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(b) Tone-mapped HDR novel view and time

(c) Novel LDR views and depth
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Figure 1: High Dynamic Range Neural Scene Flow Fields (HDR-NSFF) reconstruct dynamic
HDR radiance field from (a) alternatively exposed videos of dynamic scenes. Our method enables
the rendering of (b) HDR novel views across both spatial and temporal domains. Additionally, we
can generate (c) novel LDR views along with their corresponding depth maps.

ABSTRACT

Radiance of real-world scenes typically spans a much wider dynamic range than
what standard cameras can capture, often leading to saturated highlights or under-
exposed shadows. While conventional HDR methods merge alternatively exposed
frames, most approaches remain constrained to the 2D image plane, failing to
model geometry and motion consistently. To address these limitations, we present
HDR-NSFF, a novel framework for reconstructing dynamic HDR radiance fields
from alternatively exposed monocular videos. Our method explicitly models 3D
scene flow, HDR radiance, and tone mapping in a unified end-to-end pipeline.
We further enhance robustness by (i) extending semantic-based optical flow with
DINO features to achieve exposure-invariant motion estimation, and (ii) incor-
porating a generative prior as a regularizer to compensate for sparse-view and
saturation-induced information loss. To enable systematic evaluation, we construct
a real-world GoPro dataset with synchronized multi-exposure captures. Experi-
ments demonstrate that HDR-NSFF achieves state-of-the-art performance in novel
view and time synthesis, recovering fine radiance details and coherent dynamics
even under challenging exposure variations and large motions.

1 INTRODUCTION

Radiance of real-world scenes typically spans a wider dynamic range than what standard cameras
can capture (see Fig. 1). As a result, captures with standard cameras often suffer from overexposed
highlights or underexposed shadows, leading to severe information loss in critical regions. A widely
adopted strategy to address this limitation is high dynamic range (HDR) imaging, which captures
multiple low dynamic range (LDR) frames at different exposures and merges them to form a HDR
image. DR has become essential for enhancing realism and preserving radiometric information.

However, most existing HDR methods remain fundamentally constrained to the 2D image plane.
Video-based HDR approaches (Chung and Cho, 2023; Xu et al., 2024; Cui et al., 2024) typically

1
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Figure 2: Comparison of HDR video reconstruction on training views. Given alternatively exposed
video, HDR video reconstruction baselines, i.e., LAN-HDR (Chung and Cho, 2023), HDRFlow (Xu
et al., 2024), and NECHDR (Cui et al., 2024) to produce consistent results, while our model ensures
temporal coherence and recovers valid information in saturated regions.

align consecutive frames and apply refinement to suppress ghosting and motion artifacts. Operating
purely in image space, these methods cannot capture 3D motion, thus failing to handle occlusions,
dynamics, varying radiance, and viewpoint changes (see Fig.2). These limitations clearly indicate the
need to move beyond conventional 2D fusion toward a 3D representation.

In this work, we propose a framework for reconstructing HDR dynamic radiance fields from alterna-
tively exposed monocular videos. We represent the scene as a continuous function of both space and
time, whose outputs include HDR radiance, density, and 3D motion. Due to the additional variation in
exposure, the HDR dynamic reconstruction attains a higher order of ill-posedness than reconstruction
only across space and time. To address, we propose a dedicated pipeline built upon a dynamic neural
radiance field (Li et al., 2021), as it leverages geometric and motion priors that can counteract the
ill-posedness of the problem. Then, we jointly optimize the radiance field together with a learnable
tone-mapping module, enabling HDR reconstruction and tone mapping in an end-to-end manner.

In designing the pipeline, a critical challenge of alternatively exposed video lies in the severe color
inconsistency across frames, which induces combinatorial degradations spanning tone mapping,
geometry, and motion priors. Thus, we analyze the robustness of each component to exposure
variation and investigate the optimal combination among them. In particular, for motion prior, we
observe that the semantic features of DINOv2 (Oquab et al., 2023) demonstrate strong robustness
to illumination changes. Inspired by this observation, we extend DINO-Tracker (Tumanyan et al.,
2024) to predict dense optical flow that remains reliable under varying exposures, and integrate these
predictions into scene flow learning for dynamic HDR reconstruction.

Another major challenge lies in the correlation between the sparse-view nature of monocular videos
and the information loss induced by saturation under extreme exposures. In other words, the state of
a moving object can only be observed at specific timesteps, and if those observations are saturated,
the result is an irrecoverable loss of information. To mitigate this issue, we incorporate generative
priors (Wu et al., 2025) to compensate for the loss by augmenting the single training view with
multi-view information and distilling it into the radiance field.

In addition to the synthetic dataset (Wu et al., 2024a), we evaluate our method on a newly con-
structed real-world dataset, which spans a wide range of scenarios including indoor and outdoor
environments, diverse objects, and human subjects. Across both domains, our method consistently

2
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outperforms existing baselines, including NeRF-W (Martin-Brualla et al., 2021), 4DGS (Wu et al.,
2024b), MotionGS (Zhu et al., 2024) and HDR-Hexplane (Wu et al., 2024a), demonstrating superior
reconstruction quality and robustness under challenging exposures.

To summarize, our key contributions are:

• HDR-NSFF Framework: We propose the first method that jointly models HDR scene flow fields
enabling both novel view rendering and time interpolation.

• Robust Learning Strategies: We enhance scene flow learning by extending DINO-Tracker for
exposure-robust motion estimation, and introduce generative priors as regularizers to overcome
sparse-view limitations.

• Comprehensive Evaluation: We provide extensive experiments and a new real-world dataset with
alternative exposures, demonstrating state-of-the-art performance in challenging HDR scenarios.

2 RELATED WORK

High Dynamic Range Video Reconstruction. Creating HDR images from multi-exposure inputs is
a long-studied problem in computational photography. A long line of work reconstructs HDR video
by aligning and fusing alternatively exposed LDR frames (Kang et al., 2003; Kalantari et al., 2017;
Chen et al., 2021; Chung and Cho, 2023; Xu et al., 2024; Cui et al., 2024). These approaches typically
rely on optical flow or CNN-based alignment in 2D, followed by refinement to suppress ghosting.
While effective for moderate motion, they remain vulnerable to occlusions, large displacements, and
exposure inconsistencies. In contrast, our work reconstructs HDR video in 3D, enabling consistent
rendering even under challenging dynamics.

Dynamic Scene Reconstruction. NeRF-based methods such as NSFF (Li et al., 2021), DynIBaR (Li
et al., 2023), HyperNeRF (Park et al., 2021), and factorized grid models like HexPlane (Cao and
Johnson, 2023) and K-Planes (Fridovich-Keil et al., 2023) have advanced free-viewpoint rendering
of dynamic scenes. These methods represent a scene as a continuous function of space and time,
sometimes augmented with deformation fields or canonical templates. They can synthesize novel
views or even novel time steps. In parallel, 3D Gaussian Splatting has recently been extended
to dynamic settings through 4DGS (Wu et al., 2024b), MotionGS (Zhu et al., 2024), Gaussian
Marbles (Stearns et al., 2024), and DeformableGS (Yang et al., 2024b), achieving high efficiency and
real-time rendering. Despite their success, all of these methods assume photometrically consistent
LDR inputs and do not address the challenges of HDR content. Thus, they struggle to faithfully
represent scenes with extreme lighting variations, whereas our approach explicitly targets HDR
reconstruction of dynamic radiance fields.

High Dynamic Range Novel View Synthesis. Several recent works integrate HDR modeling into
volumetric representations, mainly for static scenes. HDR-NeRF (Huang et al., 2022) and HDR-
Plenoxel (Jun-Seong et al., 2022) model radiance together with tone-mapping or exposure functions,
enabling HDR novel view synthesis from multi-exposure data. GaussHDR (Liu et al., 2025) extends
HDR reconstruction to Gaussian Splatting with local tone mapping, while LTM-NeRF (Huang et al.,
2024) embeds spatially varying tone mapping directly into NeRF. These works demonstrate the
benefits of HDR-aware radiance fields but assume static content. The most relevant to our work is
HDR-HexPlane (Wu et al., 2024a), which extends a factorized grid representation to dynamic HDR
scenes by learning per-image exposure mappings. However, it does not explicitly model 3D motion,
limiting its ability to represent complex dynamics and to perform temporal synthesis. In contrast, our
method incorporates explicit motion modeling, allowing robust HDR reconstruction from real-world
alternating-exposure videos and supporting both novel-view and novel-time rendering.

