the FGSM are much
larger than minimal adversarial perturbations [8]. Adversarial
examples generated by iterative attacks contain a certain
amount of redundant noises that cannot be completely re-
moved by simply increasing the number of iterations [9]. In
light of the above mentioned problems, the attacks designed
should be fast, and minimum in terms of ℓ2-norm.
Exploiting the internal details of DNNs to generate effective
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FIGURE 1. Block Diagram of our approach: it depicts a classifier being attacked by an adversary which perturbs the input xl by adding feature map of target image

imperceptible attack is particularly relevant and the subject of
this paper. In this paper, we addressed the above-mentioned
problems using ideas from Sparse Representation, Sparse
Coding, and Dictionary Learning. Sparse representation is
a linear internal representation of images using only a few
active coefficients making it easy to interpret and manipulate
content-based image indexing and retrieval. This field uses a
dictionary and a sparse linear combination of the atoms in the
dictionary to represent every input signal. The computation
of the representation coefficients X also remains a non-
trivial operation which is solved by the Orthogonal Matching
Pursuit (OMP) which is greedy and has a fast running time. It
has received great interest in machine learning, pattern recog-
nition, signal processing [10], and has been successfully
applied to image classification [11], image compression [12],
reconstruction, noise reduction [13], face recognition [14]
etc.
Recently, some of the nominal work that focuses on sparse
attacks include Corner Search, Sparse Fool and Greedy Fool.
All these methods are either suffer from high complexity that
they cannot be extended to high-resolution images or perturbs
redundant pixels therefore, not applicable to real scenarios.
Current algorithms are highly complexed NP-hard problems.
The adversarial examples generated by these models usually
consist of high-magnitude noise, concentrated over a small
number of pixels. As a result, the adversarial images become
quite perceptible and might even exceed the dynamic range
of the image. We have tried to address the limitations of state-
of-the-art methods mentioned above as well as recent sparse
methods in this paper. The idea is to mimic the internal rep-
resentation of target images. For this purpose, we designed
an attack based on the feature maps from the first layer
of convolutional neural networks. The perturbation designed
using feature maps is added to the original image to attack
the classifier as shown in Fig. 1. The Block Diagram of our
approach shows a classifier being attacked by an adversary
which perturbs the input xl by adding a feature map of the
target image. We have optimized our perturbation vector
using dictionary learning to have a linear, non-redundant,
sparse noise added to the original input image. Feature maps
get the important pixels of a respective image that are used
for classification.
Experiments on MNIST and Imagenet datasets show the

efficacy of the proposed approach in terms of decreased
error and smaller ℓ2-norm even for a one-shot method. The
proposed approach has been applied to both targeted and un-
targeted scenarios.
We have also tested our adversarial images against various
defense methods. The attack is not defended by any of the
defense strategies.
We summarize our contributions as follows:

1) We used ideas from dictionary learning and sparse
coding to generate adversarial attacks. These are the
first attacks based on dictionary learning proposed so
far, to the best of our knowledge.

2) We have tried to overcome the limitations of both state-
of-the-art methods as well as recent sparse attacks.

3) We have also presented novel algorithms to learn tuned
dictionary based on feature maps. These ideas to tune
dictionaries can be extended to other machine learning
problems solved by dictionary learning

4) We presented a comprehensive experimental analysis
to back our approach. A detailed investigation on tun-
ing the dictionary to create an effective attack and then
testing it against various defense methods to prove its
efficacy.

5) We motivate a new area for designing adversarial at-
tacks.

The structure of the paper is as follows. The related lit-
erature is discussed in Section II. The detailed method-

ology is described in Section III followed by the experimental
setting and details in Section IV. The discussion and analysis
of results are tabulated in Section V. Finally, the experiments
regarding defense strategies are explained and analyzed in
Section VI and the paper is concluded in Section VII.

