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(b) Tone-mapped HDR novel view and time

(c) Novel LDR views and depth
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Figure 1: High Dynamic Range Neural Scene Flow Fields (HDR-NSFF) reconstruct dynamic
HDR radiance field from (a) alternatively exposed videos of dynamic scenes. Our method enables
the rendering of (b) HDR novel views across both spatial and temporal domains. Additionally, we
can generate (c) novel LDR views along with their corresponding depth maps.

ABSTRACT

Radiance of real-world scenes typically spans a much wider dynamic range than
what standard cameras can capture, often leading to saturated highlights or under-
exposed shadows. While conventional HDR methods merge alternatively exposed
frames, most approaches remain constrained to the 2D image plane, failing to
model geometry and motion consistently. To address these limitations, we present
HDR-NSFF, a novel framework for reconstructing dynamic HDR radiance fields
from alternatively exposed monocular videos. Our method explicitly models 3D
scene flow, HDR radiance, and tone mapping in a unified end-to-end pipeline.
We further enhance robustness by (i) extending semantic-based optical flow with
DINO features to achieve exposure-invariant motion estimation, and (ii) incor-
porating a generative prior as a regularizer to compensate for sparse-view and
saturation-induced information loss. To enable systematic evaluation, we construct
a real-world GoPro dataset with synchronized multi-exposure captures. Experi-
ments demonstrate that HDR-NSFF achieves state-of-the-art performance in novel
view and time synthesis, recovering fine radiance details and coherent dynamics
even under challenging exposure variations and large motions.

1 INTRODUCTION

Radiance of real-world scenes typically spans a wider dynamic range than what standard cameras
can capture (see Fig. 1). As a result, captures with standard cameras often suffer from overexposed
highlights or underexposed shadows, leading to severe information loss in critical regions. A widely
adopted strategy to address this limitation is high dynamic range (HDR) imaging, which captures
multiple low dynamic range (LDR) frames at different exposures and merges them to form a HDR
image. DR has become essential for enhancing realism and preserving radiometric information

However, most existing HDR methods remain fundamentally constrained to the 2D image plane.
Video-based HDR approaches (Kalantari et al., 2017; Chen et al., 2021; Chung and Cho, 2023; Xu
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Figure 2: Comparison of HDR video reconstruction on training views. Given alternatively
exposed video, HDR video reconstruction baselines, i.e., LAN-HDR (Chung and Cho, 2023) and
HDRFlow (Xu et al., 2024), fail to produce consistent results, while our model ensures temporal
coherence and recovers valid information in saturated regions.

et al., 2024) typically align consecutive frames and apply refinement to suppress ghosting and motion
artifacts. Operating purely in image space, these methods cannot capture 3D motion, thus failing to
handle occlusions, dynamics, varying radiance, and viewpoint changes (see Fig.2). These limitations
clearly indicate the need to move beyond conventional 2D fusion toward a 3D representation.

In this work, we propose a framework for reconstructing HDR dynamic radiance fields from alterna-
tively exposed monocular videos. We represent the scene as a continuous function of both space and
time, whose outputs include HDR radiance, density, and 3D motion. Due to the additional variation in
exposure, the HDR dynamic reconstruction attains a higher order of ill-posedness than reconstruction
only across space and time. To address, we propose a dedicated pipeline built upon a dynamic neural
radiance field (Li et al., 2021), as it leverages geometric and motion priors that can counteract the
ill-posedness of the problem. Then, we jointly optimize the radiance field together with a learnable
tone-mapping function, enabling HDR reconstruction and tone mapping in an end-to-end manner.

In designing the pipeline, a critical challenge of alternatively exposed video lies in the severe color
inconsistency across frames, which induces combinatorial degradations spanning tone mapping,
geometry, and motion priors. Thus, we analyze the robustness of each component to exposure
variation and investigate the optimal combination among them. In particular, for motion prior, we
observe that the semantic features of DINOv2 (Oquab et al., 2023) demonstrate strong robustness
to illumination changes. Inspired by this observation, we extend DINO-Tracker (Tumanyan et al.,
2024) to predict dense optical flow that remains reliable under varying exposures, and integrate these
predictions into scene flow learning for dynamic HDR reconstruction.

Another major challenge lies in the correlation between the sparse-view nature of monocular videos
and the information loss induced by saturation under extreme exposures. In other words, the state of
a moving object can only be observed at specific timesteps, and if those observations are saturated,
the result is an irrecoverable loss of information. To mitigate this issue, we incorporate generative
priors (Wu et al., 2025) to compensate for the loss by augmenting the single training view with
multi-view information and distilling it into the radiance field.

In addition to the synthetic dataset (Wu et al., 2024a), we evaluate our method on a newly con-
structed real-world dataset, which spans a wide range of scenarios including indoor and outdoor
environments, diverse objects, and human subjects. Across both domains, our method consistently
outperforms existing baselines, including NeRF-W (Martin-Brualla et al., 2021), 4DGS (Wu et al.,
2024b), MotionGS (Zhu et al., 2024) and HDR-Hexplane (Wu et al., 2024a), demonstrating superior
reconstruction quality and robustness under challenging exposures.

To summarize, our key contributions are:
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• HDR-NSFF Framework: We propose the first method that jointly models HDR scene flow fields
enabling both novel view rendering and time interpolation.

• Robust Learning Strategies: We enhance scene flow learning by extending DINO-Tracker for
exposure-robust motion estimation, and introduce generative priors as regularizers to overcome
sparse-view limitations.

• Comprehensive Evaluation: We provide extensive experiments and a new real-world dataset with
alternative exposures, demonstrating state-of-the-art performance in challenging HDR scenarios.

2 RELATED WORK

High Dynamic Range Video Reconstruction. Creating HDR images from multi-exposure inputs is
a long-studied problem in computational photography. A long line of work reconstructs HDR video
by aligning and fusing alternatively exposed LDR frames (Kang et al., 2003; Kalantari et al., 2017;
Chen et al., 2021; Chung and Cho, 2023; Xu et al., 2024). These approaches typically rely on optical
flow or CNN-based alignment in 2D, followed by refinement to suppress ghosting. While effective
for moderate motion, they remain vulnerable to occlusions, large displacements, and exposure
inconsistencies. In contrast, our work reconstructs HDR video in 3D, enabling consistent rendering
even under challenging dynamics.