3 PRELIMINARY

Neural Scene Flow Fields. Neural Scene Flow Fields (NSFF) extend NeRF (Mildenhall et al.,
2020) by jointly modeling static and dynamic components of a scene. The dynamic branch, F dy

θ ,
takes spatial location x, view direction d, and time t as inputs, and predicts color cdy

t , density σdy
t ,

3
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Figure 3: Overall pipeline of our propsed method. HDR-NSFF takes an alternatively exposed
video as input and estimate 3D scene flow for the sampled points along each ray. Neighboring frames
are then warped to render the HDR radiance at the target frame, which is tone-mapped to LDR via a
white-balance and camera-response function module. Photometric loss with the ground-truth LDR
images, along with optical flow and depth constraints from off-the-shelf models, jointly optimize
both the scene flow fields and tone-mapping module in an end-to-end manner.

forward/backward scene flow Ft, and disocclusion weights Wt:

(cdy
t , σdy

t , Ft,Wt) = F dy
θ (x,d, t). (1)

Scene flow is used to warp 3D points across time for enforcing temporal consistency. The static
branch, F st

θ , models time-invariant appearance:

(cst, σst, v) = F st
θ (x,d), (2)

where v is a blending weight. The final color is obtained by volume rendering with static–dynamic
combination:

Ĉi(ri) =

∫ zf

zn

Ti(z)
[
v(z)cst(z)σst(z) + (1− v(z))cdy

i (z)σdy
i (z)

]
dz. (3)

Here, Ti(z) denotes transmittance along the ray. This formulation allows NSFF to capture both
persistent geometry and spatio-temporal dependent motion within a unified radiance field. Details are
provided in the Appendix B.

4 APPROACH

Our framework builds upon Neural Scene Flow Fields (NSFF) to reconstruct dynamic HDR radiance
fields from alternatively exposed monocular videos, as it offers explicit and stable 3D motion
modeling. NSFF exploits physical priors such as depth and optical flow for consistent learning in
LDR videos, while recent HDR radiance field methods introduce tone-mapping modules but remain
limited to static scenes. However, a direct combination of these ideas is not sufficient for HDR video.

Dynamic HDR videos present fundamental challenges: alternating exposures cause severe color
inconsistency, which (i) prevents off-the-shelf models from delivering reliable performance and
(ii) limits the effectiveness of tone-mapping regularization. Addressing this requires a systematic
approach that disentangles and rethinks each component in light of HDR-specific aspects. Building on
this perspective, HDR-NSFF is designed as an integrated framework that introduces tailored modules
and empirically grounded analyses, offering a coherent solution for dynamic HDR 4D reconstruction.

HDR-NSFF integrates three core components: (i) NSFF-based radiance field and tone-mapping joint
optimization, where we experimentally analyze tone-mapping function (Sec. 4.1), (ii) generative
prior regularization to compensate for the sparse-view limitation of monocular input (Sec. 4.2), (iii)
exposure-robust semantic flow estimation for reliable motion learning, and robust depth estimation
using a carefully selected model verified through empirical analysis (Sec. 5.1). An overview of the
pipeline is illustrated in Fig. 3.
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4.1 TONE-MAPPING

A key challenge in dynamic HDR reconstruction is the mismatch between multi-exposure LDR
observations and the underlying HDR radiance. To bridge this gap, we introduce a tone-mapping
module T with radiometric paramter θ that maps rendered HDR radiance E to the LDR domain:

C = T (E, θ) = g
(
w(E)

)
, (4)

where w applies per-channel white balance correction and g denotes the camera response function
(CRF). To ensure stable optimization under extreme exposures, we employ a leaky-thresholded CRF
that mitigates saturation effects, along with a smoothness regularization that encourages physically
plausible CRF shapes through second-order derivative penalties. These components provide both
flexibility and regularization, enabling T to form consistent HDR supervision across varying exposure
levels and maintain a coherent radiance field in 3D space. Details are provided in the Appendix C.

4.2 GENERATIVE PRIOR AS A REGULARIZER
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Figure 4: Ablation on Generative Prior(GP). GP provides
additional plausible views from nearby angles, leading to
more consistent and sharper reconstructions.

Reconstructing dynamic HDR scenes
from monocular videos is particularly
challenging due to the coupled effects
of sparse temporal observations and
information loss caused by saturation
under extreme exposures. At each
timestep, only a single viewpoint is
available, and if this observation is
saturated, the lost information cannot
be recovered directly.

To mitigate this issue, we adopt a gen-
erative prior to compensate for infor-
mation loss, extending its use from
static scene reconstruction (Wu et al., 2025) to dynamic HDR scene reconstruction. The key idea is
to periodically render unobserved or intermediate viewpoints, enhance them using a generative prior,
and re-introduce these enhanced images as pseudo-observations during optimization. This allows
HDR-NSFF to recover semantically plausible structures.

Let Ĉ be the HDR-NSFF rendering from a candidate novel viewpoint. At scheduled iterations, we
obtain a generative enhancement Cgen = G(Ĉ) using the generative prior G, and incorporate it as an
auxiliary supervision signal. For each enhanced view, we apply a patch-wise perceptual loss:

L̂gen =
∑
p∈P

∥∥∥ϕ(Ĉp)− ϕ(Cgen
p )

∥∥∥
1
, (5)

where ϕ denotes the perceptual encoder and p indexes spatial patches. This encourages HDR-NSFF
to align with semantically consistent and radiometrically complete reconstructions. Since generative
priors may introduce hallucinations when used too aggressively, we carefully control how and when
they influence training. Specifically, generative pseudo-observations are activated only after an initial
warm-up period:

αgen(t) =

{
0, t < Twarm

pgen, t ≥ Twarm
(6)

where Twarm = 200,000 iterations and pgen = 0.1 is the sampling probability per iteration. The final
effective generative loss is:

Lgen = αgen(t)βgen L̂gen, (7)

with βgen controlling the overall contribution.

Figure 4 shows that the generative prior significantly improves geometric fidelity, radiance complete-
ness, and perceptual consistency across space and time. This regularization is particularly beneficial
in saturated regions and sparsely observed views, enabling HDR-NSFF to produce coherent and
visually plausible HDR reconstructions under challenging exposure variations.

5
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(a) Capture setup (b) Sampled sequences
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Figure 5: Evaluation setup and sampled sequences from our proposed GoPro dataset. To
evaluate novel view synthesis, we use nine GoPro Hero 13 Black cameras arranged at two height
levels with fixed intervals, synchronized to record multi-view video at three exposures (mid, low,
high). We construct a monocular alternatively exposed video by selecting one frame per time step
across exposures, and use the remaining views for evaluation. Note that the input of our method is a
monocular video and the setup described here is designed to evaluate the system.

4.3 OBJECTIVE FUNCTION

We train both the neural scene flow fields and the tone-mapping module by minimizing the Mean
Absolute Error (MAE) between rendered LDR views and ground-truth frames. Following NSFF (Li
et al., 2021), we replace the rendered color Ĉ with our tone-mapped output T (Ê), where Ê denotes
the rendered HDR radiance. The superscript cb denotes the combined rendering that fuses static and
dynamic components of the scene. The photometric losses are:

Lcb =
∑
ri

∥T (Êcb
i (ri))− Ci(ri)∥1, and (8)

Lphoto =
∑
ri

∑
j∈N (i)

∥T (Êj→i(ri))− Ci(ri)∥1, (9)

where r denotes a camera ray. Here, Êj→i(ri) denotes the HDR radiance warped from a frame j to i.
We also adopt the optical flow and single-view depth prior, denoted LFlow and Ldepth to regularize
monocular reconstruction followed by NSFF (Li et al., 2021). For the CRF and generative prior
objective functions, we apply Lsmooth and Lgen, respectively. The total objective function of our
HDR-NSFF is as follows:

L = Lcb + Lphoto + βdataLdata + βregLreg + βsmoothLsmooth + Lgen, (10)

where β are coefficients weight each term. The details can be found in the the appendix.

4.4 DATASETS

Proposed GoPro Dataset. While standard alternatively exposed videos are sufficient for training
HDR-NSFF, a single-camera setup cannot support evaluating novel view/time synthesis under varying
exposures. To address this, we construct a real-world dataset captured with nine GoPro Hero 13
cameras configured at three exposures (low, mid, high). All cameras were fixed during capture and
temporally synchronized using the built-in software. The cameras were manually aligned to face
the same direction, forming an approximately parallel multi-view configuration. This setup enables
consistent viewpoint sampling while maintaining controlled exposure variations.

This dataset provides the first benchmark for dynamic HDR reconstruction in real-world settings
with explicit multi-exposure variation across viewpoints and comprises 12 diverse scenes covering
indoor and outdoor environments under fast and complex motions (see Fig. 5). Inspired by prior
work (Yoon et al., 2020), we adopt a similar strategy but adapt it for exposure alternation: at each
timestamp, we select one frame per viewpoint from a single camera for training while reserving the
remaining views for evaluating novel view and novel exposure performance.
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Figure 6: Visualization of flow and depth estimation between varying exposed images. (a) RAFT
often fails under varying exposure conditions, yielding noticeable errors. Fine-tuning on synthetic
varying exposed data (RAFT-Finetuned) improves performance moderately, but our semantic-based
approach achieves higher accuracy. As highlighted by the red arrows, RAFT and RAFT-Finetuned
miss correct motion. (b) For depth estimation, Depth Anything V2 (Yang et al., 2024a) recovers finer
structural details and sharper object boundaries compared to MiDaS (Ranftl et al., 2020).

