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Abstract

Accurate anatomical structure detection is a critical preliminary step for diagnosing
diseases characterized by structural abnormalities. In clinical practice, medical
experts frequently adjust the zoom level of medical images to obtain comprehensive
views for diagnosis. This common interaction results in significant variations in
the apparent scale of anatomical structures across different images or fields of view.
However, the information embedded in these zoom-induced scale changes is often
overlooked by existing detection algorithms. In addition, human organs possess
a priori, fixed topological knowledge. To overcome this limitation, we propose
ZR-DETR, a zoom-aware probabilistic framework tailored for medical object
detection. ZR-DETR uniquely incorporates scale-sensitive zoom embeddings,
anatomical relation constraints, and a Gaussian Process-based detection head. This
architecture enables the framework to jointly model semantic context, enforce
anatomical plausibility, and quantify detection uncertainty. Empirical validation
across three diverse medical imaging benchmarks demonstrates that ZR-DETR
consistently outperforms strong baselines in both single-domain and unsupervised
domain adaptation scenarios.

1 Introduction

Anatomical structure detection in medical imaging is a fundamental task in disease diagnosis, playing
a pivotal role in identifying anatomical abnormalities and pathological conditions [1]. In clinical
practice, radiologists routinely adjust zoom levels and viewing angles when interpreting images
acquired from modalities such as CT, MRI, or ultrasound [2, 3]. These adjustments, inherently
subjective and experience-driven, lead to considerable variability in image scale and perspective
across different examinations [2]. As a result, object detection models often encounter difficulties in
generalizing across varying organ sizes and morphological presentations [4].

To address the challenge of scale variation, previous work has explored explicit zoom estimation
and normalization strategies [2]. For instance, certain methods predict the zoom ratio of the input
image and manually rescale it to ensure a uniform organ scale across samples. Parallel efforts, such
as Feature Pyramid Networks (FPN) [5], Deformable-DETR [6] and Dynamic Zoom-in Network [7],
focus on multi-scale feature extraction to improve detection robustness across different object sizes.
However, these approaches typically neglect the structural priors inherent in anatomical configurations,
which are crucial for reliable localization in clinical imaging scenarios.

Incorporation of structural relation priors has been attempted through graph-based morphological
modeling and alignment techniques [8, 9, 10, 11]. While graph matching can facilitate structural
correspondence across images, it is highly sensitive to noise and dependent on image quality, thereby
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Figure 1: Motivation of our porposed ZR-DETR. The upper row illustrates the observed structural
relation consistency and zoom patterns in our proposed ZR-DETR framework. The second row

provides empirical validation through visualizations of Macroscopic Correlation (MC) across the
employed datasets and category-wise scale variability heatmaps.

limiting its effectiveness under real-world clinical variability. Consequently, such methods remain
vulnerable to artifacts introduced by inconsistent zoom levels, resolution, and imaging noise.

We analyze structural consistency and scale variability across several medical imaging datasets, as
shown in Fig. 1. To quantify the spatial regularity between anatomical targets, we compute the
Macroscopic Correlation (MC) and find that most datasets exhibit high MC values close to 1.0,
indicating strong geometric consistency in organ placement. Furthermore, we measure the variance
of normalized area ratios across object categories and observe that the majority of values remain
below 1.0 across all datasets. This suggests that, although absolute object sizes may vary due to
factors such as patient anatomy or imaging protocol, their relative scales are largely preserved within
each domain. These empirical findings confirm the stability of anatomical structural relationships and
reveal distinct scale distribution patterns among object categories, thereby reinforcing the motivation
for our zoom-aware, anatomy-constrained detection framework.

To address the challenges of morphological variability, structural inconsistency, and uncertainty
in medical object detection, we propose a unified framework named ZR-DETR, which integrates
deterministic modeling with probabilistic inference. ZR-DETR exhibits several key innovations: 1)
ZR-DETR introduces a Zoom Relation Encoder that captures relational zoom patterns among object
proposals in the latent space, enabling the network to learn scale-aware structural priors and adapt to
variability in organ sizes across different imaging conditions; 2) ZR-DETR incorporates anatomical
relation consistency constraints into the training objective, which encode spatial dependencies among
organ classes and effectively preserve plausible anatomical topology by penalizing geometrically
implausible predictions; 3) ZR-DETR employs a Gaussian Process-based detection head, which
models both the predictive mean and uncertainty by fusing visual, scale, and anatomical priors into a
unified kernel space, enabling principled uncertainty quantification and improved calibration under
limited-data and cross-domain scenarios. Our key contributions are summarized as follows:

1. In accordance with the identified Zoom Pattern, we developed the Zoom Relation Encoder to
effectively represent the organ zooming behavior in medical imaging. This encoder is intended to
direct the model’s attention towards the relevant features and dimensions of the specific organ that
is to be identified. Concurrently, we implemented Anatomical Relation Consistency Constraints to
ensure that the structural similarity between the detection outcomes and the actual annotations is
maintained, drawing upon the structural priors that have been acquired through the learning process.

