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Abstract

Neural networks are notoriously data-hungry.001
This represents an issue in cases where data are002
scarce such as in low-resource languages. Data003
augmentation is a technique commonly used004
in computer vision to provide neural networks005
with more data and increase their generalization006
power. When dealing with data augmentation007
for natural language, however, simple data aug-008
mentation techniques similar to the ones used in009
computer vision such as rotation and cropping010
cannot be employed because they would gener-011
ate ungrammatical texts. Thus, data augmenta-012
tion needs a specific design in the case of neu-013
ral logic-to-text systems, especially for a struc-014
turally rich input format such as the ones used015
for meaning representation. This is the case016
of the neural natural language generation for017
Discourse Representation Structures (DRS-to-018
Text), where the logical nature of DRS needs a019
specific design of data augmentation. In this pa-020
per, we adopt a novel approach in DRS-to-Text021
to selectively augment a training set with new022
data by adding and varying two specific lexical023
categories, i.e. proper and common nouns. In024
particular, we propose using WordNet super-025
senses to produce new training sentences using026
both in- and out-of-context nouns. We present027
a number of experiments for evaluating the role028
played by augmented lexical information. The029
experimental results prove the effectiveness of030
our approach for data augmentation in DRS-to-031
Text generation.032

1 Introduction033

Data augmentation is a systematic way of increas-034

ing data examples by altering the original data with035

controlled variations (Feng et al., 2021). It is a036

prevalent technique in computer vision (CV) for in-037

creasing dataset size by introducing slightly differ-038

ent and contextually similar examples (Yang et al.,039

2022).040

Augmentation approaches are also becoming041

popular in many Natural Language Processing042

(NLP) applications as well. The most commonly 043

used approaches to augment textual data are based 044

on random swapping, random insertion, random 045

deletions, synonyms replacement, back translation, 046

and using generative models to get new context- 047

aware data (Feng et al., 2021; Shorten and Khosh- 048

goftaar, 2019). Notice that data augmentation in 049

NLP is a very challenging task due to the constraint 050

of producing a grammatical augmented text (Hou 051

et al., 2018). Moreover, given the continuous na- 052

ture of images, in CV the augmented version of an 053

image rarely is pragmatically incorrect. In contrast, 054

in NLP, preserving the contextual meaning of the 055

sentence is, usually, a hard constraint. Indeed, bad 056

model performance can be the consequence of aug- 057

mented textual data that is grammatically incorrect 058

or out-of-scope (Dong et al., 2017). 059

Recently, researchers working on text gener- 060

ation from meaning representations, i.e., graph- 061

based Abstract Meaning Representation (AMR) 062

(Banarescu et al., 2013; Flanigan et al., 2016) or 063

Discourse Representation Structure (DRS), have 064

put their efforts into generating text from logical 065

representations, and vice-versa, using transformers 066

and encoder-decoder-based neural models (Basile 067

and Bos, 2011; van Noord et al., 2018; Noord, 068

2019; Wang et al., 2021; Amin et al., 2022; Wang 069

et al., 2023). In this paper, we consider the specific 070

problem of augmenting data in the context of neu- 071

ral DRS-to-Text generation task. DRS represents 072

textual information in the form of events, concepts, 073

and entities, i.e., names as discourse referents usu- 074

ally represented as variables in DRS, and logical 075

relations between these entities i.e., quantifiers, 076

conjunctions, negations, disjunctions, etc. (Bos, 077

2021; Kamp and Reyle, 1993; Jaszczolt, 2023). In 078

Figure 1 a graphical representation of DRS in box 079

format (on the left), its flattened version i.e., clausal 080

format (on the right), and its corresponding textual 081

representation (on the bottom) is displayed. 082

Neural DRS-to-Text generation is a type of data- 083
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Figure 1: Box format and Clausal format of DRS along
with their textual representation.

