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ABSTRACT

Residual connections and normalization layers have become standard design
choices for graph neural networks (GNNs), and were proposed as solutions to
the mitigate the oversmoothing problem in GNNs. However, how exactly these
methods help alleviate the oversmoothing problem from a theoretical perspective is
not well understood. In this work, we provide a formal and precise characterization
of (linearized) GNNs with residual connections and normalization layers. We
establish that (a) for residual connections, the incorporation of the initial features
at each layer can prevent the signal from becoming too smooth, and determines
the subspace of possible node representations; (b) batch normalization prevents a
complete collapse of the output embedding space to a one-dimensional subspace
through the individual rescaling of each column of the feature matrix. This results
in the convergence of node representations to the top-k eigenspace of the message-
passing operator; (c) moreover, we show that the centering step of a normalization
layer — which can be understood as a projection — alters the graph signal in
message-passing in such a way that relevant information can become harder to ex-
tract. Building on the last theoretical insight, we introduce GraphNormv2, a novel
and principled normalization layer. GraphNormv2 features a learnable centering
step designed to preserve the integrity of the original graph signal. Experimen-
tal results corroborate the effectiveness of our method, demonstrating improved
performance across various GNN architectures and tasks.

1 INTRODUCTION

In recent years, graph neural networks (GNNs) have gained significant popularity due to their ability
to process complex graph-structured data and extract features in an end-to-end trainable fashion (Gori
et al., 2005; Scarselli et al., 2009; Bruna et al., 2014; Duvenaud et al., 2015; Defferrard et al., 2016;
Kipf & Welling, 2017; Veličković et al., 2018). They have shown empirical success in a highly
diverse set of problems (Battaglia et al., 2016; Wu et al., 2020; Xu et al., 2019; Morris et al., 2019;
Jha et al., 2022; Cappart et al., 2021). Most GNNs follow a message-passing paradigm (Gilmer
et al., 2017), where node representations are learned by recursively aggregating and transforming the
representations of the neighboring nodes. Through repeated message-passing on the graph, the graph
information is implicitly incorporated.

A prevalent problem in message-passing GNNs is their tendency to oversmooth (Oono & Suzuki,
2020; Cai et al., 2021; Wu et al., 2023a; Keriven, 2022), which refers to the observation that node
signals (or representations) tend to contract to a one-dimensional subspace as the number of layers
increases. While a certain amount of smoothing is desirable to average out noise in the node features
and render information extraction from the graph more reliable (Keriven, 2022; Wu et al., 2023b),
excessive smoothing leads to an information loss as node signals become virtually indistinguishable
and can thus not be exploited for downstream tasks. For this reason, most GNN architectures use
only few message-passing layers (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019).
This contrasts with the trend in deep learning, where much deeper architectures are considered
preferable (He et al., 2016; Kaplan et al., 2020)

To mitigate the oversmoothing problem for GNNs, several practical solutions have been proposed.
In particular, both residual connections (Chen et al., 2020; Klicpera et al., 2019) and normalization
layers (Zhao & Akoglu, 2020; Zhou et al., 2021; Guo et al., 2023) have been specifically proposed to
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address the oversmoothing problem. Despite empirical observations that the introduction of these
methods can alleviate oversmoothing and enable deeper architectures, a theoretical analysis on the
effects of these methods on oversmoothing and the resultant expressive power of GNNs is still lacking.
More technically, the analysis of oversmoothing typically relies on a single node similarity measure
as a description of the whole underlying system (Oono & Suzuki, 2020; Cai & Wang, 2020; Wu
et al., 2023a). Such measures, however, can only identify a complete collapse of the node signals to
one-dimensional subspace and are unable to capture the more refined geometry of the system beyond
a complete collapse. These observations motivate the following questions:

How do residual connections and normalization layers affect oversmoothing and
therefore the practical expressive power of GNNs? How do they compare?

In this work, we answer the above questions with a refined characterization of the underlying system
of linearized GNNs (Keriven, 2022; Wu et al., 2023b) with residual connections and normalization
layers. In particular, we establish that both methods can alleviate oversmoothing by preventing node
signals from a complete collapse to a one-dimensional subspace, contrary to the case for standard
GNNs (Oono & Suzuki, 2020; Cai & Wang, 2020; Wu et al., 2023a).

Our contributions can be summarized as follows:

• We characterize the system of linearized GNNs with residual connections. We show that residual
connections prevent complete rank collapse to a one-dimensional subspace by incorporating the
initial features at each step. As a result, the subspace of possible node representations that a GNN
can compute is determined by the initial features.

• We analyze the system of linearized GNNs with normalization layers and show that normalization
layers prevent oversmoothing of node signals through the scaling step. Nonetheless, the node
representations exponentially converge to the top-k eigenspace of the message-passing operator.