Dynamic Scene Reconstruction. NeRF-based methods such as NSFF (Li et al., 2021), DynIBaR (Li
et al., 2023), HyperNeRF (Park et al., 2021), and factorized grid models like HexPlane (Cao and
Johnson, 2023) and K-Planes (Fridovich-Keil et al., 2023) have advanced free-viewpoint rendering
of dynamic scenes. These methods represent a scene as a continuous function of space and time,
sometimes augmented with deformation fields or canonical templates. They can synthesize novel
views or even novel time steps. In parallel, 3D Gaussian Splatting has recently been extended
to dynamic settings through 4DGS (Wu et al., 2024b), MotionGS (Zhu et al., 2024), Gaussian
Marbles (Stearns et al., 2024), and DeformableGS (Yang et al., 2024b), achieving high efficiency and
real-time rendering. Despite their success, all of these methods assume photometrically consistent
LDR inputs and do not address the challenges of HDR content. Thus, they struggle to faithfully
represent scenes with extreme lighting variations, whereas our approach explicitly targets HDR
reconstruction of dynamic radiance fields.

High Dynamic Range Novel View Synthesis. Several recent works integrate HDR modeling into
volumetric representations, mainly for static scenes. HDR-NeRF (Huang et al., 2022) and HDR-
Plenoxel (Jun-Seong et al., 2022) model radiance together with tone-mapping or exposure functions,
enabling HDR novel view synthesis from multi-exposure data. GaussHDR (Liu et al., 2025) extends
HDR reconstruction to Gaussian Splatting with local tone mapping, while LTM-NeRF (Huang et al.,
2024) embeds spatially varying tone mapping directly into NeRF. These works demonstrate the
benefits of HDR-aware radiance fields but assume static content. The most relevant to our work is
HDR-HexPlane (Wu et al., 2024a), which extends a factorized grid representation to dynamic HDR
scenes by learning per-image exposure mappings. However, it does not explicitly model 3D motion,
limiting its ability to represent complex dynamics and to perform temporal synthesis. In contrast, our
method incorporates explicit motion modeling, allowing robust HDR reconstruction from real-world
alternating-exposure videos and supporting both novel-view and novel-time rendering.

3 PRELIMINARY

Neural Scene Flow Fields. Neural Scene Flow Fields (NSFF) extend NeRF (Mildenhall et al.,
2020) by jointly modeling static and dynamic components of a scene. The dynamic branch, F dy

θ ,
takes spatial location x, view direction d, and time t as inputs, and predicts color cdy

t , density σdy
t ,

forward/backward scene flow Ft, and disocclusion weights Wt:

(cdy
t , σdy

t , Ft,Wt) = F dy
θ (x,d, t). (1)

Scene flow is used to warp 3D points across time for enforcing temporal consistency. The static
branch, F st

θ , models time-invariant appearance:

(cst, σst, v) = F st
θ (x,d), (2)
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Figure 3: Overall pipeline of our propsed method. HDR-NSFF takes an alternatively exposed
video as input and estimate 3D scene flow for the sampled points along each ray. Neighboring frames
are then warped to render the HDR radiance at the target frame, which is tone-mapped to LDR via a
white-balance and camera-response function module. Photometric loss with the ground-truth LDR
images, along with optical flow and depth constraints from off-the-shelf models, jointly optimize
both the scene flow fields and tone-mapping module in an end-to-end manner.

where v is a blending weight. The final color is obtained by volume rendering with static–dynamic
combination:

Ĉi(ri) =

∫ zf

zn

Ti(z)
[
v(z)cst(z)σst(z) + (1− v(z))cdy

i (z)σdy
i (z)

]
dz. (3)

Here, Ti(z) denotes transmittance along the ray. This formulation allows NSFF to capture both
persistent geometry and spatio-temporal dependent motion within a unified radiance field.

4 HDR-NSFF:HIGH DYNAMIG RANGE NEURAL SCENE FLOW FIELDS

Our framework builds upon Neural Scene Flow Fields (NSFF) to reconstruct dynamic HDR radiance
fields from alternatively exposed monocular videos. NSFF exploits physical priors such as depth
and optical flow for consistent learning in LDR videos, while recent HDR radiance field methods
introduce tone-mapping modules but remain limited to static scenes. However, a direct combination
of these ideas is not sufficient for HDR video.

Dynamic HDR videos present fundamental challenges: alternating exposures cause severe color
inconsistency, which (i) prevents off-the-shelf models from delivering reliable performance and
(ii) limits the effectiveness of tone-mapping regularization. Addressing this requires a systematic
approach that disentangles and rethinks each component in light of HDR-specific aspects. Building on
this perspective, HDR-NSFF is designed as an integrated framework that introduces tailored modules
and empirically grounded analyses, offering a coherent solution for dynamic HDR 4D reconstruction.

HDR-NSFF integrates four core components: (i) exposure-robust semantic flow estimation for
reliable motion learning (Sec. 4.1), (ii) robust depth estimation using a carefully selected model
verified through empirical analysis (Sec. 4.1), (iii) NSFF-based radiance field and tone-mapping joint
optimization, where we experimentally analyze tone-mapping function (Sec. 4.2, and (iv) generative
prior regularization to compensate for the sparse-view limitation of monocular input (Sec. B.7). An
overview of the pipeline is illustrated in Fig. 3.

4.1 EXPOSURE ROBUST LEARNING STRATEGIES

Semantic based Optical Flow. A key challenge in reconstructing HDR dynamic scenes from
alternatively exposed video is that frame-to-frame color inconsistencies significantly degrade the
reliability of conventional optical flow methods. Standard alignment techniques such as RAFT (Teed
and Deng, 2020) often fail under severe exposure variations (see Fig. 4 (a)).

In this context, we focus on the abundant embedding space of the self-supervised vision foundation
model DINOv2 (Oquab et al., 2023), which has demonstrated strong robustness to photometric
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Figure 4: Visualization of flow and depth estimation between varying exposed images. (a) RAFT
often fails under varying exposure conditions, yielding noticeable errors. Fine-tuning on synthetic
varying exposed data (RAFT-Finetuned) improves performance moderately, but our semantic-based
approach achieves higher accuracy. As highlighted by the red arrows, RAFT and RAFT-Finetuned
miss correct motion. (b) For depth estimation, Depth Anything V2 (Yang et al., 2024a) recovers finer
structural details and sharper object boundaries compared to MiDaS (Ranftl et al., 2020).

corruptions and perturbations, as shown by experiments on ImageNet-C (Hendrycks and Dietterich,
2019). We further investigate and observe the feature consistency, i.e., robustness, across multi-
exposure settings. These analyses are provided in the appendix. Built upon these observations, we
adopt a DINOv2-based point tracking method, DINO-Tracker (Tumanyan et al., 2024), as motion
estimation method, with a simple yet effective modification to ensure compatibility with our pipeline.

Since tracking errors accumulate with increasing frames under exposure variance, we redefine
tracking points at each timestep and estimate only the flow between adjacent frame pairs in both
forward and backward directions, as required by our pipeline. we also introduce motion masks
from SAM2 (Ravi et al., 2024) to restrict DINO-Tracker to operate only within motion regions for
preventing from noisy tracking performance in background. As a result, our semantic-based optical
flow achieves robust motion estimation even in the presence of severe exposure variation (Fig. 4),
providing consistent motion cues that are critical for HDR-NSFF.