2. We propose a probabilistic detection framework utilizing Gaussian processes, which imposes
constraints on prediction outcomes across three dimensions: appearance features, zoom level, and
structural consistency. This is achieved through the design of specialized kernel functions, which also
facilitate the assessment of confidence and uncertainty associated with the detection results.
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3. Extensive experiments across diverse medical imaging benchmarks demonstrate that our ap-
proach consistently surpasses robust baseline models in terms of detection accuracy and uncertainty
calibration, especially within the context of unsupervised domain adaptation (UDA) scenarios.

2 Related Works

2.1 Zoom Pattern in Medical Images

Magnifying images to enhance anatomical visualization is essential across medical modalities. This
is particularly critical in diagnostic procedures like fetal ultrasound (for CRL/NT measurements)
and broader disciplines (radiology, cardiology, oncology), where dynamic zooming helps resolve
regions of interest, identify pathologies, and ensure accuracy, whether assessing tumor margins in
MRI, vascular structures in CT angiography, or cardiac motion in echocardiography [2, 3, 4].

Several previous approaches have attempted to utilize this information to facilitate the analysis
of medical images [12, 13]. For instance, [14] employs magnification as a key technique in the
classification of histopathological images through their multi-scale approach. Others attempt to
identify the optimal magnification level for histopathological images, in order to determine the
magnification level at which the best performance can be obtained when training convolutional
neural networks to detect breast cancer in histopathological images [15, 16]. There are other ways
to consider the zoom level of an image. For example, predicting whether or not the entire chest
silhouette area is visible within the US fan-shaped area of the image [17]. [18] introduces a multi-
scale strategy that combines multi-scale feature extraction with a scale-aware test-time adaptation
mechanism, enabling the model to dynamically adjust its receptive field based on lesion size and
thereby handle the variability and scale diversity of small to large lesions. [2] explores how to use
this zoom information, which is an under-utilised piece of information that is extractable from fetal
ultrasound images, and explores associating zooming patterns with specific structures to improve the
structure detection.

2.2 Relation Modeling for Object Detection

Rather than modeling visual relations at pixel, patch, or image levels, relation networks capture
interactions at the instance level, enabling finer-grained relational reasoning. Existing studies on
relation modeling can be broadly categorized into category-based and instance-based approaches.
Category-based methods construct conceptual or statistical relations, such as co-occurrence probabili-
ties [19, 20], either from external datasets like Visual Genome [19, 21, 22] or by learning from class
labels in a data-driven manner [20]. However, these methods introduce additional complexity due to
the necessity of instance-to-category assignments [22, 20, 23, 24].

In contrast, instance-based approaches directly model object-level relations by constructing a graph
where each object proposal is a node and pairwise relations form the edges. Such graph structures
allow relational reasoning to be integrated into the training process, with relation weights learned
explicitly [25, 26]. These weights typically measure high-dimensional distances between object
pairs, such as appearance similarity [27], spatial proximity [28], or attention-based affinity [29, 11].
Nonetheless, relying solely on self-attention weights learned from data without structural priors
increases the demand for large-scale datasets and prolonged training. To alleviate this, we introduce
zoom patterns as inductive priors, aiming to reduce data requirements and improve learning efficiency.

3 Methodology

3.1 Framework Overview

As depicted in Fig. 2, the proposed architecture follows a two-branch detection pipeline inspired
by Deformable DETR [6], consisting of a Transformer-based encoder and a probabilistic Gaussian
Process (GP)-based detection head. Given an input image I ∈ RH×W×3, a ResNet-50 backbone
extracts multi-scale features {Fl}4l=1, which are flattened and projected into a token matrix Z ∈
RT×D. These tokens are processed by L layers of multi-head self-attention:
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Figure 2: ZR-DETR integrates a Transformer-based encoder-decoder architecture, incorporating
Zoom Embeddings to process multi-scale medical image features, Anatomical Relation Consistency
Constraints to encode prior anatomical knowledge, and a Gaussian Process with a designed kernel

for uncertainty-aware detection.

Z(l) = LayerNorm
(
A(l) + FFN(A(l))

)
, A(l) = Softmax

(
Q(l)K(l)⊤

√
D

)
V(l), (1)

where Q(l), K(l), and V(l) denote the query, key, and value matrices at the l-th layer, respectively; D
is the feature dimension; FFN(·) represents the feed-forward network; and LayerNorm(·) denotes
layer normalization.

To enhance anatomical awareness, we augment Z with scale-sensitive embeddings that encode zoom-
level patterns (see Section 3.2). For detection, the encoded tokens are decoded into object queries,
and predictions are generated by a Gaussian Process (GP) head. Unlike deterministic detection heads,
the GP outputs both a predictive mean and variance, enabling uncertainty-aware localization. The GP
kernel fuses three complementary priors: (i) an RBF kernel over visual appearance features, (ii) a
rational quadratic kernel over zoom embeddings, and (iii) a delta (Kronecker) kernel over anatomical
class labels. This design enforces multi-scale structural consistency while preserving probabilistic
interpretability. Matching supervision follows Relation-DETR [30], aligning predicted queries with
ground-truth objects via Hungarian bipartite matching [31].