• We separately identify the role of the centering step in normalization layers. Our results suggest
that the centering step can distort the message-passing in undesired ways. Consequently, relevant
graph information becomes dampened and can even be lost in message-passing.

• Based on these theoretical findings, we propose a novel normalization layer named
GraphNormv2 that learns a centering operation that does not distort the subspaces of the message-
passing operator in an uncontrolled way, but contains a learnable projection. Experimental results
show the effectiveness of our proposed method.

2 RELATED WORK

Oversmoothing in GNNs Oversmoothing is a known challenge for developing deeper and more
powerful GNNs, and many techniques have been proposed to mitigate the issue in practice. Among
them, residual connections (Chen et al., 2020) and normalization layers (Zhao & Akoglu, 2020; Zhou
et al., 2021; Guo et al., 2023) are popular methods that have empirically been shown to mitigate
oversmoothing to certain extent. While many theoretical works on the underlying mechanism of
oversmoothing exist (Oono & Suzuki, 2020; Cai et al., 2021; Keriven, 2022; Wu et al., 2023b;a),
these studies focus on standard GNNs without these additional modules. It is thus still an open
question how residual connections and normalization can mitigate oversmoothing and subsequently
affect the practical expressive power of GNNs from a theoretical perspective.

Theoretical studies on residual connections and normalization in deep learning The empirical
success of residual connections and normalization in enhancing training deep neural networks
has inspired research into their underlying mechanisms (Arora et al., 2018; Daneshmand et al.,
2021; Yang et al., 2019; Liu et al., 2019; Hardt & Ma, 2017; Esteve et al., 2020). Specifically,
it has been shown that batch normalization avoids rank collapse for randomly initialized deep
linear networks (Daneshmand et al., 2020) and that residual connections alleviate rank collapse
in transformers (Dong et al., 2021). Rank collapse of node representations due to oversmoothing
has also been a notable issue in building deeper GNNs. However, a theoretical analysis of how
residual connections and normalization layers combat oversmoothing and their additional effects on
message-passing in GNNs is still lacking.
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3 NOTATION AND PRELIMINARIES

Notation We use the shorthand [n] := {1, . . . , n}. We denote the zero-vector by 0, the all-
one vector by 1 and the identity matrix by I . Let ∥·∥2, ∥·∥F be the 2-norm and Frobenius norm,
respectively. Lastly, for a matrix M , we denote its ith row by Mi,: and jth column by M:,j .

Graph Neural Networks Most message-passing GNN models — which we will simply refer to as
GNNs from now on — can be described by the following update equation:

X(t+1) = σ(AX(t)W (t)) , (1)

where X(t), X(t+1) ∈ Rn×k are the input and output node representations of the tth layer, respectively;
σ(·) is an element-wise non-linearity such as the ReLU function; W (t) ∈ Rk×k is a learnable linear
transformation and A ∈ Rn×n

≥0 represents a message-passing operation and reflects the graph structure.
For example, if A is the graph adjacency matrix, A = Aadj we recover the Graph Isomorphism
Network (GIN) (Xu et al., 2019), and for A = D− 1

2AadjD
− 1

2 , where D = diag(Aadj1) is the
diagonal degree matrix, we obtain a Graph Convolutional Network (GCN) (Kipf & Welling, 2017).

Throughout the paper, we assume A to be symmetric and non-negative. Furthermore, we assume
that eigenvalues λi of a matrix are organized in a non-increasing order in terms of absolute value:
|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. For simplicity, we assume the columns of the initial features X(0) to be
normalized, i.e. ||X(0)

:,i ||2 = 1.

Normalization Layers Normalization has been believed to be beneficial to deep neural networks
for nearly two decades (LeCun et al., 2002). Most normalization layers perform a centering operation
and a scaling operation on the input features. Centering usually consists of subtracting the mean,
centering the features around zero along the chosen dimension. Scaling usually consists of scaling the
features such that the features along the chosen dimension have unit variance. The two most popular
approaches are batch and layer normalization (Ioffe & Szegedy, 2015; Ba et al., 2016). In our work,
we focus on batch normalization (BatchNorm), denoted as BN(·), which is defined as follows: Let
X ∈ Rn×k, then

BN(X) = [· · · ,bn(X:,i), · · ·] ,
where bn(x) = (x−

∑n
i=1 xi/n)/∥x−

∑n
i=1 xi/n∥2 . We note that in the case of GNNs, especially

graph classification tasks, batches may contain nodes from different graphs. In our analysis, we
consider only the nodes in the same graph for normalization and nodes in different graphs do not
influence each other. This is sometimes called instance normalization (Ulyanov et al., 2016).

