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ABSTRACT

Multi-step reasoning tasks like mathematical problem solving are vulnerable to cas-
cading failures where a single incorrect step leads to complete solution breakdown.
Current LLM routing methods assign entire queries to one model, treating all rea-
soning steps as equal. We propose TRIM (Targeted Routing in Multi-step reasoning
tasks), which routes only critical steps to larger models while letting smaller models
handle routine continuations. Our key insight is that targeted step-level interven-
tions can fundamentally transform inference efficiency by confining expensive calls
to precisely those steps where stronger models prevent cascading errors. TRIM
operates at step-level granularity using process reward models to identify erroneous
steps and makes routing decisions based on step-level uncertainty and budget
constraints. We develop four routing strategies: a simple thresholding policy, two
RL-trained policies (one using full sequential features, another using aggregated
statistics), and a POMDP-based approach that handles uncertainty in step-level
correctness estimates. On MATH-500, the thresholding policy already surpasses
contemporary routing methods with 5x higher cost efficiency, while RL-trained and
POMDP-based policies match the strong, expensive model’s performance using
80% fewer expensive model tokens. All methods generalize effectively across
mathematical reasoning datasets, demonstrating that step-level difficulty represents
fundamental characteristics of multi-step reasoning.

1 INTRODUCTION

The rapid progress in large language models (LLMs) has led to an increasingly diverse ecosystem
of models, spanning a wide spectrum of sizes, capabilities, and computational demands. Larger
models typically achieve stronger performance but incur substantial serving costs, rendering them
impractical for many routine applications. In contrast, smaller models are more affordable to deploy
but often produce lower-quality responses. This trade-off poses a fundamental dilemma for practical
deployment of LLMs: routing all queries to the largest available model ensures high-quality outputs
but is prohibitively expensive, whereas relying solely on smaller models reduces serving costs at the
expense of degraded response quality, especially on challenging queries.

Contemporary routing strategies attempt to mitigate this dilemma by assigning each query to a
single model, which is then responsible for the entire generation. However, in LLM response
generation, not all tokens are equally difficult: some tokens represent critical decision points that
can dramatically alter the solution path (Bigelow et al., 2025; Setlur et al., 2024; Wang et al., 2025;
Qu et al., 2025), while others are routine continuations that are easier to generate. When existing
routing methods commit to a larger LLM over a smaller one for a given query, they implicitly
assume that the intervention of the larger LLM is equally necessary at every token to produce a
high-quality response. This inefficiency is particularly pronounced in multi-step reasoning tasks such
as step-by-step reasoning or code generation, where mistakes early on can snowball into a complete
failure (Zhang et al., 2024). It is precisely at these erroneous steps that the intervention of a stronger
model is most valuable. Yet, contemporary routing methods often incur substantial inefficiency
by defaulting to full generations from the larger model, even when targeted interventions at these
erroneous steps would be sufficient.

To address this inefficiency, we introduce TRIM-Targeted Stepwise Routing for Inference in Multi-
step Reasoning Tasks — an approach that selectively routes only the most critical steps to larger
LLMs. Unlike prompt-level routers, TRIM operates at the granularity of individual reasoning steps,
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Figure 1: Schematic Overview of a Two-Model Setup for TRIM

generating solutions one step at a time. As illustrated in Figure 1, a stepwise router evaluates each
intermediate step as it is generated and decides whether to accept the small model’s output or to
regenerate that specific step with a larger model. TRIM ensures that interventions occur only when
necessary at individual steps, rather than handing over the entire remaining solution to the larger
model. This step-by-step generation process with targeted intervention enables TRIM to achieve
efficiency by confining expensive calls to precisely those steps where intervention prevents cascading
errors while allowing the smaller model to handle routine continuations. This approach reduces the
primary cost bottleneck in inference: the number of tokens generated by the expensive, larger LLM.

Building on this framework, we design multiple strategies for stepwise routing, each tailored to
different computational and informational constraints: a simple thresholding policy that uses step-
level scores to identify erroneous steps, two reinforcement learning-trained policies that reason
about long-horizon trade-offs between accuracy and cost (one using full sequential features, another
using aggregated statistics), and a Partially Observable Markov Decision Process (POMDP) based
approach that accounts for the inherent uncertainty in step-level correctness estimates while enabling
efficient policy recomputation across different cost budgets. Our cost metric focuses on the number of
tokens generated by the expensive model, as prefill costs can be amortized through parallel decoding
strategies (Leviathan et al., 2023; Cai et al., 2024) while generation tokens impose unavoidable
sequential costs. We evaluate our approach on diverse mathematical reasoning benchmarks, including
MATH (Hendrycks et al., 2021), Olympiad-Bench (He et al., 2024), and AIME (Di Zhang, 2025).
Testing on MATH-500 shows that our basic thresholding policy is 5× more cost-effective than existing
methods, while our trained RL and POMDP policies achieve the performance of the expensive LLM
using only 20% of the expensive tokens.

Our main contributions are: (1) We establish the key insight that targeted step-level interventions can
fundamentally transform the efficiency of multi-step reasoning. (2) We show that this insight translates
into practical gains across different complexity levels—from simple thresholding policies that surpass
existing query-level routing methods to advanced RL-trained and POMDP-based approaches that
achieve competitive performance with oracle routers having perfect task knowledge, all while using
significantly fewer expensive model tokens. (3) We establish that routing policies can be trained
effectively with limited supervision data while achieving robust performance across diverse cost
budgets, making the approach practical for real-world deployment scenarios. (4) Finally, we
demonstrate robust generalization across datasets, with methods trained on AIME delivering strong
efficiency gains on OlympiadBench and Minerva Math, suggesting that step-level difficulty patterns
reflect universal characteristics of multi-step reasoning rather than dataset-specific features.