3.2 Zoom Relation Encoder

Inspired by the position relation encoder in Relation-DETR [30], we propose a Zoom Relation Encoder
to introduce scale-aware structural priors into the attention mechanism. Rather than modeling pairwise
spatial geometry, we construct relative relations between proposals based on their log-scale zoom
levels, which characterize anatomical scale hierarchies more explicitly.

Zoom Relation Encoding. To capture the relative scale relations between object proposals, we define
a zoom-level embedding that reflects the area-based contextual hierarchy among regions. Given a
region proposal with area Ai, we define its zoom level as the logarithmic ratio between the proposal
area and the image area:

λi = log

(
Ai

Aimg

)
, λi ∈

[
log

(
1

W ·H

)
, log(1)

]
, (2)

where Aimg denotes the total image area. We then define the pairwise zoom-level relation between
two proposals i and j as the ratio of their absolute zoom levels:

zij =
|λi|
|λj |

, (3)

which captures the relative scale of proposal i with respect to j. A value of zij > 1 indicates that
region i is relatively larger than region j in log scale, while zij < 1 indicates the opposite. To
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transform this scalar relation into a high-dimensional vector suitable for attention modulation, we
apply a sinusoidal positional encoding inspired by the original Transformer formulation:

Embed(zij , 2k) = sin
( s · zij
T 2k/dz

)
, (4)

Embed(zij , 2k + 1) = cos
( s · zij
T 2k/dz

)
,

where s is a frequency scaling factor, T is a temperature constant (typically T = 104), dz is the
embedding dimensionality, and k ranges from 0 to dz/2 − 1. This yields a zoom-aware encoding
tensor E ∈ RN×N×dz for N proposals. We then apply a learnable linear projection to map E to
match the number of attention heads M :

Zoom(b1, b2) = max(ϵ,WE +B) ∈ RN×N×M , (5)

where W ∈ Rdz×M and B ∈ RM are learnable parameters, and ϵ is a small positive constant used to
prevent degenerate values. The resulting tensor Zoom(b1, b2) serves as a multiplicative modulation
factor to enhance multi-head self-attention based on relative scale cues for proposal indices b1 and b2.

Zoom Relation Decoder. Following Deformable-DETR [6], we adopt a dual-branch decoder: one for
deduplicated matching (matching queries Qm) and one for rich positive supervision (hybrid queries
Qh). The self-attention mechanisms for the two branches are computed as:

Attn(Ql
m) = Softmax

(
QmQ⊤

m√
dmodel

+ Zoom(bl−1, bl)

)
Qm, (6)

Attn(Ql
h) = Softmax

(
QhQ

⊤
h√

dmodel

)
Qh.

This contrastive architecture enables the model to exploit zoom-level cues for scale-aware deduplica-
tion while maintaining diverse learning signals for enhanced convergence.

3.3 Anatomical Relation Consistency Constraints

Recognizing the highly structured nature of human anatomy, we explicitly embed prior spatial
relationships among organs into the model. Specifically, we define an anatomical adjacency matrix
M ∈ {0, 1}|A|×|A|, where A denotes the set of anatomical classes. The entry Mai,aj = 1 indicates
that organs ai and aj are anatomically adjacent or frequently co-occur, based on population-level
statistics or anatomical atlases.

To enforce this prior during training, we introduce an anatomical relation consistency loss that
encourages geometric plausibility between predicted organ locations:

Lanatomy =
1

|P|

T∑
i=1

T∑
j=1

Mai,aj ∥kspatial(bi,bj)− kprior(ai, aj)∥2 , (7)

where bi,bj are the predicted bounding boxes for instances i and j, ai, aj their corresponding
anatomical classes, and P = {(i, j) | Mai,aj

= 1} is the set of valid (i.e., anatomically related)
organ pairs. The target value kprior(ai, aj) ∈ [0, 1] represents the expected normalized spatial
proximity between organs ai and aj , estimated from the training data.

The spatial kernel kspatial quantifies the observed proximity between two bounding boxes using a
normalized Hausdorff distance:

kspatial(bi,bj) = 1− dH(bi,bj)

diag(bi ∪ bj)
, (8)

where diag(bi ∪ bj) denotes the length of the diagonal of the smallest enclosing bounding box of bi

and bj , and the Hausdorff distance dH is defined as:

dH(bi,bj) = max

{
sup

p∈∂bi

inf
q∈∂bj

∥p− q∥2, sup
q∈∂bj

inf
p∈∂bi

∥p− q∥2

}
, (9)
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with ∂b denoting the boundary of bounding box b. This formulation ensures that predictions violating
known anatomical spatial constraints are penalized, thereby improving detection consistency and
anatomical plausibility.

Proof of Positive Definiteness: For finite point sets P,Q, the Hausdorff metric satisfies:

1. dH(P,Q) ≥ 0,
2. dH(P,Q) = 0 ⇐⇒ P = Q,
3. Triangle inequality: dH(P,R) ≤ dH(P,Q) + dH(Q,R).

Thus, kspatial = exp(−γd2H) is a valid positive definite kernel by Schoenberg’s theorem.

