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Abstract

To estimate treatment effect in the presence of unmeasured confounders, instru-1

mental variable (IV) approachs have achieved promising advances, but have strict2

requirements on data collection. To alleviate this issue, the two-sample IV approach3

is proposed by fusing estimations across two complementary and homogeneous4

data sources. However, the homogeneous assumption, i.e., data sources share the5

same joint distribution, is restrictive for realistic cases. Motivated by this, this6

paper proposes a novel IV problem named Shifted Two-Sample IV (S2IV), which7

aims to estimate the treatment effect across heterogeneous data sources, i.e., the8

joint distributions of different data sources are skewed differently. Theoretically,9

we first show that solving the S2IV problem is equivalent to learning the unbiased10

treatment-IV relationship from the joint of data sources. To this end, we propose a11

Recovery-Aided Transferable IV (RATIV) framework by transferring the instru-12

ments from one data source and recovering the treatments on the other data source13

at the same time. Extensive experimental results on both synthetic and real-world14

datasets verify the effectiveness of our method.15

1 Introduction16

The development of the instrumental variable (IV) method allows for practical treatment effect17

estimations in the presence of unobserved confounding [1, 2, 3]. Over the past decades, a bunch of18

variants has achieved remarkable progress with various linear/non-linear function approximators [2,19

4, 5, 6, 7]. A typical example is contributed by [1], where the task is to study the effect of age at20

school entry (T ) on the educational attainment (Y ) with some individualized characteristics (X),21

where the (unobserved) social status of the born family (U ) simultaneously affects T and Y (see22

the Figure 1(a)). To eliminate the (unobserved) confounding effect by U , the quarter of birth (Z) is23

treated as a valid IV, as Z is simultaneously independent of U and strongly correlated to T .24

Despite the success of IV analysis, its requirement on data acquisition becomes restrictive for real-25

world data acquisition [1]. To be specific, it might be impossible to simultaneously observe the tuple26

of treatment, outcome, and IV in one sample. Recalling the education-schooling example, [1] points27

out that a large-scale dataset containing both age at school entry (T ) and educational attainment (Y )28

does not exist. Alternatively, one can access two separate data sources with the day of birth Z29

recorded in both, while X,T and X,Y are included in only one or the other datasets. We follow30

[1] to call such IV estimation problem through data fusion as “Two-sample IV”, as in Figure 1(b).31

Notably, since proposed in [1], the two-sample IV has been embraced by researchers across diverse32

areas, including health-care [8, 9, 10] and economic studies [11, 12].33

To fuse estimations from two data sources, the core assumption of the two-sample IV prob-34

lem [1, 13, 14] is the “structural homogeneity” [13], which states that the joint data distribution,35

namely P (T,X,Z), is the same across data sources, as shown in Figure 1 (b). Such an assumption36
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Figure 1: Causal structure of (a) the vanilla IV problem. (b) the two-sample IV problem. (c) our S2IV
problem.Dashed Lines represent correlations between X and U .

corresponds to the case that two data sources share homogeneous data distributions. Nevertheless,37

real-world cases often exhibit heterogeneous structures across data sources with joint distribution38

shifts. For instance, one data source might be sampled from populations older than 50 from New York,39

while the other one might come from populations younger than 30 in Los Angeles. Consequently,40

the traditional two-sample IV methods fail to address such more practical but challenging cases, as41

mismatched distributions across data sources lead to biased IV estimations.42

To overcome this gap, we investigate a novel setting named “Shifted Two-Sample IV” (S2IV) problem43

in this paper, as shown in Figure 1(c), which is the first work allowing for distributional shifts across44

data sources in IV estimation. More formally, we name the dataset with distributions P p(Z,X, Y ) as45

the primary dataset and the other dataset with P a(Z,X, T ) as the auxiliary dataset [14]. Distinct46

from IV and two-sample IV settings, the unique challenge of our S2IV problem is to correctly47

learn the primary treatment-IV relationship P p(T | Z,X) with mismatched distributions between48

primary and auxiliary data1. To support this motivation, we develop both lower and upper bounds49

based on the foundations of non-linear IV estimation theory, which demonstrates that learning50

P̂ (T | Z,X) = P p(T | Z,X) is necessary and sufficient for unbiased estimation.51

By factorizing the general shift P a(T,Z,X) ̸= P p(T,Z,X) into the joint of both covariate52

shift P a(Z,X) ̸= P p(Z,X), P a(T | X,Z) = P p(T | X,Z) and concept shift P a(Z,X) =53