Depth analysis under varying exposure. We investigate the robustness of off-the-shelf
depth estimation methods under exposure variance. For evaluation, we synthetically simulate
±2 EV exposure changes from given RGB images. Specifically, we first convert RGB im-
ages into pseudo-RAW representations using a learning-based RAW estimation model (Xing
et al., 2021), and then generate ±2 EV RGB images through the standard sRGB transforma-
tion. Following the evaluation protocol of prior work (Ke et al., 2024), we report the Ab-
solute Mean Relative Error (AbsRel) of depth estimation methods on the NYUv2 and Scan-
Net datasets (Silberman et al., 2012; Dai et al., 2017), with the results summarized in Table 1.

NYUv2 ScanNet
Methods Original +2EV -2EV Original +2EV -2EV
MiDaS 9.08 13.68 9.35 8.66 13.78 10.22
DPT 9.21 12.96 8.95 8.27 13.62 9.57
Marigold 5.81 11.26 6.66 7.24 14.26 8.33
Depth-Anything-V2 4.87 7.63 5.10 4.82 10.57 6.36

Table 1: Depth estimation results under exposure
variance. We employ AbsRel as the evaluation metric.

While each methods shows the subopti-
cal accuracy on ±2 EV condition, Depth-
Anything-V2 demonstrate the most robust
performance, achieving the best results un-
der these challenging conditions. Based on
this analysis, we adapt the geometric prior
of Depth-Anything-V2 in our pipeline.

4.2 TONE-MAPPING

Our goal is to reconstruct HDR dynamic radiance fields, encompassing both 3D space and motion,
from 2D multi-exposure LDR RGB images. A crucial component in this process is the tone-
mapping module, which bridges the gap between varying 2D observations and a coherent 3D HDR
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representation. Specifically, tone mapping can be expressed as:

C = T (E, θ) = g
(
w(E)

)
, (4)

where E denotes the rendered radiance, w the white balance correction, and θ the radiometric
parameters. In the absence of a known camera response function (CRF), the choice of tone-mapping
module T (·, θ) determines the flexibility with which HDR radiance can be effectively recovered
from LDR inputs. Moreover, to build consistent HDR representations in 3D space, the tone-mapping
module must also act as a regularizer, preventing fluctuations in HDR results under multi-exposure
conditions. This combination of flexibility and regularization largely influences the overall quality
and stability of HDR field reconstruction.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
w/o Tone-mapping 17.79 0.7048 0.0705 15.59 0.5577 0.1339
Fix CRF 25.55 0.8391 0.0487 20.43 0.6904 0.0911
MLP CRF 28.76 0.8861 0.0394 21.48 0.7256 0.0776
Piecewise CRF 31.01 0.9301 0.0233 22.55 0.7714 0.0697

Table 2: Comparison of tone-mapping designs.

From the perspectives of flexibility and
regularization, we revisit the prior HDR
radiance studies (Huang et al., 2022; Jun-
Seong et al., 2022; Wu et al., 2024a), which
explored different forms of CRF designs:
Fix CRF, a non-learnable handcrafted map-
ping (HDR-HexPlane); MLP CRF, a fully learnable MLP converting RGB to HDR function (HDR-
NeRF); and Piecewise CRF, a parametric form optimizing the white balance correction w and CRF
(HDR-Plenoxels). The Fix CRF enforces strong regularization but lacks flexibility, whereas the MLP
CRF provides high flexibility at the cost of weak regularization. We adopt the Piecewise CRF, as
it is designed to balance the two by applying per-channel scaling through learnable white balance
parameters. θw = [wr, wg, wb]

⊤. Through experiments on our real GoPro dataset under the novel
view synthesis setting, we observe that the Piecewise CRF achieves the highest quantitative scores
(see Table 2). These results suggest that a fixed CRF (Wu et al., 2024a) lacks the flexibility to account
for camera-specific response deviations, while fully unconstrained learning (Huang et al., 2022) often
leads to convergence instability.

Reconstructing dynamic HDR scenes from monocular videos is particularly challenging due to the
coupled effects of sparse temporal observations and information loss caused by saturation under
extreme exposures. At each timestep, only a single viewpoint is available, and if this observation is
saturated, the lost information cannot be recovered directly.

To mitigate this issue, we adopt a generative prior to compensate for information loss, extending its
use from static scene reconstruction (Wu et al., 2025) to dynamic HDR scene reconstruction. During
training, we periodically render unobserved views and enhance them using the pre-trained prior (see
Fig. S3), which are then incorporated back into the training loop as pseudo-observations.

This iterative augmentation helps recover and enforce consistency in regions affected by saturation,
leading to more reliable reconstruction of previously lost information. We also observe that it improves
geometric fidelity while also enhancing perceptual quality. In practice, we apply this generative
prior at controlled intervals to balance the benefit of additional supervision against potential artifacts
from generative hallucination (Sim and Moon, 2025). As a result, our framework is able to recover
more coherent structures and produce visually plausible HDR reconstructions, even under the severe
saturated condition and view sparsity of monocular, alternatively exposed videos.

4.3 OBJECTIVE FUNCTION

We train both the neural scene flow fields and the tone-mapping module by minimizing the Mean
Absolute Error (MAE) between rendered LDR views and ground-truth frames. Following NSFF (Li
et al., 2021), we replace the rendered color Ĉ with our tone-mapped output T (Ê), where Ê denotes
the rendered HDR radiance. The superscript cb denotes the combined rendering that fuses static and
dynamic components of the scene. The photometric losses are:

Lcb =
∑
ri

∥T (Êcb
i (ri))− Ci(ri)∥1, and (5)

Lphoto =
∑
ri

∑
j∈N (i)

∥T (Êj→i(ri))− Ci(ri)∥1, (6)

where r denotes a camera ray. Here, Êj→i(ri) denotes the HDR radiance warped from a frame j to i.
We also adopt the optical flow and single-view depth prior, denoted LFlow and Ldepth to regularize
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(a) Capture setup (b) Sampled sequences
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Figure 5: Evaluation setup and sampled sequences from our proposed GoPro dataset. To
evaluate novel view synthesis, we use nine GoPro Hero 13 Black cameras arranged at two height
levels with fixed intervals, synchronized to record multi-view video at three exposures (mid, low,
high). We construct a monocular alternatively exposed video by selecting one frame per time step
across exposures, and use the remaining views for evaluation. Note that the input of our method is a
monocular video and the setup described here is designed to evaluate the system.
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Figure 6: Qualitative results of novel view synthesis on real multi-exposed dynamic scene dataset.
Our method maintains more consistent geometry and color across varying viewpoints, while other
approaches (NeRF-WT (Quei-An, 2020), HDR-Hexplane (Wu et al., 2024a)) exhibit noticeable
artifacts and geometric distortions.

monocular reconstruction followed by NSFF (Li et al., 2021). For the CRF and generative prior
objective functions, we apply Lsmooth and Lgen, respectively. The total objective function of our
HDR-NSFF is as follows:

L = Lcb + Lphoto + βdataLdata + βregLreg + Lsmooth, (7)

where β are coefficients weight each term. The details can be found in the the supplementary material.