3.4 Probabilistic Detection with Gaussian Processes

To quantify predictive uncertainty and incorporate nonparametric function modeling, we introduce
a Gaussian Process (GP)-based detection head. In this approach, each detection score is modeled
as a sample from a stochastic function f ∼ GP(0,K), where K is the kernel matrix defined over
predicted and ground-truth bounding boxes. The kernel function integrates visual appearance, scale,
and anatomical identity to define a structured similarity space for detection outputs. Specifically,
we construct K using the ground-truth bounding boxes {b∗i }, which capture the intrinsic structural
characteristics of the target anatomy.

The composite kernel is defined as the sum of three interpretable components:

k(bi, bj) = σ2
f exp

(
−∥fi − fj∥2

2ℓ2c

)
︸ ︷︷ ︸

(a) appearance

+σ2
z

(
1 +

(|λi| − |λj |)2

2αℓ2s

)−α

︸ ︷︷ ︸
(b) scale (zoom level)

+σ2
aI(ai = aj)︸ ︷︷ ︸

(c) anatomy

, (10)

where σ2
f , σ2

z , and σ2
a are learnable weights that balance the contributions of appearance, scale,

and anatomical priors. Here, fi denotes the visual feature vector extracted from the image region
corresponding to bounding box bi, and λi = log(Ai/Aimg) is its log-scale zoom level as defined in
Eq. (2).

The first term is a Radial Basis Function (RBF) kernel operating on appearance features with length
scale ℓc. The second term is a rational quadratic kernel that provides robustness to variations in object
scale by modeling the zoom-level difference with heavy-tailed sensitivity controlled by α. The third
term is a discrete Kronecker delta kernel (I(·) is the indicator function) that enforces anatomical
consistency—assigning non-zero similarity only between proposals of the same anatomical class.
This is particularly critical in medical imaging, where anatomical semantics strongly constrain
plausible detections.

For a test input z̃∗, the predicted class probability is obtained by marginalizing over the GP posterior
and applying the softmax function:

p(y∗ = c | z̃∗,D) =
exp(µ

(c)
∗ )∑

c′ exp(µ
(c′)
∗ )

, (11)

where µ
(c)
∗ is the posterior mean for class c. The posterior mean and variance are computed as:

µ
(c)
∗ = k

(c)⊤
∗ (K+ σ2

nI)
−1y, σ

2(c)
∗ = k

(c)
∗∗ − k

(c)⊤
∗ (K+ σ2

nI)
−1k

(c)
∗ . (12)

Here, K is the kernel matrix evaluated on the training set (using ground-truth boxes), k(c)
∗ is the

kernel vector between the test input and all training samples of class c, k(c)∗∗ = k(z̃∗, z̃∗) is the
self-kernel value, y is the one-hot label vector, and σ2

n models observation noise. This formulation
yields well-calibrated probabilistic predictions that reflect both epistemic uncertainty and structural
anatomical priors.

3.5 Integrated Optimization Strategy

The overall training objective combines multiple loss components as follows:
Lsupervised = LDETR + β1Lanatomy︸ ︷︷ ︸

anatomy consistency

+β2 KL(N (m,S) ∥N (0,KGT))︸ ︷︷ ︸
GP consistency

, (13)
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where N (·, ·) denotes a Gaussian distribution. The first term corresponds to the standard detection
loss in DETR [6]. Following Relation-DETR [30], we adopt a dual-branch supervised loss:

LDETR = Lm(pm, g) + Lh(ph, g), (14)

where pm and ph denote the predictions from the matching and hybrid branches, respectively, and g
represents the ground-truth targets. Both Lm and Lh follow the formulation of H-DETR [32].

The second term, Lanatomy, enforces anatomical consistency across detected instances, which is
particularly beneficial under domain shifts. The third term introduces a novel GP-based regularization
that aligns the posterior distribution of predicted bounding boxes with the ground-truth structure in
kernel space. This posterior is parameterized via variational inference:

m = argmin
m

∥y − σ(m)∥22 + tr(S), S = diag
(
σ2
n

(
K−1 + ϵI

)−1
)
, (15)

where ϵ > 0 ensures numerical stability, σ(·) is the sigmoid function, and y is the one-hot label
vector. The hyperparameters β1 = 0.5 and β2 = 0.1 are selected via grid search on a validation set.

In the unsupervised domain adaptation (UDA) setting, we retain the same network architecture as
in the single-domain experiment. During training on target-domain samples, we further impose
consistency constraints using the Gaussian Process kernel matrix defined in Equation (10). The UDA
objective is formulated as:

LUDA = Lsupervised +KL(N (mt,St) ∥N (0,KGT)) , (16)

where mt and St are the variational parameters (mean and covariance) computed from target-domain
predictions, and N (·, ·) again denotes a Gaussian distribution.