2 RELATED WORK

The trade-off between model performance and computational cost has become increasingly important
as large language models grow in size and capability. Our work on targeted stepwise routing builds
upon several key areas of research: LLM routing strategies, process supervision and step-level
verification, and multi-step reasoning optimizations.

LLM Routing and Model Selection. Traditional routing approaches operate at the query level, assign-
ing entire queries to a single model based on estimated difficulty or uncertainty. Hybrid-LLM (Ding
et al., 2024) frames this as a classification task using BERT-style encoders, while Zooter (Lu et al.,
2023) employs reward-guided training for normalized reward prediction. RouteLLM (Ong et al.,
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2024) learns routing directly from preference data, and AutoMix (Aggarwal et al., 2023) formulates
query-level routing as a POMDP with self-verification for difficulty estimation. Recent advances have
extended these approaches in complementary directions. BEST-Route (Ding et al., 2025) combines
model selection with adaptive test-time compute allocation through best-of-n sampling, achieving
up to 60% cost reduction. The unified approach of (Dekoninck et al., 2025) theoretically combines
routing and cascading into “cascade routing,” proving optimality conditions for model selection
strategies. However, all these methods assume uniform difficulty across generation steps, leading to
inefficient resource allocation in multi-step reasoning tasks where step difficulty varies significantly.

Process Supervision and Step-Level Verification. Process reward models (PRMs) have emerged
as a powerful technique for evaluating intermediate reasoning steps. Human-in-the-loop step verfi-
cation method used by (Lightman et al., 2023) demonstrated that process supervision significantly
outperforms outcome supervision on mathematical reasoning tasks. Since human annotation is not
scalable, recent work has developed automated supervision methods: (Luo et al., 2024) proposed
automated process supervision techniques, while (Wang et al., 2023) introduced framework to verify
and reinforce LLMs step-by-step without human annotations. Recent advances have shown that
strategic computation allocation (Hwang et al., 2024; Snell et al., 2024; Setlur et al., 2024) can
significantly improve mathematical reasoning efficiency. While these works primarily use PRMs for
candidate selection or exploration shaping, our approach leverages PRM scores to inform routing
decisions during generation.

Multi-Step Reasoning and Test-Time Compute. Recent work has highlighted the importance of
strategic computation allocation in multi-step reasoning. Research on “forking paths” (Bigelow et al.,
2025) and (Wang et al., 2025) demonstrates that certain tokens represent critical decision points that
dramatically alter solution trajectories. Similarly, work on reinforcement learning for mathematical
reasoning (Setlur et al., 2024; DeepSeek-AI et al., 2025; Yang et al., 2025; Team et al., 2025) and
optimizing test-time compute (Snell et al., 2024; Qu et al., 2025) shows that targeted interventions
at crucial steps can be more effective than uniform computation increases. The observation that
high-entropy minority tokens drive effective learning (Wang et al., 2025) further supports the notion
that not all generation steps are equally important.

Speculative and Parallel Decoding. Our approach shares some similarities with speculative decod-
ing (Leviathan et al., 2023) and parallel inference strategies (Cai et al., 2024), which also involve
multiple models collaborating during generation. However, these methods focus on acceleration
through draft-and-verify paradigms, while our work targets the quality-cost trade-off in multi-step
reasoning through selective model escalation. Reward-Guided SD (Liao et al.) and SpecReason (Pan
et al., 2025) are closer in spirit but differ fundamentally in objective. Both operate in a fixed, high-
budget regime and aim to reduce latency and marginally boost accuracy of the strong model. In
contrast, TRIM is designed to maximize accuracy under an explicit cost-performance tradeoff, where
only a limited budget of strong-model tokens is allowed. Moreover, even when adapted to a routing
context, they don’t account for inaccuracies in correctness estimates (RSD relies on PRM, while
SpecReason prompts the expensive model for scores) and remain inherently myopic, lacking the
long-horizon planning needed for efficient cost allocation.

3 PRELIMINARIES AND PROBLEM STATEMENT

We define the problem of stepwise routing within a multi-step reasoning task as a sequential decision
process. The objective is to derive a routing policy that, at each step of generation, decides whether
to (i) accept the output of a cheap language model, or (ii) re-generate the step using a more capable
but expensive LLM, thereby incurring an additional per-token cost. This policy must balance the
trade-off between maximizing the task reward of the final solution and minimizing the serving cost,
defined as the number of tokens generated from the expensive, stronger LLM. We formalize this
problem below.

Problem Formulation. A multi-step reasoning task is specified by a query q ∈ Q and a sequence of
reasoning steps

y1:N = (q, y1, y2, . . . , yN ) ∈ YN ,

where yi denotes the i-th reasoning step. For our purposes, we assume these steps are delimited
by double newlines in the generated text. At time-step t, the current prefix is denoted y1:t =
(q, y1, . . . , yt) ∈ Yt, where Yt denotes the set of all prefixes of length t. Within Yt, we distinguish
two disjoint subsets: (1) Pt ⊆ Yt, the set of incomplete prefixes (partial answers) that can be extended
further; (2) Ct ⊆ Yt, the set of completed (terminated) answers at step t.
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Figure 2: Comparison of task performance–cost trade-offs for Qwen2.5-3B-Instruct (Mw) and Claude 3.7
Sonnet (Ms), under the myopic thresholding policy (with Qwen2.5-Math-PRM-7B) versus the Idealized Oracle
Query-level Router, across multiple math benchmarks. The Oracle Router is evaluated by incrementally varying
the number of queries routed to Ms, selecting those solvable by Ms but not by Mw. Since multiple query
subsets can achieve the same accuracy with different token costs, the oracle’s performance–cost curve forms a
shaded region rather than a single line, reflecting the full trade-off frontier.