P p(Z,X), P a(T | X,Z) ̸= P p(T | X,Z), we observe that the proposed S2IV problem can be54

solved, i.e., learning P̂ (T | Z,X) = P p(T | Z,X), in the case that either the distributions of55

instrumental variables across two data sources can be aligned, or the treatments on the primary data56

can be recovered (see following explanations in (a) and (b)). Therefore, we propose a novel learning57

framework with two-sample complementarity named Recovery-Aided Transferable IV (RATIV) for58

S2IV problem.59

To be specific, we build RATIV from two aspects: (a) When covariate shift holds, we adapt distri-60

butions of Z,X across data sources by developing a transferring framework named Transferable61

IV (TIV) based on convention IV estimators; (b) When data exhibits concept shift, we propose to62

recover the primary treatments T p2 by designing a Conditional Bernoulli Variational encoder (CB-63

VAE) model. By combining solutions designed for covariate and concept shift jointly, our RATIV64

framework tackles the S2IV problem in the case of the general shift across data sources.65

2 Preliminaries66

Notations. In this paper, we aim to achieve treatment effect estimation from observational data in67

the presence of unmeasured confounders. As shown in Figure 1(c), we denote the binary treatment,68

observed covariates, outcome, IV, and the unobserved confounder as T ∈ {0, 1}, X , Y , Z and U ,69

respectively. We follow the potential outcome framework and characterize the potential outcome of70

Y under the assignment T = t as Y (t). Throughout this paper, we denote the random variables by71

uppercase letters (e.g., T and Y ) and their realizations by lowercase letters (e.g., t and y). Meanwhile,72

we use superscript, i.e., p (primary) or a (auxiliary), to denote which data source the variable/sample73

belongs to, and subscript as the sample index (e.g., tpi is the i-th sample of primary data). The74

distribution is denoted as P with the corresponding density function denoted as p.75

1Two-sample IV assumes that the P (T,Z,X) remains the same across data sources.
2We use superscript to denote which data source the variable belongs to.
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2.1 The Vanilla IV problem76

Data Generation Process. Following the widely adopted separable (additive outcome) assumption,77

we assume that the structural function of the outcome admits the following expression [15, 2]:78

Y = h(T,X) + U, (1)

where h is the target function we aim to recover.79

Valid Instruments. An instrumental variable Z is valid if and only if it satisfies the following three80

principles [15, 2]: (1) Relevance: Z is correlated to T , e.g., T ⊥̸⊥ Z | X; (2) Exclusion: Z affects Y81

only through T ; (3) Unconfounded: Z ⊥⊥ U | Z. We also adopt another common assumption to82

remove the confounding effect: E[U |Z,X] = 0 [2].83

Empirical Observations. The vanilla IV problem assumes that one can simultaneously observe84

(Z,X, T, Y ).85

Representative Nonlinear Estimators. The representative nonlinear estimators include DeepIV [2]86

and KIV [5] (see Appendix C for details).87

Specific Property of vanilla IV problem. Vanilla IV problem is robust against the misspecification88

of the treatment-IV relationship estimated [13]. For example, when the outcome structural equation89

is linear (e.g., h degenerates to the linear coefficient β) without covariates (Y = βT + U ), then the90

following estimation is unbiased for any function f 3:91

E[f(Z)(Y − βT )] = 0 ⇒ β̂ =

∑
i yif (zi)∑
i tif (zi)

,

where the asymptotic variance of the estimation is minimized when f identifies the true treatment-IV92

relationship.93

2.2 Two-sample IV Problem94

Empirical Observations. Distinct from the vanilla IV problem, two-sample IV and our S2IV assume95

that the empirical data consists of two separate sources:(a). The primary dataset includes the96

instruments, the outcomes, and the covariates: Dp = {Zi, Yi, Xi}mi=1. Meanwhile, Z is required to97

be a valid instrument in Dp [14]. (b). The auxiliary dataset encodes the instruments, the treatments,98

and the covariates: Da = {Zi, Ti, Xi}ni=1.99

Homogeneous Populations. To fuse estimations from two sources, a core assumption for the100

two-sample IV problem is that the Dp and Da should be sampled from the same (homogeneous)101

population [1, 13, 14]: P a(X,Z, T ) = P p(X,Z, T )4.102

3 Problem Definition and Motivating Analysis103

3.1 Our Problem: Shifted Two-sample IV104

Heterogeneous Populations. However, the principle of homogeneous populations introduced above105

