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Abstract

Spatio-temporal signals forecasting plays an important role in numerous domains, especially
in neuroscience and transportation. The task is challenging due to the highly intricate
spatial structure, as well as the non-linear temporal dynamics of the network. To facilitate
reliable and timely forecast for the human brain and traffic networks, we propose the Fast
Temporal Wavelet Graph Neural Networks (FTWGNN) that is both time- and memory-
efficient for learning tasks on timeseries data with the underlying graph structure, thanks to
the theories of multiresolution analysis and wavelet theory on discrete spaces. We employ
Multiresolution Matrix Factorization (MMF) (Kondor et al., 2014) to factorize the highly
dense graph structure and compute the corresponding sparse wavelet basis that allows us to
construct fast wavelet convolution as the backbone of our novel architecture. Experimental
results on real-world PEMS-BAY, METR-LA traffic datasets and AJILE12 ECoG dataset
show that FTWGNN is competitive with the state-of-the-arts while maintaining a low
computational footprint. Our PyTorch implementation is publicly available at https:

//github.com/HySonLab/TWGNN.

Keywords: Multiresolution Matrix Factorization, Temporal Graph Neural Networks,
Wavelet Transform, Wavelet Convolution, Multivariate Timeseries.

1. Introduction

Time series modeling has been a quest in a wide range of academic fields and industrial
applications, including neuroscience (Pourahmadi and Noorbaloochi, 2016) and traffic
modeling (Li et al., 2018). Traditionally, model-based approaches such as autoregressive
(AR) and Support Vector Regression (Smola and Schölkopf, 2004) require domain-knowledge
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as well as stationary assumption, which are often violated by the complex and non-linear
structure of neural and traffic data.

Recently, there has been intensive research with promising results on the traffic forecasting
problem using deep learning such as Recurrent Neural Network (RNN) (Qin et al., 2017),
LSTM (Koprinska et al., 2018), and graph-learning using Tranformer (Xu et al., 2020). On
the other hand, forecasting in neuroscience has been focusing mainly on long-term evolution
of brain network structure based on fMRI data, such as predicting brain connectivities of an
Alzheimer’s disease after several months (Bessadok et al., 2022), where existing methods are
GCN-based (Göktaş et al., 2020) or GAN-based graph autoencoder (Gürler et al., 2020).
Meanwhile, research on instantaneous time series forecasting of electroencephalogram (EEG)
or electrocorticography (ECoG) remains untouched, even though EEG and ECoG are often
cheaper and quicker to obtain than fMRI, while short-term forecasting may be beneficial for
patients with strokes or epilepsy (Shoeibi et al., 2022).

In graph representation learning, a dense adjacency matrix expressing a densely connected
graph can be a waste of computational resources, while physically, it may fail to capture the
local “smoothness” of the network. To tackle such problems, a mathematical framework
called Multiresolution Matrix Factorization (MMF) (Kondor et al., 2014) has been adopted
to “sparsify” the adjacency and graph Laplacian matrices of highly dense graphs. MMF is
unusual amongst fast matrix factorization algorithms in that it does not make a low rank
assumption. Multiresolution matrix factorization (MMF) is an alternative paradigm that
is designed to capture structure at multiple different scales. This makes MMF especially
well suited to modeling certain types of graphs with complex multiscale or hierarchical
structure (Hy and Kondor, 2022), compressing hierarchical matrices (e.g., kernel/gram
matrices) (Teneva et al., 2016; Ding et al., 2017), and other applications in computer vision
(Ithapu et al., 2017). One important aspect of MMF is its ability to construct wavelets on
graphs and matrices during the factorization process (Kondor et al., 2014; Hy and Kondor,
2022). The wavelet basis inferred by MMF tends to be highly sparse, which allows the
corresponding wavelet transform to be executed efficiently via sparse matrix multiplication.
(Hy and Kondor, 2022) exploited this property to construct fast wavelet convolution and
consequentially wavelet neural networks learning on graphs for graph classification and node
classification tasks. In this work, we propose the incorporation of fast wavelet convolution
based on MMF to build a time- and memory-efficient temporal architecture learning on
timeseries data with the underlying graph structure.

From the aforementioned arguments, we propose the Fast Temporal Wavelet Graph Neural
Network (FTWGNN) for graph time series forecasting, in which the MMF theory is utilized
to describe the local smoothness of the network as well as to accelerate the calculations.
Experiments on real-world traffic and ECoG datasets show competitive performance along
with remarkably smaller computational footprint of FTWGNN. In summary:

• We model the spatial domain of the graph time series as a diffusion process, in
which the theories of multiresolution analysis and wavelet theory are adopted. We
employ Multiresolution Matrix Factorization (MMF) to factorize the underlying graph
structure and derive its sparse wavelet basis.

• We propose the Fast Temporal Wavelet Graph Neural Network (FTWGNN), an end-
to-end model capable of modeling spatiotemporal structures.
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• We tested on two real-world traffic datasets and an ECoG dataset and achieved com-
petitive results to state-of-the-art methods with remarkable reduction in computational
time.