Let M denote a set of language models, where each model M ∈ M can be viewed as a function
that maps a partial reasoning trace y1:t ∈ Pt to the next step y1:t+1 ∈ Yt+1, thereby extending
the prefix or producing a completed solution. We consider a two-model setup consisting of two
classes of models M: (1) strong expensive LLM Ms that produce high-quality responses but incurs
a per-token cost (2) cheap LLM Mw which offer relatively lower-quality responses at negligible cost.
This is used to model the trade-off between quality and cost by transitioning from closed-source to
open-source models.

Our goal is to learn a stepwise routing policy π that, at each reasoning step t, chooses an action
at ∈ {continue, regenerate}, determining whether to accept the weak model’s continuation or to
replace it with the strong model’s generation.

Formally, for Mw ∈ Mw and Ms ∈ Ms

• If at = continue, the next prefix y1:t+1 = (y1:t,Mw(y1:t))

• If at = regenerate, the policy instead sets y′
1:t = (y1:t−1,Ms(y1:t−1)), and then contin-

ues with y1:t+1 = (y′
1:t,Mw(y

′
1:t)).

For y1:t ∈ Ct, choosing at = regenerate yields y′
1:t = (y1:t−1,Ms(y1:t−1)), while choosing

at = continue leaves the prefix unchanged; in either case, the reasoning process terminates.

The quality of intermediate steps in a reasoning trace can be estimated by assigning probabilistic
scores. This can be achieved through methods such as self-verification, process reward models
(PRMs), or other step-level evaluation techniques. For our experiments, we adopt a PRM that
evaluates partial traces and produces a sequence of step-level scores. Formally, given a reasoning
trace y1:t, the PRM assigns step-level rewards as r1:t = PRM(y1:t) = (r1, r2, . . . , rt), where
ri = (r1:t)i denotes the reward for step i.

We use these scores as proxies for step-level correctness, providing a signal for whether escalation to
a larger model is likely to offer additional benefit given the current prefix. In practice, the PRM score
for a solution can also be aggregated across steps using either the product of all step scores or the
minimum score across steps (Wang et al., 2023; Lightman et al., 2023). These aggregated scores are
widely used in practice for ranking and comparing multiple candidate solutions. Although PRMs
have been used in prior work primarily to improve candidate selection in beam search or to shape
exploration in reinforcement learning (Snell et al., 2024; Setlur et al., 2024), our use is distinct: we
leverage PRM outputs to inform routing decisions during generation.

4 TRIM AND ROUTING STRATEGY DESIGNS

We develop a framework called TRIM to perform routing at the step-level for every query. Rather
than routing an entire query to a strong model, TRIM operates directly at the level of routing steps
in a response. We illustrate the design of TRIM in Figure 1. Concretely, the routing process of
TRIM works as follows: at each step t of the reasoning process, the cheap model Mw proposes a
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Figure 3: Step-Wise Router architecture for TRIM using process rewards to evaluate partial solutions and
uses RL-based policies or POMDP-based solvers for making routing decisions.

candidate continuation ywt = Mw(y1:t−1). The router policy then evaluates the partial reasoning
trace together with ywt and decides whether to accept this step (at = continue) or to escalate to the
strong model Ms (at = regenerate), which regenerates the step as yst = Ms(y1:t−1). Based on
this decision, the appended step is yt = ywt if at = continue and yt = yst otherwise. Thus, TRIM
incrementally constructs the solution trace by appending at each position either the Mw-generated
step or the Ms-regenerated step, depending on the router’s action. This differs from query-level
routing, which makes a single global decision to assign the entire query to either Mw or Ms.

We now describe different strategies for learning routing policies within TRIM. These strategies
differ in how much information they incorporate about the reasoning trajectory and whether they
make decisions in a myopic (step-local) or non-myopic (trajectory-aware) fashion. At one extreme,
thresholding policies rely only on current step correctness, while RL and POMDP-based approaches
account for long-horizon trade-offs between accuracy and cost.

4.1 TRIM-THR: MYOPIC THRESHOLDING POLICY

We first introduce a simple yet effective routing policy that solely relies on the PRM score of the
current generated step of the cheap model Mw to make routing decisions. If this probability falls
below a predefined threshold k, the router regenerates the step with the strong model Ms; otherwise,
it accepts the cheap model’s output and continues generation. Adjusting the threshold parameter k
provides a principled way to vary the task performance-cost trade-off. Formally, the policy is

πthr,k(y1:t) =

{
regenerate, if PRM(y1:t)t < k,

continue, otherwise.
(1)

4.2 RL-TRAINED POLICIES

While TRIM-Thr demonstrates strong performance (Figure 2), it is inherently myopic in the sense that
it makes routing decisions solely based on the correctness estimate of the most recent step, without
considering past context or future consequences. A richer set of signals can be exploited for more
effective decision-making. For instance, even if the most recent step is predicted to be incorrect,
regenerating it with a strong model may not be beneficial if the overall trajectory is already far from
the correct solution, or if the additional cost of intervention outweighs the potential gain. Conversely,
when prior steps are largely consistent and the trace remains plausibly aligned with a correct solution,
targeted intervention can be highly impactful.