is unrealistic in real-world scenarios. Sampling Da and Dp from different locations or times easily106

tends to cause distributional shifts between P a(X,Z, T ) and P p(X,Z, T ). Hence, we relax the107

principle of two-sample IV and propose the Shifted Two-sample IV (S2IV) problem with mismatched108

joint distributions across datasets: P p(T,Z,X) ̸= P a(T,Z,X).109

Impact of biased treatment-IV relationship. We note that the specific property of vanilla IV does110

not hold for either two-sample IV or our S2IV. A direct consequence is that the biased estimation of111

the treatment-IV relationship will further bias the total estimation:112

Example 1. Suppose the binary treatment with T = {0, 1} and the covariate shift from Da to113

Dp: P a(T | Z,X) = P p(T | Z,X) while P a(Z,X) ̸= P p(Z,X). As P a(Z,X) ̸= P p(Z,X),114

the P̂ a(T | Z,X) learned by DeepIV from Da is biased with the underlying P p(T | Z,X) on the115

3The GMM methods [7] is based on this formulation.
4Although previous work only assumes that P (T | X,Z) is learnable and invariant, this implies that

P a(X,Z) = P p(X,Z) based on covariate shift theory.
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primary dataset. Thus, when DeepIV plugs the biased P̂ a(T | Z,X) into the second stage on Dp,116

the solution of the integral equation E[Y |Z,X] =
∫
ĥ(T,X)dP̂ (T | Z,X) will be biased.117

Target of S2IV. To solve such negative impact brought by heterogeneous populations of S2IV, we118

first claim that learning P p(T | Z,X) from Da ∪Dp is necessary and sufficient to solve our S2IV119

problem. To support such claim, we present theoretical analysis based on the theory of non-linear IV120

estimations [5, 16, 17].121

3.2 Deriving Bounds for Motivation122

We first introduce some basic notations and definitions of non-linear IV estimations5. We use ĥ123

to denote the estimation of h. Meanwhile, we introduce the excess risk of h and ĥ as E(ĥ) :=124

EPp(Y,X,Z)∥Y − ĥ(µ(Z,X))∥2Y and E(h) := EPp(Y,X,Z)∥Y − h(µ(Z,X))∥2Y , where µ(Z,X)125

represents the embedding of P (T | Z,X) in the kernel space. Intuitively, E(ĥ) and E(h) represents126

expected error of h and ĥ compared with ground truth on the primary data. In addition, all the norm127

w.r.t. functions, e.g., ∥ĥ− h∥, is defined as the operator norm. We then show the necessity of our128

claim, i.e., by deriving a lower bound on the performance of non-linear IV estimation on the S2IV129

problem:130

Theorem 1. The error of Ĥ from h is lower bounded by divergence between P̂ (T | Z,X) and131

P p(T | Z,X):132

∥ĥ− h∥ ≥ C

K
CMMD

(
P̂ (T | Z,X), P p(T | Z,X)

)
, (2)

where C,K are constants, and the term CMMD is the conditional MMD divergence [18] between133

the estimated P̂ (T | Z,X) and primary treatment-IV distribution P p(T | Z,X).134

Remark The above theorem shows that the divergence (CMMD) (see Appendix 2 for details) between135

learned P̂ (T | Z,X) and P p(T | Z,X) definitely induces estimation error in the right side of Eq. (2).136

In other words, it indicates the necessity of learning correct treatment-IV relationship. On the other137

hand, to show the sufficiency, we first derive a population-level upper bound as follows:138

Afterwards, we present the last upper bound to show that estimation of P̂ (T | Z,X) = P p(T | Z,X)139

is sufficient to identify the underlying h:140

Theorem 2. The following inequality holds w.r.t to E(ĥ) and E(h):141

E(ĥ) ≤ E(h) + κ2K̂
2
CMMD(P̂ (T | Z,X), P p(T | Z,X)),

where κ and K̂ are constants.142

The above theorem immediately leads to following result.143

Corollary 1. If CMMD(P̂ (T | Z,X), P p(T | Z,X)) = 0, then ĥ = h.144

Remark. The Upper bound in Theorem 2 indicates that learning correct treatment-IV relation-145

ship such that P̂ (T | Z,X) = P p(T | Z,X) is also sufficient for unbiased IV estimation (see146