2. Related work

A spatial-temporal forecasting task utilizes spatial-temporal data information gathered
from various sensors to predict their future states. Traditional approaches, such as the
autoregressive integrated moving average (ARIMA), k-nearest neighbors algorithm (kNN),
and support vector machine (SVM), can only take into account temporal information without
considering spatial features (Van Lint and Van Hinsbergen, 2012; Jeong et al., 2013). Aside
from traditional approaches, deep neural networks are proposed to model much more complex
spatial-temporal relationships. Specifically, by using an extended fully-connected LSTM
with embedded convolutional layers, FC-LSTM (Sutskever et al., 2014) combines CNN and
LSTM to model spatial and temporal relations. When predicting traffic, ST-ResNet (Zhang
et al., 2017) uses a deep residual CNN network, revealing the powerful capabilities of the
residual network. Despite the impressive results obtained, traffic forecasting scenarios with
graph-structured data is incompatible with all of the aforementioned methods because they
are built for grid data. For learning tasks on graphs, node representations in GNNs (Kipf
and Welling, 2016) uses a neighborhood aggregation scheme, which involves sampling and
aggregating the features of nearby nodes. Since temporal-spatial data such as traffic data or
brain network is a well-known type of non-Euclidean structured graph data, great efforts
have been made to use graph convolution methods in traffic forecasting. As an illustration,
DCRNN (Li et al., 2018) models traffic flow as a diffusion process and uses directed graph
bidirectional random walks to model spatial dependency.

In the field of image and signal processing, processing is more efficient and simpler in a
sparse representation where fewer coefficients reveal the information that we are searching for.
Based on this motivation, Multiresolution Analysis (MRA) has been proposed by (Mallat,
1989) as a design for multiscale signal approximation in which the sparse representations can
be constructed by decomposing signals over elementary waveforms chosen in a family called
wavelets. Besides Fourier transforms, the discovery of wavelet orthogonal bases such as Haar
(Haar, 1910) and Daubechies (Daubechies, 1988) has opened the door to new transforms
such as continuous and discrete wavelet transforms and the fast wavelet transform algorithm
that have become crucial for several computer applications (Mallat, 2008).

(Kondor et al., 2014) and (Hy and Kondor, 2022) have introduced Multiresolution Matrix
Factorization (MMF) as a novel method for constructing sparse wavelet transforms of func-
tions defined on the nodes of an arbitrary graph while giving a multiresolution approximation
of hierarchical matrices. MMF is closely related to other works on constructing wavelet bases
on discrete spaces, including wavelets defined based on diagonalizing the diffusion operator
or the normalized graph Laplacian (Coifman and Maggioni, 2006) (Hammond et al., 2011)
and multiresolution on trees (Gavish et al., 2010) (Bickel and Ritov, 2008).
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3. Background

3.1. Multiresolution Matrix Factorization

Most commonly used matrix factorization algorithms, such as principal component analysis
(PCA), singular value decomposition (SVD), or non-negative matrix factorization (NMF)
are inherently single-level algorithms. Saying that a symmetric matrix A ∈ Rn×n is of rank
r ≪ n means that it can be expressed in terms of a dictionary of r mutually orthogonal unit
vectors {u1, u2, . . . , ur} in the form

A =
r

∑
i=1
λiuiu

T
i ,

where u1, . . . , ur are the normalized eigenvectors of A and λ1, . . . , λr are the corresponding
eigenvalues. This is the decomposition that PCA finds, and it corresponds to factorizing A
in the form

A = UTHU , (1)

where U is an orthogonal matrix and H is a diagonal matrix with the eigenvalues of A
on its diagonal. The drawback of PCA is that eigenvectors are almost always dense, while
matrices occuring in learning problems, especially those related to graphs, often have strong
locality properties, in the sense that they tend to closely couple certain clusters of nearby
coordinates, rather than those farther apart with respect to the underlying topology. In
such cases, modeling A in terms of a basis of global eigenfunctions is both computationally
wasteful and conceptually unreasonable: a localized dictionary would be more appropriate.
In contrast to PCA, (Kondor et al., 2014) proposed Multiresolution Matrix Factorization,
or MMF for short, to construct a sparse hierarchical system of L-level dictionaries. The
corresponding matrix factorization is of the form

A = UT
1 UT

2 . . .U
T
LHUL . . .U2U1,

whereH is close to diagonal and U1, . . . ,UL are sparse orthogonal matrices with the following
constraints:

• Each Uℓ is k-point rotation (i.e. Givens rotation) for some small k, meaning that it
only rotates k coordinates at a time. Formally, Def. 1 defines the k-point rotation
matrix.

• There is a nested sequence of sets SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n] such that the coordinates
rotated by Uℓ are a subset of Sℓ.

• H is an SL-core-diagonal matrix that is formally defined in Def. 2.

We formally define MMF in Defs. 3 and 4. A special case of MMF is the Jacobi eigenvalue
algorithm (Jacobi, 1846) in which each Uℓ is a 2-point rotation (i.e. k = 2).

4. Method

4.1. Wavelet basis and convolution on graph

Section A.2 introduces the theory of multiresolution analysis behind MMF as well as the
construction of a sparse wavelet basis for a symmetric matrix A ∈ Rn×n. Without the loss of
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Figure 1: Architecture of Fast Temporal Wavelet Neural Network. WC: graph wavelet
convolution given MMF’s wavelet basis.