5 EXPERIMENTS

HDR-NSFF takes as input an alternatively exposed monocular video of a dynamic scene and jointly
reconstructs HDR radiance, 3D motion, and tone-mapping. We evaluate its performance specifically
designed for each subtask, including novel view synthesis, novel time synthesis, and novel view and
time synthesis. Since the exposure values of individual images cannot be directly estimated, we
assume that the scene is captured using three identical cameras. To convert HDR images into LDR
images, we borrow the tone-mapping function learned from neighboring cameras. All models are
evaluated using standard metrics (PSNR, SSIM (Wang et al., 2003), and LPIPS (Zhang et al., 2018)),
where results are reported on both real-world and synthetic datasets. Metrics are all averaged and
each color stands for the best and the second best , respectively.

We compare against representative baselines across three categories: (1) dynamic scene reconstruction
methods (NSFF (Li et al., 2021), 4DGS (Wu et al., 2024b), MotionGS (Zhu et al., 2024)), which
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degrade under alternatively exposed inputs; (2) dynamic reconstruction with appearance embeddings
(NeRF-WT (Quei-An, 2020)), which can disentangle transient appearance but cannot consistently
model shared scene motion; and (3) HDR volumetric reconstruction (HDR-HexPlane (Wu et al.,
2024a)), the closest prior tackling HDR in a dynamic 3D representation.

During training and testing, we sample 128 points along each ray and normalize the video sequence
to a temporal range of i ∈ [0, 1]. Training a full model takes about 15 hours per scene using a single
NVIDIA RTX 3090 GPU. Rendering at a resolution of 720×480 takes around 7 sec.

5.1 DATASETS

Proposed GoPro Dataset. While standard alternatively exposed videos are sufficient for training
HDR-NSFF, a single-camera setup cannot support evaluating novel view/time synthesis under varying
exposures. To address, we construct a real-world dataset captured with synchronized GoPro Hero 13
cameras at three exposures (low, mid, high). This dataset provides the first benchmark for dynamic
HDR reconstruction in real-world settings with explicit exposure variation. Figure 5 illustrates the
camera setup. Inspired by prior work (Yoon et al., 2020), we adopt a similar strategy but modify it to
accommodate varying exposures: at each timestamp, we select one frame per viewpoint from a single
camera for training, while reserving the remaining views for evaluation under exposure changes.

Synthetic Dataset. We modify the dataset proposed in HDR-HexPlane (Wu et al., 2024a). The
original dataset is rendered with a high frame rate and a multi-camera configuration. To better reflect
real-world exposure bracketing scenarios, we select four scenes and modified. We re-render scenes in
a monocular setup and uniformly sample 30 images to simulate sparse acquisition conditions. Further
implementation details are provided in the supplementary materials.

5.2 RESULTS

Novel View Synthesis. We evaluate novel view synthesis on our proposed GoPro dataset. For each
time instance, we render the scene from all camera poses not used during training and apply the
corresponding learned tone-mapping functions to convert the HDR renders to LDR. We then compare
these tone-mapped views against the GT LDR images. It directly assesses two key aspects: (1) the
quality of dynamic scene modeling, and (2) the accuracy of tone-mapping functions. Table 3 shows
that our approach achieves significant improvements in rendering fidelity compared to baselines, both
in highly dynamic regions and across the entire scene. Figure 6 its effectiveness in reconstructing HDR
scenes with fine detail across varying exposures. Methods without appearance embedding (NSFF (Li
et al., 2021), 4DGS (Wu et al., 2024b), MotionGS (Zhu et al., 2024)) fail to reconstruct consistent
HDR views under alternating exposures. NeRF-WT (Quei-An, 2020) and HDR-Hexplane (Wu et al.,
2024a) provide limited robustness but still struggle in real-world dynamic settings.

Novel View and Time Synthesis. We also evaluate novel view and time synthesis to demonstrate our
method’s ability to handle dynamic scenes with sparse temporal sampling (see Fig. 7). Following
NSFF (Li et al., 2021), we remove every other frame from the original video sequences during
training, and use the intermediate frames at held-out camera viewpoints for testing. Table 5 shows
that our results outperform competing models across all evaluation metrics.

For real-world evaluation on our GoPro dataset, we extend this setting to simultaneously test novel
view and time synthesis. While all camera views are retained to ensure realistic multi-view coverage,
we subsample frames from each video and evaluate the model at unseen time instances and camera
viewpoints. This joint evaluation directly measures the fidelity of both HDR radiance reconstruction
and learned 3D motion under exposure-varying, dynamic scenes. Importantly, in this experiment as
well, our model consistently surpasses all baseline methods 4.

While HDR-NSFF explicitly models 3D scene motion, enabling reliable synthesis across both space
and time. In contrast, HDR-HexPlane does not incorporate explicit motion modeling, which limits its
ability to handle space and time interpolation in dynamic HDR scenes.

Qualitative comparison of HDR reconstruction. To validate our HDR reconstruction, we qualita-
tively compare our results with ground-truth HDR images (see Fig. 8). Tone-mapped HDR views
from our model closely match ground truth, preserving fine details in both under- and overexposed

8
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Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF 17.04 0.6493 0.2243 15.22 0.5264 0.2644
4DGS 20.52 0.7717 0.1608 15.92 0.4992 0.2376
MotionGS 13.73 0.3282 0.3956 10.47 0.1697 0.5187
NeRF-WT 28.51 0.9215 0.0691 17.30 0.5847 0.1976
HDR-HexPlane 20.53 0.6243 0.2164 18.61 0.6370 0.1874
Ours w/ RAFT 31.00 0.9303 0.0688 23.30 0.7894 0.1168
Ours w/ Dino-Tracker 31.50 0.9363 0.0645 23.50 0.7930 0.1166
Ours w/ Generative prior 31.48 0.9359 0.0644 23.40 0.7936 0.1131

Table 3: Averaged quantitative results of novel
view synthesis on GoPro dataset. Our HDR-
NSFF achieves the best overall performance, with
DINO-Tracker offering the strongest improvement
in motion-consistent reconstruction and the gener-
ative prior further enhancing perceptual quality.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF 17.96 0.694 0.225 16.48 0.5548 0.294
HDR-HexPlane 20.15 0.5718 0.2182 17.37 0.5626 0.2145
Ours w/ RAFT 31.32 0.9335 0.0727 22.98 0.7687 0.1626
Ours w/ Dino-Tracker 31.75 0.937 0.0691 23.18 0.7754 0.1628
Ours w/ Generative prior 31.71 0.9365 0.0692 23.1 0.7754 0.1597

Table 4: Averaged quantitative results of novel
view and time synthesis on GoPro dataset. Our
method outperform baseline models.

Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NSFF 15.98 0.6457 0.1388 16.04 0.5697 0.1527
NeRF-WT 31.10 0.9366 0.0342 21.50 0.7490 0.0895
HDR-HexPlane 29.95 0.9055 0.0527 23.87 0.7999 0.1071
Ours 35.07 0.9465 0.0483 27.19 0.8836 0.0576

Table 5: Averaged quantitative results of novel
view and time synthesis on synthetic data. Our
method outperform baseline models.

NSFF NeRF-WT HDR-HexPlane OursGT

M
ut
an
t

Le
go

Figure 7: Qualitative results of novel view and
time synthesis on synthetic data. Since, our ap-
proach explicitly models scene flow, it excels at
time interpolation.
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Figure 8: Qualitative results on novel LDR/HDR view synthesis. We visualize LDR rendering
results at varying exposure levels (low, mid, and high), tone-mapped HDR rendering by ours and
corresponding ground-truth HDR references. We also visualize histograms of our HDR images and
ground truth. For better visualization, we plot HDR histogram using smoothed kde method.

regions. Histograms of pixel intensities further show that our reconstructions cover the full radiance
range, recovering values from very low to high intensities. In addition, novel LDR views rendered at
multiple exposures confirm that our method accurately controls exposure, reproducing under- and
over-saturation effects.

6 CONCLUSION

In this work, we introduced HDR-NSFF, the first framework that jointly reconstructs HDR radiance,
3D motion, and tone-mapping from alternatively exposed monocular videos. By explicitly modeling
scene flow and integrating learnable tone-mapping, our approach addresses the fundamental limita-
tions of prior HDR methods that operate purely in 2D image space. We further enhanced robustness
through semantic-based optical flow, depth priors, and generative prior, enabling reliable reconstruc-
tions under severe exposure variations and sparse temporal observations. Extensive experiments on
both real and synthetic datasets demonstrated that HDR-NSFF consistently outperforms baselines
across novel view synthesis, novel time synthesis, and combined view-time synthesis. In particular,
our method achieves sharper geometry, more faithful HDR radiance, and temporally coherent results
compared to state-of-the-art dynamic scene and HDR reconstruction models.
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ETHICS STATEMENT

Our work involves two datasets. The HDR-HexPlane synthetic dataset is distributed under the MIT
license and was employed exclusively for research, including rendering experiments. As a synthetic
and openly licensed resource, it entails no issues of privacy or confidentiality. We additionally
collected a real-world GoPro dataset with the informed consent of participants with participants fully
informed of the scope and objectives of the research. The dataset is used solely for academic research
purposes.

REPRODUCIBILITY STATEMENT

Our method is built upon the open-source Neural Scene Flow Fields (NSFF) and DINO-Tracker.
Implementation details are provided in Section B of the appendix, including data acquisition, objective
functions, and training procedures. If accepted, we plan to release both our method and the collected
dataset as open-source.
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A APPENDIX

In this appendix material, we provide additional details omitted from the manuscript. Sec. B covers
implementation. Sec. B.3 outlines the regularization terms used for NSFF physical prior, and Detailed
description about the DINO-Tracker model. Lastly, Sec. C includes additional experimental results
not shown in the manuscript due to page limits. We also provide a supplementary video that highlights
novel-view rendering results.

B IMPLEMENTATION DETAILS

B.1 COUNTERPARTS

In this chapter, we briefly explain the method we compared as a counterparts in our experiments.

NeRF-WT. NeRF-W (Martin-Brualla et al., 2021) introduces per-image appearance and transient
embedding, modelling to handle dynamic changes such as lighting variations and moving objects.
In our experiments, we adapted NeRF-W to a dynamic HDR video (named NeRF-WT) using
appearance embedding for ISP modelling and transient part for scene dynamics. We follow the
hyperparameters given in the codebase. For implementation we used the codebase in https:
//github.com/kwea123/nerf_pl

HDR-Hexplane. HDR-Hexplane (Wu et al., 2024a) adopted Hexplane (Cao and Johnson, 2023)
for the dynamic 3D representation and MLP with exposure embeddings accompanied with fixed
gamma function to optimize ISP module. We follow the hyperparameters following manuscript. For
implementation we used the codebase in https://github.com/hustvl/HDR-HexPlane

B.2 DATASET

Synthetic. We select four synthetic scenes for evaluation: Lego, Mutant, Jumping Jack, and Stand
Up. Each image has a resolution of 800× 800, with exposure values spanning from -2EV to 5EV. To
maximize the influence of exposure change, we carefully adjust the camera viewpoints and lighting
directions.

The sampling rate is determined based on the motion speed of each scene. Specifically, the Lego
scene is subsampled by selecting every 10th frame, whereas the remaining scenes are sampled by
skipping every two frames.

Real. For the real dataset, we preset exposure time for each cameras before acquisition. We
set exposure time differently for each sequence. Sequence lengths and corresponding exposure
information are detailed in the Table S1 All sequences are synchronized using the GoPro software.

name Exp. Time [s] # of frames
big jump 1

960 ,
1

2880 ,
1

7680 324
side walk 1

960 ,
1

2880 ,
1

7680 324
jumping jack 1

720 ,
1

1920 ,
1

7680 324
pointing walk 1

720 ,
1

1920 ,
1

7680 324
tube toss 1

720 ,
1

1920 ,
1

7680 324
bear 1

120 ,
1

480 ,
1

1920 324
dog 1

120 ,
1

480 ,
1

1920 324
tumbler 1

120 ,
1

480 ,
1

1920 324

Table S1: Parameter setting for real dataset

B.3 EXPERIMENTAL SETUP

To facilitate understanding of the experimental setup employed for the real dataset experiments, we
provide an illustrative diagram in Fig. S1 In the novel view synthesis experiment, performance is
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evaluated by measuring the differences between synthesized results and the images captured from
cameras that were excluded from the training set, for all camera views i. In the novel view and time
synthesis experiment, we evaluate performance by holding out certain segments of the time sequence
and measuring how accurately these withheld segments are inferred.

High Mid Low High Mid

Low Mid High Low

Train Test

𝑖

High
𝑖

Mid
𝑖 + 1

Low
𝑖 + 2

High
𝑖 + 3

Low
𝑖 + 8

Mid
𝑖 + 7

High
𝑖 + 6

Low
𝑖 + 5

Mid
𝑖 + 4

(a) 

(b) 

Figure S1: Illustration of two experimental setting. We illustrate two experimental settings
described in Sec. 4.2 in manuscript: (a) Novel view synthesis (b) Novel view and time synthesis.