II. RELATED WORK
The vulnerability of neural networks towards adversarial
examples was introduced by authors in [4]. The attacks can
be targeted or un-targeted. In targeted attacks, the adversary
forces the classifier into predicting a specified label, while
any label in case of untargeted.
Among the state-of-the-art in [5] the authors’ proposed Fast
Gradient Sign Method which creates adversarial examples
by computing the sign of the gradient of the loss of the
input images. Later, iterative methods such as Deep Fool [15]
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and C&W attacks [6] were introduced. C&W attacks are
considered very strong and effective against defensive dis-
tillation. Universal adversarial attacks were also proposed
early on to fool all kinds of neural networks [16]. Recently,
steganographic universal adversarial perturbations are intro-
duced by [17]. They used a single secret image (computed in
the transform domain) to fool deep architectures. Similarly,
Yahya et al. generated an adversarial attack by selecting a
targeted watermark, using a steganographic approach [18]
As our work is related to internal representation as well as
sparse attacks, the remaining matter of this section discusses
the relationships to both areas. In [19] the authors used
DNN logits as vectors to represent features and exploited
them to create targeted universal attacks. These perturbations
generalize well across different neural networks. They can be
designed using the information of networks like training data,
weights, etc called white-box attacks, or can be black-box in
nature without knowing the architecture, learned weights, or
training data. Moreover, these attacks are transferable among
different architectures, and a lot of recent literature provides
insights into the transferability of adversarial images [20],
[21]. Moreover, authors are motivated to generate attacks
that explain the deep representations of the model rather than
fooling it [22]. Shi et. al [23], recently explained robustness
through an adaptive iterative attack.
More recently, feature maps are used to generate transferable
attacks. In [21] the source image is perturbed by reducing
the distance between layer L activations of a source image
and a target image in a white-box setting. The images are
then fed into the black box model to test the transferability.
Yucheng Shi et al. [9] argued in their research that there is no
refinement mechanism to squeeze redundant noises in most
of the attacks. Thus, their work is based on adding diversity
by using gradient ascent and descent and then optimizing by
filtering out noises of groups of similar pixels.
The other area of related work is the sparse representation
and sparse attacks. Sparse attacks have been recently intro-
duced in the field of adversarial attacks. Some of the early
sparse attacks in adversarial setting includes JSMA [24],
Sparse Fool [25], Corner Search [26] and Greedy Fool [27].
Sparse Fool [25] disrupts the geometrical properties of the
images whereas, Corner Search [26] aims at minimizing the
distance of the perturbation to the original image.
All these attacks have certain limitations: JSMA [24] is
highly complex and is difficult to apply to high-resolution
images. SparseFool [25] cannot perform a targeted attack
and isn’t sparse enough. In PGD [28] the number of pixels
to be perturbed is defined beforehand therefore, it results in
perturbing redundant pixels and might not be flexible for real
scenarios. [29]
These researches present interesting ideas but are addressing
different problems. We have used ideas from Sparse Rep-
resentation and Dictionary Learning. Sparse Representation
has gained a lot of attention in computer vision applications.
It has wide applications in image reconstruction, denoising,
image inpainting, and many more. Aharon et al. [30] pro-

posed the K-SVD method to learn the dictionary to achieve
sparse representation. As compared to previous sparse at-
tacks, our work is different as we aim to discover a dictionary
that can optimize the perturbation vector to achieve perfor-
mance in terms of smaller ℓ2-norm. The smaller ℓ2-norm
helps achieve imperceptibility one of the major limitations of
existing work as highlighted above. We used dictionary learn-
ing to add sparse perturbation in input images which change
the minimum important pixels of the clean image, another
limitation highlighted above. It has been proved through
various experiments that Dictionary Learning was able to
overcome the limitations of existing work. In this paper, we
learned the dictionary to optimize the targeted noises. Our
dictionary consists of perturbations instead of clean images.
This is the first time dictionary learning has been used for
this task. However, the sparse representation has only been
used as a defense mechanism to reduce feature space against
adversarial attacks, to the best of our knowledge [31]–[33].

III. METHODOLOGY
In this section, we describe in detail the methodology of the
proposed approach to generate adversarial images. We have
introduced a novel dictionary learning technique that is based
on the feature maps of the image associated with the targeted
label. These sparse representations of feature maps serve as
noise to be added to the original image.
We first formulate the problem in Section III-A. The method-
ology for sparse adversarial image generation is then divided
into three phases. The tuned dictionary learning algorithm
based on feature maps is explained in Section III-B. The
computation of the perturbation vector using feature maps
of the target image is explained in Section III-C. Finally,
in the third phase, we generate an adversarial image from
sparse perturbation vectors by the one-shot method explained
in Section III-D. The detailed methodology highlighting all
phases is illustrated in Fig. 2.

A. PROBLEM FORMULATION
Let X be the image space and Y be the label space. fθ(.) :
X → Y is a classifier parameterized by θ that assigns a label
y to an input image x. Let xl denote the legitimate image to
be perturbed by noise p. We aim to generate an adversarial
example xa = xl + p which is imperceptible from xl but
fools the classifier i.e. :

d(xa, xl) < ϵ s.t. fθ(xa) ̸= yl (1)

d(.,.) is the distance e.g. ℓ2-norm of the difference between
the clean and the adversarial sample, yl is the correct label
of the legitimate input image, and ϵ is the perturbation scale
which is often set to a very small value to ensure impercepti-
bility between xa and xl. In case of targeted attacks :

fθ(xa) = yt (2)

where yt is the target label we want the classifier to predict. In
this work, we consider both targeted and un-targeted labels.
We aim to inject the noise p to make a strong attack by
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FIGURE 2. Top Row (Feature Map Selection):The perturbation vector K−1(Target Feature Map − Input) is generated from the feature map of the target image.
Middle Row (Tuned Dictionary Learning): The sparse image is generated by optimizing the perturbation vector through dictionary learning.Bottom Row(Sparse
Adversarial Image): The sparse noise is added to the original input to generate an adversarial image.

learning an adverse transformation T (.) such that adversarial
detection-based defense methods should not be able to detect
the attack. The noise is derived from the internal representa-
tion of the image xt associated with the targeted label yt. This
enables the adversary to create an attack with a smaller norm
as opposed to most of the attacks in the literature. Moreover,
most detection-based defense mechanisms detect the attack
based on the redundant noises left by the adversarial attacks.
Therefore, it is desirable to make this transformation T (.)
stronger by preserving the important information required
while limiting the space of adversarial noise. It should further
remove redundant noises and should be difficult to detect by
defense mechanisms.