to-text generation task that takes the logical repre-084

sentation of a sentence as input and generates text085

as output (Wang et al., 2021; Amin et al., 2022).086

This is an application of text generation from struc-087

tured input data similar to knowledge graphs (Flani-088

gan et al., 2016), RDF triplets data (Gardent et al.,089

2017), and tables (Parikh et al., 2020). Note that,090

in contrast to tables and graphs, the ability to rep-091

resent the structured logical nature of the input as092

a DRS generation allows for a more fine-grained093

investigation of the relation between input and out-094

put in DRS-to-Text. In other words “changing the095

meaning of a DRS in a controlled way, the robust-096

ness of systems can be monitored in detail and as-097

sessed accordingly” (Wang et al., 2021). However,098

this robustness property discourages the applica-099

tion of large language models (LLMs) for augment-100

ing data because LLMs would generate noise in101

the augmented data (Feng et al., 2021; Hou et al.,102

2018; Dong et al., 2017) – see also Section 4.103

In this paper, we exploit the robustness property104

of neural DRS-to-Text generation by designing and105

evaluating data augmentation for the specific cate-106

gories of (i) proper nouns and (ii) common nouns.107

In particular, we have designed and evaluated a pro-108

cedure for augmenting a DRS training dataset by109

adding context-aware new sentences that are pro-110

duced by varying the proper and common nouns in111

the original sentences. We consider different strate-112

gies and propose to use Supersense Tagging (SST)113

for creating new training sentences using both in-114

and out-of-context nouns. In this way, we want to115

analyze the role played by lexical information in116

the performance of a neural DRS-to-Text system.117

The research questions and contributions ad-118

dressed in this paper are:119

• Is it possible to augment a logical data repre-120

sentation such as DRS? 121

• How to generate new data that is contextually 122

similar to the original one? 123

• What is the role played by the in- and out- 124

of-contextual vocabulary for char-level and 125

word-level decoder models? And what is 126

the role of grammatical-semantic-pragmatic- 127

world knowledge in learning? 128

• Does augmentation result in an increase or 129

decrease in model performance by training a 130

seq-to-seq model or fine-tuning a Transformer 131

model? 132

• What is the behavior of pre-trained large lan- 133

guage models (LLMs) i.e., ChatGPT and 134

Claude, while analyzing DRS structures given 135

as prompt? 136

To the best of our knowledge, apart from the pre- 137

liminary work on augmentation of verbs presented 138

in (Amin et al., 2022), this is the first work on data 139

augmentation in DRS-to-Text generation analyzing 140

its impact on model performance. 141

Notice that our augmentation techniques could 142

generate factually incorrect texts (e.g., starting 143

from “at dawn, the sun rises”, “at night, the sun 144

rises” could be generated. However, since humans 145

can generate texts that are not factually correct 146

(consider, for example, a sci-fi story), preventing 147

this situation would actually be not only beneficial 148

but detrimental for the system. 149

The statistical nature of the neural networks does 150

not allow for an easy analysis of the kind of knowl- 151

edge really learned by the system. When we pro- 152

vide a specific example as Brad Pitt is an actor, 153

the network is learning that the verb follows the 154

subject (e.g. grammatical competence), and/or that 155

a man can be an actor (semantic and pragmatic 156

knowledge), and/or that a specific man is an actor 157

(world knowledge)? How can we exploit this multi- 158

level nature of neural learning? A side effect of our 159

study on data augmentation is to investigate these 160

theoretical questions as well. 161

The paper is structured as follows: in Section 2, 162

we describe the procedure adopted for noun aug- 163

mentation; in Section 3, we give architectural in- 164

sights on the neural DRS-to-Text pipeline; in Sec- 165

tion 4, we describe the experimental results of DRS- 166

to-text generation that uses (1) automatic metrics- 167

based and pre-trained model-based evaluations on 168

a standard test set, (2) a reduced test set comparing 169
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Figure 2: Graphical representation of the DRS transformation as a proper noun (in blue) and common noun (in
green). The DRS on the left generates the sentence Brad Pitt is an actor., while the DRS on the right generates
Louis Olivia is a performer.

our neural systems with two general LLMs, and170

(3) applying both automatic and human evaluation171

metrics. Finally, in Section 5, we conclude the172

paper.173

2 Logical Data Augmentation with Nouns174

Data augmentation is a relatively complex task in175

the case of neural DRS-to-Text: each augmented176

example in the training set consists of a pair of new177

DRS structures together with a new corresponding178

sentence. While applying systematic transforma-179

tions on training data, it is essential to keep track180

of both types of data representations as they are181

treated as input value pairs in the neural model. So,182

data transformations should be identical and sym-183

metrical on both elements by considering the order184

of meaning representations and textual translations.185

In the DRS-to-Text generation task, we ap-186

plied different augmentation techniques to augment187

proper and common nouns. We have used the188

gold version of the Parallel Meaning Bank1 (PMB)189

dataset, which is organized in the usual train-dev-190

test split.191

A graphical representation of transformation for192

proper (highlighted in blue) and common (high-193

lighted in green) nouns in DRS is shown in Figure194

2: the DRS on the left generates the sentence Brad195

Pitt is an actor, while the DRS on the right gener-196

1The PMB is developed at the University of Groningen as
part of the NWO-VICI project "Lost in Translation – Found
in Meaning" (Project number 277-89-003), led by Johan Bos.

ates Louis Olivia is a performer (see Table 1). 197

2.1 Proper Noun Augmentation 198

For proper nouns, we considered two specific name 199

entity (NE) categories, which are the proper name 200

of a person (PER) i.e., both male and female names, 201

and of a place i.e., city, state, or country (GPE). We 202

have used spaCy NE recognizer (https://spacy.io) 203

to extract proper nouns from the text. There are 204

a total amount of 3773 proper noun instances for 205

PER and GPE. The proper nouns are divided as 206

follows: person names 57%, city names 30%, state 207

names 6%, country names 6%, and 1% of other 208

types i.e., island names (see Figure 3 in Appendix). 209

We have used two procedures for replacing 210

proper nouns to analyze the impact of adding ex- 211

ternal linguistic information to the dataset vocabu- 212

lary2. (1) Replacing them with other proper nouns 213

inside the same dataset, i.e., inside context. (2) Re- 214

placing them with proper nouns outside the dataset, 215

i.e., outside context. Outside context refers to the 216

fact that we chose just nouns different from the 217

ones already present in the dataset. For replacing 218

person names (PER) via outside context approach, 219

we chose the person names based on the highest 220

frequency of each name cited in the world (source: 221

ChatGPT) that were not already in the dataset. For 222

the city, state, and country names, we replaced 223

them based on geographical distribution keeping 224

in mind that the GPE names should not be in the 225

2While extracting NE, no offensive information was found.
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Transf Type Original Text Transformed Augmented Text
Brad Pitt is an actor. Louis Olivia is an actor.
Alice and Bob work for this company. Maria and Tom work for this company.

Proper Noun Turin is a beautiful city. Venice is a beautiful city.
Indiana is a very famous state. Georgia is a very famous state.
China is one of the top 5 populous countries in the
world.