5 EXPERIMENTS

HDR-NSFF takes as input an alternatively exposed monocular video and jointly reconstructs HDR
radiance, 3D motion, and tone-mapping. Before evaluating the full reconstruction pipeline, we first
analyze how each module should be designed to handle exposure-varying inputs. We study this under
Exposure-Robust Learning Strategies, independently assessing (i) optical flow, (ii) depth estimation,
and (iii) tone-mapping.

After establishing robust learning strategies, we evaluate HDR-NSFF on full HDR 4D reconstruction
tasks, including novel view synthesis, novel time synthesis, and combined view-time synthesis on
both real and synthetic datasets. We also include a two-stage 2D-to-4D HDR baseline that first
reconstructs HDR video using LAN-HDR (Chung and Cho, 2023), HDRFlow (Xu et al., 2024), and
NECHDR (Cui et al., 2024), then applies MoSca (Lei et al., 2025) for 4D reconstruction, enabling a
direct comparison between end-to-end HDR 4D modeling and HDR-preprocessing pipelines.

All methods are evaluated using PSNR, SSIM (Wang et al., 2003), and LPIPS (Zhang et al., 2018).
For HDR visualization, we use same Photomatix Pro tone-mapping operator.

5.1 EXPOSURE ROBUST LEARNING STRATEGIES

Semantic based optical flow. A key challenge in reconstructing HDR dynamic scenes from alterna-
tively exposed video is that frame-to-frame color inconsistencies significantly degrade the reliability
of conventional optical flow methods. Standard alignment techniques such as RAFT (Teed and Deng,
2020) often fail under severe exposure variations (see Fig. 6 (a)).

In this context, we focus on the abundant embedding space of the self-supervised vision foundation
model DINOv2 (Oquab et al., 2023), which has demonstrated strong robustness to photometric
corruptions and perturbations, as shown by experiments on ImageNet-C (Hendrycks and Dietterich,
2019). We further investigate and observe the feature consistency, i.e., robustness, across multi-
exposure settings. These analyses are provided in the appendix. Built upon these observations, we
adopt a DINOv2-based point tracking method, DINO-Tracker (Tumanyan et al., 2024), as motion
estimation method, with a simple yet effective modification to ensure compatibility with our pipeline.

Since tracking errors accumulate with increasing frames under exposure variance, we redefine
tracking points at each timestep and estimate only the flow between adjacent frame pairs in both
forward and backward directions, as required by our pipeline. we also introduce motion masks
from SAM2 (Ravi et al., 2024) to restrict DINO-Tracker to operate only within motion regions for
preventing from noisy tracking performance in background. As a result, our semantic-based optical
flow achieves robust motion estimation even in the presence of severe exposure variation (Fig. 6),
providing consistent motion cues that are critical for HDR-NSFF.

7
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Figure 7: Qualitative results of novel view synthesis on GoPro dataset. The odd-numbered rows
show the LDR-rendered novel views along with their corresponding L1 error maps against the ground-
truth novel view (leftmost). Our method consistently yields the smallest error across all scenes. The
even-numbered rows present tone-mapped HDR novel views. Compared with HDR-HexPlane (Wu
et al., 2024a), our approach produces more accurate radiance, geometry, and motion representations.

Depth analysis under varying exposure. We assess the robustness of off-the-shelf depth
estimators under exposure variation by synthetically generating ±2 EV versions of input im-
ages. RGB images are first converted into pseudo-RAW using a learned ISP inversion
model (Xing et al., 2021), after which ±2 EV renderings are produced via standard sRGB map-
ping. Following the protocol of Ke et al. (Ke et al., 2024), we evaluate AbsRel on NYUv2

NYUv2 ScanNet
Methods Original +2EV -2EV Original +2EV -2EV
MiDaS 9.08 13.68 9.35 8.66 13.78 10.22
DPT 9.21 12.96 8.95 8.27 13.62 9.57
Marigold 5.81 11.26 6.66 7.24 14.26 8.33
Depth-Anything-V2 4.87 7.63 5.10 4.82 10.57 6.36

Table 1: Depth estimation results under exposure
variance. We employ AbsRel as the evaluation metric.

and ScanNet (Silberman et al., 2012; Dai
et al., 2017). As shown in Table 1, while
all methods degrade under ±2 EV shifts,
Depth-Anything-V2 remains significantly
more robust than alternatives. Based on
this observation, we adopt Depth-Anything-
V2 as the geometric prior in our pipeline.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
w/o Tone-mapping 17.79 0.7048 0.0705 15.59 0.5577 0.1339
Fix CRF 25.55 0.8391 0.0487 20.43 0.6904 0.0911
MLP CRF 28.76 0.8861 0.0394 21.48 0.7256 0.0776
Piecewise CRF 31.01 0.9301 0.0233 22.55 0.7714 0.0697

Table 2: Comparison of tone-mapping designs.

Tone-mapping module analysis..
Prior HDR radiance studies explored
three CRF designs: a non-learnable
fixed CRF (Wu et al., 2024a), a fully
learnable MLP-based CRF (Huang
et al., 2022), and a piecewise para-
metric CRF with per-channel white-
balance factors (Jun-Seong et al., 2022). The fixed CRF offers strong regularization but insufficient
flexibility, whereas the MLP CRF is overly flexible and often unstable. We adopt the piecewise
CRF, which provides a balanced formulation. On our GoPro dataset, it achieves the best novel-view
synthesis performance (Table 2), indicating that moderate flexibility with structured regularization is
most effective under varying exposures.
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Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF 18.02 0.6792 0.2061 17.59 0.5473 0.2329
4DGS 20.94 0.7905 0.1541 17.83 0.5524 0.2230
MotionGS 14.61 0.3976 0.3617 12.33 0.2303 0.4696
NeRF-WT 29.70 0.9333 0.0598 19.25 0.6335 0.1770
HDR-HexPlane 20.70 0.6694 0.1917 20.55 0.6629 0.1716
Ours (w/o GP & DT) 31.04 0.9364 0.0621 24.93 0.8068 0.1048
Ours (w/o GP) 32.66 0.9447 0.0557 25.65 0.8205 0.1012
Ours 32.63 0.9444 0.0554 25.50 0.8208 0.0972

Table 3: Averaged quantitative results of novel
view synthesis on GoPro dataset. Ours achieves
the best overall performance, with DINO-Tracker
(DT) offering the strongest improvement in motion-
consistent reconstruction and the generative prior
(GP) further enhancing perceptual quality.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF 19.01 0.7258 0.1976 18.84 0.5873 0.2531
HDR-HexPlane 20.46 0.6583 0.1933 19.59 0.6107 0.1855
Ours (w/o GP & DT) 31.31 0.9392 0.0648 24.85 0.7979 0.1372
Ours (w/o GP) 32.79 0.9451 0.0596 25.40 0.8075 0.1378
Ours 32.75 0.9448 0.0594 25.26 0.8070 0.1339

Table 4: Averaged quantitative results of novel
view and time synthesis on GoPro dataset. Our
method outperform baseline models.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF 15.98 0.6457 0.1388 16.04 0.5697 0.1527
NeRF-WT 31.10 0.9366 0.0342 21.50 0.7490 0.0895
HDR-HexPlane 29.95 0.9055 0.0527 23.87 0.7999 0.1071
Ours 35.07 0.9465 0.0483 27.19 0.8836 0.0576

Table 5: Averaged quantitative results of novel
view and time synthesis on synthetic data. Our
method outperform baseline models.

NSFF NeRF-WT HDR-HexPlane OursGT

M
ut
an
t

Le
go

Figure 8: Qualitative results of novel view and
time synthesis on synthetic data. Since, our ap-
proach explicitly models scene flow, it excels at
time interpolation.

5.2 RESULTS

Novel view synthesis. We evaluate novel view synthesis on our proposed GoPro dataset. For each
time instance, we render the scene from all camera poses not used during training and apply the
corresponding learned tone-mapping functions to convert the HDR renders to LDR. We then compare
these tone-mapped views against the GT LDR images. It directly assesses two key aspects: (1) the
quality of dynamic scene modeling, and (2) the accuracy of tone-mapping functions. Table 3 shows
that our approach achieves significant improvements in rendering fidelity compared to baselines, both
in highly dynamic regions and across the entire scene. Figure 7 its effectiveness in reconstructing HDR
scenes with fine detail across varying exposures. Methods without appearance embedding (NSFF (Li
et al., 2021), 4DGS (Wu et al., 2024b), MotionGS (Zhu et al., 2024)) fail to reconstruct consistent
HDR views under alternating exposures. NeRF-WT (Quei-An, 2020) and HDR-Hexplane (Wu et al.,
2024a) provide limited robustness but still struggle in real-world dynamic settings.