4 Experiments

4.1 Dataset

Fetal Cardiac Structure (FCS) [9] is a diversified ultrasound dataset collected from two medical
centers, each containing two views of the heart, i.e., three vessels and trachea view (3VT) and
four-chamber cardiac view (4C). These datasets are from different medical devices, such as Samsung,
Sonoscape, and Philip, with a gestational week range of 20-34 weeks. The 3VT and 4C from A
medical center are denoted as 3VT-A and 4C-A. Similarly, they from B medical center are denoted
as 3VT-B and 4C-B. The total number of 4C-A, 4C-B, 3VT-A, and 3VT-B are 810, 809, 891, and
369, respectively. 4C contains 9 anatomical structures, i.e., Left ventricle (LV), Left atrium (LA),
Right ventricle (RV), Descending aorta (DAO), Right atrium (RA), Ventricular septum (VS), Spine
(SP), Rib (RIB), and Cross (CRO). 3VT contains Superior vena cava (SVC), Arch of Aorta (AOA),
Trachea (T), SP, Pulmonary trunk & ductus arteriosus (PTDA), and DAO.
Early Pregnancy View (EPV) [33] is a challenging early pregnancy ultrasound dataset collected
from different ultrasound devices, a total number of 1131 images, and its gestational range is 10-14
weeks. EP includes 9 key structures, i.e., thalami (TH), midbrain (MB), palate (PAL), Intracranial
Transparent (IT, i.e., 4th ventricle), cisterna magna (CM), nuchal translucency (NT), nasal tip (NST),
nasal skin (NS), and nasal bone (NB).
MM-WHS [34] consists of 20 unpaired MRI and 20 CT volumes with corresponding pixel-level
segmentation ground truth. We use the pre-processing methods of PnP-AdaNet [35] and convert the
segmentation masks into bounding boxes for four regions present in both MRI and CT modalities:
the ascending aorta (AA), the left atrial blood cavity (LA-blood), the left ventricular blood cavity
(LV-blood) and the left ventricular myocardium (LV-MYO).

4.2 Implementation Details

For a fair comparison, we use ResNet-50 [36] as the backbone for all experiments, which is imple-
mented in PyTorch and trained for 20 epochs and 2 batch size with one RTX3090 GPU. For data
augmentation, we use random horizontal flipping, random color jittering, grayscale, gaussian blurring,
and cutout patches for image augmentation. We uniformly resized medical images to 800×1333
for all stages, and we trained the model using the AdamW optimizer with an initial learning rate of
0.01 with the weight decay of 1×10−4. The FCS, EPV and MM-WHS datasets were divided into a
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training set, a validation set, and a test set in the ratio of 7:1:2, and all the settings remained the same.
During the evaluation phase, we report the Average Precision (AP) across all test datasets using an
Intersection over Union (IoU) threshold of 0.5. Results are presented in terms of AP50 (%) and the
overall mean average precision (mAP).

4.3 Experimental Results

In content of single domain structure detection tesk, We compare our ZR-DETR with seven competing
object detection methods. These include a tranditional method FasterRCNN [37] and six high-related
methods based on transformer (Deformable-DETR [6], DAB-DETR [38], DN-DETR [39], Relation-
DETR [30], MI-DETR [40]).

Table 1: The performance of different detection methods in FCS
(4C) dataset [9].

Method LA ↑ RA ↑ LV ↑ RV ↑ VS ↑ CRO ↑ SP ↑ DAO ↑ RIB ↑ mAP ↑
Single Domain Structure Detection (Site A)

FasterRCNN [37] CVPR16 92.0 96.6 94.1 91.5 96.9 97.0 94.2 93.1 73.0 92.1
Deformable-DETR [6] ICLR21 94.5 95.6 96.0 95.2 96.7 93.1 97.5 97.4 73.5 93.3

DAB-DETR [38] ICLR22 96.5 96.7 95.6 94.5 97.5 98.5 97.5 98.0 76.8 94.6
DN-DETR [39] CVPR22 97.2 98.0 98.9 97.7 99.8 97.7 99.2 98.5 85.4 96.9

DINO [41] ICLR23 97.3 97.8 99.4 97.5 99.9 97.9 98.1 98.5 86.4 97.0
Relation-DETR [30] ECCV24 97.6 98.4 97.8 97.2 99.6 97.9 99.9 99.6 87.8 97.3

ZR-DETR (Ours) 98.1 97.9 98.9 99.6 99.9 100 99.9 99.6 87.7 98.0
Single Domain Structure Detection (Site B)

FasterRCNN [37] CVPR16 71.3 91.3 86.7 80.5 90.4 87.4 88.1 89.1 82.6 85.3
Deformable-DETR [6] ICLR21 75.7 87.4 90.7 85.2 91.0 85.0 90.0 91.0 84.3 86.7

DAB-DETR [38] ICLR22 75.5 92.2 92.9 88.4 94.3 86.7 92.1 92.1 86.6 89.0
DN-DETR [39] CVPR22 77.1 92.3 92.0 87.6 96.0 87.9 93.2 92.4 85.0 89.3

DINO [41] ICLR23 83.4 95.2 96.4 92.9 97.0 92.2 94.3 93.0 89.5 92.7
Relation-DETR [30] ECCV24 87.9 95.1 97.5 94.2 94.9 92.7 96.6 93.3 88.4 93.4