Appendix D.1 for proofs).147

4 Learning Treatment Effects with Shifted Two-Sample Complementarity148

To learn P p(T | Z,X) from Da ∪ Dp, we build a unified learning framework in this section.149

4.1 Aligning Instruments across Data Sources150

We first consider the case that the covariate shift holds such that P p(T | Z,X) is learnable from Da151

by aligning P p(Z,X) with P a(Z,X). Inspired by a domain adaptation literature [19], we propose to152

migrate the distributional shift between P a(Z,X) and P p(Z,X) such that the P̂ (T | Z,X) learned153

5In this paper, we characterize the non-linearity using kernel tricks [5].
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on Da correctly estimates P p(T | Z,X). To this end, we propose a joint Transferable IV (TIV)154

framework by mapping the instruments from Da to the Dp based on the optimal transport (OT) [19,155

20]. We choose the OT-based adaptation based on two advantages: (a) it supports measuring156

distributional divergence in both kernel [21] and Euclidean feature space [19]; (b) it is compatible with157

both categorical and continuous outcomes [20]. Suppose f is the learning model for P (T | Z,X)6,158

the first stage of our TIV framework follows the objective:159

min
f

Wp(P
a(Z,X, T ), P p(Z,X, f(Z,X))) + λΩ(f),

where f(Z,X) is the proxy of underlying T p, Wp refers to the p-order Wasserstein distance, and160

Ω is the regularization term. Following protocols in OT-based transferring frameworks [20, 19],161

we let p = 1 and the objective reduces to the inner product between the Kantorovitch’s coupling162

matrix γ ∈ Rm×n and the cost matrix C ∈ Rm×n (Cij = d(xai , x
p
j )+d(z

a
i , z

p
j )+L(tai , f(z

p
j , x

p
j ))):163

minf,γ∈∆ Tr(γTC) + λΩ(f), where ∆ is the transportation polytope, d is the distance metric (e.g.,164

Euclidean distance) and L is the loss function (e.g., squared loss for KIV). Moreover, the joint165

optimization on f and γ can be decomposed into alternative optimization as:166 {
minf

∑
i,j γi,jL(tai , f(z

p
j , x

p
j )) + λΩ(f),

minγ
∑
i,j γi,jCi,j .

(3)

We then instantiate our proposed TIV framework with two representative non-linear estimators:167

T-KIV. Based on the TIV framework in Eq. (3), we derive the following closed solution and propose168

the corresponding Transferable KIV (T-KIV) algorithm.169

Proposition 1. Let Ka
TT be the kernel matrix of treatments on the auxiliary data. Meanwhile, KTa,ṫ

170

represents the kernel vector between Ta and the testing ṫ. Suppose the coupling matrix computed171

from the first stage is γf , then the solution of T-KIV is:172

Kp
R = Kp

ZZ ⊙Kp
XX ,

W = (m2γTf K
a
TT γf ) (K

p
R +mλI)

−1
Kp
R,

α = (WWT + ξm3γTf K
a
ttγf )

−1WYp,

ĥ(ṫ, ẋ) = mγTf K
a
ttKTa,ṫ

⊙KXp,ẋ,

(4)

where ⊙ means element-wise multiplication.173

T-DeepIV. Similarly, we propose the Transferable DeepIV (T-DeepIV) by (a) specializing L in174

Eq. (3) to be the squared loss; (b) computing the coupling matrix γ and the cost matrix C on the175

mini-batch (which is a standard OT problem and can be via network simplex algorithm [21]). When176

the first stage finishes, the second stage of the T-DeepIV remains the same as in [2], which is177

implemented with an outcome regression network. Details on the algorithm of T-KIV and T-DeepIV178

are present in Appendix E.1 and E.2.179

4.2 Recovering Treatments via Generative Models180

However, the solutions remain still unclear when the covariate shift principle is violated: P p(T |181

Z,X) ̸= P a(T | Z,X) and P a(Z,X) ̸= P p(Z,X). In general, this problem is ill-posed based on182

the transfer learning theory [22], due to the arbitrary shift on P (T | Z,X) and missing T p (Consider183

Z,X and T as features and labels in unsupervised domain adaptation, where auxiliary and primary184

data are the source and target domains).185

Fortunately, as we restrict on binary primary treatments, recent advances in unsupervised representa-186

tion learning bring us the opportunity to recover underlying T p based on Dp, and further identify187