B.4 DETAILS OF NEURAL SCENE FLOW FIELDS

To model dynamic scenes, NSFF (Li et al., 2021) extend the concept of NeRF (Mildenhall et al.,
2020) by representing 3D motion as scene flow fields. NSFF learns a combination of static and
dynamic NeRF representations. The dynamic model, denoted as F dy

θ , explicitly models view and
time dependent variations by incorporating time t as an additional input. Beyond color and density,
it also predicts forward and backward 3D scene flow Ft=(ft→t+1, ft→t−1) and occlusion weights
Wt=(wt→t+1, wt→t−1) to handle 3D motion disocclusion:

(ct, σt, Ft,Wt) = F dy
θ (x,d, t). (8)

To supervise scene flow estimation, NSFF uses temporal photometric consistency. Specifically, for
each time i, scene flow is predicted for the 3D points sampled along rays, and this predicted flow is
used to warp corresponding points from neighboring times j ∈ N (i) to time i. The color and opacity
information of the warped points is then used to render the image at time i:

Ĉj→i(ri) =

∫ zf

zn

Tj(z)σj

(
ri→j(z)

)
cj
(
ri→j(z), di

)
dz, (9)

where ri→j(z) = ri(z) + fi→j

(
ri(z)

)
. (10)

Temporal photometric consistency is enforced by minimizing the mean squared error (MSE) between
the warped rendered view and the ground-truth image:

Lphoto =
∑
ri

∑
j∈N (i)

∥Ĉj→i(ri)− Ci(ri)∥22. (11)

The static NeRF, F st
θ , represents a time-invariant scene using a multilayer perceptron (MLP). Given

an input position x and view direction d, it outputs the RGB color c, volume density σ, and
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an unsupervised 3D mixing weight v that determines the blending between static and dynamic
components:

(c, σ, v) = F st
θ (x,d). (12)

Here, ct and σt denote the color and volume density at position x at time t. The final color is
computed by blending the static and dynamic components using the following rendering equation:

Ĉcb
i (ri) =

∫ zf

zn

T cb
i (z)σcb

i (z) ecbi (z) dz, (13)

where σcb
i (z)ccbi (z) is a linear combination of static and dynamic scene components, weighted by

v(z):
σcb
i (z)ccbi (z) = v(z)c(z)σ(z) + (1− v(z))ci(z)σi(z). (14)

Ti represents the transmittance at time i, while zn and zf denote the near and far depths along the ray.
The final rendered output Ĉcb

i (ri) is optimized against the ground-truth pixel color Ci(ri) using a
photometric loss:

Lcb =
∑
ri

∥Ĉcb
i (ri)− Ci(ri)∥22. (15)

Reconstructing dynamic scenes from monocular input is inherently ill-posed, and relying solely
on photometric consistency often leads to convergence at poor local minima. Therefore, NSFF
incorporates three additional guided losses: a term enforcing monocular depth and optical flow
consistency, a motion trajectory term promoting cycle-consistency and spatiotemporal smoothness,
and a compactness prior encouraging binary scene decomposition and reducing floaters via entropy
and distortion losses.

Following section, we elaborate on data-driven prior loss (Flow loss and Single-view depth loss) and
additional regularization terms introduced by NSFF (Li et al., 2021): Scene Flow Cycle Consistency
and Low-Level regularization term. We employ additional regularization terms consistently in both
our model and NSFF.

Flow Loss (Lflow). Flow loss operates by minimizing the discrepancy between observed 2D
pixel correspondences, computed from pretrained optical flow networks and predicted 2D pixel
correspondences, obtained by projecting predicted 3D scene flows. This aligns 3D scene flow with
pretrained 2D motion estimation.

Given two adjacent frames at times i and j = i± 1, Lflow is calculated as follows. Let pi represent
a pixel location at frame i. The corresponding pixel location at frame j, denoted by pi→j , can be
computed using pretrained 2D motion estimation ui→j as pi→j = pi + ui→j .

The model predicts an expected scene flow F̂i→j(ri) corresponding to 3D location X̂i(ri) along the
ray ri passing through the pixel pi via volumetric rendering. Thus, the predicted 3D displacement
can be expressed as X̂i(ri) + F̂i→j(ri). Then, by applying the perspective projection operator Πj ,
corresponding to the camera viewpoint at frame j , the expected 2D pixel position p̂i→j(ri) at frame
j is calculated as:

p̂i→j(ri) = Πj

(
X̂i(ri) + F̂i→j(ri)

)
. (16)

Finally, the geometric consistency loss is computed by measuring the discrepancy between these two
pixel positions (observed vs. predicted) using the L1-norm:

Lflow =
∑
ri

∑
j∈{i±1}

||p̂i→j(ri)− pi→j(ri)||1. (17)

Single-view Depth Prior (Ldepth). encourages rendered depths to match predictions from a pre-
trained depth model:

Ldepth =
∑
ri

||Ẑ∗
i (ri)− Z∗

i (ri)||1, (18)

where the superscript (∗) denotes scale-shift invariant normalization. These priors are combined into:

Ldata = Lflow + βdepthLdepth, (19)
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where βdepth = 2 for all experiments.

Scene Flow Cycle Consistency. To ensure plausible scene motion, the loss ensures coherence
between forward and backward predicted scene flows for adjacent frames, mathematically defined as:

Lcyc =
∑
xi

∑
j∈{i±1}

wi→j ||fi→j(xi) + fj→i(xi→j)||1, (20)

where fi→j(xi) indicates the predicted displacement (scene flow) of point xi from time i to j.

Low-Level Regularization. Spatial-temporal smoothness is enforced through l1 regularization on
scene flow estimated between neighboring sampled 3D points along rays. This encourages 3D point
trajectories to be piecewise linear. Another sparsity regularization term, calculating an l1 loss in
flow estimation is also applied. This encourage minimal scene flow magnitudes across most spatial
regions.

CRF Smoothness Loss. We impose smoothness on the estimated camera response functions (CRFs)
to ensure plausible variations (Debevec et al., 2023):

Lsmooth =
∑N

i=1

∑
e∈[0,1]

g′′i (e), (21)

where g′′i (e) denotes the second-order derivative of CRFs with respect to their input domain. We
incorporate a smoothness loss to enforce that CRF varies smoothly in a physically plausible man-
ner (Debevec et al., 2023). It is defined as follows:

Lsmooth =
∑N

i=1

∑
e∈[0,1]

g′′i (e), (22)

where g′′(e) denotes the second order derivative of CRFs w.r.t. its input domain. Finally, our
HDR-NSFF is end-to-end optmized using the following loss:

L = Lcb + Lphoto + βdataLdata + βregLreg + Lsmooth, (23)

where the β coefficients weight each term. Additional regularization terms, Lreg leveraging scene
flow priors are detailed in the supplementary material.