Figure 2: Architecture for the Wavelet Convolutional Gated Recurrent Unit. WC: graph
wavelet convolution given MMF’s wavelet basis

generality, we assume that A is a weight matrix of a weighted undirected graph G = (V,E)
in which V = {v1, .., vn} is the set of vertices and E = {(vi, vj)} is the set of edges with the
weight of edge (vi, vj) is given by Ai,j . Given a graph signal f ∈ Rn that is understood as a
function f ∶ V → R defined on the vertices of the graph, the wavelet transform (up to level
L) expresses this graph signal, without loss of generality f ∈ V0, as:

f(v) =
L

∑
ℓ=1
∑
m

αℓ
mψ

ℓ
m(v) +∑

m

βmϕ
L
m(v), for each v ∈ V,

where αℓ
m = ⟨f,ψ

ℓ
m⟩ and βm = ⟨f, ϕ

L
m⟩ are the wavelet coefficients. Based on the wavelet basis

construction via MMF detailed in (Hy and Kondor, 2022):

• For L levels of resolution, we get exactly L mother wavelets ψ = {ψ1, ψ2, . . . , ψL}, each
corresponds to a resolution.

• The rows of H = AL make exactly n − L father wavelets ϕ = {ϕLm = Hm,∶}m∈SL . In
total, a graph of n vertices has exactly n wavelets, both mothers and fathers.

Analogous to the convolution based on Graph Fourier Transform (Bruna et al., 2014), each
convolution layer k ∈ {1, ..,K} of wavelet neural network transforms an input vector f (k−1)

of size ∣V ∣ × Fk−1 into an output f (k) of size ∣V ∣ × Fk as

f
(k)
∶,j = σ(W

Fk−1

∑
i=1

g
(k)
i,j W

Tf
(k−1)
∶,i ) for j = 1, . . . , Fk, (2)
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where W is our wavelet basis matrix as we concatenate ϕ and ψ column-by-column, g
(k)
i,j

is a parameter/filter in the form of a diagonal matrix learned in spectral domain, and σ is
an element-wise non-linearity (e.g., ReLU, sigmoid, etc.). In Eq.(2), first we employ the
wavelet transform of a graph signal f into the spectral domain (i.e. f̂ =W Tf is the forward
transform and f =Wf̂ is the inverse transform), then a learnable filter g to the wavelet
coefficients, the inverse transform back to the spatial domain and let everything through a
non-linearity σ. Since the wavelet basis matrix W is sparse, both the wavelet transform
and its inverse transform can be implemented efficiently via sparse matrix multiplication.

4.2. Temporal Wavelet Neural Networks

Capturing spatiotemporal dependencies among time series in various spatiotemporal fore-
casting problems demands both spatial and temporal models. We build our novel Fast
Temporal Wavelet Graph Neural Network with the architectural backbone from Diffusion
Convolutional Recurrent Neural Network (DCRNN) (Li et al., 2018), that combines both
spatial and temporal models to solve these tasks.

Spatial Dependency Model The spatial dynamic in the network is captured by
diffusion process. Let G = (X,A) represent an undirected graph, where X = [xT

1 , . . . ,x
T
N ]

T ∈

RN×D denotes signals of N nodes, each has D features. Define further the right-stochastic
edge weights matrix Ã ∈ RN×N in which ∑j Ãij = 1∀i. In the simplest case, when L̃ = I − Ã
is the nomalized random walk matrix, the diffusion process on graph is governed by the
following equation (Chamberlain et al., 2021):

dX(t)

dt
= (Ã − I)X(t) (3)

where X(t) = [xT
1 (t), . . . , [x

T
N(t)]

T ∈ RN×D and X(0) = X. Applying forward Euler
discretization with step size 1, gives:

X(k) =X(k − 1) + (Ã − I)X(k − 1)

=X(k − 1) − L̃X(k − 1)

= ÃX(k − 1)

= ÃkX(0) (4)

Eq.4 is similar to the well-established GCN architecture propose in (Kipf and Welling, 2016).
Then, the diffusion convolution operation over a graph signal RN×D and filter fθ is defined
as:

X∶,d ⋆G fθ =
K−1
∑
k=0

θkÃ
kX∶,d ∀d ∈ {1, . . . ,D} (5)

where Θ ∈ RK×2 are the parameters for the filter.

Temporal Dependency Model The DCRNN is leveraged from the recurrent neural
networks (RNNs) to model the temporal dependency. In particular, the matrix multiplications
in GRU is replaced with the diffusion convolution, which is called Diffusion Convolutional
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Gated Recurrent Unit (DCGRU).

r(t) = σ(Θr ⋆G [X
(t),H(t−1)

] + b)

u(t) = σ(Θr ⋆G [X
(t),H(t−1)

] + bu)

C(t) = tanh(Θr ⋆G [X
(t), (r ⊙H(t−1)

)] + bc)

H(t)
= u(t) ⊙H(t−1)

+ (1 −u(t)) ⊙C(t)

where X(t),H(t) denote the input and output of at time t, while r(t),u(t) are reset gate
and update gate at time t, respectively.

Both the encoder and the decoder are recurrent neural networks with DCGRU following
Sequence-to-Sequence style. To mitigate the distribution differences between training and
testing data, scheduled sampling technique (Bengio et al., 2015) is used, where the model is
fed with either the ground truth with probability ϵi or the prediction by the model with
probability 1 − ϵi.