GraphNorm In Cai et al. (2021), the authors proposed GraphNorm, a normalization layer specif-
ically designed for GNNs that is like BatchNorm in terms of acting on the columns of the feature
matrix. However, compared to BatchNorm, instead of subtracting the mean, the method learns to
subtract an τj portion of the mean for the jth column:

GraphNorm(X:,j) = γj
X:,j − τj11

⊤X:,j/n

σj
+ βj ,

where σj = ∥X:,j − τj11
⊤X:,j/n∥2/

√
n, γj , βj are the learnable affine parameters as in the

implementation of other normalization methods (Ba et al., 2016; Ioffe & Szegedy, 2015). Notably, by
introducing τj for each feature dimension j, (Cai et al., 2021) claims an advantage of GraphNorm
over the original batch normalization in that GraphNorm is able to learn how much of the information
to keep in the mean rather than always subtracting the entire mean away.

Weisfeiler-Leman and Structural Eigenvectors In theoretical studies about GNNs, an algorithm
that comes up frequently is the so-called Weisfeiler-Leman (WL) algorithm (Weisfeiler & Leman,
1968). This algorithm iteratively assigns a color c(v) ∈ N to each node v starting from a constant
initial coloring c(0)(v) = 1 for all nodes. In each iteration, an update of the following form is
computed: c(t+1)(v) = hash

(
c(t)(v), {{c(t)(x) | x ∈ N (v)}}

)
, where hash is an injective hash

function, {{·}} denotes a multiset in which elements can appear more than once, and N (v) is
the set of neighboring nodes of v. The algorithm returns the final colors c(∞) when the partition
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{(c(t))−1(c(t)(v))|v ∈ V (G)} no longer changes for consecutive update t. For GNNs, Morris et al.
(2019) and Xu et al. (2019) showed that for graphs with constant initial node features, GNNs cannot
compute different features for nodes that are in the same class in the final coloring c(∞).

For this paper, an equivalent algebraic perspective of the WL algorithm1 will be more useful (see
Appendix A.1 for a detailed discussion): Given c(∞) with Im(c(∞)) = {c1, .., ck}, define H ∈
{0, 1}n×k such that Hv,i = 1 if and only if c(∞)(v) = ci. It holds that

AH = HAπ , (2)

where Aπ ∈ Rk×k is the adjacency matrix of the quotient graph, which is fixed given A and H . In
words, a node in the quotient graph represents a class of nodes in the original graph who share the
same number of neighbors in each final color.

Most relevantly, the adjacency matrix A of the original graph inherits all the eigenpairs from the
quotient graph: If νπ is the eigenvector of Aπ with eigenvalue λ, then Hνπ is an eigenvector of A
with eigenvalue λ. We call such eigenvectors of A the structural eigenvectors. These eigenvectors are
important for understanding dynamical systems on graphs (Schaub et al., 2016; Yuan et al., 2013),
and play a role for centrality measures such as PageRank (Sánchez-García, 2020) and others (Stamm
et al., 2023). In fact, from the results of Morris et al. (2019) and Xu et al. (2019), we can directly
infer that given constant initial features, GNNs effectively compute node features on this quotient
graph, meaning the features lie in the space spanned by the structural eigenvectors.

4 MAIN RESULTS: DEFYING OVERSMOOTHING

Both residual connections and normalization techniques are widely recognized as effective methods
for mitigating oversmoothing in GNNs (Chen et al., 2020; Klicpera et al., 2019; Zhou et al., 2021;
Zhao & Akoglu, 2020; Guo et al., 2023). In this section, we provide theoretical evidence that
these approaches not only mitigate but provably prevent oversmoothing. Previous studies have
demonstrated that oversmoothing occurs exponentially in standard Graph Convolutional Networks
(GCNs) (Oono & Suzuki, 2020; Cai et al., 2021) and similarly in random walk GCNs and more
general attention-based GNNs (Wu et al., 2023a). These findings suggest that for GNNs with non-
diverging weights, repeated message-passing invariably leads to the collapse of node signals into a
one-dimensional subspace, regardless of initial features. However, our analysis reveals that these
results do not hold for GNNs employing residual connections or BatchNorm. Furthermore, we offer
a precise characterization of the convergence space for GNNs utilizing these techniques, providing
deeper insights into their effects.

For the following theoretical analysis, we investigate a linearized GNN, meaning that σ(·) is
the identity map. For simplicity, we assume, if not specified otherwise, that the weights
(W

(t)
1 )i,j , (W

(t)
2 )i,j ,W

(t)
i,j are randomly sampled i.i.d. Gaussians, which is typical for GNNs be-

fore training. Such a setting is relevant in practice as oversmoothing is present in GNNs before
training has started, making the gradients used for back propagation almost vanish and training
of the network becomes much harder. Yet, most results hold under more general conditions. The
complete proofs of all the results in the main text and the results under general conditions are provided
in Appendix B.