Novel view and time synthesis. We also evaluate novel view and time synthesis to demonstrate our
method’s ability to handle dynamic scenes with sparse temporal sampling (see Fig. 8). Following
NSFF (Li et al., 2021), we remove every other frame from the original video sequences during
training, and use the intermediate frames at held-out camera viewpoints for testing. Table 5 shows
that our results outperform competing models across all evaluation metrics.

For real-world evaluation on our GoPro dataset, we extend this setting to simultaneously test novel
view and time synthesis. While all camera views are retained to ensure realistic multi-view coverage,
we subsample frames from each video and evaluate the model at unseen time instances and camera
viewpoints. This joint evaluation directly measures the fidelity of both HDR radiance reconstruction
and learned 3D motion under exposure-varying, dynamic scenes. Importantly, in this experiment as
well, our model consistently surpasses all baseline methods (see Table 4).

While HDR-NSFF explicitly models 3D scene motion, enabling reliable synthesis across both space
and time. In contrast, HDR-HexPlane does not incorporate explicit motion modeling, which limits its
ability to handle space and time interpolation in dynamic HDR scenes.

Qualitative comparison of HDR reconstruction. To validate our HDR reconstruction, we qualita-
tively compare our results with ground-truth HDR images (see Fig. 9). Tone-mapped HDR views
from our model closely match ground truth, preserving fine details in both under- and overexposed
regions. Histograms of pixel intensities further show that our reconstructions cover the full radiance
range, recovering values from very low to high intensities. In addition, novel LDR views rendered at
multiple exposures confirm that our method accurately controls exposure.

9
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Figure 9: Qualitative results on novel LDR/HDR view synthesis. We visualize LDR rendering
results at varying exposure levels (low, mid, and high), tone-mapped HDR rendering by ours and
corresponding ground-truth HDR references. We also visualize histograms of our HDR images and
ground truth. For better visualization, we plot HDR histogram using smoothed kde method.

HDRFlowLAN-HDR NECHDR OursOurs rendered view

Figure 10: Qualitative comparison with 2D-to-4D HDR reconstruction. Two-stage baselines
first reconstruct HDR video using LAN-HDR, HDRFlow, and NECHDR, then apply MoSca for 4D
reconstruction. Our method produce more coherent HDR radiance and stable geometry.
Two-stage 2D-to-4D HDR reconstruction. We compare HDR-NSFF with a two-stage baseline that
first reconstructs HDR video using 2D HDR approaches Chung and Cho (2023); Xu et al. (2024);
Cui et al. (2024)and then applies MoSca (Lei et al., 2025) for 4D reconstruction. Although recent
2D HDR video methods incorporate motion cues within the image domain, they do not build a 3D
representation of geometry and motion. Consequently, exposure-inconsistent frames reconstructed in
2D may still contain radiometric or geometric deviations, and these inaccuracies propagate to the
subsequent 4D reconstruction stage, leading to less stable radiance fields and geometry (see Fig. 10).
In contrast, HDR-NSFF jointly models radiance, geometry, and motion within a end-to-end manner,
resulting in more consistent reconstructions under challenging exposure alternation. You can find
more details in Appendix D.3.

6 CONCLUSION

In this work, we introduced HDR-NSFF, the first framework that jointly reconstructs HDR radiance,
3D motion, and tone-mapping from alternatively exposed monocular videos. By explicitly modeling
scene flow and integrating learnable tone-mapping, our approach addresses the fundamental limita-
tions of prior HDR methods that operate purely in 2D image space. We further enhanced robustness
through semantic-based optical flow, depth priors, and generative prior, enabling reliable reconstruc-
tions under severe exposure variations and sparse temporal observations. Extensive experiments on
both real and synthetic datasets demonstrated that HDR-NSFF consistently outperforms baselines
across novel view synthesis, novel time synthesis, and combined view-time synthesis. In particular,
our method achieves sharper geometry, more faithful HDR radiance, and temporally coherent results
compared to state-of-the-art dynamic scene and HDR reconstruction models.

10
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APPENDIX

This appendix provides additional details complementary to the main manuscript. In Section A, we
describe the implementation details, including counterparts, dataset configuration, and experimental
setup. Section B elaborates on the Neural Scene Flow Fields framework, covering the regularization
terms. Section C presents HDR-NSFF–specific components such as tone-mapping, semantic tracking,
generative prior formulation, and the full objective function. Finally, Section D includes additional
experimental results, ablation studies, and the extension to 3DGS-based dynamic reconstruction, along
with demonstrations of 2D-to-4D HDR reconstruction. A supplementary video further showcases
novel-view rendering results.

CONTENTS

• Sec. A. Implementation Details.
• Sec. B. Details of Neural Scene FLow Fields.
• Sec. C. Details of High Dynamic Range Neural Scene Flow Fields.
• Sec. D. Additional Experiment Results.

A IMPLEMENTATION DETAILS

A.1 COUNTERPARTS

In this chapter, we briefly explain the method we compared as a counterparts in our experiments.

NeRF-WT. NeRF-W (Martin-Brualla et al., 2021) introduces per-image appearance and transient
embedding, modelling to handle dynamic changes such as lighting variations and moving objects.
In our experiments, we adapted NeRF-W to a dynamic HDR video (named NeRF-WT) using
appearance embedding for ISP modelling and transient part for scene dynamics. We follow the
hyperparameters given in the codebase. For implementation we used the codebase in https:
//github.com/kwea123/nerf_pl

HDR-Hexplane. HDR-Hexplane (Wu et al., 2024a) adopted Hexplane (Cao and Johnson, 2023)
for the dynamic 3D representation and MLP with exposure embeddings accompanied with fixed
gamma function to optimize ISP module. We follow the hyperparameters following manuscript. For
implementation we used the codebase in https://github.com/hustvl/HDR-HexPlane

A.2 DATASET

Synthetic. We select four synthetic scenes for evaluation: Lego, Mutant, Jumping Jack, and Stand
Up. Each image has a resolution of 800× 800, with exposure values spanning from -2EV to 5EV. To
maximize the influence of exposure change, we carefully adjust the camera viewpoints and lighting
directions.

The sampling rate is determined based on the motion speed of each scene. Specifically, the Lego
scene is subsampled by selecting every 10th frame, whereas the remaining scenes are sampled by
skipping every two frames.

Real. For the real dataset, we preset exposure time for each cameras before acquisition. We
set exposure time differently for each sequence. Sequence lengths and corresponding exposure
information are detailed in the Table S1 All sequences are synchronized using the GoPro software.

A.3 EXPERIMENTAL SETUP

To facilitate understanding of the experimental setup employed for the real dataset experiments, we
provide an illustrative diagram in Fig. S1 In the novel view synthesis experiment, performance is
evaluated by measuring the differences between synthesized results and the images captured from
cameras that were excluded from the training set, for all camera views i. In the novel view and time
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Name Exp. Time [s] # of frames
Big jump 1

960 ,
1

2880 ,
1

7680 324
Side walk 1

960 ,
1

2880 ,
1

7680 324
Jumping jack 1

720 ,
1

1920 ,
1

7680 324
Pointing walk 1

720 ,
1

1920 ,
1

7680 324
Tube toss 1

720 ,
1

1920 ,
1

7680 324
Bear 1

120 ,
1

480 ,
1

1920 324
Dog 1

120 ,
1

480 ,
1

1920 324
Tumbler 1

120 ,
1

480 ,
1

1920 324
Fire extinguisher 1

480 ,
1

960 ,
1

1920 324
Laptop 1

480 ,
1

960 ,
1

1920 324
Bag 1

120 ,
1

480 ,
1

1920 324
Ball 1

120 ,
1

480 ,
1

1920 324

Table S1: Parameter setting for real dataset

synthesis experiment, we evaluate performance by holding out certain segments of the time sequence
and measuring how accurately these withheld segments are inferred.

High Mid Low High Mid

Low Mid High Low

Train Test

𝑖

High
𝑖

Mid
𝑖 + 1

Low
𝑖 + 2

High
𝑖 + 3

Low
𝑖 + 8

Mid
𝑖 + 7

High
𝑖 + 6

Low
𝑖 + 5

Mid
𝑖 + 4

(a) 

(b) 

Figure S1: Illustration of two experimental setting. We illustrate two experimental settings
described in Sec. 4.2 in manuscript: (a) Novel view synthesis (b) Novel view and time synthesis.