For our novel Fast Temporal Wavelet Graph Neural Network (FTWGNN), the funda-
mental difference is that instead of using temporal traffic graph as the input of DCRNN,
we use the sparse wavelet basis matrix W which is extracted via MMF (see Section A.2)
and replace the diffusion convolution by our fast wavelet convolution. Given the sparsity of
our wavelet basis, we significantly reduce the overall computational time and memory usage.
Each Givens rotation matrix Uℓ (see Def. 1) is a highly-sparse orthogonal matrix with a
non-zero core of size K ×K. The number of non-zeros in MMF’s wavelet basis W , that can
be computed as product U1U2⋯UL, is O(LK

2) where L is the number of resolutions (i.e.
number of Givens rotation matrices) and K is the number of columns in a Givens rotation
matrix. (Kondor et al., 2014) and (Hy and Kondor, 2022) have shown in both theory and
practice that L only needs to be in O(n) where n is the number of columns and K small
(e.g., 2, 4, 8) to get a decent approximation/compression for a symmetric hierarchical matrix.
Technically, MMF is able to compress a symmetric hierararchical matrix from the original
quadratic size n×n to a linear number of non-zero elements O(n). Practically, all the Givens
rotation matrices {Uℓ}

L
ℓ=1 and the wavelet basis W can be stored in Coordinate Format

(COO), and the wavelet transform and its inverse in wavelet convolution (see Eq. 2) can be
implemented efficiently by sparse matrix multiplication in PyTorch’s sparse library (Paszke
et al., 2019). The architecture of our model is shown in Figures 1 and 2.

5. Experiments

Our PyTorch implementation is publicly available at https://github.com/HySonLab/TWGNN.
The implementation of multiresolution matrix factorization and graph wavelet computation
(Hy and Kondor, 2022) is publicly available at https://github.com/risilab/Learnable_
MMF.

To showcase the competitive performance and remarkable acceleration of FTWGNN, we
conducted experiments on two well-known traffic forecasting benchmarks METR-LA and
PEMS-BAY, and one challenging ECoG dataset AJILE12. We compare our model with
widely used time series models (details included in the Appendix, Section B). Methods are
evaluated on three metrics: (i) Mean Absolute Error (MAE); (ii) Mean Absolute Percentage

https://github.com/HySonLab/TWGNN
https://github.com/risilab/Learnable_MMF
https://github.com/risilab/Learnable_MMF
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Error (MAPE); and (iii) Root Mean Squared Error (RMSE). FTWGNN and DCRNN are
implemented using PyTorch (Paszke et al., 2019) on an NVIDIA A100-SXM4-80GB GPU.
Below is our detail setting of FTWGNN.

Dataset T Metric HA ARIMAkal VAR SVR FNN FC-LSTM STGCN GWaveNet DCRNN FTWGNN

METR-LA

MAE 4.16 3.99 4.42 3.99 3.99 3.44 2.88 2.69 2.77 2.70
15 min RMSE 7.80 8.21 7.89 8.45 7.94 6.30 5.74 5.15 5.38 5.15

MAPE 13.0% 9.6% 10.2% 9.3% 9.9% 9.6% 7.6% 6.9% 7.3% 6.8%
MAE 4.16 5.15 5.41 5.05 4.23 3.77 3.47 3.07 3.15 3.02

30 min RMSE 7.80 10.45 9.13 10.87 8.17 7.23 7.24 6.22 6.45 5.95
MAPE 13.0% 12.7% 12.7% 12.1% 12.9% 10.9% 9.6% 8.4% 8.8% 8.0%
MAE 4.16 6.90 6.52 6.72 4.49 4.37 4.59 3.53 3.60 3.42

60 min RMSE 7.80 13.23 10.11 13.76 8.69 8.69 9.40 7.37 7.59 6.92
MAPE 13.0% 17.4% 15.8% 16.7% 14.0% 13.2% 12.7% 10.0% 10.5% 9.8%

PEMS-BAY

MAE 2.88 1.62 1.74 1.85 2.20 2.05 1.36 1.3 1.38 1.14
15 min RMSE 5.59 3.30 3.16 3.59 4.42 4.19 2.96 2.74 2.95 2.40

MAPE 6.8% 3.5% 3.6% 3.8% 5.2% 4.8% 2.9% 2.7% 2.9% 2.3%
MAE 2.88 2.33 2.32 2.48 2.30 2.20 1.81 1.63 1.74 1.50

30 min RMSE 5.59 4.76 4.25 5.18 4.63 4.55 4.27 3.70 3.97 3.27
MAPE 6.8% 5.4% 5.0% 5.5% 5.43% 5.2% 4.2% 3.7% 3.9% 3.2%
MAE 2.88 3.38 2.93 3.28 2.46 2.37 2.49 1.95 2.07 1.79

60 min RMSE 5.59 6.5 5.44 7.08 4.98 4.96 5.69 4.52 4.74 3.99
MAPE 6.8% 8.3% 6.5% 8.0% 5.89% 5.7% 5.8% 4.6% 4.9% 4.1%

Table 1: Performance comparison of different models for traffic speed forecasting.

Data preparation For all datasets, the train/validation/test ratio is 0.7/0.2/0.1,
divided into batch size 64.