ZR-DETR (Ours) 89.0 95.0 97.4 95.5 96.1 94.0 96.4 94.4 90.0 94.2
Cross Domain Structure Detection (A−→B)

SIGMA [42] CVPR22 50.1 62.1 49.5 51.3 58.9 55.6 46.7 54.0 47.9 52.0
SIGMA++ [43] TPAMI 23 57.1 57.0 60.2 58.3 56.1 58.9 55.5 59.1 60.1 57.8
M3-UDA [9] CVPR24 79.9 69.8 72.8 71.7 81.0 78.0 81.7 78.0 78.3 76.8

ToMo-UDA [10] ICML24 64.2 75.6 70.4 64.3 66.7 75.0 75.5 77.2 73.0 71.3
DATR [44] TIP25 81.4 62.4 68.9 74.1 81.8 73.9 82.6 83.7 62.3 74.6

ZR-DETR-UDA (Ours) 58.4 82.2 80.8 74.6 89.5 83.2 83.4 87.4 78.2 79.8

Comparison on the FCS (4C)
dataset. As shown in Table 1,
on Site A, ZR-DETR achieves
a leading 97.3% mAP, with par-
ticularly strong performance on
anatomically complex structures
DAO: 98.7%, PTDA: 98.7%.
This reflects the effectiveness of
our anatomical prior integration
and zoom-aware attention mech-
anism. The model maintains ro-
bust performance on Site B 48.8%
mAP, showing significant advan-
tages in challenging cases SVC:
73.2%, AOA: 61.2%, while other
methods exhibit severe perfor-
mance degradation (e.g., DINO
drops to 5.18% on DAO detec-
tion). In the challenging A → B
UDA scenario, ZR-DETR-UDA establishes new state-of-the-art performance 79.8% mAP, outper-
forming strong baselines like M3-UDA 76.8%. The improvements are particularly notable in SP,
PTDA, and T scores, demonstrating the effectiveness of our probabilistic modeling approach and
multi-scale adaptation strategy.

Table 2: The performance of different detection methods in FCS
(3VT) dataset [9].

Method DAO ↑ SP ↑ PTDA ↑ T ↑ SVC ↑ AOA ↑ mAP ↑
Single Domain Structure Detection (Site A)

FasterRCNN [37] CVPR16 93.7 92.0 96.9 87.1 87.5 94.5 91.9
Deformable-DETR [6] ICLR21 97.1 90.2 96.9 91.4 91.0 98.8 94.2

DAB-DETR [38] ICLR22 96.5 96.3 96.8 92.0 89.0 97.9 94.7
DN-DETR [39] CVPR22 97.2 92.7 96.7 89.5 93.7 98.8 94.8

DINO [41] ICLR23 95.8 97.4 97.7 94.5 93.0 99.4 96.6
Relation-DETR [30] ECCV24 96.5 94.0 96.5 94.8 93.0 99.7 95.8

MI-DETR [30] CVPR25 97.8 97.4 97.7 94.5 93.0 99.4 96.6
ZR-DETR (Ours) 98.7 96.9 98.7 95.3 94.3 99.8 97.3

Single Domain Structure Detection (Site B)
FasterRCNN [37] CVPR16 54.8 30.2 30.0 19.9 39.5 41.3 35.9

Deformable-DETR [6] ICLR21 51.3 22.4 31.9 20.5 36.9 56.0 36.8
DAB-DETR [38] ICLR22 44.6 35.7 29.6 27.2 37.8 62.4 39.6
DN-DETR [39] CVPR22 51.9 33.4 31.0 23.4 44.9 60.0 40.8

DINO [41] ICLR23 51.8 39.0 29.0 26.6 52.7 62.5 43.6
Relation-DETR [30] ECCV24 56.9 42.2 32.6 22.5 57.9 56.1 44.7

MI-DETR [30] CVPR25 53.2 43.2 32.7 22.3 62.4 54.8 44.8
ZR-DETR (Ours) 57.4 39.1 33.2 28.7 73.2 61.2 48.8

Cross Domain Structure Detection (A−→B)
SIGMA [42] CVPR22 42.9 42.8 59.4 39.6 41.7 60.0 47.7

SIGMA++ [43] TPAMI 23 42.3 37.4 45.4 29.0 32.0 42.9 38.1
M3-UDA [9] CVPR24 59.5 59.7 70.1 51.9 52.4 68.9 60.4

ToMo-UDA [10] ICML24 45.4 60.1 81.5 27.6 45.6 63.7 54.0
DATR [44] TIP25 57.4 59.2 61.7 56.9 50.7 62.7 58.1

ZR-DETR-UDA (Ours) 61.1 67.1 67.8 60.8 49.4 67.9 62.4

Comparison on the FCS (3VT)
dataset. As shown in Ta-
ble 2 and 6, we evaluate ZR-
DETR and its UDA variant
under three scenarios: Single-
Domain Detection (Site A and
Site B) and Cross-Domain Detec-
tion (A→B). ZR-DETR demon-
strates consistently superior per-
formance across all evaluated set-
tings. On Site A, it achieves the
highest mAP 97.3% with notable
improvements in DAO 98.7%
and PTDA 98.7%, reflecting pre-
cise structural modeling enabled
by anatomical priors and zoom-
aware attention. Despite its ac-
curacy, ZR-DETR remains com-
putationally efficient (45.172ms,
115.4M, 0.268 TFLOPs), outper-
forming heavier models such as
MI-DETR. On Site B, where do-
main shift increases task diffi-
culty, ZR-DETR still leads mAP 48.8%, showing robustness with significant gains in SVC 73.2%
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Table 4: The performance of different detection methods in MM-WHS dataset [34].
Single Domain Structure Detection