B. TUNED DICTIONARY LEARNING ALGORITHM
The operator T (p) transforms the perturbation vector derived
from feature maps in close proximity to the local neighbor-
hood of the image by linear projection. Let p be the perturba-
tion vector, xt the image associated with the target label yt,
we look for the transformation operator T (.) satisfying the
following conditions:

fθ(xl + T (p)) = yt s.t. d(xl + T (p), xt) < ϵ (3)

The classifier f assigns the targeted label to the fabricated
input image which is our ultimate goal, given the condition
that T (p) (Transformed feature map of the target) and xt

(image associated with the target label) should be situated
closely. We present the tuned dictionary learning algorithm

to learn this transformation satisfying both conditions. We
propose a feature map-based dictionary learning algorithm
to learn this transformation. The idea is to mimic the internal
representation of the target image. The image associated with
the target label which we want the classifier to predict. So,
we want to learn the transformation that should be close to
the target image. For that purpose, we used the feature maps
of the target image to create perturbation. Sparse represen-
tation approximates an input signal X by a sparse linear
combination of items from an overcomplete dictionary. Let
the projection of p be T (p) given by:

T (p) = Dα (4)

The projection in our algorithm is learned through a dic-
tionary by the following optimization problem [10]. The
optimization problem solved is a dictionary learning with an
ℓ1 penalty on the components.

min
D,α

1

2
∥ p−Dα ∥22 +λ ∥ α ∥1

s.t. ∥ Dk ∥2= 1 ∀ k ∈ [0, n]
(5)

where, p = perturbation signal and λ is a regularization
parameter, and n is the number of dictionary atoms.The
sparsity-inducing ℓ1-norm also prevents learning compo-
nents from noise when few training samples are available.
The degree of penalization that is sparsity level can be ad-
justed through the α. Small values result in gently regularized
coefficients, while larger values shrink many coefficients to
zero. The squared error between the original and transformed
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signal is the basis of tuning the dictionary learning algorithm.
Unlike other dictionary learning algorithms that are used to
learn a dictionary of clean images to support the application
of denoising, compression, or inpainting, we learn the dictio-
nary to optimize the targeted noises. Our dictionary is called
an adverse dictionary as it consists of perturbations instead
of clean images. We used sampled feature map selection to
improve computational efficiency. We use a novel feature
map selection technique to learn this dictionary which is
explained in the preceding section. The performance of the
dictionary learning algorithm is enhanced by tuning it after
different hyper-parameter selection. The dictionary learning
algorithm tunes these hyper-parameters based on the squared
error. The algorithm runs for a fixed number of iterations
with different values of hyper-parameters: sparsity level
and the number of components. Our experiments show that
the squared error is highly correlated with the selection of
these hyper-parameters. We chose test set images from the
MNIST dataset to conduct these experiments. These hyper-
parameters and their effect is described later in the section
on ablation studies. The detailed algorithm for dictionary
learning is provided in Algorithm 1.

Algorithm 1: Tuned Dictionary Learning

Input: P → Set of all perturbation vectors;
Result: D→ Dictionary
Err → Squared Error between the transformed image

and the original target image ;
T (p)→ Transformed perturbation learned through
the dictionary of a single perturbation vector;
xt → Target Image;
N → No. of iterations ;
Dc → Current Dictionary ;
D → Initial Dictionary ;
k → Sparsity ;
n→ no. of atoms ;
Err = 1

N

∑N
n=1 ∥ T (p)− xt ∥2

D = minD,α
1
2 ∥ p−Dα ∥22 +λ ∥ α ∥1

s.t. ∥ Dk ∥2= 1 ∀ k ∈ [0, n] ;
for i < N do

Dc = minD,α
1
2 ∥ p−Dα ∥22 +λ ∥ α ∥1

s.t. ∥ Dk ∥2= 1 ∀ k ∈ [0, n] ;
if Err(D) > Err(Dc) then

D = Dc;

update n;
update k;