Prior work on stepwise verification (Lightman et al., 2023; Wang et al., 2023) and reranking with
beam search highlights the importance of leveraging the sequence of correctness scores accumulated
over the reasoning trace, rather than focusing exclusively on the most recent one. Additionally, token
counts at each step provide information about the cost of regenerating with Ms. Incorporating these
richer signals allows the router to reason jointly about (i) whether the trace remains plausibly on
track toward a correct solution and (ii) whether the cost of intervention is justified, enabling more
principled stepwise routing policies beyond TRIM-Thr.

TRIM-Seq: Learning to Route from Sequential Features. Formally, let c1:t = (c1, . . . , ct)
denote the token counts associated with each step y1, . . . , yt in the reasoning trace y1:t and
r1:t = (r1, . . . , rt) be the stepwise correctness scores, then joint feature sequence is f1:t =(
(r1, c1), (r2, c2), . . . , (rt, ct)

)
. These features provide complementary information: correctness

estimates guide the policy toward semantic fidelity, while token counts enable cost-sensitive reason-
ing about the expense of regenerating the current step.
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Figure 4: POMDP Components: Observation space
Ω and State Space S Classes

Figure 5: Observation function obtained from Pro-
cessBench (Omni-MATH), shown as heatmaps of PDF
of PRM-based observations conditioned on state class

We parameterize the routing policy with a transformer-based network that processes the feature
sequence f1:t and outputs a distribution over actions at ∈ {continue, regenerate}. The policy is
optimized via RL: each regeneration action (regenerate) on a prefix y1:t incurs a cost proportional
to the number of tokens generated by the strong model Ms, λ · |Ms(y1:t−1)|, where λ > 0 is
a cost-performance trade-off parameter, and |Ms(y1:t−1)| denotes the token length of the strong
model’s regenerated output. The episodic return further includes the (binary) terminal task reward
R, which reflects the correctness of the final solution. The policy is thus optimized to maximize the
expected return

J(π) = Eπ

[
R(y1:T )− λ

T∑
t=1

1{at = regenerate} · |Ms(y1:t−1)|

]
,

which balances solution correctness against the cumulative generation cost of invoking Ms.

TRIM-Agg: Learning to Route from Aggregated Features. TRIM-Seq, as described above,
leverages the full sequence of stepwise correctness scores (r1, r2, . . . , rt−1) together with token
lengths to model routing decisions. While this provides rich sequential context, it is often useful
to consider simpler feature representations that capture the most salient statistics of the reasoning
trace. Prior work (Lightman et al., 2023; Wang et al., 2023) suggests that solution-level correctness
can be estimated from stepwise scores using reductions such as the minimum or product over steps.
Motivated by this, we construct a reduced feature set f̃1:t =

(
rt, min(r1:t−1), ct, t

)
, where

min(r1:t−1) = min(r1, r2, . . . , rt−1), ct denotes the token length of the current step, and t indexes
the current position in the trace.

This reduced representation discards the full sequential history while retaining key aggregated
indicators of correctness and cost. Using f̃1:t, we train a policy network under the same RL objective
as in TRIM-Seq. Empirically, this design yields substantially faster training, and the performance
gap relative to TRIM-Seq is negligible for any given tradeoff parameter λ.

4.3 TRIM-POMDP: POMDP-BASED ROUTER POLICY

A central challenge in stepwise routing methods discussed above arises from the imperfect nature
of process reward model (PRM) estimates. While PRMs provide informative signals about the
correctness of intermediate steps, their predictions are often noisy and can misclassify correct steps
as incorrect (or vice versa). When trained on large amounts of data, routing policies like TRIM-
Agg can implicitly learn to discard errors in the PRM estimates. However, RL under long-horizon
sparse rewards makes training such policies both sample-inefficient and expensive. This raises a key
question: how can routing decisions be improved when only noisy correctness signals are available?
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Figure 6: Performance–cost trade-offs of different TRIM routing approaches on MATH-500 and AIME.

Our solution is to explicitly treat PRM scores as imperfect observations of an unobserved latent state
that reflects true correctness of the reasoning trajectory, and attempt to infer the true latent space first
when learning a routing policy (akin to control in a partially-observed Markov decision process). As
shown in Figure 4, in TRIM-POMDP, the latent state is defined in terms of three correctness classes
(augmented with the current step index and token cost): (i) S0, where the trajectory remains correct so
far, (ii) S1, where the trajectory has already diverged irrecoverably, and (iii) S2, where the most recent
step is incorrect but prior steps are correct, leaving the trajectory still potentially recoverable. If this
latent state were perfectly observed, the routing problem would reduce to solving a fully observable
MDP. In practice, however, the latent correctness state is hidden, and we only observe noisy proxies
provided by the PRM. To bridge this gap, we learn an observation function that helps us map the
entire history of observations (f̃1:t) to a probability distribution over the latent states. Concretely, this
amounts to modeling the distribution of PRM outputs conditioned on state classes (see Figure 5),
which can be fit offline using process supervision datasets with ground-truth step-level annotations
(e.g., ProcessBench (Zheng et al., 2024)). Moreover, because the observation function only requires
aligning PRM scores with annotated correctness labels, it can be trained once and reused across
different performance–cost trade-off parameters λ. Once this mapping is learned, we can invoke a
POMDP solver on-the-fly to compute routing policies that optimally balance accuracy and cost.

This compact POMDP formulation of the sequential routing problem enable efficient policy computa-
tion using standard POMDP solvers. Moreover, policy computation with modern POMDP solvers
is both efficient and flexible, with offline solvers typically requiring less than a minute runtime. As
a result, policies can be recomputed easily for different performance–cost trade-off parameters λ.
A further advantage of TRIM-POMDP is that the resulting routing policy is largely agnostic to the
specific choice of LLMs (Ms,Mw), depending only on their next-step accuracies provided as inputs
to the transition function. See Appendix A.1 for further details and the complete POMDP formulation.