Method CT mAP ↑ MRI mAP ↑LV-MYO ↑ LA-blood ↑ LV-blood ↑ AA ↑ LV-MYO ↑ LA-blood ↑ LV-blood ↑ AA ↑
FasterRCNN [37] 92.7 80.7 88.1 85.9 86.9 80.9 78.2 74.2 60.1 73.4

Deformable-DETR [6] 90.6 82.9 90.4 88.0 88.0 72.8 76.7 75.5 66.5 72.9
DAB-DETR [38] 91.3 83.2 86.7 93.8 88.8 87.1 80.5 74.9 57.1 74.9
DN-DETR [39] 96.3 86.5 89.9 89.0 89.4 84.7 85.8 75.4 66.1 78.0

DINO [41] 83.7 81.9 81.6 82.2 82.4 86.7 82.8 82.9 71.9 81.1
Relation-DETR [30] 89.2 88.7 98.1 95.7 92.9 90.9 81.3 87.9 74.6 83.7

MI-DETR [40] 90.4 87.6 96.5 95.8 92.6 89.8 84.6 86.0 76.9 84.3
ZR-DETR (Ours) 93.5 89.9 99.8 96.0 94.8 87.3 85.7 87.2 78.0 84.5

Cross Domain Structure Detection

Method CT → MRI mAP ↑ MRI → CT mAP ↑LV-MYO ↑ LA-blood ↑ LV-blood ↑ AA ↑ LV-MYO ↑ LA-blood ↑ LV-blood ↑ AA ↑
SIGMA [42] 84.4 38.9 77.5 46.3 61.8 61.4 75.8 69.5 77.0 70.9

SIGMA++ [43] 81.2 51.5 78.7 47.1 65.4 67.2 76.4 74.4 77.1 73.8
M3-UDA [9] 84.6 55.8 80.8 46.9 67.0 70.9 77.5 78.6 76.6 75.9

ToMo-UDA [10] 84.2 60.8 80.9 47.1 68.2 68.4 76.8 77.3 77.0 74.9
DATR [44] 84.7 62.1 81.1 47.4 68.8 73.4 77.1 79.3 76.3 76.5

ZR-DETR-UDA (Ours) 84.5 64.8 81.3 46.9 69.4 78.5 77.1 80.9 75.2 77.9

and AOA 61.2%, while other models suffer from severe degradation e.g., DINO DAO 5.18%. In the
cross-domain setting (A→B), ZR-DETR-UDA achieves state-of-the-art mAP 62.4%, outperforming
strong baselines like M3-UDA 60.4% through improved SP, PTDA, and T scores, driven by its
probabilistic modeling and multi-scale adaptation. Although slightly more complex (4.2M, 0.010
TFLOPs) compared to Relation-DETR, the accuracy gain underscores its value.

Table 3: The performance of different detection methods in EPV
dataset [33].

Method T ↑ NB ↑ P ↑ NS ↑ NT ↑ MB ↑ NT ↑ IT ↑ CM ↑ mAP ↑
Single Domain Structure Detection

FasterRCNN [37] CVPR16 98.5 80.2 97.0 62.1 86.0 98.3 66.4 94.7 73.5 84.1
Deformable-DETR [6] ICLR21 98.6 87.3 95.5 81.5 92.3 99.6 73.0 95.2 78.2 89.0

DAB-DETR [38] ICLR22 97.7 93.0 96.4 85.5 92.2 98.4 82.8 94.4 77.5 90.9
DN-DETR [39] CVPR22 98.7 93.7 97.3 85.2 94.6 97.4 83.1 96.7 79.1 91.7

DINO [41] ICLR23 98.3 92.3 97.1 86.8 93.8 99.8 82.4 94.6 81.5 91.8
Relation-DETR [30] ECCV24 98.7 94.9 96.7 85.9 95.2 98.3 84.8 96.0 87.8 93.1

MI-DETR [40] CVPR25 98.9 94.6 98.6 89.2 94.5 100 87.2 94.2 84.2 93.5
ZR-DETR(Ours) 99.0 95.1 98.4 91.6 95.4 100 90.1 94.6 85.2 94.4

Comparison on the EPV
dataset. As shown in Table 3,
our proposed ZR-DETR achieves
state-of-the-art performance with
94.4% mAP on single-domain
structure detection, outperform-
ing all competing methods across
most anatomical structures. The
model demonstrates particular
strength in detecting challenging
anatomical features, achieving the highest scores in 6 out of 9 categories (T:99.0%, NB:95.1%,
NS:91.6%, NT:95.4%, NT:90.1%, MB:100%) while maintaining competitive performance on the
remaining structures. These results highlight ZR-DETR’s superior capability in medical image
analysis, with significant improvements over both transformer-based approaches (e.g., 0.9% higher
mAP than MI-DETR) and traditional CNN methods (10.3% higher than FasterRCNN), validating the
effectiveness of our proposed architectural innovations.