Adjacency matrix The k-neighborhood of the traffic network in Eq. 16 is thresholded
by k = 0.01, while for the brain network, the parameter λA is set to 10−5 in Task (17).

Wavelet basis For the traffic datasets, 100 mother wavelets are extracted, i.e., L = 100,
while for the AJILE12 dataset, L = 10 was used.

Model architecture For the RNN wavelet convolution, both encoder and decoder
contain two recurrent layers, each with 64 units. The initial learning rate is 10−2, decaying
by 1

10 per 20 epochs; the dropout ratio is 0.1; and the maximum diffusion step, i.e., K, is
set to 2. In addition, the optimizer is the Adam optimizer (Kingma and Ba, 2014).

The sparsity of wavelet bases is reported in Table 3, which demonstrate a remarkable
compression of wavelet bases compared to that of Fourier bases.

Dataset T DCRNN FTWGNN Speedup

METR-LA
15 min 350s 217s 1.61x
30 min 620s 163s 3.80x
60 min 1800s 136s 13.23x

PEMS-BAY
15 min 427s 150s 2.84x
30 min 900s 173s 5.20x
60 min 1800s 304s 5.92x

AJILE12
1 sec 80s 35s 2.28x
5 sec 180s 80s 2.25x
15 sec 350s 160s 2.18x

Table 2: Training time/epoch between DCRNN and FTWGNN.
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Dataset Fourier basis Wavelet basis

METR-LA 99.04% 1.11%

PEMS-BAY 96.35% 0.63%

AJILE12 100% 1.81%

Table 3: Sparsity bases (i.e. percentage of non-zeros).

5.1. Traffic prediction

Two real-world large-scale traffic datasets are considered:

• METR-LA Data of 207 sensors in the highway of Los Angeles County (Jagadish
et al., 2014) over the 4-month period from Mar 1st 2012 to Jun 30th 2012.

• PEMS-BAY Data of 325 sensors in the Bay Area over the 6-month period from Jan
1st 2017 to May 31th 2017 from the California Transportation Agencies (CalTrans)
Performance Measurement System (PeMS).

Dataset T Metric HA VAR LR SVR LSTM DCRNN FTWGNN

AJILE12

MAE 0.88 0.16 0.27 0.27 0.07 0.05 0.03
1 sec RMSE 1.23 0.25 0.37 0.41 0.09 0.45 0.35

MAPE 320% 58% 136% 140% 38% 7.84% 5.27%
MAE 0.88 0.66 0.69 0.69 0.39 0.16 0.11

5 sec RMSE 1.23 0.96 0.92 0.93 0.52 0.24 0.15
MAPE 320% 221% 376% 339% 147% 64% 57%
MAE 0.88 0.82 0.86 0.86 0.87 0.78 0.70

15 sec RMSE 1.23 1.15 1.13 1.13 1.14 1.01 0.93
MAPE 320% 320% 448% 479% 330% 294% 254%

Table 4: Performance comparison on ECoG signals forecast.

The distance function dist(vi, vj) in (16) represents the road network distance from
sensor vi to sensor vj , producing an asymmetric adjacency matrix for a directed graph.

Therefore, the symmetrized matrix Â ∶= 1
2(A +A

T ) is taken to compute the wavelet basis
matrix W following Sec. A.2.

Table 1 shows the evaluation of different approaches on the two traffic datasets, while
Table 2 reports the training time per epoch of FTWGNN and DCRNN. Overall, FTWGNN
performs better than DCRNN by about 10%, while it is significantly faster by about 5 times
on average.

5.2. Brain networks

Annotated Joints in Long-term Electrocorticography for 12 human participants (AJILE12),
publicly available at (Peterson et al., 2022b), records intracranial neural activity via the
invasive ECoG, which involves implanting electrodes directly under the skull (Peterson et al.,
2022a). For each participant, ECoG recordings are sporadically sampled at 500Hz in 7.4±2.2
days (mean±std) from at least 64 electrodes, each of which is encoded with an unique set of
Montreal Neurological Institute (MNI) x, y, z coordinates.

The proposed model is tested on the first one hour of recordings of subject number 5 with
116 good-quality electrodes. Subject 5 was chosen because he/she has the highest number
of validated electrodes. Signals are downsampled to 1Hz, thus producing a network of 116
nodes, each with 3,600 data points. Furthermore, the signals are augmented by applying the
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spline interpolation to get the upper and lower envelopes along with an average curve (Melia
et al., 2014) (see Figure 4). The adjacency matrix A is obtained by solving task (17), then
the wavelet basis matrix W is constructed based on Sec. A.2.

Table 4 reports the performance of different methods on the AJILE12 dataset for
1-, 5-, and 15-second prediction. Generally, errors are much higher than those in the
traffic forecasting problem, since the connections within the brain network are much more
complicated and ambiguous (Breakspear, 2017). High errors using HA and VAR methods
show that the AJILE12 data follows no particular pattern or periodicity, making long-
step prediction extremely challenging. Despite having a decent performance quantitatively,
Figure 5 demonstrates the superior performance of FTWGNN, in which DCRNN fails to
approximate the trend and the magnitude of the signals. Even though FTWGNN performs
well at 1-second prediction, it produces unstable and erroneous forecast at longer steps
of 5 or 15 seconds. Meanwhile, similar to traffic prediction case, FTWGNN also sees a
remarkable improvement in computation time by around 2 times on average (see Table 2).