Return D

C. FEATURE MAP SELECTION TO LEARN THE
DICTIONARY
In this paper, we aim to mimic the internal representations of
the target inputs to create our adversarial images. The idea
is to produce an adversarial image whose internal represen-
tation matches that of the target input. Sabour et al. tried to

do the same by reducing the Euclidean distance between the
source and the target guide images [34].
The internal representation is captured by using the feature
maps of the target images. These feature maps result in
an output of one filter applied to the previous layer. These
filters also known as kernels, are called feature identifiers.
The feature maps detect low-level features at initial layers
of the CNN and high-level features as we go deep in the
architecture. The low-level features are closely related to
images, the high-level are difficult to map to the image.
Therefore, we use feature maps from the first layer of the
CNN.
The knowledge about feature maps and kernels to mimic
the internal representation highlighted so far is used in this
paper to generate the perturbation/noises for our adversarial
images. The natural workflow of the CNN applies a kernel on
an image to produce a feature map. We want to add noise in
that image to generate a targeted feature map (feature map of
the image we are targeting). The idea can be mathematically
written as

K(xl + p) = Ft (6)

Therefore, the perturbation vector is given by

p = K−1(Ft)− xl (7)

Here, xl is the legitimate source image, and Ft is the feature
map of the target image xt. Ft is the feature map of a
target image generated by a well-trained network. K is the
pre-learned filter/kernel from the same well-trained network.
K−1 is the deconvolution operation. The effect of deconvo-
lution of CNN layers is discussed in detail in [35]. p is the
perturbation we want to compute. The sparse representation
of this perturbation will be added in the original image as
noise described in detail in Section III-D. This perturbation
is generated using the test data keeping the essence of a
black-box attack where the adversary doesn’t have access
to the training data. We feed these perturbations to learn the
dictionary for sparse representation.
Next, we explain a novel efficient feature map selection algo-
rithm to improve dictionary learning. Feature Maps possess
information about the important pixels of the image [21].
Likewise, learning a discriminative dictionary is necessary to
improve representation. The traditional approaches often suf-
fer from the problem of local minima. Therefore, researchers
have proposed to learn dictionaries with good representa-
tional power, and better discrimination capabilities for all
classes [13]. Therefore, the idea is to build a dictionary by
selecting important and diverse inputs. We select important
and diverse patches by greedily sampling the test data. The
target image of a particular class is selected for a dictionary
if the ℓ2-norm of that image is greater than a threshold. This
threshold is basically, the mean ℓ2-norm of all the images in
a particular class. This way we get to learn the dictionary
with diverse images. The images of all classes are included
and we try to include as many diverse images of the same
class as possible. The detailed algorithm is presented in
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Algorithm 2. The testing sets are used to sample feature
maps. These selected images are then used to generate feature
maps described earlier in this section. In this way, we learn
a discriminative dictionary and optimize its performance by
reducing the size of the number of atoms with sampling.

Algorithm 2: Feature Map Selection to Learn Dictio-
nary

Result: p→ Selected Feature Map as Perturbation
Input: F → Feature Map ;
S → Testing samples of the selected class ;
K → Pre-defined kernel ;
xl → legitimate source input image;
H → threshold on ℓ2-norm;
H ← 1

N

∑N
n=1 ∥ si ∥2;

for i < |S| do
if ∥ si ∥2> H then

p← K−1(Fi)− xl;
else

i← i+ 1 ;
Return p

D. SPARSE ADVERSARIAL IMAGE GENERATION
The sparse representation of images has gained growing
interest. In this report, we solve our problem of redundant
noises, and smaller ℓ2-norm by feature map selection-based
dictionary learning. We describe how a sparse representation
framework has been tailored to generate sparse adversarial
images. Since all the required pieces are together we finally
generate adversarial images by adding the desired perturba-
tion vector to the legitimate image controlled by ϵ given in
(6). The ϵ determines the magnitude of noise to be added
to the legitimate source image to maintain imperceptibility
and limit the ℓ2-norm of the adversarial image. The final
noise is not a combination of different noises. We propose
a feature map-based dictionary learning algorithm to learn
this transformation. Sparse representation approximates an
input signal X by a sparse linear combination of items from
an overcomplete dictionary. The projection of p given by
T (p) = Dα, it is mentioned that since we are adding this
transformed (sparse representation) as noise to the original
image so it’s a dictionary of noises. The ℓ2-norm is the cal-
culated difference between the legitimate and the adversarial
image.

xa = xl + ϵp (8)

The final adversarial image is then fed to the classifier.

IV. EXPERIMENTAL SETTINGS AND RESULTS
We evaluated the proposed attack methodology for both tar-
geted and un-targeted scenarios on MNIST (black and white
handwritten digits) and Imagenet dataset (colored images).
The sparse adversarial attacks are compared with the state-
of-the-art attacks i.e. C&W [6] Corner Search [26] Sparse

Fool [25], Greedy Fool [27] and FGSM [5]. C&W [6] is
considered to generate adversarial examples with minimum
ℓ2 noise, yet it is impractical because of its high number of
iterations [7], [8].