B DETAILS OF NEURAL SCENE FLOW FIELDS

To model dynamic scenes, NSFF (Li et al., 2021) extend the concept of NeRF (Mildenhall et al.,
2020) by representing 3D motion as scene flow fields. NSFF learns a combination of static and
dynamic NeRF representations. The dynamic model, denoted as F dy

θ , explicitly models view and
time dependent variations by incorporating time t as an additional input. Beyond color and density,
it also predicts forward and backward 3D scene flow Ft=(ft→t+1, ft→t−1) and occlusion weights
Wt=(wt→t+1, wt→t−1) to handle 3D motion disocclusion:

(ct, σt, Ft,Wt) = F dy
θ (x,d, t). (11)

To supervise scene flow estimation, NSFF uses temporal photometric consistency. Specifically, for
each time i, scene flow is predicted for the 3D points sampled along rays, and this predicted flow is
used to warp corresponding points from neighboring times j ∈ N (i) to time i. The color and opacity
information of the warped points is then used to render the image at time i:

Ĉj→i(ri) =

∫ zf

zn

Tj(z)σj

(
ri→j(z)

)
cj
(
ri→j(z), di

)
dz, (12)

where ri→j(z) = ri(z) + fi→j

(
ri(z)

)
. (13)
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Temporal photometric consistency is enforced by minimizing the mean squared error (MSE) between
the warped rendered view and the ground-truth image:

Lphoto =
∑
ri

∑
j∈N (i)

∥Ĉj→i(ri)− Ci(ri)∥22. (14)

The static NeRF, F st
θ , represents a time-invariant scene using a multilayer perceptron (MLP). Given

an input position x and view direction d, it outputs the RGB color c, volume density σ, and
an unsupervised 3D mixing weight v that determines the blending between static and dynamic
components:

(c, σ, v) = F st
θ (x,d). (15)

Here, ct and σt denote the color and volume density at position x at time t. The final color is
computed by blending the static and dynamic components using the following rendering equation:

Ĉcb
i (ri) =

∫ zf

zn

T cb
i (z)σcb

i (z) ecbi (z) dz, (16)

where σcb
i (z)ccbi (z) is a linear combination of static and dynamic scene components, weighted by

v(z):
σcb
i (z)ccbi (z) = v(z)c(z)σ(z) + (1− v(z))ci(z)σi(z). (17)

Ti represents the transmittance at time i, while zn and zf denote the near and far depths along the ray.
The final rendered output Ĉcb

i (ri) is optimized against the ground-truth pixel color Ci(ri) using a
photometric loss:

Lcb =
∑
ri

∥Ĉcb
i (ri)− Ci(ri)∥22. (18)

Reconstructing dynamic scenes from monocular input is inherently ill-posed, and relying solely
on photometric consistency often leads to convergence at poor local minima. Therefore, NSFF
incorporates three additional guided losses: a term enforcing monocular depth and optical flow
consistency, a motion trajectory term promoting cycle-consistency and spatiotemporal smoothness,
and a compactness prior encouraging binary scene decomposition and reducing floaters via entropy
and distortion losses.

Following section, we elaborate on data-driven prior loss (Flow loss and Single-view depth loss) and
additional regularization terms introduced by NSFF (Li et al., 2021): Scene Flow Cycle Consistency
and Low-Level regularization term. We employ additional regularization terms consistently in both
our model and NSFF.

Flow Loss. Flow loss operates by minimizing the discrepancy between observed 2D pixel correspon-
dences, computed from pretrained optical flow networks and predicted 2D pixel correspondences,
obtained by projecting predicted 3D scene flows. This aligns 3D scene flow with pretrained 2D
motion estimation.

Given two adjacent frames at times i and j = i± 1, Lflow is calculated as follows. Let pi represent
a pixel location at frame i. The corresponding pixel location at frame j, denoted by pi→j , can be
computed using pretrained 2D motion estimation ui→j as pi→j = pi + ui→j .

The model predicts an expected scene flow F̂i→j(ri) corresponding to 3D location X̂i(ri) along the
ray ri passing through the pixel pi via volumetric rendering. Thus, the predicted 3D displacement
can be expressed as X̂i(ri) + F̂i→j(ri). Then, by applying the perspective projection operator Πj ,
corresponding to the camera viewpoint at frame j , the expected 2D pixel position p̂i→j(ri) at frame
j is calculated as:

p̂i→j(ri) = Πj

(
X̂i(ri) + F̂i→j(ri)

)
. (19)

Finally, the geometric consistency loss is computed by measuring the discrepancy between these two
pixel positions (observed vs. predicted) using the L1-norm:

Lflow =
∑
ri

∑
j∈{i±1}

||p̂i→j(ri)− pi→j(ri)||1. (20)
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Single-view Depth Prior. Encourages rendered depths to match predictions from a pretrained depth
model:

Ldepth =
∑
ri

||Ẑ∗
i (ri)− Z∗

i (ri)||1, (21)

where the superscript (∗) denotes scale-shift invariant normalization. These priors are combined into:

Ldata = Lflow + βdepthLdepth. (22)

Scene Flow Cycle Consistency. To ensure plausible scene motion, the loss ensures coherence
between forward and backward predicted scene flows for adjacent frames, mathematically defined as:

Lcyc =
∑
xi

∑
j∈{i±1}

wi→j ||fi→j(xi) + fj→i(xi→j)||1, (23)

where fi→j(xi) indicates the predicted displacement (scene flow) of point xi from time i to j.

Low-Level Regularization. Spatial-temporal smoothness is enforced through l1 regularization on
scene flow estimated between neighboring sampled 3D points along rays. This encourages 3D point
trajectories to be piecewise linear. Another sparsity regularization term, calculating an l1 loss in flow
estimation is also applied. This encourage minimal scene flow magnitudes across most spatial regions.
It is composed of three equally weighted components: spatial smoothness, temporal smoothness, and
minimal flow magnitude:

Lreg = Lsp + Ltemp + Lmin.

Spatial Smoothness. Following NSFF, the spatial smoothness term encourages nearby 3D samples
along the same camera ray to predict similar scene flows. For each sampled 3D location xi on ray ri,
we consider its neighboring samples N (xi) and penalize the weighted ℓ1 discrepancy:

Lsp =
∑
xi

∑
yi∈N (xi)

∑
j∈{i±1}

wdist(xi,yi) ∥fi→j(xi)− fi→j(yi)∥1 , (1)

where the weight is based on Euclidean distance: wdist(x,y) = exp(−2∥x− y∥2).
Temporal Smoothness. Inspired by the piecewise-linear motion prior of Vo et al., the temporal term
encourages each 3D trajectory to maintain low kinetic energy. This is implemented by minimizing
the squared norm of the sum of forward and backward scene flows:

Ltemp =
1

2

∑
xi

∥fi→i+1(xi) + fi→i−1(xi)∥22 . (2)

Minimal Flow Prior. Finally, following the observation that most points in the scene exhibit small
motion, we impose an ℓ1 penalty on all predicted scene flows to encourage near-zero flows where
appropriate:

Lmin =
∑
xi

∑
j∈{i±1}

∥fi→j(xi)∥1 . (3)

C DETAILS OF HIGH DYNAMIC RANGE NEURAL SCENE FLOW FIELDS

Our method is built upon the NSFF framework and therefore inherits its core loss formulation and
optimization structure. However, reconstructing HDR dynamic radiance fields from alternatively
exposed monococular videos introduces unique challenges not addressed in the original NSFF design.
To handle severe exposure fluctuations, saturation artifacts, and inconsistent appearance across
viewpoints, we adapt NSFF’s formulation by modifying the photometric loss (Eq. 9) and combined
loss (Eq. 8), and by introducing additional regularizers tailored for HDR reconstruction. Specifically,
our HDR-NSFF incorporates (i) a physically informed tone-mapping module, and (ii) a generative
prior that recovers saturated or missing information. We describe each of these components in detail
below, along with the updated objective function used for end-to-end optimization.
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C.1 TONE-MAPPING

Our goal is to reconstruct HDR dynamic radiance fields, encompassing both 3D space and motion,
from 2D multi-exposure LDR RGB images. A crucial component in this process is the tone-
mapping module, which bridges the gap between varying 2D observations and a coherent 3D HDR
representation. Specifically, tone-mapping module, T can be expressed as:

C = T (E, θ) = g
(
w(E)

)
, (24)

where E denotes the rendered radiance, w the white balance correction, g the camera response
function (CRF), and θ the radiometric parameters.

The white balance function w applies per-channel scaling using the white balance parameter θw =
[wr, wg, wb]

⊤ ∈ R3, producing a white balance-corrected image Ew. The CRF g is then applied to
Ew, mapping it to the final LDR image C. The CRF is parameterized as a piecewise linear function,
defined using 256 points uniformly sampled in the [0, 1] range. Values exceeding the dynamic range
are thresholded accordingly. During training, we adopt leaky-thresholding, to reduce saturation loss
in rendered images:

gleaky(x) =


αx, x < 0

g(x), 0 ≤ x ≤ 1

− α√
x
+ α+ 1, x > 1,

(25)

where α is the thresholding coefficient. This approach ensures effective color correction and dynamic
range handling during HDR-NSFF training.