6. Conclusion

We propose a new class of spatial-temporal graph neural networks based on the theories of
multiresolution analysis and wavelet theory on discrete spaces with RNN backbone, coined
Fast Temporal Wavelet Graph Neural Network (FTWGNN). Fundamentally, we employ
Multiresolution Matrix Factorization to factorize the underlying graph structure and extract
its corresponding sparse wavelet basis that consequentially allows us to construct efficient
wavelet transform and convolution on graph. Experiments on real-world large-scale datasets
show promising results and computational efficiency of FTGWNN in network time series
modeling including traffic prediction and brain networks. Some future directions are: (i)
investigating synchronization phenomena in brain networks (Honda, 2018); (ii) developing a
robust model against outliers/missing data that appear frequently in practice; etc.
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via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–
150, 2011. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2010.04.005. URL
https://www.sciencedirect.com/science/article/pii/S1063520310000552.

Haoyu Han, Mengdi Zhang, Min Hou, Fuzheng Zhang, Zhongyuan Wang, Enhong Chen,
Hongwei Wang, Jianhui Ma, and Qi Liu. Stgcn: a spatial-temporal aware graph learning
method for poi recommendation. In 2020 IEEE International Conference on Data Mining
(ICDM), pages 1052–1057. IEEE, 2020.

Hirotada Honda. On mathematical modeling and analysis of brain network. In Mathematical
Analysis of Continuum Mechanics and Industrial Applications II: Proceedings of the
International Conference CoMFoS16 16, pages 169–180. Springer, 2018.

https://www.sciencedirect.com/science/article/pii/S106352030600056X
https://www.sciencedirect.com/science/article/pii/S106352030600056X
https://proceedings.neurips.cc/paper/2017/file/850af92f8d9903e7a4e0559a98ecc857-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/850af92f8d9903e7a4e0559a98ecc857-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S1063520310000552


Nguyen Nguyen Hy Kondor

Truong Son Hy and Risi Kondor. Multiresolution matrix factorization and wavelet networks
on graphs. In Alexander Cloninger, Timothy Doster, Tegan Emerson, Manohar Kaul,
Ira Ktena, Henry Kvinge, Nina Miolane, Bastian Rice, Sarah Tymochko, and Guy Wolf,
editors, Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022,
volume 196 of Proceedings of Machine Learning Research, pages 172–182. PMLR, 25
Feb–22 Jul 2022. URL https://proceedings.mlr.press/v196/hy22a.html.

Vamsi K. Ithapu, Risi Kondor, Sterling C. Johnson, and Vikas Singh. The incremental
multiresolution matrix factorization algorithm. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 692–701, 2017. doi: 10.1109/CVPR.2017.
81.
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Appendix A. Multiresolution Matrix Factorization

A.1. Formal definitions

Definition 1 We say that U ∈ Rn×n is an elementary rotation of order k (also called
as a k-point rotation) if it is an orthogonal matrix of the form

U = In−k ⊕(i1,⋯,ik)O

for some I = {i1,⋯, ik} ⊆ [n] and O ∈ SO(k). We denote the set of all such matrices as
SOk(n).

Definition 2 Given a set S ⊆ [n], we say that a matrix H ∈ Rn×n is S-core-diagonal if
Hi,j = 0 unless i, j ∈ S or i = j. Equivalently, H is S-core-diagonal if it can be written in
the form H =D ⊕S H, for some H ∈ R∣S∣×∣S∣ and D is diagonal. We denote the set of all
S-core-diagonal symmetric matrices of dimension n as HS

n.

Definition 3 Given an appropriate subset O of the group SO(n) of n-dimensional rotation
matrices, a depth parameter L ∈ N, and a sequence of integers n = d0 ≥ d1 ≥ d2 ≥ ⋅ ⋅ ⋅ ≥ dL ≥ 1,
a Multiresolution Matrix Factorization (MMF) of a symmetric matrix A ∈ Rn×n over
O is a factorization of the form

A = UT
1 UT

2 . . .U
T
LHUL . . .U2U1, (6)

where each Uℓ ∈ O satisfies [Uℓ][n]∖Sℓ−1,[n]∖Sℓ−1 = In−dℓ for some nested sequence of sets

SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n] with ∣Sℓ∣ = dℓ, and H ∈ HSL
n is an SL-core-diagonal matrix.

Definition 4 We say that a symmetric matrix A ∈ Rn×n is fully multiresolution fac-
torizable over O ⊂ SO(n) with (d1, . . . , dL) if it has a decomposition of the form described
in Def. 3.