Generative Prior Loss. To mitigate the sparse-view limitation of monocular input, we adopt
enhanced views generated via a diffusion-based prior (Wu et al., 2025). For these views, we apply a
patch-wise perceptual loss to encourage realistic and view-consistent appearance:

Lgen =
∑
p∈P

∥ϕ(Ĉp)− ϕ(Cgen
p )∥1, (24)

where ϕ denotes a perceptual feature extractor, and p indexes sampled patches. Since generative
priors may introduce hallucinations, we carefully balance their contribution by (i) delaying their
use until a stable stage of training ( 200K iterations), and (ii) training with enhanced views at a low
probability (10%) per iteration.

B.5 DINO-TRACKER

DINO-Tracker is a self-supervised framework designed to accurately track points over long sequences
of video frames. Given an initial query point in an early frame of video, it estimates the trajectory of
these points throughout subsequent frames. The method leverages pretrained deep features from the
DINOv2-ViT (Oquab et al., 2023) model, which are refined by learning residual features via a small,
trainable CNN module. DINO feature and residual feature are aggregated to find correspondence
heatmap computed by cost volume. Lastly, additional CNN-refiner follows to further enhance
matching.

Optimization is performed using several losses

• Flow Loss (Lflow): Ensures predicted trajectories align closely with short-term optical flow corre-
spondences.
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(a) Scene 1 (b) Scene 2

Figure S2: DINOv2 feature visualization under varying exposures. Despite large changes in
brightness, DINOv2 embeddings remain consistent, showing robust clustering across different
exposure levels.
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Figure S3: Visualization of difix enhancement.

• DINO Best-Buddies Loss (Ldino-bb): Contrastively aligns refined features based on semantic
matches from original DINO embeddings.

• Refined Best-Buddies Loss (Lrfn-bb): Similar to DINO best-buddies loss but applied to newly
detected reliable matches among refined features.

• Cycle-Consistency Loss (Lrfn-cc): Encourages consistency in predicted trajectories, penalizing
trajectories that fail a cycle-consistency criterion.

• Prior Preservation Loss (Lprior): Regularizes the refined features to remain close in norm and
direction to original DINO features, ensuring semantic coherence is preserved.

In contrast to the original DINO-Tracker, our proposed approach introduces a novel utilization of this
framework explicitly aimed at enhancing the robustness and accuracy of 2D dense correspondence
estimation. Specifically, we propose deriving dense matching from consecutive frames using the
trained DINO-Tracker model itself. Leveraging the semantic matching capability inherent to DINO
features, our method provides robust optical flow estimates even in challenging conditions such as
alternatively exposed video settings, where conventional texture-based methods typically degrade
due to information loss. Figure S2 shows that DINOv2 features is robust to exposure variance.

B.6 GENERATIVE PRIOR AS A REGULARIZER

B.7 GENERATIVE PRIOR FOR RECOVERING SATURATED INFORMATION

In HDR-NSFF, we additionally employ Difix (Wu et al., 2025) as a regularizer to stabilize training
under severe exposure inconsistencies. Difix provides a diffusion-based enhancement prior that guides
the radiance field toward semantically consistent reconstructions when input frames suffer from
brightness fluctuations or missing details. Concretely, we periodically generate pseudo-observations
by enhancing intermediate renderings with the Difix prior and incorporate them into the optimization
loop. This regularization not only improves geometric and radiometric stability but also enforces
stronger multi-view consistency in dynamic scenes, where exposure variations and motion often
break correspondences across views. As a result, HDR-NSFF achieves more coherent reconstructions
that generalize better to unseen exposures and viewpoints.
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real dataset-Full
Methods big jump side walk one arm swing two arm swing jumping jack pointing walk sit down up tube toss

PSNR
NSFF 16.89 16.85 17.85 17.96 17.84 17.96 18.58 18.35
NeRF-WT 24.88 23.21 30.67 30.84 29.30 25.59 32.11 29.69
HDR-Hexplane 18.94 19.34 20.17 19.92 17.32 17.08 17.41 17.52
Ours 28.77 28.70 32.73 33.11 31.34 28.84 32.89 31.69

SSIM
NSFF 0.6391 0.6458 0.6580 0.6687 0.7616 0.7423 0.7644 0.7588
NeRF-WT 0.8780 0.8747 0.9345 0.9312 0.9189 0.9024 0.9410 0.9308
HDR-Hexplane 0.4844 0.5025 0.5401 0.5347 0.4639 0.4572 0.4618 0.4763
Ours 0.9066 0.9136 0.9431 0.9456 0.9328 0.9196 0.9419 0.9375

LPIPS
NSFF 0.0948 0.0831 0.0799 0.0746 0.0534 0.0709 0.0547 0.0525
NeRF-WT 0.0518 0.0487 0.0226 0.0250 0.0298 0.0374 0.0190 0.0236
HDR-Hexplane 0.1879 0.1656 0.1597 0.1402 0.1437 0.1452 0.1368 0.1516
Ours 0.0348 0.0301 0.0174 0.0163 0.0227 0.0276 0.0174 0.0197

real dataset-Dynamic only
Methods big jump side walk one arm swing two arm swing jumping jack pointing walk sit down up tube toss

PSNR
NSFF 13.97 13.21 15.81 16.29 17.52 13.98 17.27 16.70
NeRF-WT 13.30 11.46 19.96 20.17 18.33 13.50 18.98 17.28
HDR-Hexplane 13.73 15.90 19.86 20.19 17.96 15.72 20.04 17.61
Ours 19.42 19.15 25.55 26.45 22.77 18.67 25.34 23.04

SSIM
NSFF 0.4308 0.4003 0.6535 0.6618 0.5039 0.4977 0.6547 0.6592
NeRF-WT 0.3566 0.2865 0.8208 0.8272 0.5182 0.3965 0.6891 0.6963
HDR-Hexplane 0.2853 0.5376 0.7814 0.7697 0.5067 0.4973 0.7015 0.7036
Ours 0.6329 0.6322 0.9132 0.9177 0.7392 0.6207 0.8604 0.8549

LPIPS
NSFF 0.1815 0.1689 0.0992 0.0859 0.1102 0.2423 0.1081 0.0754
NeRF-WT 0.2273 0.1957 0.0453 0.0521 0.1412 0.1743 0.1044 0.0741
HDR-Hexplane 0.2589 0.1403 0.0803 0.0991 0.1386 0.1301 0.0998 0.0744
Ours 0.1168 0.1198 0.0224 0.0223 0.0812 0.1040 0.0540 0.0372

Table S2: Quantitative results of novel view synthesis on real data. The green and yellow colors
stand for the best and the second best , respectively.
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Figure S4: Qualitative results on real dataset.