A. METRICS
In this section, we describe various metrics to define the per-
formance of our algorithm. We report the mean and median
ℓ2-norm using the following formulae

d(x, xa) =∥ x− xa ∥2 (9)

median = median(d(x, xa) | x ∈ X) (10)

average =
1

N

N∑
n=1

d(x, xa) | x ∈ X (11)

A smaller ℓ2-norm distance indicates a stronger attack effect
and higher transferability [9]. In the ablation, studies sec-
tion targeted success rate (TSR) is calculated. The targeted
success rate is the rate at which sparse adversarial images
generated are classified as the target label. The larger the
targeted success rate, the more effective the targeted attack.
Another metric used in the ablation studies section is the
Squared Error distance calculated between the transformed
image and the image associated with the target label given
as: ∥ T (p)− xt ∥2
In the defense evaluation section fooling ratio is recorded for
all the defense strategies. It is the percentage of images on
which the classifier changes its prediction label after they are
perturbed. The high values of the fooling ratio mean that the
attacks are more strong. In this paper, it is shown that even
after applying various defense strategies the fooling ratio of
our proposed attack remains high.

B. MNIST
The training set consists of 50,000 images whereas, the test
set consists of 10,000 images with resolution (28x28). The
proposed attacks are evaluated on MNIST using a model
with 99.25% Top-1 accuracy and an error of 0.04. We trained
the model for 50 epochs with a learning rate of 0.01 using
ADAM optimizer. The model was trained on a simple CNN
architecture consisting of 6 layers. First, starting with 2 con-
volutional layers with 3x3 kernel size, then 2D max pooling
size (2x2), followed by dropout (0.25), and finally Flatten and
Dense Layers. The total trainable parameters were 55,658
We generated adversarial images using the proposed strategy
with ϵ = 0.01 for un-targeted and targeted attacks. The un-
targeted images are poisoned with any perturbation vector.
The 10,000 images from MNIST test data are all used for
evaluation purposes. The experiments are conducted for the
proposed approach as well as state-of-the-art attacks: FGSM,
Corner Search, and C&W. The adversarial robustness toolbox
is used to conduct experiments for FGSM and C&W [36].
The publicly available original code of corner search was
used to conduct the experiments. The ϵ = 1 is used for FGSM
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FIGURE 3. Left to Right: Original Image, Feature Map, Perturbation Vector, and finally Sparse Representation of perturbation vector to be used as adversarial
noise generated through our approach for MNIST and Imagenet datasets.

TABLE 1. The classifier’s loss on test data, attack success rate, mean and median ℓ2-norm of the proposed attack compared with the state-of-the-art attacks on
MNIST & Imagenet in un-targeted Scenario. A smaller ℓ2-norm indicates a stronger attack.

MNIST
Attack Loss on Test Attack Succ. Mean ℓ2 Median ℓ2 Run-time sec(s) (10K-images)
FGSM 10.41 73% 0.1 0.1 557

Corner Search 2.09 88% 7.9 8.8 225100
CW 2.87 43% 0.01 0.01 4303
Ours 9.26 86% 0.1 0.1 245

Imagenet
Attack Loss on Test Attack Succ. Mean ℓ2 Median ℓ2 Run-time sec(s) (1K-images)
FGSM 2.5 58% 0.3 0.3 1240

CW 1.2 42% 0.0004 0.0004 42400
Sparse Fool 7.49 100% 6.5 5.4 144000
Greedy Fool 8.59 99% 1.02 0.89 1677

Ours 2.47 53% 0.02 0.02 631

TABLE 2. The error of the targeted attack, attack success rate, mean and
median ℓ2 of proposed attack compared with the state-of-the-art attacks on
MNIST and Imagenet in targeted Scenario. A low value of the loss indicates a
stronger targeted attack.

MNIST (Average Case)
Attack Loss on Test Attack Succ. Mean ℓ2 Median ℓ2
FGSM 8.7 18.3% 0.1 0.1

Corner Search 46.69 1.2% 0.7 0
CW 29.51 23% 0.005 0.005
Ours 5.6 17% 0.1 0.1

Imagenet (Average Case)
Attack Loss on Test Attack Succ. Mean ℓ2 Median ℓ2
FGSM 23.6 1% 1.36 1.36

CW 18.62 1% 0.001 0.001
Ours 18.62 1% 0.17 0.002

for un-targeted and targeted attacks. We did not use the same
values of ϵ for FGSM because for smaller values (as used in
our case) the method cannot attack the network at all. Results
are reported both for targeted and un-targeted scenarios.
For targeted attacks following the methodology from [7] we
generate adversarial images for all classes of MNIST. This
indicated 9 attacks per image. The results are reported by

averaging overall attacks. The error, attack success rate, mean
ℓ2-norm, and median ℓ2-norm are reported in every case.