5 EXPERIMENTS

We evaluate TRIM by benchmarking its stepwise routing strategies against established query-level
routing approaches. Our primary comparison is with RouteLLM (Ong et al., 2024), a state-of-the-art
approach for query-level routing, which uses preference data for making these decisions. We begin
by introducing the evaluation metrics used throughout our analysis.

Metrics. We evaluate various router policies by quantifying the trade-off between task performance
and the cost of invoking the strong model Ms. In our setting, the cost of a query is measured by
the number of tokens generated by the expensive (strong) model Ms. We adapt evaluation metrics
from prior work to the setting of stepwise routing in multi-step reasoning. For a query q in the set of
queries Q, let C(q;π) denote the number of tokens generated by the strong model Ms under router
policy π, and let Cs(q) be the number of tokens generated when using Ms alone. We define C̄(π) as
the average number of Ms tokens per query and c(π) as the normalized fraction of tokens from Ms:

C̄(π) =
1

|Q|
∑
q∈Q

C(q;π), c(π) =

∑
q∈Q C(q;π)∑
q∈Q Cs(q)

. (2)
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MATH-500 AIME

Method CPT(50%) CPT(80%) CPT(95%) ∆IBC CPT(50%) CPT(80%) CPT(95%) ∆IBC

BERT 196.60 (42.52%) 331.45 (71.68%) 394.49 (85.31%) 0.08 331.85 (38.18%) 616.53 (70.93%) 701.58 (80.71%) 0.44
MF 160.83 (34.78%) 324.13 (70.10%) 432.60 (93.55%) 0.49 358.81 (41.28%) 602.62 (69.32%) 813.28 (93.56%) 0.65
SW Ranking 185.74 (40.17%) 279.47 (60.44%) 330.89 (71.56%) 0.37 297.08 (34.18%) 496.77 (57.15%) 715.72 (82.34%) 0.79
Smoothie 220.69 (47.73%) 345.19 (74.65%) 433.77 (93.81%) 0.30 396.79 (45.65%) 704.50 (81.05%) 822.09 (94.57%) 0.03
AutoMix-PRM 110.42 (23.88%) 198.73 (42.98%) 249.49 (53.96%) 0.95 380.48 (43.77%) 605.83 (69.7%) 703.77 (80.96%) 0.07
TRIM-Thr 43.68 (9.45%) 73.74 (15.95%) 115.99 (25.08%) 4.75 204.01 (23.47%) 314.7 (36.2%) 372.79 (42.89%) 1.81
TRIM-Agg 33.74 (7.3%) 56.49 (12.22%) 79.58 (17.21%) 5.67 107.39 (12.35%) 241.55 (27.79%) 330.42 (38.01%) 2.50
TRIM-POMDP 29.27 (6.33%) 66.63 (14.41%) 83.12 (17.98%) 5.86 139.21 (16.01%) 206.06 (23.71%) 244.86 (28.17%) 5.00

Table 1: Comparison of TRIM across AIME & MATH-500 benchmarks.

OlympiadBench Minerva Math

Method CPT(50%) CPT(80%) CPT(95%) ∆IBC CPT(50%) CPT(80%) CPT(95%) ∆IBC

BERT 367.75 (55.03%) 584.14 (87.41%) 642.50 (96.14%) -0.04 209.99 (48.99%) 378.24 (88.25%) 421.44 (98.33%) -0.1
MF 369.15 (55.24%) 522.68 (78.21%) 601.77 (90.05%) -0.07 166.99 (38.96%) 249.82 (58.28%) 326.06 (76.07%) 0.42
SW Ranking 351.34 (52.57%) 511.08 (76.48%) 635.05 (95.03%) 0.07 212.73 (49.63%) 342.71 (79.96%) 421.17 (98.26%) 0.04
Smoothie 348.59 (52.16%) 511.64 (76.56%) 615.49 (92.10%) -0.08 234.66 (54.75%) 345.16 (80.53%) 402.19 (93.83%) -0.09
AutoMix-PRM 265.95 (39.8%) 411.47 (61.57%) 481.49 (72.05%) 0.22 72.08 (16.82%) 140.24 (32.72%) 196.12 (45.76%) 1.35
TRIM-Thr 136.64 (20.45%) 220.70 (33.03%) 313.89 (46.97%) 1.31 65.15 (15.2%) 92.78 (21.65%) 148.55 (34.66%) 2.23
TRIM-Agg 94.4 (14.13%) 190.11 (28.45%) 287.17 (42.97%) 2.57 47.37 (11.05%) 89.54 (20.89%) 138.67 (32.35%) 3.12

Table 2: Cross-Benchmark Generalization of Routers Trained on AIME

Following Ong et al. (2024), if s(q;π) ∈ {0, 1} denotes the correctness of query q under policy π,
the average performance and the performance gap recovered (PGR) are defined as

r(π) =
1

|Q|
∑
q∈Q

s(q;π), PGR(π) =
r(π)− r(Mw)

r(Ms)− r(Mw)
, (3)

where r(Ms) and r(Mw) denote the accuracies of the Ms and Mw, respectively. PGR(π) quantifies
how much of the performance gap between Mw and Ms is recovered by policy π.