C ADDITIONAL EXPERIMENT RESULTS

We provide additional experimental results that could not be included in the main manuscript, due
to page limit. Specifically, Tables S2, S3, & S4 present per-scene quantitative results for each
experiment. Figure S4 illustrates qualitative outcomes for additional real datasets not shown in the
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real dataset-Full
Methods big jump side walk one arm swing two arm swing jumping jack pointing walk sit down up tube toss

PSNR
NSFF 17.20 16.97 17.88 17.29 18.21 17.64 18.61 18.36
NeRF-WT 24.16 24.33 29.73 29.99 29.61 25.53 30.94 29.66
HDR-Hexplane 21.39 21.87 23.14 22.33 21.03 20.57 21.26 20.85
Ours 29.24 31.30 32.34 32.67 31.79 30.81 32.82 30.87

SSIM
NSFF 0.6362 0.6328 0.6592 0.6590 0.7469 0.7353 0.7694 0.7839
NeRF-WT 0.8563 0.8727 0.9163 0.9192 0.9065 0.8943 0.9281 0.9187
HDR-Hexplane 0.6267 0.6575 0.6952 0.6443 0.6406 0.6347 0.6589 0.6439
Ours 0.9048 0.9259 0.9402 0.9430 0.9331 0.9292 0.9409 0.9263

LPIPS
NSFF 0.0993 0.1060 0.0848 0.0899 0.0666 0.0816 0.0488 0.0518
NeRF-WT 0.0643 0.0545 0.0303 0.0301 0.0358 0.0444 0.0244 0.0295
HDR-Hexplane 0.1581 0.1360 0.1219 0.1598 0.1377 0.1443 0.1285 0.1390
Ours 0.0435 0.0287 0.0203 0.0190 0.0260 0.0270 0.0197 0.0256

real dataset-Dynamic only
Methods big jump side walk one arm swing two arm swing jumping jack pointing walk sit down up tube toss

PSNR
NSFF 13.79 14.53 15.39 15.69 17.89 14.01 17.02 17.56
NeRF-WT 13.10 12.11 18.64 19.24 18.79 14.42 17.41 17.73
HDR-Hexplane 14.27 15.37 20.63 20.03 19.82 17.19 19.39 18.40
Ours 19.89 22.27 24.60 25.32 23.57 21.79 24.24 20.89

SSIM
NSFF 0.4580 0.5581 0.6323 0.6304 0.5281 0.4991 0.6861 0.7189
NeRF-WT 0.2591 0.3614 0.7041 0.7617 0.5221 0.4939 0.5923 0.7160
HDR-Hexplane 0.2854 0.4683 0.8260 0.7820 0.5696 0.5752 0.6573 0.7692
Ours 0.6459 0.8001 0.9010 0.9059 0.7720 0.7852 0.8404 0.8194

LPIPS
NSFF 0.2241 0.2104 0.1267 0.1202 0.1610 0.3262 0.1018 0.0752
NeRF-WT 0.2789 0.2231 0.0770 0.0734 0.1444 0.1829 0.1259 0.0895
HDR-Hexplane 0.2618 0.1766 0.0695 0.0985 0.1371 0.1387 0.1199 0.0750
Ours 0.1810 0.1025 0.0445 0.0385 0.1139 0.0923 0.1079 0.0789

Table S3: Quantitative results of novel time synthesis on real data. The green and yellow colors
stand for the best and the second best , respectively.

synthetic dataset-Full
Methods Lego Mutant Standup Jumping Jack

PSNR
NSFF 15.45 16.97 13.47 15.53

NeRF-WT 29.55 33.06 32.55 29.25
HDR-Hexplane 28.58 30.88 30.83 29.50

Ours 34.64 36.13 35.80 33.72
SSIM

NSFF 0.6472 0.6348 0.4958 0.6551
NeRF-WT 0.9595 0.9114 0.9556 0.9200

HDR-Hexplane 0.9443 0.8526 0.9112 0.9137
Ours 0.9670 0.9278 0.9564 0.9348

LPIPS
NSFF 0.1556 0.1243 0.2368 0.1364

NeRF-WT 0.0171 0.0316 0.0224 0.0655
HDR-Hexplane 0.0257 0.0708 0.0603 0.0539

Ours 0.0147 0.0305 0.0249 0.1229

synthetic dataset-Dynamic
Methods Lego Mutant Standup Jumping Jack

PSNR
NSFF 15.94 18.43 10.25 13.74

NeRF-WT 22.32 27.58 19.77 16.33
HDR-Hexplane 24.61 29.71 21.59 19.57

Ours 28.77 31.80 24.98 23.21
SSIM

NSFF 0.6145 0.5152 0.1601 0.5795
NeRF-WT 0.8517 0.8289 0.7741 0.5412

HDR-Hexplane 0.8626 0.8443 0.7665 0.7262
Ours 0.9062 0.9115 0.8816 0.8349

LPIPS
NSFF 0.1528 0.1708 0.3097 0.1345

NeRF-WT 0.0592 0.0845 0.0988 0.1154
HDR-Hexplane 0.1217 0.0724 0.1547 0.0794

Ours 0.0426 0.0590 0.0749 0.0538

Table S4: Quantitative results of novel view and time synthesis on synthetic dataset. The green
and yellow colors stand for the best and the second best , respectively.

main paper. Moreover, supplementary videos include more HDR, LDR, and novel view rendering
results. Please refer supplementary video for further visualization results.

C.1 ABLATION STUDY

We analyze the impact of our proposed semantic-based optical flow on the novel view synthesis task
using 8 real dataset samples. We compare two variants of our method: (1) Ours (w/ RAFT), in which
the RAFT optical flow is used without modification, and (2) Ours (w/ RAFT Finetuned), where RAFT
is fine-tuned on synthetic multi-exposure data. Note that, as shown in Figure 4, the original RAFT
model was not trained on multi-exposed images, resulting in high errors when applied directly in our
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Full Dynamic only
Methods PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Ours w/ RAFT (Teed and Deng, 2020) 30.42 0.9269 0.0246 21.38 0.7369 0.0675
Ours w/ Finetuned 30.68 0.9234 0.0253 21.51 0.7377 0.0689
Ours w/ Dino-Tracker (Tumanyan et al., 2024) 31.01 0.9301 0.0233 22.55 0.7714 0.0697

Table S5: Ablation study of flow model. To compare the effect of flow regularization, we compare
NVS performance of our approach against the baseline optical flow model (RAFT Teed and Deng
(2020)) and a stronger baseline fine-tuned RAFT on a multi-exposure adaptation of the FlyingTh-
ings3D dataset.
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Figure S5: Qualitative results on GoPro dataset.Compared with the ground truth LDR views,
tone-mapped HDR views reveal the details of over-exposure and under-exposure areas.

setting. By fine-tuning it on synthetic data, the performance is improved. As shown in Table S5, our
proposed method achieves the best results.

USE OF LARGE LANGUAGE MODELS

A large language mode was used only for minor assistance in writing and improving the clarity of
presentation.
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