We incorporate a smoothness loss to enforce that CRF varies smoothly in a physically plausible
manner Debevec et al. (2023). We penalize the second-order derivative of the CRFs: It is defined as
follows:

Lsmooth =
∑N

i=1

∑
e∈[0,1]

g′′i (e), (26)

where g′′(e) denotes the second order derivative of CRFs w.r.t. its input domain.

In the absence of a known camera response function (CRF), the choice of tone-mapping module
T (·, θ) determines the flexibility with which HDR radiance can be effectively recovered from LDR
inputs. Moreover, to build consistent HDR representations in 3D space, the tone-mapping module
must also act as a regularizer, preventing fluctuations in HDR results under multi-exposure conditions.
This combination of flexibility and regularization largely influences the overall quality and stability
of HDR field reconstruction.

C.2 DINO-TRACKER

DINO-Tracker is a self-supervised framework designed to accurately track points over long sequences
of video frames. Given an initial query point in an early frame of video, it estimates the trajectory of
these points throughout subsequent frames. The method leverages pretrained deep features from the
DINOv2-ViT (Oquab et al., 2023) model, which are refined by learning residual features via a small,
trainable CNN module. DINO feature and residual feature are aggregated to find correspondence
heatmap computed by cost volume. Lastly, additional CNN-refiner follows to further enhance
matching.

Optimization is performed using several losses

• Flow Loss (Lflow): Ensures predicted trajectories align closely with short-term optical flow corre-
spondences.

• DINO Best-Buddies Loss (Ldino-bb): Contrastively aligns refined features based on semantic
matches from original DINO embeddings.

• Refined Best-Buddies Loss (Lrfn-bb): Similar to DINO best-buddies loss but applied to newly
detected reliable matches among refined features.

• Cycle-Consistency Loss (Lrfn-cc): Encourages consistency in predicted trajectories, penalizing
trajectories that fail a cycle-consistency criterion.

• Prior Preservation Loss (Lprior): Regularizes the refined features to remain close in norm and
direction to original DINO features, ensuring semantic coherence is preserved.
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(a) Scene 1 (b) Scene 2

Figure S2: DINOv2 feature visualization under varying exposures. Despite large changes in
brightness, DINOv2 embeddings remain consistent, showing robust clustering across different
exposure levels.
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Figure S3: Multi-view augmentation using generative prior.

In contrast to the original DINO-Tracker, our proposed approach introduces a novel utilization of this
framework explicitly aimed at enhancing the robustness and accuracy of 2D dense correspondence
estimation. Specifically, we propose deriving dense matching from consecutive frames using the
trained DINO-Tracker model itself. Leveraging the semantic matching capability inherent to DINO
features, our method provides robust optical flow estimates even in challenging conditions such as
alternatively exposed video settings, where conventional texture-based methods typically degrade
due to information loss. Figure S2 shows that DINOv2 features is robust to exposure variance.

C.3 GENERATIVE PRIOR FOR RECOVERING SATURATED INFORMATION

In HDR-NSFF, we additionally employ generative prior (Wu et al., 2025) as a regularizer to stabilize
training under severe exposure inconsistencies. Generative prior provides a diffusion-based enhance-
ment prior that guides the radiance field toward semantically consistent reconstructions when input
frames suffer from brightness fluctuations or missing details. Concretely, we periodically generate
pseudo-observations by enhancing intermediate renderings with the Difix prior and incorporate them
into the optimization loop. This regularization not only improves geometric and radiometric stability
but also enforces stronger multi-view consistency in dynamic scenes, where exposure variations and
motion often break correspondences across views. As a result, HDR-NSFF achieves more coherent
reconstructions that generalize better to unseen exposures and viewpoints.

Generative prior regularization. To mitigate the sparse-view limitation of monocular input, we
adopt enhanced views generated via a generative prior (Wu et al., 2025). For these views, we apply a
patch-wise perceptual loss to encourage realistic and view-consistent appearance:

Lgen =
∑
p∈P

∥ϕ(Ĉp)− ϕ(Cgen
p )∥1, (27)

where ϕ denotes a perceptual feature extractor, and p indexes sampled patches. Since generative
priors may introduce hallucinations, we carefully balance their contribution by (i) delaying their
use until a stable stage of training ( 200K iterations), and (ii) training with enhanced views at a low
probability (10%) per iteration.
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Big jump Side walk

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 16.23 0.6268 0.194 13.75 0.4476 0.2755 16.62 0.6346 0.1874 14.1 0.5524 0.2139
4DGS 20.02 0.7283 0.1751 14.21 0.3724 0.319 18.46 0.702 0.1724 13.56 0.3927 0.254
MotionGS 11.4 0.1354 0.4549 9.42 0.0862 0.5628 13.58 0.2387 0.3692 8.79 0.1025 0.513
NeRF-WT 27.09 0.9051 0.0738 16.31 0.5023 0.2301 25.29 0.9061 0.0641 13.23 0.4243 0.2143
HDR-Hexplane 21.51 0.6235 0.2117 18.04 0.5653 0.2074 19.12 0.4931 0.2392 17.01 0.6214 0.1664
Ours 30.03 0.9239 0.0596 21.72 0.7494 0.1058 29.91 0.9263 0.0515 20.39 0.7132 0.1041

Jumping jack Pointing walk

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 17.44 0.7543 0.1251 18.19 0.5493 0.1274 17.16 0.7534 0.1206 14.07 0.6198 0.1745
4DGS 19.58 0.7486 0.1239 19.15 0.5733 0.1516 19.17 0.7373 0.1319 13.52 0.3664 0.2084
MotionGS 13.82 0.2474 0.3217 11.51 0.1244 0.4059 13.72 0.2472 0.3278 10.46 0.089 0.4774
NeRF-WT 30.93 0.9364 0.0384 19.94 0.6028 0.1384 27.36 0.9243 0.0488 15.26 0.5363 0.2018
HDR-Hexplane 17.24 0.4671 0.2112 19.89 0.5946 0.1466 16.97 0.4398 0.2111 16.67 0.6537 0.1674
Ours 31.83 0.9457 0.0353 23.66 0.7871 0.0721 29.72 0.9338 0.0433 20.05 0.7036 0.1046

Tube toss Bear thread

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 17.75 0.7547 0.1237 16.94 0.7071 0.0913 15.45 0.566 0.4656 14.89 0.3535 0.5652
4DGS 19.53 0.7429 0.127 17.72 0.6961 0.087 18.20 0.7811 0.2736 12.21 0.2426 0.5023
MotionGS 13.73 0.2469 0.3227 9.85 0.1433 0.3943 12.90 0.4995 0.494 9.83 0.1518 0.6414
NeRF-WT 31.63 0.9474 0.0315 19.44 0.8194 0.0704 22.13 0.8607 0.1618 13.55 0.2925 0.4098
HDR-Hexplane 17.13 0.4732 0.2211 16.43 0.6485 0.1096 22.08 0.7903 0.2597 18.09 0.5367 0.3357
Ours 32.08 0.9482 0.0348 24.78 0.9105 0.0366 30.19 0.9224 0.1337 23.93 0.7568 0.2448

Tumbler Dog

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 17.8 0.5645 0.2897 14.89 0.4618 0.3354 17.87 0.5403 0.2884 14.96 0.5193 0.3316
4DGS 22.05 0.8171 0.1753 17.54 0.6221 0.2124 27.15 0.9164 0.1069 19.42 0.7279 0.1661
MotionGS 15.41 0.5143 0.4434 12.16 0.3455 0.5881 15.26 0.4963 0.4309 11.73 0.3149 0.5667
NeRF-WT 31.97 0.9456 0.0625 20.48 0.7477 0.1733 31.7 0.9466 0.0719 20.15 0.7525 0.143
HDR-Hexplane 24.98 0.825 0.1828 22.24 0.7556 0.1909 25.02 0.8445 0.1905 20.46 0.7165 0.2318
Ours 34.92 0.9428 0.0727 27.85 0.8863 0.0927 33.14 0.944 0.0841 24.85 0.8422 0.1441

Fire extinguisher Laptop

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 21.04 0.8215 0.1300 26.5 0.6232 0.1742 23.17 0.8437 0.102 27.41 0.7219 0.1107
4DGS 22.73 0.8568 0.1324 23.94 0.6189 0.2659 23.86 0.8818 0.1023 28.34 0.8203 0.0957
MotionGS 18.34 0.6445 0.2728 20.56 0.4259 0.4292 18.64 0.6568 0.2378 20.8 0.4533 0.2908
NeRF-WT 32.78 0.9506 0.0496 24.39 0.6706 0.2079 37.4 0.9801 0.0197 29.26 0.9034 0.048
HDR-Hexplane 23.57 0.8876 0.0797 28.78 0.7612 0.080 23.51 0.8993 0.0721 29.9 0.8375 0.0611
Ours 36.82 0.9686 0.0298 32.04 0.8494 0.0777 37.28 0.9759 0.0231 33.32 0.9141 0.0407

Bag Ball

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 18.33 0.6867 0.2029 19.32 0.5594 0.1516 17.38 0.6033 0.2433 16.08 0.4525 0.2439
4DGS 19.54 0.7723 0.1744 18.13 0.6577 0.1706 21.01 0.8016 0.1534 16.17 0.5384 0.2431
MotionGS 14.59 0.4542 0.3284 12.43 0.3155 0.3460 13.95 0.3903 0.3366 10.47 0.2114 0.4195
NeRF-WT 29.9 0.9518 0.0488 22.34 0.7912 0.09 28.26 0.9453 0.0461 16.7 0.5584 0.1974
HDR-Hexplane 18.84 0.6643 0.2116 19.82 0.6863 0.1631 18.38 0.6246 0.2101 19.3 0.5772 0.1992
Ours 32.53 0.9532 0.0495 27.13 0.8937 0.0603 33.11 0.9482 0.0473 26.22 0.8431 0.0827

Table S2: Quantitative results of novel view synthesis on GoPro dataset. The green and yellow
colors stand for the best and the second best , respectively.