Indonesia is one of the top 5 populous countries in
the world.

Brad Pitt is an actor. Brad Pitt is a performer.
Alice and Bob work for this company. Alice and Bob work for this institution.

Common Noun Turin is a beautiful city. Turin is a beautiful municipality.
We painted the house green. We painted the building green.
The book rested on the table. The novel rested on the furniture.
Brad Pitt is an actor. Louis Olivia is a performer.
The Mona Lisa hung above the antique table. The Leonardo da Vinci hung above the antique

furniture.
Proper and
Common Noun

Alice and Bob work for this company. Maria and Tom work for this institution.

Noah and Sophia watched a movie at the local the-
ater.

Liam and Emma watched a show at the local edi-
fice.

Oliver and Isabella enjoyed the view of the moun-
tains from the cabin.

Daniel and Lily enjoyed the view of the elevations
from the compartment.

Table 1: Different flavors of augmentation applied to the dataset as single and blended data transformations.

dataset. For GPE, we again used the ChatGPT226

prompt which provided the list of available GPE227

entities extracted from the original dataset, to get228

a new list of GPE entities with the same geograph-229

ical distribution. For example, in “The weather230

of Dubai is very hot and dry.” we replace ‘Dubai’231

with ‘Sharjah’ as the semantic correlation of hot232

weather holds true for both cities. Some examples233

listing proper noun augmentation are displayed in234

Table 1.235

2.2 Common Noun Augmentation236

Replacing a common noun without altering the237

contextual information of the sentence is a chal-238

lenging task. To tackle this challenge, we adopt a239

novel SST approach to associate a category with240

the noun based on its contextual sense in the sen-241

tence. For the implementation of SST, we have242

used spaCy again. Based on data examples, we243

extracted 6193 common nouns belonging to the 26244

lexicographic categories of WordNet, including act,245

artifact, body, cognition, communication, event,246

feeling, food, group, and motion (Ciaramita and247

Johnson, 2003) (see Figure 4 in Appendix).248

In common noun augmentation, our approach249

considers two procedures: inside/outside dataset250

and preserving/not preserving supersenses (SS),251

thus resulting in four of the following combina-252

tions: (1) Replacing a common noun with any other253

common noun inside the dataset but not preserv-254

ing SS: “inside context without SS”. (2) Replacing255

a common noun with another common noun hav-256

ing the same category of SS: “inside context with257

SS”. (3) Replacing a common noun with another 258

common noun having the same category of SS but 259

outside the dataset “outside context with SS”. (4) 260

Replacing a common noun with another common 261

noun not having the same category of SS but out- 262

side the dataset “outside context without SS”. For 263

points (1) and (4), there is no guarantee of sustain- 264

ing the contextual sense of the sentence as the noun 265

replacement can happen between two different SS 266

categories e.g., cat with chair3. For points (2) and 267

(3), we make sure that the noun replacement has 268

the same SS category e.g., cat with dog4. 269

For points (3) and (4), for the sake of adding 270

external lexical information for common nouns, 271

we are taking the support of the WordNet lexical 272

database. For point (3), we replace the common 273

noun with its WordNet hypernym and then make 274

sure that the new noun also belongs to the same 275

SS category. For point (4), we just perform noun 276

replacement through WordNet synonyms. All exam- 277

ples listed in Table 1 are also representing outside 278

context with SS through WordNet hypernyms. 279

Note that in this work we have not performed 280

other possible combinations for proper nouns, that 281

is: changing GPE without considering the same 282

class, i.e., changing city with state or country. The 283

motivation lies in the fact that these combinations 284

would radically change the semantics of the sen- 285

3As ‘cat’ belongs to ’noun animal’ while ‘chair’ belongs
to ‘noun artifact’ classes of SS. This can be grammatically
true but not semantically and contextually.

4As ‘cat’ and ‘dog’ both belong to the same ‘noun ani-
mal’ class of SS. This type of substitution is grammatically,
semantically, and contextually correct.

4
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tence. In other words, we decided to follow a sort286

of principle of minimum variation of the meaning287

for choosing the augmentation strategy.288

3 Three Neural DRS-to-Text Pipelines289

DRS-to-Text generation is a complex logic-to-text290

generation task requiring computationally efficient291

neural models to transform logical representations.292

In our implementation pipelines, we have used293

three different neural architectures5. The first two294

models are based on an encoder-decoder oriented295

recurrent sequences-to-sequence neural networks296

with two bi-directional LSTM layers (Hochreiter297

and Schmidhuber, 1997; Junczys-Dowmunt et al.,298

2018), having (1) char-based lexical encoding (CB-299

bi-LSTM henceforth) and, (2) word-based lexical300

encoding (WB-bi-LSTM henceforth). Moreover,301

we have also used (3) a byT5 variant of Trans-302

former’s family (Xue et al., 2022) for fine-tuning303

the DRS-to-Text generation task (FT-byT5 hence-304

forth).305

We are aware that the state-of-the-art DRS-to-306

text generation models use sophisticated neural ar-307

chitectures (Liu et al., 2021; Wang et al., 2023),308

thus, encouraging us to use the Transformers-based309

model for our task as well. However, the goals of310

this paper are related to analyzing the effects of311

data augmentation in the context of neural DRS-to-312

text generation rather than providing a system with313

the best performances.314

Note that the fundamental differences between315

CB-bi-LSTM and WB-bi-LSTM are based on in-316

put and output data representations, i.e., charac-317

ters or words and their ability to handle out-of-318

vocabulary (OOV) words. The former deals with319

OOV words in a seamless way as it processes char-320

acter sequences, while the latter could struggle to321

handle OOV words as it is dependent on the size322

of the included vocabulary. We believe that these323

two different approaches can drive the impact of324

specific techniques of data augmentation.325

In our sequence-to-sequence implementation,326

the model architecture and hyperparameters used327

in our experiments are focused on LSTM-based328

encryption decryption cells having epochs-based329

learning decay strategy while using Adam as an330

optimizer. We have used cross entropy as the vali-331

dation metric and ce-mean as the cost type function.332

Other important hyperparameters are in Table 5 of333

the Appendix. In our transformers-based imple-334

5The code will be released upon acceptance.