To capture the cost required to achieve a desired level of performance, we utilize cost–performance
threshold (CPT). Specifically, CPT(x%) denotes the minimum token cost (in terms of C̄ or c)
required by policy π to achieve a PGR of x%, providing a measure of efficiency at different target
performance levels. Finally, following Aggarwal et al. (2023), we report the incremental benefit per
cost (IBC) used by the routing system as:

IBC(π) =
r(π)− r(Mw)

C̄(π)
, IBCBase =

r(Ms)− r(Mw)
1

|Q|
∑

q∈Q Cs(q;π)
, ∆IBC(π) =

IBC(π)− IBCBase

IBCBase

(4)
Here IBC(π) measures performance improvement per unit expensive-model Ms token usage,
IBCBase is the baseline corresponding to always using Ms, and ∆IBC(π) quantifies relative gain. A
positive ∆IBC indicates that the router is more cost-effective than querying Ms for every input. For
evaluation, we compute ∆IBC across 100 equally sized performance regions between Mw and Ms

and report the average.

Experimental setup. For our experimental analysis, we use a two-model setup with Qwen2.5-3B-
Instruct as the cheap LLM (Mw) and Claude 3.7 Sonnet as the expensive model (Ms), guided by
Qwen2.5-Math-PRM-7B for step-level correctness estimation. For AIME (Di Zhang, 2025), we use
an approximately 50–50 train–test split across alternate years and problem sets, while for MATH
(Hendrycks et al., 2021), we train on the 7.5k official training set and evaluate on MATH-500. We
benchmark three TRIM routing strategies—TRIM-Thr, TRIM-Agg, and TRIM-POMDP—against the
query-level routing methods proposed in RouteLLM (Ong et al., 2024), namely the BERT classifier,
matrix factorization, and SW ranking models. In TRIM-Agg, the router is parameterized by a simple
MLP policy with two hidden layers and is trained with PPO, while TRIM-POMDP uses the SARSOP
solver (Kurniawati et al., 2008) to compute policies (see Appendix B for implementation details).

Results. Table 1 reports the evaluation results across benchmarks, and Figure 6 illustrates the
performance–cost trade-off curves achieved by different TRIM strategies. To further assess the
generalization capability of TRIM-Agg, we evaluate routers trained on AIME in a cross-dataset
setting, testing on other math benchmarks of comparable difficulty, namely OlympiadBench and
Minerva Math, and report results in Table 2 and the corresponding performance curves in Figure 7.
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Figure 7: Performance–cost trade-offs under dataset generalization. TRIM-Agg routers trained on AIME
demonstrate strong performance across benchmarks of similar difficulty

Our experiments reveal distinct strengths across regimes. As can be seen in Figure 6 for the low-
budget setting (large λ), TRIM-POMDP achieves superior performance benefiting from principled
long-horizon planning under uncertainty. Unlike RL-trained policies, which struggle in this regime
due to sparse rewards, modern POMDP solvers efficiently compute policies without being hindered by
sparse-reward learning dynamics. In the high-budget regime (small λ), however, RL-trained TRIM-
Agg policies show strong performance, achieving 95% of the performance gap for MATH-500 while
using approximately 80% fewer expensive tokens, as policy optimization becomes significantly easier.
Even our simplest approach, TRIM-Thr, achieves 5× (∆IBC = 4.75 vs ∆IBC = 0.95) better cost
efficiency than baselines. Beyond budget regimes, our cross-dataset evaluations highlight an important
distinction: query-level routers can often fit to the intrinsic characteristics of specific datasets, while
TRIM captures transferable routing behaviors that generalize across benchmarks of comparable
difficulty. For instance, BERT achieves a ∆IBC of 0.44 on AIME but drops dramatically to −0.04
on OlympiadBench and −0.1 on Minerva Math, while SW Ranking similarly degrades from 0.79 to
0.07 and 0.04, respectively. In contrast, TRIM-Agg achieves a ∆IBC of 2.5 on AIME and maintains
strong performance with ∆IBC values of 2.57 on OlympiadBench and 3.12 on Minerva Math when
trained solely on AIME, demonstrating superior generalization. This suggests that step-level difficulty
patterns reflect fundamental properties of multi-step reasoning rather than dataset-specific artifacts.

Despite being trained on fewer than 500 samples from the AIME dataset, TRIM-Agg achieves
strong performance on the held-out test set with 38.01% expensive token usage at CPT(95%) and
exhibits robust generalization to datasets of comparable difficulty, consistently surpassing both TRIM-
Thr and query-level baselines. In parallel, TRIM-POMDP shows strong performance across all
cost–performance trade-off regimes on both MATH-500 and AIME, despite its observation function
being trained on different (but comparably difficult) math datasets (detailed in Appendix B) and the
solver requiring only the estimated next-step accuracies of (Mw,Ms) as input.

6 DISCUSSION AND CONCLUSION

In this work, we present TRIM, an approach for targeted stepwise routing that escalates only critical
steps to stronger, more expensive LLMs, intervening precisely where the partial reasoning trace
risks diverging from a correct solution. Our key insight is that even a small number of well-placed
interventions can dramatically boost task accuracy, enabling significant efficiency gains compared to
conventional query-level routing. Building on this insight, we designed multiple routing strategies
for TRIM that differ in how much trajectory-level information they exploit when making routing
decisions. While TRIM already surpasses contemporary routing methods and performs competitively
with oracle query-level routers, further improvements may be possible by moving beyond step-level
granularity to token-level routing. Since certain tokens disproportionately influence downstream
generation (Wang et al., 2025), token-level routing offers a promising direction for achieving even
finer-grained and cost-efficient interventions.
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7 REPRODUCIBILITY STATEMENT

In order to foster reproducibility of our work, we outline implementation details of our approach in
Appendix B and Section 5.
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A APPENDIX

A.1 TRIM-POMDP

Foundations of POMDPs. A Partially Observable Markov Decision Process (POMDP) provides a
principled framework for sequential decision-making under uncertainty when the underlying system
state is not directly observable. A POMDP is defined by the tuple (S,A, T,R,Ω,O), where S is
the state space, A the set of actions, and Ω the observation space. The transition function T (s′|s, a)
specifies the probability of transitioning from s ∈ S to s′ ∈ S given a ∈ A, while the observation
function O maps s ∈ S and a ∈ A to a probability distribution over the observation space Ω. The
reward function R(s, a) assigns a scalar reward to state–action pairs.