C.4 OBJECTIVE FUNCTION

Finally, our HDR-NSFF is end-to-end optmized using the following loss:

L = Lcb + Lphoto + βdataLdata + βregLreg + βsmoothLsmooth + βgenLgen, (28)

where the β coefficients weight each term. Additional regularization terms, Lreg leveraging scene
flow priors.

D ADDITIONAL EXPERIMENT RESULTS

We provide additional experimental results that could not be included in the main manuscript, due
to page limit. Specifically, Tables S2, S3, & S4 present per-scene quantitative results for each
experiment. Figures S8–S19illustrates qualitative outcomes for additional real datasets not shown in
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Big jump Side walk

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 17.09 0.6856 0.1858 15.05 0.4765 0.3175 17.48 0.7095 0.1621 15.49 0.609 0.2292
HDR-Hexplane 19.01 0.5076 0.2301 15.13 0.4166 0.2604 19.08 0.4914 0.2389 16.33 0.5778 0.1699
Ours 30.13 0.924 0.0662 22.09 0.756 0.1515 30.18 0.927 0.0564 21.03 0.7304 0.1413

Jumping jack Pointing walk

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 18.26 0.7873 0.1212 19.82 0.62 0.1448 18.21 0.7752 0.1286 15.56 0.6301 0.248
HDR-Hexplane 17.22 0.4626 0.2134 19.56 0.5833 0.1471 16.98 0.4383 0.2107 16.4 0.6171 0.1702
Ours 32.03 0.9457 0.0395 24.2 0.7954 0.0995 30.05 0.9346 0.0473 20.74 0.7194 0.1287

Tube toss Bear thread

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 18.5 0.7968 0.1095 18.4 0.7628 0.0967 16.91 0.5648 0.4884 15.96 0.3872 0.5795
HDR-Hexplane 17.15 0.4737 0.2204 16.35 0.6457 0.1096 21.81 0.785 0.2604 17.35 0.493 0.3452
Ours 32.27 0.9482 0.0378 25.19 0.9125 0.0498 30.4 0.9235 0.1437 24.29 0.7626 0.2869

Dog Tumbler

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 18.42 0.5972 0.3588 15.28 0.4708 0.3672 18.84 0.6352 0.2457 16.25 0.4823 0.3693
HDR-Hexplane 25.02 0.8438 0.1881 17.38 0.4989 0.2992 24.93 0.8247 0.1837 20.42 0.6685 0.2142
Ours 33.45 0.9452 0.0875 21.16 0.6793 0.2781 35.14 0.944 0.0752 26.12 0.8476 0.1415

Fire extinguisher Laptop

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 22.94 0.8639 0.1094 27.67 0.6782 0.1842 24.19 0.8908 0.0760 28.87 0.7801 0.0971
HDR-Hexplane 23.56 0.8854 0.0804 27.84 0.7416 0.0847 23.54 0.8992 0.0719 29.67 0.8359 0.0610
Ours 37.00 0.9694 0.0331 32.46 0.8568 0.0984 37.41 0.9763 0.0237 33.72 0.9187 0.0454

Bag Ball

Method Full Dynamic only Full Dynamic only
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

NSFF 19.33 0.7352 0.1815 20.51 0.6336 0.1439 17.95 0.6685 0.2042 17.25 0.5172 0.2595
HDR-Hexplane 18.85 0.6641 0.2116 19.76 0.6818 0.1627 18.36 0.6243 0.2104 18.91 0.5684 0.2014
Ours 32.26 0.9525 0.0525 26.91 0.8873 0.0748 32.64 0.9468 0.0499 25.25 0.8185 0.1105

Table S3: Quantitative results of novel time synthesis on real data. The green and yellow colors
stand for the best and the second best , respectively.

synthetic dataset-Full
Methods Lego Mutant Standup Jumping Jack

PSNR
NSFF 15.45 16.97 13.47 15.53

NeRF-WT 29.55 33.06 32.55 29.25
HDR-Hexplane 28.58 30.88 30.83 29.50

Ours 34.64 36.13 35.80 33.72
SSIM

NSFF 0.6472 0.6348 0.4958 0.6551
NeRF-WT 0.9595 0.9114 0.9556 0.9200

HDR-Hexplane 0.9443 0.8526 0.9112 0.9137
Ours 0.9670 0.9278 0.9564 0.9348

LPIPS
NSFF 0.1556 0.1243 0.2368 0.1364

NeRF-WT 0.0171 0.0316 0.0224 0.0655
HDR-Hexplane 0.0257 0.0708 0.0603 0.0539

Ours 0.0147 0.0305 0.0249 0.1229

synthetic dataset-Dynamic
Methods Lego Mutant Standup Jumping Jack

PSNR
NSFF 15.94 18.43 10.25 13.74

NeRF-WT 22.32 27.58 19.77 16.33
HDR-Hexplane 24.61 29.71 21.59 19.57

Ours 28.77 31.80 24.98 23.21
SSIM

NSFF 0.6145 0.5152 0.1601 0.5795
NeRF-WT 0.8517 0.8289 0.7741 0.5412

HDR-Hexplane 0.8626 0.8443 0.7665 0.7262
Ours 0.9062 0.9115 0.8816 0.8349

LPIPS
NSFF 0.1528 0.1708 0.3097 0.1345

NeRF-WT 0.0592 0.0845 0.0988 0.1154
HDR-Hexplane 0.1217 0.0724 0.1547 0.0794

Ours 0.0426 0.0590 0.0749 0.0538

Table S4: Quantitative results of novel view and time synthesis on synthetic dataset. The green
and yellow colors stand for the best and the second best , respectively.

the main paper. Moreover, supplementary videos include more HDR, LDR, and novel view rendering
results. Please refer supplementary video for further visualization results.

D.1 ABLATION STUDY

We analyze the impact of our proposed semantic-based optical flow on the novel view synthesis task
using 8 real dataset samples. We compare two variants of our method: (1) Ours (w/ RAFT), in which
the RAFT optical flow is used without modification, and (2) Ours (w/ RAFT Finetuned), where RAFT
is fine-tuned on synthetic multi-exposure data. Note that, as shown in Figure 6, the original RAFT
model was not trained on multi-exposed images, resulting in high errors when applied directly in our
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Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Ours w/ RAFT (Teed and Deng, 2020) 30.42 0.9269 0.0246 21.38 0.7369 0.0675
Ours w/ Finetuned 30.68 0.9234 0.0253 21.51 0.7377 0.0689
Ours w/ Dino-Tracker (Tumanyan et al., 2024) 31.01 0.9301 0.0233 22.55 0.7714 0.0697

Table S5: Ablation study of flow model. To compare the effect of flow regularization, we compare
NVS performance of our approach against the baseline optical flow model (RAFT Teed and Deng
(2020)) and a stronger baseline fine-tuned RAFT on a multi-exposure adaptation of the FlyingTh-
ings3D dataset.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
MoSca w/ TM 26.67 0.920 0.060 15.96 0.463 0.064
MoSca w/ TM + DT 29.35 0.937 0.040 21.22 0.751 0.064

Table S6: Quantitative results of MoSca with our proposed modules on GoPro outdoor scenes
for HDR novel view synthesis. MoSca with Tone-mapping (TM) aligns exposure-varied inputs
into a consistent HDR radiance but still suffers from unreliable motion due to CoTracker’s exposure
sensitivity. Incorporating DINO-Tracker (DT) provides exposure-robust semantic flow, significantly
improving both HDR reconstruction and dynamic motion stability.

setting. By fine-tuning it on synthetic data, the performance is improved. As shown in Table S5, our
proposed method achieves the best results.