C. IMAGENET
The Imagenet consists of (224x224) sized images from 1000
categories. The proposed attacks are evaluated on Imagenet
using a pre-trained VGG-19 model with 70.2% Top-1 accu-
racy and an error of 1.20. The adversarial images for targeted
attacks are created with ϵ = 0.0001. The un-targeted are
generated with ϵ = 0.0001 with any sparse perturbation.
We chose 1000 images from its validation set representing
each category of class for evaluation purposes. The exper-
iments are conducted for the proposed approach as well
as state-of-the-art attacks: FGSM, C&W, SparseFool and
GreedyFool. The experiments for state-of-the-art attacks are
conducted using the library [36] for FGSM and C&W. The
publicly available original implementations of SparseFool
and GreedyFool were used to conduct the experiments. Re-
sults are reported both for targeted and un-targeted scenarios.
For targeted attacks, following the methodology from [7], we
generate adversarial images for 10 classes chosen randomly.
The results are reported by averaging overall attacks. The
ϵ = 0.01 is used for un-targeted and ϵ = 0.9 targeted attacks
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while conducting experiments for FGSM. The error, attack
success, mean ℓ2-norm, and median ℓ2-norm are reported
in every case. We couldn’t conduct experiments of corner
search on Imagenet due to a lack of memory resources. It
required 113 GiB for an array with shape (100352, 224, 224,
3). SparseFool-based attacks cannot be extended to targeted
attacks, Therefore targeted attacks were not applicable in this
case.

D. EXPERIMENTAL RESULTS
We report the mean, and median ℓ2-norm using the formulae
described above. A smaller ℓ2-norm distance indicates a
stronger attack effect.

1) Un-Targeted Attack
The results indicate that the proposed attack is effective in
terms of ℓ2-norm when compared to others. Table 1shows the
performance of the un-targeted proposed attack on MNIST
and Imagenet. The mean and median values of 0.1 for
MNIST and 0.02 for Imagenet are calculated which is com-
parable to the state-of-the-art attacks in case of un-targeted
attacks. The second column shows the error of the classifier.
The greater value of the error indicates a stronger attack. The
loss of classifier is reported in the first column of Table 1.
The third column shows the attack success rate. It’s highest
for our proposed approach, other than corner search but its
ℓ2-norm is much higher than all other approaches. In the case
of Imagenet the FGSM has a higher success rate but at the
cost of a higher ℓ2-norm than all other approaches.

2) Targeted Attack
The results for the proposed targeted attacks are reported
in Table 2. The mean and median value of 0.1 is reported
for MNIST and 0.17, 0.002 for Imagenet. These are the
results of the Average case where each image is attacked
by different classes of images and in the end, the average
result of all attacks is reported. The second column shows
the loss. The lower the value of loss the stronger the attack
is. Our approach has the lowest value of loss of any state-
of-the-art. The values reported suggesting that our proposed
attack performs better than the FGSM method and is as
good as C&W. Although C&W is a very strong attack, it
is computationally very expensive. We computed the run-
time of an un-targeted C&W attack to be 4,303 seconds
for MNIST, on a machine with an Intel(R) Core(TM) i7-7th
generation CPU and 8GB of RAM. In contrast, the run-time
for our proposed un-targeted attack is 245 seconds on the
same machine. Hence, C&W attack is an order of magnitude
slower than the presented method.
The third column in Table 2 records the attack success rate.
Here an error with a low value implies a stronger targeted
attack. In the case of MNIST, the attack success values are
quite promising for FGSM and C&W. This is because the
epsilon value is kept very low for FGSM. The C&W is the
most effective targeted attack and reports the lowest(best)
values for mean and median ℓ2, but it needs a lot of iterations

which makes them infeasible [7].
In a nutshell, the proposed method is competitive with state-
of-the-art in terms of performance. The C&W outperforms in
terms of ℓ2-norm , but requires a lot of iterations. Moreover,
it lacks performance in terms of loss and attack success. The
detailed illustration is provided in Fig. 3. The feature map is
used to create a perturbation vector and is then transformed
into sparse representation as shown in Fig. 3 both for MNIST
and Imagenet examples.