Since the true state is hidden, the agent maintains a belief state b ∈ ∆(S), a probability distribution
over latent states, updated recursively via Bayes’ rule after each action–observation pair. A policy is
a mapping π : b 7→ a, and the objective is to maximize expected discounted return by optimizing
over policies.

A.1.1 FORMALIZING TRIM-POMDP

We define the components for TRIM-POMDP as follows:

State space (S): As shown in Figure 4, we categorize the state space into three correctness classes:
S0 (all prior steps correct and current step correct), S1 (at least one prior step incorrect), and S2 (prior
steps correct but current step incorrect), along with a terminal absorbing state Ster. Each state is
augmented with the step index t and the token count ct of the current step yt within the trace y1:t.

Observation Space (Ω): The observation space (noisy state observations) is defined as the set of
aggregated features f̃1:t =

(
rt, min(r1:t−1), ct, t

)
, identical to the state features used in TRIM-Agg.

These observations help us obtain a probability distribution over the state space S.

Action Space (A): Similar to prior router policies, the action set is A = {continue, regenerate}.

Transition Function (T ): The transition dynamics capture the accuracy of Ms and Mw, as well as
transitions into the terminal state Ster. Formally:

T (s′ ∈ S0 | s ∈ S0 ∪ S2, a = regenerate) = ps (next step accuracy of Ms)

T (s′ ∈ S0 | s ∈ S0, a = continue) = pw (next step accuracy of Mw)

T (s′ ∈ S1 | s ∈ S2, a = continue) = 1

T (s ∈ S1 | a ∈ A, s′ ∈ S1) = 1 (irrecoverability assumption)

Observation Function (O): The observation function is a mapping from s ∈ S to the probability
distribution over the observation space Ω. The probabilities P (o|s), give us the likelihood of
observing o ∈ Ω (i.e., f̃1:t) given state s ∈ S.. This corresponds to modeling the distribution of PRM
scores conditioned on each state class, which can be learned from process supervision datasets with
step-level annotations (e.g., PRM800K).

Reward Function (R): Invoking the strong model incurs a cost proportional to the number of tokens
generated, i.e., R(s, a = regenerate, s′) = −λ · |Ms(y1:t−1)|. . Any transition into the terminal
state Ster yields the task reward R, if and only if the final state corresponds to a correct solution (i.e.,
s ∈ S0).

TRIM-POMDP can be viewed as an extension of Aggarwal et al. (2023) to the setting of multi-
step reasoning. In their official implementation, Automix employs a greedy approximation to
the POMDP, , which is sufficient for task-level routing since it is a single-step decision problem
(horizon of one). In contrast, multi-step reasoning requires planning over long horizons, making a full
POMDP formulation more appropriate and motivating the use of sophisticated solvers. Furthermore,
our formulation introduces key differences that provide additional flexibility. In Automix, self-
verification probabilities (observations) are used to obtain estimates of model performance metrics
(state features), and thus retraining of the observation function O is required whenever the model
pair (Ms,Mw) changes. However, TRIM-POMDP incorporates model accuracies into the transition
function, eliminating the need for retraining the observation model when switching model pairs.
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MATH-500 AIME

Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%

BERT 66.60% (8.5%) 67.84% (16.1%) 69.20% (24.4%) 70.00% (29.3%) 70.40% (31.7%) 13.06% (9.7%) 14.28% (16.8%) 15.56% (24.4%) 17.22% (34.1%) 18.37% (40.9%)
MF 68.46% (19.9%) 70.35% (31.4%) 71.40% (37.8%) 71.86% (40.6%) 72.20% (42.7%) 14.94% (20.7%) 16.39% (29.3%) 17.01% (32.9%) 17.43% (35.4%) 18.26% (40.2%)
SW Ranking 67.82% (16.0%) 68.20% (18.3%) 68.80% (22.0%) 70.01% (29.3%) 71.14% (36.2%) 13.90% (14.6%) 15.10% (21.7%) 16.18% (28.0%) 17.43% (35.4%) 18.88% (43.9%)
Smoothie 67.20% (12.2%) 67.77% (15.7%) 68.20% (18.3%) 69.35% (25.3%) 70.00% (29.3%) 13.07% (9.8%) 13.90% (14.6%) 15.15% (22.0%) 16.18% (28.0%) 16.60% (30.5%)
AutoMix-PRM 68.88% (22.4%) 70.54% (32.5%) 72.19% (42.7%) 73.78% (52.3%) 75.26% (61.3%) 12.74% (7.8%) 13.85% (14.3%) 14.95% (20.8%) 15.88% (26.3%) 16.80% (31.7%)
TRIM-Thr 74.22% (55.0%) 77.55% (75.3%) 80.44% (93.0%) 80.76% (94.8%) 82.22% (103.8%) 17.46% (35.6%) 18.12% (39.4%) 19.01% (44.7%) 21.24% (57.8%) 23.00% (68.1%)
TRIM-Agg 76.42% (68.4%) 79.94% (89.9%) 82.15% (103.3%) 84.59% (118.3%) 87.04% (133.2%) 19.14% (45.4%) 20.82% (55.3%) 22.87% (67.4%) 23.23% (69.5%) 25.95% (85.5%)
TRIM-POMDP 76.39% (68.2%) 78.75% (82.6%) 81.21% (97.7%) 81.86% (101.6%) 82.51% (105.5%) 18.80% (43.4%) 19.26% (46.1%) 22.50% (65.2%) 25.76% (84.4%) 28.62% (101.2%)

Table 3: Budgeted-accuracy comparison of TRIM across the AIME & MATH-500 benchmarks.