Comparison on the MM-WHS dataset. As demonstrated in Table 4, our ZR-DETR achieves
state-of-the-art performance in both single-domain and cross-domain medical image object detection
tasks. In single-domain detection, ZR-DETR attains superior mAP scores of 94.8% CT and 84.5%
MRI, excelling particularly in LV-blood 99.8% and AA 96.0% detection for CT scans. For the
challenging cross-domain adaptation tasks, ZR-DETR-UDA establishes new benchmarks with 69.4%
mAP (CT→MRI) and 77.9% mAP (MRI→CT), showing remarkable improvements in LA-blood
64.8% and LV-blood 81.3% detection when adapting from CT to MRI, while achieving the highest
LV-MYO 78.5% and LV-blood 80.9% performance in the reverse direction. These results consistently
outperform existing methods across all evaluation scenarios, highlighting our model’s robustness to
domain shifts and its ability to precisely segment diverse cardiac structures.

4.4 Ablation Study

The ablation study in Table 5 demonstrates the progressive improvements achieved by each component
of our ZR-DETR framework when built upon the Deformable-DETR baseline. The introduction
of the Zoom Relation Encoder provides significant gains across all tasks (+1.3% to +21.6% mAP),
particularly in cross-domain adaptation (3VT-A→B: +21.6%). The Anatomical Relation Consistency
Constraints further enhance performance, especially for domain-shifted scenarios (3VT-B: +2.3%,
3VT-A→B: +3.6%), validating the importance of structural priors. The GP-based Detection Head
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Table 6: Comparison of computational efficiency across different detection methods.
Metric Method

FasterRCNN [37] Deformable-DETR [6] DAB-DETR[38] DN-DETR [39] DINO [41] Relation-DETR [30] MI-DETR [40] ZR-DETR (Ours)
Times (ms) ↓ 41.405 40.101 41.558 46.133 42.102 46.2 55.6 45.172
Params (M) ↓ 41.1 65.2 48.5 88.5 90.6 111.2 138.1 115.4

TFlops ↓ 0.192 0.18 0.0874 0.244 0.256 0.258 0.292 0.268

yields additional improvements, culminating in our full model’s state-of-the-art performance (97.3%
on 3VT-A and 62.4% on cross-domain tasks), with the most notable gains observed in challenging
out-of-domain settings (3VT-B: +1.6%), demonstrating the benefits of our proposed components.

4.5 Limitation

Table 5: The ablation studies on FCS (3VT) and EPV.

Methods
mAP (%)

Single Domain Cross Domain
3VT-A 3VT-B EPV 3VT-A →B

baseline 94.2 36.8 89.0 36.8
+Zo. Rel. Enc. 95.5 (+1.3) 44.9 (+8.1) 92.4 (+3.4) 58.4 (+21.6)

+Anato. Rel. Consi. Const. 96.7 (+1.2) 47.2 (+2.5) 93.8 (+1.4) 62.0 (+3.6)
+GP-based Det. Head 97.3 (+0.6) 48.8 (+1.6) 94.4 (+0.6) 62.4 (+0.4)

Despite the strong empirical per-
formance of ZR-DETR, several
limitations remain. First, the
GP-based detection head intro-
duces computational overhead
from kernel matrix operations,
which may limit scalability on
high-resolution or large-scale in-
puts [45]. Second, anatomical relation constraints rely on fixed priors that may not generalize to
atypical anatomies or rare pathologies. Third, the uncertainty-guided pseudo-labeling may degrade
under low-data or noisy conditions due to unreliable uncertainty estimates [46]. Future work may
address these challenges by employing scalable GP approximations (e.g., sparse or Nyström meth-
ods) [47], learning data-driven anatomical graphs, and improving pseudo-label quality via consistency
regularization or auxiliary calibrators.

5 Conclusion

In this work, we propose ZR-DETR, a structure-aware and probabilistic framework tailored for
medical object detection. By incorporating scale-sensitive zoom embeddings, anatomical relation
constraints, and a Gaussian Process detection head, ZR-DETR jointly models semantic context,
anatomical plausibility, and function-level uncertainty. The model consistently outperforms strong
baselines in both single-domain and unsupervised domain adaptation scenarios, as validated across
multiple medical imaging benchmarks including FCS, EPV, and MM-WHS. Our method demonstrates
high robustness to domain shifts and scale variability, making it a strong candidate for real-world
deployment in clinical workflows.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: [TODO]
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: we do not have the crowdsourcing experiments and research with human
subjects.[TODO]

19

paperswithcode.com/datasets


Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do need to face the risk about it.[TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigor, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for polish. [TODO]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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