P p(T | Z,X). To be specific, two facts connect our problem and iVAE: (a) The separable Assump-188

tion 1 corresponds to the additive noise in [23]; (b) Zp, Xp play as a similar but weaker version of189

the auxiliary variables in iVAE [23, 24]. However, two obstacles prevent us from directly adopting190

the iVAE to our S2IV problem.191

• The noise term in S2IV, e.g., the confounder U , is not exogenous such that one cannot derive192

noise-free identifications [23].193

6f could be either specialized as the treatment network in DeepIV or the ridge kernel regression in KIV
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Algorithm 1 Training framework of RATIV

1: Input: The primary and auxiliary datasets Dp = {zpi , y
p
i , x

p
i }mi=1 and Da = {zai , tai , xai }ni=1, the

hyper-parameter β, Maximum number of iterations I.
2: Recovery procedure:
3: Train CBVAE model {qψ, pψ} by optimizing Eq. (5).
4: Output the recovered primary treatments as T̃ p.
5: Train T-DeepIV with regularized objective in Eq. (6).

• In S2IV, Zp, Xp is weaker than auxiliary variables in [23] as Y p ⊥̸⊥ (Zp, Xp) | T p.194

Therefore, we re-design a conditional Bernoulli VAE (CBVAE) model on Dp to recover T p. Letting195

q be the posterior distribution modeled by CBVAE, we minimize the evidence lower bound (ELBO)196

of P (Y p | Xp, Zp) as follows:197

EDp [Eqψ(Tp|Xp,Zp) log pψ(Y
p | Xp, T p, Zp)−KL (qψ(T

p | Xp, Zp)∥p(T p | Xp, Zp))], (5)
where qψ and pψ refers to the posterior and likelihood that are parameterized by ψ, KL is the198

Kullback-Leibler divergence, and we follow [23] to model pψ(Y p | Xp, T p, Zp) as a Gaussian199

distribution.200

Notably, as the T p is a binary variable, it is reasonable to model the posterior qψ(T p | Xp, Zp) and201

the prior p(T p | Xp, Zp) as the Bernoulli distribution: qψ(T p | Xp, Zp) =
∏m
j=1 B(t

p
j | θj(x

p
j , z

p
j ))202

and p(T p | Xp, Zp) =
∏m
j=1 B(t

p
j | ρ), where θ is predicted by the encoder qψ and ρ is a fixed203

prior parameter. Meanwhile, we follow the concrete reparameterization trick in [25] and re-sample204

the latent T p as T pi = σ (ln ϵ− ln(1− ϵ) + ln θi(y)− ln (1− θi(x
p
i , z

p
i ))), where ϵ ∼ U(0, 1)205

following the uniform distribution and σ is the sigmoid function. We present the following theorem206

to state the reliability of our CBVAE model (see Appendix E.3.2 for algorithmic details with proofs).207

Theorem 3. Let R = (Z,X) be the joint of instruments and covariates. Assume: (a) The binary208

treatments T p are conditionally exponential of given instruments and covariatesRp with differentiable209

parameters and normalizing factors; (b) The effect function h is injective; (c) There exists some210

realizations {rpl }Kl=0 (rpl = (xpl , z
p
l )) such that the parameter-difference matrix L is invertible. Then211

the conditional density estimated by CBVAE, T̃ p, identifies the true T p up to a linear transformation,212

where T̃ p is the recovered treatments. With specific constraints on {rpl }Kl=0 and the parameter space213

of θ, T̃ p exactly identifies T p.214

4.3 RATIV: Treatment Effect Estimator with Two-sample Complementarity215

Combined with the T-DeepIV baseline and the CBVAE model, we obtain the Recovery-aided216

Transferable IV (RATIV) estimator to solve the S2IV problem. RATIV achieves accurate estimation217

in the sense that it performs well if at least one of the two data sources is reliable7. To be specific, we218

regularize the first stage of the T-DeepIV baseline8 based on the recovered primary treatments:219

LT1−DeepIV + λL(t̂p, t̃p), (6)
where LT1−DeepIV refers to the first-stage objective of T-DeepIV baseline (see Appendix 3 for details),220

L is the BCE loss, λ is the hyper-parameter, t̂kj and t̃pj refers to primary treatments predicted by221

T-DeePIV and the recovered by CBVAE, respectively. We note that the two-sample complementarity222

property of RATIV stems from the fact that RATIV achieves accurate estimation in the case that either223

distributions of instruments across data sources follow the covariate shift principle or the primary224

treatments can be recovered.225

5 Experiment Results226

5.1 Baselines and Metric227

Baselines. We compare our T-KIV, T-DeepIV, and RATIV methods with a bunch of two-stage IV base-228

lines: (1) the DeepIV method [2]; (2) Ploy-2SLS (P-2SLS) method [1, 13]; (3) KernelIV (KIV) [5]; (4)229