mentation, we have used the default hyperparam- 335

eter settings of byT5 with a little bit of change in 336

batch size, update steps, and learning rates, while 337

using AdamW as an optimizer and fine-tuning the 338

model for 15 epochs. All hyperparameter settings 339

of our FT-byT5 model are listed in Table 6 of the 340

Appendix. 341

We have used the English version of the Parallel 342

Meaning Bank (PMB) dataset. Among the different 343

dataset types, i.e., gold, silver, and bronze, we have 344

worked on the gold (fully manually annotated and 345

corrected version) dataset. Gold-PMB follows the 346

standard dataset division of training, development, 347

and testing files having 6620, 885, and 898 data 348

examples. In the process of augmenting the dataset, 349

we have adopted two types of approaches to trans- 350

form examples. (1) Apply one type of transforma- 351

tion and concatenate it with the original data exam- 352

ples. This approach will result in having more data 353

with one type of data transformation, e.g., proper 354

noun or common noun (indicated with the ‘+’ sign 355

in Table 2 and following). We have applied data 356

augmentation to training examples only. Develop- 357

ment and test files are the original ones, without any 358

augmentation. (2) Apply multiple possible trans- 359

formations (blend) on each example, e.g., apply 360

proper noun and common noun augmentation on 361

one example (indicated with the ‘-’ sign in Table 2 362

and following). So, in this approach the training 363

set size is smaller than in approach (1): in this way, 364

we emphasize the role played by transformations 365

rather than training set size. In Table 7 of the Ap- 366

pendix, we have listed the individual and blended 367

data transformation along with training examples 368

size. 369

4 Experimental Results 370

Evaluation with automatic metrics. We have 371

conducted a series of different experiments that fo- 372

cus on analyzing the model performance based on 373

systematic alterations in lexical semantics-based 374

input representations. We have listed CB-bi-LSTM 375

(see Table 2), WB-bi-LSTM (see Table 2), FT- 376

byT5 (see Table 2), experimental results with the 377

BLEU, NIST, METEOR, ROUGE, CIDEr, and 378

BERTScore-based automatic evaluation measures 379

(Wang et al., 2021; Amin et al., 2022; Zhang et al., 380

2020). In these experiments, we have used the stan- 381

dard split of PMB in train-dev-test sets. Note that 382

the baseline of the experiment (1) is consistent with 383

the results reported in (Amin et al., 2022), but is no- 384
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tably inferior to the value reported in (Wang et al.,385