A.2. Multiresolution analysis

(Kondor et al., 2014) has shown that MMF mirrors the classical theory of multiresolution
analysis (MRA) on the real line (Mallat, 1989) to discrete spaces. The functional analytic
view of wavelets is provided by MRA, which, similarly to Fourier analysis, is a way of filtering
some function space into a sequence of subspaces

⋅ ⋅ ⋅ ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . (7)

However, it is best to conceptualize (7) as an iterative process of splitting each Vℓ into the
orthogonal sum Vℓ = Vℓ+1 ⊕Wℓ+1 of a smoother part Vℓ+1, called the approximation space;
and a rougher part Wℓ+1, called the detail space (see Fig. 3). Each Vℓ has an orthonormal
basis Φℓ ≜ {ϕ

ℓ
m}m in which each ϕ is called a father wavelet. Each complementary space Wℓ

is also spanned by an orthonormal basis Ψℓ ≜ {ψ
ℓ
m}m in which each ψ is called a mother

wavelet. In MMF, each individual rotation Uℓ ∶ Vℓ−1 → Vℓ ⊕Wℓ is a sparse basis transform
that expresses Φℓ ∪Ψℓ in the previous basis Φℓ−1 such that:

ϕℓm =
dim(Vℓ−1)
∑
i=1

[Uℓ]m,iϕ
ℓ−1
i , ψℓ

m =

dim(Vℓ−1)
∑
i=1

[Uℓ]m+dim(Vℓ−1),iϕ
ℓ−1
i ,



Nguyen Nguyen Hy Kondor

L2(X) // ⋯ // V0
//

  

V1
//

!!

V2
//

!!

⋯

W1 W2 W3

Figure 3: Multiresolution analysis splits each function space V0,V1, . . . into the direct sum
of a smoother part Vℓ+1 and a rougher part Wℓ+1.

in which Φ0 is the standard basis, i.e. ϕ0m = em; and dim(Vℓ) = dℓ = ∣Sℓ∣. In the Φ1 ∪Ψ1

basis, A compresses into A1 = U1AUT
1 . In the Φ2 ∪ Ψ2 ∪ Ψ1 basis, it becomes A2 =

U2U1AUT
1 UT

2 , and so on. Finally, in the ΦL ∪ΨL ∪ ⋅ ⋅ ⋅ ∪Ψ1 basis, it takes on the form
AL =H = UL . . .U2U1AUT

1 UT
2 . . .U

T
L that consists of four distinct blocks (supposingly that

we permute the rows/columns accordingly):

H = (
HΦ,Φ HΦ,Ψ

HΨ,Φ HΨ,Ψ
) ,

where HΦ,Φ ∈ Rdim(VL)×dim(VL) is effectively A compressed to VL, HΦ,Ψ = H
T
Ψ,Φ = 0 and

HΨ,Ψ is diagonal. MMF approximates A in the form

A ≈
dL

∑
i,j=1

hi,jϕ
L
i ϕ

L
j
T
+

L

∑
ℓ=1

dℓ

∑
m=1

cℓmψ
ℓ
mψ

ℓ
m

T
,

where hi,j coefficients are the entries of the HΦ,Φ block, and cℓm = ⟨ψ
ℓ
m,Aψ

ℓ
m⟩ wavelet

frequencies are the diagonal elements of the HΨ,Ψ block.
In particular, the dictionary vectors corresponding to certain rows of U1 are interpreted

as level one wavelets, the dictionary vectors corresponding to certain rows of U2U1 are
interpreted as level two wavelets, and so on. One thing that is immediately clear is that
whereas Eq. (1) diagonalizes A in a single step, multiresolution analysis will involve a
sequence of basis transforms U1,U2, . . . ,UL, transforming A step by step as

A→ U1AUT
1 → ⋅ ⋅ ⋅ → UL . . .U1AUT

1 . . .U
T
L ≜H, (8)

so the corresponding matrix factorization must be a multilevel factorization

A ≈ UT
1 UT

2 . . .U
T
ℓ HUℓ . . .U2U1. (9)

A.3. MMF optimization problem

Finding the best MMF factorization to a symmetric matrix A involves solving

min
SL⊆⋯⊆S1⊆S0=[n]

H∈HSL
n ; U1,...,UL∈O

∥A −UT
1 . . .U

T
LHUL . . .U1∥. (10)

Assuming that we measure error in the Frobenius norm, (10) is equivalent to

min
SL⊆⋯⊆S1⊆S0=[n]

U1,...,UL∈O

∥UL . . .U1AUT
1 . . .U

T
L ∥

2
resi, (11)
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where ∥ ⋅ ∥2resi is the squared residual norm ∥H∥2resi = ∑i≠j; (i,j)/∈SL×SL ∣Hi,j ∣
2. The optimization

problem in (10) and (11) is equivalent to the following 2-level one:

min
SL⊆⋯⊆S1⊆S0=[n]

min
U1,...,UL∈O

∥UL . . .U1AUT
1 . . .U

T
L ∥

2
resi. (12)

There are two fundamental problems in solving this 2-level optimization:

• For the inner optimization, the variables (i.e. Givens rotations U1, . . . ,UL) must satisfy
the orthogonality constraints.

• For the outer optimization, finding the optimal nested sequence of indices SL ⊆ ⋯ ⊆
S1 ⊆ S0 = [n] is a combinatorics problem, given an exponential search space.

In order to address these above problems, (Hy and Kondor, 2022) proposes a learning
algorithm combining Stiefel manifold optimization and Reinforcement Learning (RL) for the
inner and outer optimization, respectively. In this paper, we assume that a nested sequence
of indices SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n] is given by a fast heuristics instead of computationally
expensive RL. There are several heuristics to find the nested sequence, for example: clustering
based on similarity between rows (Kondor et al., 2014) (Kondor et al., 2015). In the next
section, we introduce the solution for the inner problem.