7Here we use useful to mean that the data source suffices to learn P (T p | Xp, Zp).
8We choose the T-DeepIV baseline to build our RATIV due to its flexibility.
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DualIV [26]. Due to the missing data in the S2IV problem, some one-stage IV baselines are not230

implementable [27]. A bunch of semi-parametric two-sample IV baselines [14, 28] cannot be applied231

to our S2IV problem, as they require binary instruments.232

Metrics. We evaluate our model using in-sample performance and out-of-sample performance,233

respectively. In-sample results estimate treatment effects for units where the factual outcome is234

observed, and out-of-sample results estimate on units with no observed outcomes. For synthetic235

data, we evaluate each method by measuring its capability of recovering the structural function h236

by the mean squared error (MSE): MSE =
∑
i(h(ti, xi)− ĥ(ti, xi))

2, where ti, xi are testing data.237

For real-world data, as the underlying h is inaccessible, we evaluate the estimation error of ATE as238

ϵATE = | 1n
∑n
i=1(ŷ

1
i − ŷ0i )− 1

n

∑n
i=1(m

1
i −m0

i )|, where ŷ1i , ŷ
0
i are estimated outcomes, andm1

i ,m
0
i239

are noiseless responses of sample i [29, 30]. We also evaluate the error of Conditional Average240

Treatment Effect (CATE) by measuring the Precision in Estimation of Heterogeneous Effect (PEHE)241

error [30] as ϵPEHE = 1
n

∑n
i=1((ŷ

1
i − ŷ0i )− (m1

i −m0
i ))

2 (see Appendix F for experiment details).242

5.2 Synthetic Experiments243
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Figure 2: Left: The influence of covariate distributional
shift on MSE of IV estimation, where the [µa] in X-axis
refers to the covariate shift setup with Za ∼ N (−µa, 0.25)∪
N (µa, 0.25). Right: The influence of joint distributional
shift on MSE of IV estimation, where the [βa] in the X-axis
refers to the general shift setup with T a ∼ B(σ(βaZa +
Ua+0.1ηa)) generated by varying coefficient of Za, i.e., βa,
while the generation of Zp keep invariant. The shade region
presents the interval [mean-std,mean+std] of MSE under 10
repeated experiments.

Data Generation. We simulate two244

settings of our S2IV problem, where245

the first setting follows the covariate246

shift and the second one has the gen-247

eral shift. For each simulation setting,248

we fix its generation and vary the true249

response function h between the fol-250

lowing cases: (a) h(t) = sin(t); (b)251

h(t) = 1(t ≥ 0); (c) h(t) = |t|; (d)252

h(t) = t2 + t. We set the size of253

training samples as m = n = 2000254

for primary and auxiliary data sources,255

and report the MSE error on 2000 test-256

ing samples. To be specific, we sim-257

ulate our S2IV problem with both co-258

variate and general shifts across data259

sources (see Appendix F.2.1 for de-260

tailed protocols).261

Results. Corresponding results on structural function recovery in Table ?? verify the effective-262

ness of our proposed method in a synthetic setting, which also matches the upper bound of our263

motivating analysis. In addition, to strengthen both our motivations and the effectiveness of our264

methods, we investigate the influence of the distributional shift on the performance of conventional265

IV estimators (see details in the Appendix). It is unsurprising to see a drop of DeepIV on the right266

side of Figure 2, as the treatment assignments across data sources coincide and the distributional shift267

vanishes.268

6 Conclusion, Limitations, and Future Work269

Conclusion. This paper contributes the Shifted Two-sample IV (S2IV) problem with tight bounds270

for motivation. By transferring instruments and recovering treatments, we design RATIV as a271

distributionally robust with a two-sample complementarity framework. Extensive experiments show272

the effectiveness of the proposed RATIV.273

Limitations. However, there are still weak points remaining for further efforts: (a) regarding the274

joint optimization of our transfer and recovery modules. Although our experimental results verify the275

effectiveness of our RATIV model, a deeper insight from the theoretical perspective is considered276

in future work. (b) The error analysis on other IV branches, such as control functions [31]. As the277

intrinsic logic of two-stage methods differs from the control functions, it requires additional efforts.278
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