2021) because this latter study considers mixed386

gold-silver training data.387

If we compare the overall performance of CB-bi-388

LSTM and WB-bi-LSTM, we found as expected389

that CB-bi-LSTM always wins in all aspects of in-390

put data. This reflects the fact that the char-level391

model with the ability to handle OOV words is392

performing very well in capturing micro-level as-393

pects and data patterns of input DRS. This also394

shows the effectiveness and morphological accu-395

racy of the char-level model in generating correct396

output sequences. However, the FT-byT5 model397

outperforms the bi-LSTM-based models in most398

experiments.399

In the proper noun augmentation, our experi-400

ments are twofold: (1) inside context and (2) out-401

side context as discussed in Section 2. Exp. 2− 3402

(see Table 2), 11−12 (see Table 2) and 20−21 (see403

Table 2) list the results obtained after performing404

two flavors of proper noun augmentation. Consid-405

ering only LSTM architectures, the experimental406

findings show that vocabulary plays a vital role407

in the case of CB-bi-LSTM model as this is more408

independent in sequence generation. Therefore,409

we have the highest score in CB-bi-LSTM for the410

proper noun augmentation outside context to the411

dataset (Exp. 3). On the other hand, the word-level412

decoder is more focused on vocabulary, therefore it413

has the highest scores in proper noun augmentation414

inside context to the dataset (Exp. 11). The latter415

represents the effectiveness of word-level models416

in generating coherent and grammatically correct417

output sequences while capturing correct syntax418

and semantic meanings of input DRS. P.N. aug-419

mentation shows the best results in the case of the420

FT-byT5 modes. In particular, we note that FT-421

byT5 with P.N. produced the highest values over422

all the metrics over all the experiments. We specu-423

late that this result could depend on the peculiarities424

of the T5 original model. However, the important425

point for our study is to note that also in pretrained426

LLMs, data augmentation can play an important427

role in performance.428

For common noun augmentation, our experi-429

ments are fourfold: (1) inside context with SS, (2)430

inside context without SS, (3) outside context with431

SS, and (4) outside context without SS: Exp. 4-432

7 (see Table 2) , 13-16 (see Table 2) and 22-25433

(see Table 2) regard these four different flavors of434

common noun augmentation. We believe that the435

important role played by the vocabulary holds for436

common nouns as well, with the highest scores of 437

CB-bi-LSTM decoder for outside context with SS 438

(Exp. 6) and best WB-bi-LSTM score for inside 439

context with SS (Exp. 13). Again, the FT-byT5 440

shows the best results with augmentation. 441

Finally, in Exp. 8-9 (see Table 2), 17-18 (see Ta- 442

ble 2) and 26-27 (see Table 2), we have applied the 443

best augmentation techniques of proper and com- 444

mon nouns (i.e., outside context for CB-bi-LSTM, 445

and inside context for WB-bi-LSTM and outside 446

context for FT-byT5) as blended and individual 447

data examples. In Exp. 8, 17, and 26, the augmen- 448

tation techniques have been applied simultaneously 449

to each input data example (i.e., as we are applying 450

2 data transformations on one example, we name it 451

blended, see proper and common noun example in 452

Table 1). Here dataset examples are concatenated 453

as (original + P.N.-with-C.N.). While in Exp. 9, 18 454

and 27, these augmentation techniques have been 455

applied separately and concatenated as (original 456

+ P.N + C.N) augmentation data examples. Com- 457

paring all experimental results, we achieved the 458

highest scores for LSTM models while applying 459

the best augmentation flavors of P.N and C.N con- 460

catenated as separate individual training examples 461

(see Exp. 9 and 18). Similarly, in FT-byT5 the 462

best value is for concatenated examples (see Exp. 463

27). However, surprisingly, in contrast with LSTM, 464

we do not achieve the best values in FT-byT5 in 465

the experiment 27 (see experiment 21). Again, we 466

believe that this different pattern of T5 w.r.t. LSTM 467

depends on the peculiarities of the original model. 468

Finally, in Exp. 28, we preliminarily evaluated 469

the impact of the size of the augmented data. So, 470

we repeated Exp. 21, that is the best on for Ft-byT5 471

model, by halving the size of the augmented part 472

of the training set. The results, with scores that 473

are intermediate w.r.t. the baseline and the best 474

model, suggest that there is a linear increase w.r.t. 475

the size of the augmented training set. However, 476

more experiments are necessary to verify this hy- 477

pothesis. We tested the statistical significance of 478

the results with a Wilcoxon Signed Rank Test (Dror 479

et al., 2018). 480

Comparing neural DRS-to-Text and LLMs. 481

We compare the quality of the generated text of 482

our neural DRS-to-Text systems with two recent 483

general LLMs, ChatGPT 3.5 (OpenAI, 2023) and 484

Claude 2.0 (Turpin et al., 2023) in order to provide 485

a preliminary insight in the performance of our ap- 486

proach with respect to a general LLM that was not 487

fine-tuned on this specific task. We have applied 488

6



Exp.Implementation Type BLEU NIST METEORROUGE CIDEr BERT
Score

01 Gold-PMB (no Aug) 47.72 7.68 39.42 72.59 4.84 95.3
02 Orig + P.N. (in ctx) Aug 51.37 † 7.96 † 41.19 † 74.78 † 5.15 † 95.8
03 Orig + P.N. (out ctx) Aug 53.16 † 8.11 † 42.00 † 75.30 † 5.27 † 95.9
04 Orig + C.N. (in ctx with SS) Aug 50.28 † 7.94 40.90 † 74.24 † 5.02 † 95.7
05 Orig + C.N. (in ctx w.o. SS) Aug 49.99 † 7.91 40.14 † 74.06 † 4.96 † 95.6
06 Orig + C.N (out ctx with SS) Aug 50.89 † 7.98 † 40.70 † 74.38 † 5.08 95.7
07 Orig + C.N (out ctx w.o. SS) Aug 50.63 † 7.93 † 40.39 † 74.33 † 5.06 † 95.7
08 Orig + P.N (out ctx)-with-C.N

(out ctx with SS) Aug
52.51 † 8.06 † 41.23 † 75.28 † 5.24 † 96.0

09 Orig + P.N (out ctx) + C.N (out
ctx with SS) Aug

54.00 † 8.19 † 42.32 † 76.15 † 5.35 96.1

10 Gold-PMB (no Aug) 32.91 5.80 29.99 61.39 3.49 94.4
11 Orig + P.N. (in ctx) Aug 44.37 ‡ 7.37 ‡ 36.56 ‡ 69.54 ‡ 4.38 ‡ 95.1
12 Orig + P.N. (out ctx) Aug 42.70 ‡ 7.16 ‡ 35.39 ‡ 67.69 ‡ 4.18 94.9
13 Orig + C.N. (in ctx with SS) Aug 44.41 ‡ 7.28 ‡ 36.22 ‡ 68.78 ‡ 4.34 ‡ 95.1
14 Orig + C.N. (in ctx w.o. SS) Aug 42.94 ‡ 7.14 ‡ 35.11 ‡ 67.56 ‡ 4.19 94.8
15 Orig + C.N (out ctx with SS) Aug 41.84 ‡ 6.97 ‡ 34.25 ‡ 66.38 ‡ 4.05 94.6
16 Orig + C.N (out ctx w.o. SS) Aug 42.41 ‡ 7.13 ‡ 35.01 ‡ 67.47 ‡ 4.16 ‡ 94.8
17 Orig + P.N. (in ctx)-with-C.N. (in