A.4. Stiefel manifold optimization

In order to solve the inner optimization problem of (12), we consider the following generic
optimization with orthogonality constraints:

min
X∈Rn×p

F(X), s.t. XTX = Ip, (13)

where Ip is the identity matrix and F(X) ∶ Rn×p → R is a differentiable function. The
feasible set Vp(Rn) = {X ∈ Rn×p ∶ XTX = Ip} is referred to as the Stiefel manifold of p
orthonormal vectors in Rn. We will view Vp(Rn) as an embedded submanifold of Rn×p. In
the case there are more than one orthogonal constraints, (13) is written as

min
X1∈Vp1(R

n1),...,Xq∈Vpq (Rnq )
F(X1, . . . ,Xq) (14)

where there are q variables with corresponding q orthogonal constraints. In the MMF
optimization problem (12), suppose we are already given SL ⊆ ⋯ ⊆ S1 ⊆ S0 = [n] meaning that
the indices of active rows/columns at each resolution were already determined, for simplicity.
In this case, we have q = L number of variables such that each variable Xℓ = Oℓ ∈ Rk×k,
where Uℓ = In−k ⊕Iℓ Oℓ ∈ Rn×n in which Iℓ is a subset of k indices from Sℓ, must satisfy the
orthogonality constraint. The corresponding objective function is

F(O1, . . . ,OL) = ∥UL . . .U1AUT
1 . . .U

T
L ∥

2
resi. (15)

Therefore, we can cast the inner problem of (12) as an optimization problem on the Stiefel
manifold, and solve it by the specialized steepest gradient descent (Tagare, 2011).
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Figure 4: Augmented ECoG signals by spline interpolation envelopes.
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Appendix B. Experimental details

We compare our model with widely used time series models, including:

1. HA: Historical Average, which models traffic flow as a seasonal process and uses the
weighted average of previous seasons as the prediction;

2. ARIMAkal: Auto-Regressive Integrated Moving Average model with Kalman filter,
implemented by the statsmodel package in Python;

3. VAR: Vector Auto-regressive model (Hamilton, 2020) with orders (3, 0, 1), implemented
by the Python statsmodel package;

4. SVR: Linear Support Vector Regression (Smola and Schölkopf, 2004) with 5 historical
observations;

5. FNN: Feed forward neural network with two hidden layers, each with 256 units. The
initial learning rate is 10−3, and the decay rate is 10−1 per 20 epochs. In addition, for
all hidden layers, dropout with ratio 0.5 and ℓ2 weight decay 10−2 is used. The model
is trained to minimize the MAE with batch size 64;

6. FC-LSTM: The encoder-decoder framework using LSTM with peephole (Sutskever
et al., 2014). The encoder and decoder contain two recurrent layers, each of which
consists of 256 LSTM units, with an ℓ1 weight decay rate 2 × 10−5 and an ℓ2 weight
decay rate 5 × 10−4. The initial learning rate is 10−4 and the decay rate is 10−1 per 20
epochs;

7. Spatio-Temporal Graph Convolutional Networks (STGCN) (Han et al., 2020) and
GWaveNet (Wu et al., 2019).

8. DCRNN Settings of the Diffusion Convolutional Recurrent Neural Network follow
its original work (Li et al., 2018).

Adjacency matrix According to DCRNN (Li et al., 2018), the traffic sensor network
is expressed by an adjacency matrix which is constructed using the Gaussian kernel thresh-
olded (Shuman et al., 2013). Specifically, for each pair of sensors vi and vj , the edge weight
of vi to vj , denoted by Aij , is defined as

Aij ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

exp(−
dist(vi, vj)

σ2
), dist(vi, vj) ≤ k

0, otherwise

, (16)

where dist(vi, vj) denotes the spatial distance from vi to vj , σ is the standard deviation of
the distances and k is the distance threshold.

Nevertheless, such a user-defined adjacency matrix requires expert knowledge, and thus
may not work on other domains, e.g., brain networks. In the ECoG time series forecasting
case, the adjacency matrix is computed based on the popular Local Linear Embedding
(LLE) (Saul and Roweis, 2003). In particular, for the matrix data X = [x1, . . . ,xN ] ∈ RT×N

where xi denotes the time series data of node i for i ∈ {1, . . . ,N}, an adjacency matrix A is
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identified to gather all the coefficients of the affine dependencies among {xi}
N
i=1 by solving

the following optimization problem.

A ∶= arg min
Â∈RN×N

∥X −XÂT ∥
2

F
+ λA∥Â∥1

s.to 1TNÂ = 1TN , diag(Â) = 0 , (17)

where the constraint 1TNÂ = 1TN realizes the affine combinations, while diag(Â) = 0 excludes

the trivial solution Â = IN . Furthermore, to promote the local smoothness of the graph,
each data point xi is assumed to be approximated by a few neighbors {xj1 , xj2 , . . . , xjk},

thus Â is regularized by the l1-norm loss ∥Â∥
1
to be sparse. Task (17) is a composite convex

minimization problem with affine constraints, which can therefore be solved by (Slavakis
and Yamada, 2018).

Construction of wavelet bases For traffic data sets, 100 mother wavelets are
extracted, i.e., L = 100, while for the AJILE12 dataset, L = 10 was used.
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