V. ABLATION STUDIES & ANALYSIS OF RESULTS
The critical analysis of results reported in the previous sec-
tion is explained in this section with the help of ablation stud-
ies. Dictionary learning is the key to why we achieve promis-
ing results reported in the previous section. C&W provides
a very strong state of the art targeted attack with minimum
ℓ2 distance but requires thousands of iterations making it
infeasible. On the other hand, we achieved promising results
by improving the efficiency of dictionary learning by training
it on diverse and sampled feature maps. The results can be
better explained by learning the effect of hyper-parameters of
the dictionary. Hyper-parameters of the dictionary learning
algorithm can be used to optimize its performance. The
proposed tuned dictionary learning algorithm has two hyper-
parameters: sparsity k, and dictionary size n, i.e. no. of
components. They affect the performance in different ways.
We compute the following proximity metric to compute the
performance of the dictionary learning algorithm for different
hyper-parameters.
Squared Error: is the Euclidean distance between the trans-
formed image and the image associated with the target label.
The lower value of the squared error means less difference
between the transformed and original image and it helps us
achieve adversarial images with a much smaller ℓ2-norm.
Figure 5. The experiments are conducted on all the test
images of the MNIST dataset. The authors in [33] showed
that increasing the sparsity, helps preserve more details but
are less robust against attacks as well as increasing the no. of
components also decreases the robustness of classifiers. We
analyze the effect of sparsity k on the squared error in Fig. 4a.
The difference between transformed and original image i.e.
squared error is increased by increasing the sparsity. So
sparsity can be used as a trade-off parameter here for targeted
attacks.
We also studied the effect of the dictionary size i.e. the
number of components as illustrated in Fig. 4b. We computed
the values for squared error for k = 1 and k = 3 as the
number of components of the dictionary are increased. It
first decreases as the number of the components increase
but starts increasing again for k = 1. It almost attains no
further change in the squared error after the number of the
components are increased till 255. When k = 3, the error
attains stability earlier at the number of components 144 and
further starts increasing after n = 361. Increasing the number
of components improves the reconstruction and hence the
accuracy on the clean images. It can be inferred from the
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FIGURE 4. Left: The graph shows the effect of increasing sparsity k on Squared Error (Euclidean distance) between transformed and original targeted images.
Right: The graph shows the effect of increasing dictionary size on squared error. The values are reported for sparsity, k = 1 and k = 3 for MNIST.
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FIGURE 5. Left: The graph shows the effect of increasing sparsity k on the targeted success rate and squared error. Right: The effect of increasing dictionary size
on targeted success rate and squared error with sparsity k = 1 for MNIST.

visual analysis that we get the desired result at a smaller
size of the dictionary. This is in contrast to a regular trend
in the literature because our work is not a reconstruction task
where increasing the dictionary size increases accuracy on
clean images. This way we save the computation cost, which
increases as dictionary size increases in other regular tasks.
Next, we study the effect of these parameters on our at-
tack strategy. The experiments in ablation studies show that
squared error is also highly correlated with the targeted
success rate (TSR) explained earlier in the metrics section.
The effect of sparsity on TSR is illustrated in Fig. 5a. The
TSR oscillates in the beginning and shows stability later after
k = 4 as shown in the graph. The TSR attains the highest
value for k = 3 and starts decreasing afterward. We see that
at k = 3, more information is retained as compared to k = 1.
Therefore, more noise is reconstructed as we increase the
sparsity but increasing sparsity further increases the squared
error i.e. the distance between original and transformed so
it negatively affects the targeted attack. The peak at k = 3
in Fig. 5a, shows that we achieve maximum value for the
targeted attack. After k = 3 the noise starts reconstructing
as we are learning the dictionary of feature maps. When the
noise gets reconstructed it does have a more strong attack
on classifier but at the same time, the targeted attack also
suffers from the reconstruction of more and more noise.
That is why the squared error also increases showing that
less important information is preserved and the ℓ2-norm also
increases. Therefore, k = 3 serves as a sweet spot in this

case. The above details emphasize to trade off the sparsity to
make an effective attack in terms of TSR as well as squared
error. The experiments show k = 3 is the optimal value for
this case. Therefore, we used both k = 1 and k = 3 to study
the effect of the no. of the components on TSR explained in
Fig. 5b and Fig. 6.
The same behavior can be seen for the number of the
components. TSR increases at first for an increase in the
dictionary size, but subsequently decreases. For k = 3 as
the sparsity level is already high so TSR is the highest even
for n = 81. For better understanding, we have again plotted
squared error with TSR in Figures 6 and 7. It can be seen
that the highest TSR is reported for lowest squared error
which is the reason we achieve the targeted and un-targeted
misclassifications with a very low ℓ2-norm as reported earlier
in the results section. In conclusion, we need to have a
smaller squared error but a very small value will not retain
enough information for the targeted attack. A very high value
of squared error will again result in a higher ℓ2-norm and low
TSR. This behavior of reconstructing noise as we increase
sparsity and the no. of the components is attributed to the
fact that we are in fact, learning the dictionary of perturbation
vectors. We also conducted experiments to check the effect of
choosing feature maps from other layers of CNN. The results
are illustrated in Table3

VOLUME 4, 2021 9



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

100 150 200 250 300 350 400
No. of Components ( n)

0

5

10

15

20

25

30

35

40

45

Ta
rg

et
ed

 S
uc

ce
ss

 R
at

e 
(T

SR
)

No. of Components v/s Targeted Success Rate (TSR)
Targeted Success Rate (TSR)

3.0

3.5

4.0

4.5

5.0

Sq
ua

re
d 

Er
ro

r

Squared Error

FIGURE 6. The effect of increasing dictionary size on targeted success rate
and squared error with sparsity k = 3 for MNIST.

TABLE 3. The classifier’s loss , attack success, mean and median ℓ2-norm
when feature maps are from other layer of the DNN.