ctx with SS) Aug
43.78 ‡ 7.21 ‡ 35.87 ‡ 68.52 ‡ 4.27 ‡ 95.0

18 Orig + P.N (in ctx)+C.N. (in ctx
with SS) Aug

44.39 ‡ 7.36 ‡ 36.63 ‡ 69.53 ‡ 4.29 ‡ 95.2

19 Gold-PMB (no Aug) 51.88 7.94 43.55 76.04 5.63 96.7
20 Orig + P.N. (in ctx) Aug 55.72 ⋄ 8.23 ⋄ 45.05 ⋄ 77.81 ⋄ 5.91 ⋄ 97.1
21 Orig + P.N. (out ctx) Aug 57.15 ⋄ 8.33 ⋄ 45.90 ⋄ 78.81 ⋄ 6.08 ⋄ 97.2
22 Orig + C.N. (in ctx with SS) Aug 53.08 8.04 44.20 76.64 5.68 96.8
23 Orig + C.N. (in ctx w.o. SS) Aug 52.85 8.00 44.50 76.32 5.69 96.8
24 Orig + C.N (out ctx with SS) Aug 54.71 ⋄ 8.13 ⋄ 44.77 77.27 5.84⋄ 97.0
25 Orig + C.N (out ctx w.o. SS) Aug 52.78 8.02 44.29 76.31 5.66 ⋄ 96.8
26 Orig + P.N. (out ctx)-with-C.N.

(out ctx with SS)
52.89 8.03 44.68 76.60 5.76 96.9

27 Orig + P.N. (out ctx) + C.N. (out
ctx with SS) Aug

53.34 8.02 44.60 77.05 5.71 96.9

28 Orig + half P.N. (out ctx) (ran-
domly sampled) Aug

53.42 8.04 44.44 76.50 5.74 97.0

Table 2: CB-bi-LSTM (Exp. 01-09), WB-bi-LSTM (Exp. 10-18), FT-byT5 (Exp. 19-28) individual and blended
proper noun (P.N.) and common noun (C.N.) augmentation experiments. †, ‡ and ⋄ show that the model is statistically
significant using Wilcoxon Test on all evaluation metrics scores w.r.t. the baselines (Exp. 01, 10 and 19 respectively).
All experiments are an average of 5 runs.
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Model Type Data Type BLEU NIST METEOR ROUGE CIDEr BERT
Score

CB-bi-LSTM Gold without Aug 45.42 6.43 38.42 71.70 4.75 95.4
PN Aug 50.64 6.69 40.67 74.22 5.22 95.9
CN Aug 48.70 6.70 39.67 73.38 5.03 95.7

Claude-2.0 zero-shot 11.33 3.05 29.39 42.43 1.69 92.3
few-shot 27.25 5.39 38.58 64.25 3.51 95.3

ChatGPT-3.5 zero-shot 9.82 2.63 27.91 39.80 1.59 91.9
few-shot 9.58 2.51 26.01 37.40 1.53 91.5

byT5 Gold without Aug 47.55 6.46 42.90 74.56 5.49 96.5
PN Augmentation 54.28 6.86 45.81 78.25 5.96 97.1
CN Augmentation 53.04 6.73 45.21 76.97 5.90 96.9

Table 3: Evaluation of DRS-to-Text by LLMs reporting scores for the baseline (without augmentation), ChatGPT
3.5, Claude 2.0, and our best (augmented) models.

both zero-shot and few-shot learning to analyze the489

LLMs performance.490

To capture performance insights, we considered491

a sample of 215 sentences from the test set, both492

(1) on the best neural DRS-to-Text models i.e., CB-493

bi-LSTM and FT-byT5 (see Table 3), and (2) to494

the prompt of ChatGPT 3.5 and Claude 2.0 to get495

model-generated texts (see the exact prompts in496

the Appendix). We evaluated the output with auto-497

matic evaluation metrics scores (see Table 3). The498

experimental evaluation clearly states that LLMs499

being general-purpose generative models do not500

perform well for the low-resource domain-specific501

task thus highlighting the need for task-specific502

neural models for the DRS-to-Text generation task.503

Error Analysis based Expert Evaluation. Our504

final evaluation is based on the human evaluation505

of one expert, who evaluated the generated text by506

analyzing the model-generated systematic errors507

in the form of ill-formed semantics, grammatical-508

ization, and phenomenon and produced a ROSE509

(Robust Overall Semantic Evaluation) score. Ta-510

ble 13 in the Appendix lists some interesting ex-511

amples generated by our best augmentation model.512

As defined in (Wang et al., 2021), the ROSE score513

is the conjunction of three 0-1 evaluation scores:514

(1) a Boolean Semantic measure that checks if the515

generated text preserves the true meaning w.r.t. to516

the gold reference; (2) a Boolean Grammatical517

measure that checks if the generated text is not518

containing any spelling or grammatical errors; (3)519

a Boolean Phenomenon measure that checks if in520

the generated text the “phenomenon of control is521

generated at all” w.r.t. to the gold reference (Wang522

et al., 2021). If the text passes all these three scores523

(conjunction), it gets a 1 score, otherwise, it gets 524

a 0 score. In Table 4, we have reported the ROSE 525

scores on a sample of 50 sentences from the test set. 526

This evaluation confirms the quality of our best aug- 527

mentation model in producing good-quality texts, 528

showing the best results in the ROSE measure too. 529

Implementation Sem. Gram. Phen. ROSE
Gold-PMB 54% 60% 70% 52%
ChatGPT 3.5 28% 86% 46% 24%
Claude 2.0 34% 86% 44% 34%
C.N. Aug 58% 68% 62% 58%
P.N. Aug 62% 66% 68% 58%
P.N. + C.N. Aug 64% 72% 72% 62%

Table 4: Expert evaluation based on Semantics, Gram-
matical Structure, and Phenomenon for the baseline,
ChatGPT, Claude, and our best (augmented) CB-bi-
LSTM model.