D.2 EXTENSION TO 3DGS-BASED DYNAMIC RECONSTRUCTION

While our method is developed on top of NSFF, its core components—tone-mapping and exposure-
robust semantic flow via DINO-Tracker—are not tied to the NSFF framework. In this section,
we demonstrate that our approach is broadly applicable and can be seamlessly integrated into 3D
Gaussian Splatting (3DGS)–based dynamic reconstruction pipelines.

Applicability beyond NSFF. The primary objective of our design is to make dynamic 4D recon-
struction robust to the exposure variance inherent in alternatively exposed monocular videos. To
verify that the proposed components are method-agnostic, we extend our pipeline to a representative
3DGS-based method, MoSca (Lei et al., 2025). For this purpose, we integrate our modules into
MoSca without modifying its core architecture. First, our learnable tone-mapping (TM) module
transforms LDR frames acquired under varying exposures into a unified HDR radiance space, provid-
ing exposure-invariant appearance supervision throughout the optimization. In addition, we replace
MoSca’s original motion estimation, CoTracker (Karaev et al., 2024) with semantic flow obtained
from DINO-Tracker(DT), which offers robust correspondence cues under severe illumination and
exposure variations. With these modifications, we assess whether the proposed components can still
enhance HDR dynamic reconstruction in a framework that depends on explicit Gaussian tracking
rather than continuous scene-flow modeling.

Experimental setup. We run all experiments on the proposed GoPro outdoor dataset. For this
ablation, we compare two variants of MoSca augmented with our components: MoSca + TM, which
incorporates only our tone-mapping (TM) module, and MoSca + TM + DT, our full configuration
equipped with both exposure-aware appearance normalization and robust semantic flow (DINO-
Tracker, DT). We note that the original MoSca configuration with CoTracker-based motion cues
consistently failed to converge under alternatively exposed inputs. Thus, we exclude it from compari-
son. We evaluate novel view synthesis (NVS) results and report quantitative metrics in addition to
qualitative visualizations.

Quantitative results. Table S6 shows that applying only the tone-mapping module improves the HDR
appearance reconstruction, as it successfully aligns exposure-varied images into a common radiomet-
ric domain. However, this configuration struggles to recover consistent motion: the CoTracker-based
correspondences often fail under extreme exposure variations, leading to incorrect dynamic geometry.
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Figure S4: Qualitative results of MoSca with our proposed modules on GoPro outdoor scenes
for HDR novel view synthesis. MoSca with Tone-mapping module (TM) produces HDR-like
appearances but suffers from temporal inconsistency and distorted dynamic geometry due to exposure-
sensitive motion estimation. In contrast, MoSca with TM and DINO-Tracker (DT) leverages exposure-
robust semantic flow, yielding stable geometry and photometrically consistent HDR novel views
under challenging exposure alternation.

When both TM and DINO-Tracker are applied, the model achieves the best performance across all
metrics. The semantic flow provides exposure-robust motion cues, enabling the 3DGS optimization
to recover temporally stable Gaussian trajectories and coherent HDR appearance over time.

Qualitative results. Figure S4 shows qualitative results of MoSca based our approach on our GoPro
Outdoor scenes. While MoSca+TM produces HDR-like frames, the reconstructed geometry becomes
inconsistent across time due to unreliable motion supervision. In contrast, MoSca+TM+DT produces
stable and photometrically consistent HDR novel views, successfully handling complex exposure
alternation and large dynamic motions.

These results demonstrate that the improvements brought by our approach—our tone-mapping
module and exposure-robust semantic flow—are not specific to NSFF. The same components substan-
tially enhance a 3DGS-based method, improving both radiance reconstruction and motion stability.
This indicates that the proposed modules provide general utility for 4D HDR reconstruction from
alternatively exposed monocular videos, regardless of the underlying 3D representation.

D.3 2D-TO-4D HDR RECONSTURCTION

We compare our method against a two-stage baseline that first reconstructs an HDR video from
alternatively exposed input frames using existing 2D HDR video methods—LAN-HDR (Chung
and Cho, 2023), HDRFlow (Xu et al., 2024), and NECHDR (Cui et al., 2024)—and subsequently
applies a dynamic 4D reconstruction framework. For each method, the predicted HDR frames are
tone-mapped using a fixed µ-law operator, which compresses HDR radiance values E into the LDR
domain through a logarithmic mapping:

M(E) =
log(1 + µE)

log(1 + µ)
, (29)

where µ = 500 controls the compression strength. The tone-mapped frames are then provided as
input to MoSca (Lei et al., 2025) for 4D reconstruction. For a fair comparison with the two-stage
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HDR-MoScaHDRFlowLAN-HDR NECHDR OursOurs rendered view

Figure S5: Qualitative comparison with 2D-to-4D HDR reconstruction.A two-stage baseline
reconstructs HDR video using LAN-HDR (Chung and Cho, 2023), HDRFlow (Xu et al., 2024), or
NECHDR (Cui et al., 2024), applies a fixed µ-law tone mapping, and performs 4D reconstruction
with MoSca (Lei et al., 2025). For reference, we also include a MoSca-based variant of our method
(HDR-MoSca). While 2D-to-4D baselines fail to recover, our approach yields temporally coherent
HDR radiance and stable geometry.

2D-to-4D baseline, which uses MoSca for 4D reconstruction, we additionally report a MoSca-based
variant of our pipeline (HDR-MoSca). This isolates the effect of the 2D HDR reconstruction stage
from the choice of 4D representation.

While these 2D HDR video methods produce visually plausible results under mild motion, they
fundamentally operate within the 2D image plane and therefore inherit the limitations outlined in
Figure 2. In scenarios with noticeable camera motion they struggle to reliably handle occlusions,
complex dynamics, and the severe exposure inconsistency intrinsic to alternatively exposed videos.

When such inconsistent HDR frames are used for 4D reconstruction, the downstream model receives
observations that are radiometrically unstable and geometrically incoherent, preventing reliable
estimation of density, radiance, and dynamic motion. Since the second stage has no mechanism
to correct errors originating from the 2D reconstruction stage, these radiometric inconsistencies
propagate forward and degrade the overall quality of the 4D reconstruction. Figure S5 shows that
the two-stage 2D-to-4D baseline often produces temporally inconsistent radiance fields and fails to
reconstruct stable geometry under exposure variation.

In contrast, our method performs end-to-end dynamic HDR radiance reconstruction directly from
alternatively exposed inputs, jointly reasoning about radiance, geometry, and motion within a unified
4D representation. This formulation leverages geometric and motion priors unavailable to 2D
methods, enabling consistent tone reproduction, recovery of valid information in saturated regions,
and significantly more stable reconstruction under challenging exposure variations.
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Figure S6: Training view and ours reconstrcuted views on GoPro indoor dataset. The odd-
numbered rows show sample LDR frames from the input sequence, captured with alternating expo-
sures (low, high, and mid). The even-numbered rows present our tone-mapped HDR reconstruction
results for the corresponding input views. Under- and over-exposed regions are reliably recovered
across all scenes. Even in areas where severe saturation is expected, such as the smile-emoji picture on
the wall or the region directly beneath the light source, our method accurately reconstructs fine details.
Even the mid-exposure frames contain locally saturated regions, yet these areas are consistently
restored with high fidelity.
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Figure S7: Training view and ours reconstrcuted views on GoPro outdoor dataset. The odd-
numbered rows show sample LDR frames from the input sequence, captured with alternating expo-
sures (low, high, and mid). The even-numbered rows present our tone-mapped HDR reconstruction
results for the corresponding input views. Across the outdoor scenes, our method robustly recon-
structs HDR radiance even under strong and diverse motion patterns. It performs reliably in scenarios
involving large vertical motion in Big Jump, lateral motion in Pointing Walk, and fast object motion
in Tube Toss. Despite these challenging dynamics, the model successfully restores both saturated
regions caused by strong sunlight reflections on buildings and under-exposed regions cast in shadow,
demonstrating consistent reconstruction quality across a wide range of exposure conditions.
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Figure S8: Qualitative results of novel view synthesis on Tumbler data.
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Figure S9: Qualitative results of novel view synthesis on Bear thread data.
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Figure S10: Qualitative results of novel view synthesis on Dog data.
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Figure S11: Qualitative results of novel view synthesis on Big jump data.
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Figure S12: Qualitative results of novel view synthesis on Jumping jack data.
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Figure S13: Qualitative results of novel view synthesis on Pointing walk data.
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Figure S14: Qualitative results of novel view synthesis on Side walk data.
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Figure S15: Qualitative results of novel view synthesis on Tube toss data.
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Figure S16: Qualitative results of novel view synthesis on Fire extinguisher data.
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Figure S17: Qualitative results of novel view synthesis on Laptop data.
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Figure S18: Qualitative results of novel view synthesis on Bag data.
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Figure S19: Qualitative results of novel view synthesis on Ball data.
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USE OF LARGE LANGUAGE MODELS

A large language mode was used only for minor assistance in writing and improving the clarity of
presentation.
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