OlympiadBench Minerva Math

Method 10% 15% 20% 25% 30% 10% 15% 20% 25% 30%

BERT 29.63% (6.6%) 30.11% (9.3%) 30.83% (13.3%) 31.41% (16.5%) 32.62% (23.3%) 28.68% (8.9%) 29.04% (11.1%) 29.84% (15.9%) 31.02% (23.1%) 31.25% (24.4%)
MF 29.78% (7.4%) 30.96% (14.0%) 31.11% (14.9%) 31.56% (17.4%) 32.59% (23.1%) 29.89% (16.2%) 30.88% (22.2%) 32.35% (31.1%) 32.35% (31.1%) 32.72% (33.3%)
SW Ranking 30.95% (14.0%) 32.44% (22.3%) 33.04% (25.6%) 33.63% (28.9%) 34.07% (31.4%) 28.31% (6.7%) 29.41% (13.3%) 31.40% (25.4%) 31.25% (24.4%) 31.51% (26.0%)
Smoothie 29.63% (6.6%) 29.93% (8.3%) 30.86% (13.5%) 32.30% (21.5%) 33.33% (27.3%) 28.31% (6.7%) 28.68% (8.9%) 29.15% (11.8%) 30.15% (17.8%) 30.51% (20.0%)
AutoMix-PRM 29.76% (7.3%) 31.34% (16.1%) 32.61% (23.3%) 33.83% (30.0%) 34.75% (35.2%) 33.66% (39.0%) 34.86% (46.3%) 36.48% (56.1%) 37.88% (64.5%) 39.54% (74.6%)
TRIM-Thr 31.91% (19.3%) 35.53% (39.5%) 37.22% (48.9%) 40.70% (68.4%) 42.08% (76.0%) 32.80% (33.8%) 35.43% (49.7%) 39.34% (73.3%) 41.81% (88.3%) 42.49% (92.4%)
TRIM-Agg 35.56% (39.7%) 37.74% (51.8%) 39.67% (62.6%) 42.30% (77.3%) 43.00% (81.2%) 35.17% (48.1%) 37.25% (60.7%) 40.25% (78.8%) 41.33% (85.4%) 42.41% (91.9%)

Table 4: Cross-benchmark generalization performance of AIME-trained routers under budgeted-accuracy
evaluation.

B ROUTING POLICIES IMPLEMENTATION DETAILS

TRIM-Agg Implementation. The router policy is parameterized by a simple MLP policy with two
hidden layers (128 units each, Tanh activations), followed by separate actor and critic heads with
a learning rate of 1e-4. We train with PPO using a learning rate of 1 × 10−4, clipping coefficient
0.2, and entropy coefficient 0.01. We use unnormalized advantages, undiscounted rewards, and
a generalized advantage estimate with λ = 0.95. Training is conducted across performance–cost
trade-off parameters λ, ranging from 3× 10−4 to 8× 10−5 for AIME and from 8× 10−4 to 3× 10−4

for MATH, at regular intervals.

TRIM-POMDP Implementation. For TRIM-POMDP, we learn the observation function using a
reflected KDE estimator applied to the ProcessBench (Zheng et al., 2024) dataset. Specifically, we
evaluate our PRM on step-by-step solutions in the dataset and align its outputs with human-annotated
step-level labels. The observation function is trained on Omni-MATH problems, while evaluation is
conducted on AIME and GSM8k for MATH-500. Importantly, the only model-specific information
required by TRIM-POMDP is the next-step accuracies of the models, which are estimated from the
corresponding training sets. For solving the POMDP, we use SARSOP (Kurniawati et al., 2008),
which we implement using the POMDPs.jl framework (Egorov et al., 2017). We solve the POMDP
using SARSOP (Kurniawati et al., 2008), implemented using the POMDPs.jl framework (Egorov
et al., 2017), with hyperparameters set to the default values provided in POMDPs.jl. While
SARSOP can in principle handle large observation spaces, it is sensitive to the choice of the initial
state distribution. To achieve the best performance, we therefore recompute the policy at every step
using the updated belief distribution as the initial state distribution. To improve efficiency, we employ
a simple heuristic: the policy is recomputed only if the belief mass on state S2 (the case where the
most recent step is incorrect but prior steps are correct) lies within 0.35–0.40 of the maximum belief
state class; otherwise, we default to continuing with Mw (i.e., at = continue). For all TRIM routing
policies, the reasoning trace is truncated to a maximum of 30 steps during both training and inference,
and the solution at this cutoff is returned.

C BUDGETED ACCURACY

In addition to the Cost–Performance Threshold (CPT) and ∆IBC metrics, we report budgeted
accuracy in Table 3 and Table 4. Along with performance accuracy at each token budget, we also
report the performance gap recovered (PGR) for improved comparability, with PGR percentages
shown in parentheses. The columns indicate the normalized percentage of tokens generated by Ms,
expressed relative to the total number of tokens that would be produced when running Ms alone
(c(π)). Budgeted accuracy is a standard metric that evaluates each routing method under a fixed
compute or token budget. These results enable direct comparison under matched compute budgets
and complement our CPT and IBC analyses.
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