5 Conclusion 530

531In this paper, we have performed a series of ex- 532

periments on data augmentation for neural DRS- 533

to-Text generation. Using the PMB dataset, we 534

adopted a novel approach to augment lexical in- 535

formation in DRS for proper and common nouns 536

along with the ability to sustain contextual simi- 537

larly through SS approach on different in- and out- 538

of-context transformations. Experimental results 539

reflect both individual and blended implementation 540

scores for our seq-to-seq models (from a training 541

perspective) and Transformer model (from a fine- 542

tuning perspective). The significantly improved 543

results for the char, word, and transformer level 544

models prove the effectiveness and reliability of 545

our proposed approach. 546
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Limitations547

As PMB is a multilingual dataset, we have not ex-548

panded our implementation on other low-resource549

languages like Italian, Dutch, and French. We are550

also exploring other possible augmentation strate-551

gies to transform verb phrases.552
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Appendix678

In this appendix, we report:679

• Hyperparameters for CB-bi-LSTM and WB-680

bi-LSTM (Table 5)681

• Hyperparameters for T5 experiments (Table 6)682

• Dataset size (Table 7)683

• The Graphical distribution of Named Entities684

for Proper Noun Augmentation (Figure 3)685

• SS-based graphical distribution of Common686

Noun Entities for Common Noun Augmenta-687

tion (Figure 4)688

• Prompt for ChatGPT-3.5 (Table 8)689

• Prompt for Claude-2.0 (Table 9)690

• BERT-Score for CB-bi-LSTM (Table 10)691

• BERT-Score for WB-bi-LSTM (Table 11)692

• BERT-Score for FT-byT5 (Table 12)693

• A preliminary error analysis (Table 13)694

Figure 3: Distribution of proper noun entities in Gold-
PMB dataset.

HyperParameters Values
Embedding Dimensions 300
Enc/Dec Cell LSTM
Enc/Dec Depth 2
Mini-batch 48
Normalization Rate 0.9
lr-decay 0.5
lr-decay-strategy Epoch
Optimizer Adam
Validation Metric Cross-Entropy
Cost-Type ce-mean
Beam Size 10
Learning Rate 0.002

Table 5: Hyperparameter settings for CB-bi-LSTM and
WB-bi-LSTM.

HyperParameters Values
Batch size 15
Update steps 8
Max learning Rate 1e-4
Min learning Rate 1e-5
Warmup updates 3000
Max decay steps 30000
No. of epochs 15
Optimizer AdamW

Table 6: Hyperparameter settings for FT-byT5.

Transformation Type Size Examples
Orig Training Examples x1 6620

Orig + P.N. Aug x2 13240
Orig + C.N. Aug x2 13240
Orig + P.N.-with-C.N. Aug x2 13240
Orig + P.N. + C.N. Aug x3 19860

Validation Examples 885
Test Examples 898

Table 7: Dataset size (‘+’ indicates augmentation ap-
plied in individual form and ‘-’ in blended form).
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Figure 4: SS tagging based categorical division of common noun entities in Gold-PMB dataset.

Prompt
Discourse Representation Structure (DRS) refers to a formal representation used to capture the meaning of a sentence or
a piece of text in a way that can be processed and analyzed by computational systems. Given a clausal format of DRS,
can you generate an English translation of the given DRS?
ChatGPT Response
Absolutely, I can assist you in generating English translations from a clausal format of Discourse Representation
Structure (DRS). Please provide me with the specific DRS you have in mind, and I’ll do my best to provide you with the
corresponding English translation.
Prompt
b2 REF s1
b2 Attribute x1 s1
b2 Value s1 "?"
b2 far "a.01" s1
b2 REF t1
b2 EQU t1 "now"
b2 Time s1 t1
b2 time "n.08" t1
b1 REF x1
b1 PRESUPPOSITION b2
b1 entity "n.01" x1
ChatGPT Response
The provided Discourse Representation Structure (DRS) corresponds to the following English sentence:
"Is it far now in time?"
Explanation:
The lines in the DRS represent the following:
b2 REF s1 introduces a reference to a situation "s1."
b2 Attribute x1 s1 attributes "x1" (later determined to be "it") to situation "s1."
b2 Value s1 "?" indicates that the value of situation "s1" is a question mark, implying an interrogative context.
b2 far "a.01" s1 specifies that situation "s1" is associated with being "far" (distant).
b2 REF t1 introduces a reference to a time "t1."
b2 EQU t1 "now" equates time "t1" with "now," indicating the present time.
b2 Time s1 t1 associates situation "s1" with time "t1."
b2 time "n.08" t1 relates the concept of time "t1" to the noun "time."
b1 REF x1 introduces a reference to an entity "x1."
b1 PRESUPPOSITION b2 establishes a presupposition relationship with "b2."
b1 entity "n.01" x1 indicates that "x1" is an entity, often referred to as "it."
Putting it all together, the English translation is "Is it far now in time?" This DRS representation and its translation
capture the structure and meaning of the given sentence.
Prompt
The translation should be without explanation. Just one line English sentence.
ChatGPT Response
My time is ?.
Actual Translation
How far is it?