MNIST
CNN Layer Loss on Test Attack Succ. Mean ℓ2 Median ℓ2

Layer 1 9.26 86% 0.1 0.1
Layer 2 2.64 44% 0.09 0.09
Layer 3 5.45 77% 0.1 0.1
Layer 4 3.10 67% 0.2 0.2

VI. DEFENSE EVALUATION AGAINST THE PROPOSED
ATTACK
Devising defense strategies against adversarial attacks is an
equally active area of research just like adversarial attacks.
Goodfellow et al. [5] proposed the method of adversarial
training in which the model is trained using adversarial
images. In order, to evaluate the strength of our proposed
attack we tested it against various defense methods. We used
three different defense strategies to measure the effectiveness
of our attack. Spatial Smoothing [37] is a technique used in
image processing to reduce noise in the data. The authors
in [37] applied the local smoothing method as a defense
against attacks. Local Smoothing smooths each pixel by
using neighboring pixels. Feature Squeezing [37] is used
to reduce the bit depth of images. Images are normally
represented using color bit depths which is a major cause
of irrelevant features. In this paper, the authors tested the
hypothesis that reducing bit depth can reduce the effect of ad-
versarial attacks without affecting classifiers’ accuracy. The
method is applied to each pixel. JPEG Compression [38] is
also used as an effective defense technique. Its strength lies
in its ability to eliminate high-frequency signal components.
These are removed inside the square blocks of a particular
image.
The training data as well as adversarial data are transformed
using defense methods and are then evaluated on the same
model architecture as employed in Section IV. The data
is trained on transformed training data for 30 epochs for
MNIST. In the case of Imagenet, only adversarial data is
transformed due to computational complexity and the use
of a pre-trained model. The results show that our attack is

TABLE 4. The fooling ratio of adversarial attack, Spatial Smoothing (SS)
defense, Feature Squeezing (FS) defense, and JPEG Compression (JC) for
our proposed attack.

Dataset Attack Succ. SS FS JC
MNIST 86 77 82 88.5

Imagenet 53 52.51 52.23 53.8

not defended by any of these defense methods. The fooling
ratio of the classifier, when fed with sparse adversarial per-
turbations, is recorded in the second column of Table 4. The
next columns show the fooling ratio after applying different
defense strategies. It can be seen from Table ?? that our
proposed attack has a success rate of 86%. The next columns
show the fooling ratios after applying defense methods to the
MNIST dataset.
For MNIST, the fooling ratio remained the same for spatial
smoothing, and JPEG compression whereas, it increases in
case of feature squeezing. This is because the basic idea
behind defense methods in general and feature squeezing,
in particular, is to compare the model’s prediction on the
original sample with the same model’s prediction on the
sample after squeezing [37]. Since our proposed attack has
already used a smaller subspace and is minimum in terms of
ℓ2-norm therefore, feature squeezing didn’t help. Moreover,
the analysis in [37] shows that feature squeezing is not
immune to adversarial adaptation and hurts the accuracy of
legitimate images as well.
In the case of Imagenet again the defense methods failed
to counter the effect of our proposed attack. It is reduced
to 52.51% and 52.23% in the case of spatial smoothing
and feature squeezing but is still not able to provide an
effective defense. The emphasis of our approach has been
on squeezing the noise magnitude. The important pixels are
there but the sparse transformation of noise and lower value
of ℓ2-norm has made it almost difficult to detect the attack.

VII. CONCLUSION
We propose sparse adversarial image generation which ob-
tains comparable results in terms of ℓ2-norm. The feature
map makes it possible to highlight the important pixels of
the image to attack. We used a feature map to create our per-
turbation vector. This perturbation vector is then optimized
using dictionary learning. The sparse adversarial noise is then
added to the image by the one-shot method. The proposed
attack is fast and minimum in terms of ℓ2 distance between
the input image and the adversarial image. The tables show
that our results are comparable with state-of-the-art methods.
There is room for improvement in terms of the fooling ratio
of the attack. The comparable results are achieved using a
small size of dictionary thus saving the computation cost.
We motivate a new area for designing adversarial attacks
not explored before. The researchers can explore this area to
create more robust classifiers.
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Further, we tested the strength of our proposed attack with
different defense strategies. The results show that these de-
fense methods are not able to defend neural networks from
our proposed attack. Since this is a new direction to create
adversarial examples. In the future, the proposed attack can
be combined with existing gradient-based attacks and can be
used in adversarial training to create more robust classifiers.
We have also presented novel algorithms to learn tuned
dictionary based on feature maps. These ideas to tune dictio-
naries can be extended to other machine learning problems
solved by dictionary learning. This research is still needs
improvement in terms of attack success rate, especially in the
case of targeted attacks. Since this area was not explored yet,
the future avenues hold strong. One stream of work can be
conducted to improve the results in terms of attack success
rate. The other is to test the transferability of these attacks to
other models as well as other machine learning problems.
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