Table 8: Example of a prompt and the related response from ChatGPT 3.5 for DRS-to-Text generation.
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Prompt
Discourse Representation Structure (DRS) refers to a formal representation used to capture the meaning of a sentence or
a piece of text in a way that can be processed and analyzed by computational systems. Given a clausal format of DRS,
can you generate an english translation of the given DRS?
Claude Response
Sure, here is an example of generating an English translation from a clausal DRS format:
Given DRS:
x, y, e
book(x)
person(y)
own(e, y, x)
English translation:
"There is a book x and a person y such that y owns x."
The key aspects are:
The discourse referents x, y, e represent objects or events introduced in the DRS conditions.
The conditions like book(x) and person(y) provide information about these referents.
own(e, y, x) represents a relation between the referents.
These conditions can be translated into English by referring back to the introduced referents and expressing the relations
between them.
Additional discourse context like tense, temporal relations, modality etc. can also be represented in the DRS and
translated appropriately.
So in essence, I would analyze the DRS conditions and referents, identify the objects, events and relations they represent,
and generate corresponding English sentences to verbalize those meanings.
Let me know if you need any other examples of translating DRS representations into natural language!
Prompt
b2 REF s1
b2 Attribute x1 s1
b2 Value s1 "?"
b2 far "a.01" s1
b2 REF t1
b2 EQU t1 "now"
b2 Time s1 t1
b2 time "n.08" t1
b1 REF x1
b1 PRESUPPOSITION b2
b1 entity "n.01" x1
Claude Response
Here is my attempt at translating the given DRS into English:
There is a referent s1.
s1 has the attribute x1.
The value of s1 is "?".
s1 is far away "a.01".
There is a referent t1.
t1 is equated to "now".
s1 occurs at time t1.
t1 is the present time "n.08".
There is a referent x1.
x1 presupposes referent b2.
x1 is an entity "n.01".
In plain English:
There is something s1. It has some attribute x1 and its value is unknown (?). s1 is far away. There is a time t1 which is
the present. s1 occurs at this present time. There is something x1 which presupposes something else b2. x1 is an entity.
Let me know if this translation captures the meaning represented in the DRS or if you have any other feedback! I’m still
learning how to translate from DRS to natural language.
Prompt
The translation should be without explanation. Just one line English sentence.
Claude Response
Here is a one line English translation of the given DRS:
There is a far away entity with an unknown attribute occurring now which presupposes something else.
Actual Translation
How far is it?

Table 9: Example of a prompt and its related response from Claude 2.0 for DRS-to-Text generation.
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Exp. No Implementation Type Precision Recall F1-Score
01 Gold (without augmentation) 95.2 95.4 95.3
02 Gold + PN (inside context) 95.8 95.9 95.8
03 Gold + PN (outside context) 95.9 95.9 95.9
04 Gold + CN (inside context with SS) 95.7 95.7 95.7
05 Gold + CN (inside context without SS) 95.7 95.5 95.6
06 Gold + CN (outside context with SS) 95.5 95.8 95.7
07 Gold + CN (outside context without SS) 95.8 95.7 95.7
08 Gold + PN-with-CN 96.1 95.9 96.0
09 Gold + PN + CN 96.1 96.1 96.1

Table 10: BERT-Score for all Char-level-based implementation of augmentation experiments with Precision, Recall,
and F1-Score.

Exp. No Implementation Type Precision Recall F1-Score
01 Gold (without augmentation) 94.6 94.3 94.4
02 Gold + PN (inside context) 95.2 95.0 95.1
03 Gold + PN (outside context) 95.0 94.8 94.9
04 Gold + CN (inside context with SS) 95.2 95.0 95.1
05 Gold + CN (inside context without SS) 94.9 94.7 94.8
06 Gold + CN (outside context with SS) 94.6 94.5 94.6
07 Gold + CN (outside context without SS) 95.0 94.7 94.8
08 Gold + PN-with-CN 95.1 94.9 95.0
09 Gold + PN + CN 95.3 95.1 95.2

Table 11: BERT-Score for all Word-level-based implementation of augmentation experiments with Precision, Recall,
and F1-Score.

Exp. No Implementation Type Precision Recall F1-Score
01 Gold (without augmentation) 96.6 96.9 96.7
02 Gold + PN (inside context) 96.9 97.3 97.1
03 Gold + PN (outside context) 97.0 97.4 97.2
04 Gold + CN (inside context with SS) 96.6 97.1 96.8
05 Gold + CN (inside context without SS) 96.5 97.1 96.8
06 Gold + CN (outside context with SS) 96.8 97.2 97.0
07 Gold + CN (outside context without SS) 96.6 97.1 96.8
08 Gold + PN-with-CN 96.6 97.2 96.9
09 Gold + PN + CN 96.6 97.2 96.9
10 Gold + half (randomly sampled) P.N. (outside context) Aug 96.7 97.2 97.0

Table 12: BERT-Score for all byT5-based implementation of augmentation experiments with Precision, Recall, and
F1-Score.

Reference Text Generated Text Sem. Gram. Phen. ROSE
I am milking my goat. I’m milking my squirrel. 0 1 1 0
The train leaves at 2:30 p.m. The train leaves at 2:30. 0 0 1 0
We arrived two days ago. I arrived two days ago. 1 1 1 1
Three times five is fifteen. 3 times 5 is 15. 1 1 1 1
An elephant has a long nose. The elephant has a long nose. 1 1 1 1

Table 13: Error analysis of model-generated examples w.r.t reference text for ROSE evaluation.
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