To define oversmoothing, a common approach is to analyze a function µ(·), which measures how far
the node features X(t) are away from collapsing to a one-dimenisonal subspace. One then shows that
µ(X(t)) → 0 as t → ∞, or – even stronger – that this convergence happens at an exponential rate,
i.e. µ(X(t)) ≤ C1e

−C2t for some C1, C2 > 0. There are multiple such measures of oversmoothing
in previous works. For example, (Cai & Wang, 2020) use the graph Dirichlet energy E(X), whereas
(Rusch et al., 2023; Wu et al., 2023a) use the squared difference to the mean over each row and (Oono
& Suzuki, 2020) use the distance to the dominant eigenspace of the message-passing operator A. To
allow for an analysis that takes all these perspectives into account, we will focus our analysis on the
distance to a general one-dimensional subspace spanned by a unit vector v ∈ Rn:

µv(X) := ∥X − vv⊤X∥2F = ∥(I − vv⊤)X∥2F . (3)

1This algebraic characterisation is also known as the coarsest equitable partition (cEP) of the graph.
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Thus, when the graph is ergodic and we choose v to be the dominant eigenvector, we recover the
measure used in (Oono & Suzuki, 2020). With v = 1/

√
n, we recover the measure used in (Rusch

et al., 2023; Wu et al., 2023a) and for v = d/ ∥d∥2 where d = D
1
21, we recover an equivalent

measure to the graph Dirichlet energy E(X) used in (Cai & Wang, 2020). Here equivalence means
that there exist constants C1, C2 > 0 such that

C1µd/∥d∥2
(X) ≤ E(X) ≤ C2µd/∥d∥2

(X) .

This allows us to translate statements about oversmoothing in terms of µv to any of the other measures
mentioned. A detailed discussion can be found in Appendix A.2.

4.1 RESIDUAL CONNECTIONS PREVENT COMPLETE COLLAPSE

For our analysis of residual connections, we focus on the commonly used initial residual connections,
which are deployed in architectures like GCNII (Chen et al., 2020). Such residual connections are
closely related to the Personalized PageRank propagation (Klicpera et al., 2019). For generality, we
write the unified layer-wise update rule for both methods as follows:

X(t+1) = (1− α)AX(t)W
(t)
1 + αX(0)W

(t)
2 , (4)

where αX(0) corresponds to the initial residual connection, and α ∈ (0, 1) can be seen as the strength
of residual connections or alternatively as the teleportation probability in the Personalized PageRank
Propagation. Note that for the Personalized PageRank Propagation method (APPNP) proposed
in (Klicpera et al., 2019), A = D− 1

2AadjD
− 1

2 , W (t)
1 = Ik for all t ≥ 0.

Intuitively, compared to the case for standard message-passing GNNs in (1), at each update step, a
linear combination of the residual signal αX(0) is now added to the features. As long as the weight
matrices are not chosen such that they annihilate the residual signal, this will prevent the features
from collapsing to a smaller subspace. This implies that µv(X

(t)) would be strictly greater than zero.
In fact, µv(X

(t)) can even be bounded away from 0, showing that oversmoothing does not happen.

Proposition 4.1. Let v ∈ R s.t. ∥v∥2 = 1. If µv(X
(0)) > 0, then w.h.p ∃c > 0 s.t. µv(X

(t)) ≥ c.

The above result suggests that, with proper initialization of node features, initial residual connections
will alleviate oversmoothing with high probability, meaning the features will not be smooth after
iterative message-passing at initialization. Nonetheless, it is worth noting that the node similarity
measure µv(X) can only identify a complete collapse to a one-dimensional subspace spanned by
v, in which case µv(X) equals zero. Even if µv(X) can remain strictly positive with residual
connections, this does not eliminate the possibility that there may still be partial collapse of the signal
to a lower-dimensional subspace. However, as we will show with the following result, with residual
connections defined in (4), no such partial collapse occurs.

Proposition 4.2. Let xi = X
(0)
:,i , ∥xi∥2 = 1 and let each (W

(t)
l )y,z

i.i.d.∼ N (η, s2). Then for any

ϵ > 0,
∥∥x⊤

i X
(t)
∥∥
2
≥ ϵ with probability at least p = 1− exp

(
− ϵ2

2α2s2

)
.

This result essentially says that a part of the initial signal is maintained after each layer with high
probability. We can further give a more refined characterization of what node features the system
in (4) can compute after repeated rounds of message-passing.

Proposition 4.3. Let Kr(A,X(0)) = Span({Ai−1X
(0)
:,j }i∈[n],j∈[k]) be the Krylov subspace. Let

Y ∈ Rn×k. Then there exist a T ∈ N and sequence of weights W (0)
1 ,W

(0)
2 , · · · ,W (T−1)

1 ,W
(T−1)
2

such that X(T ) = Y if and only if Y ∈ Kr(A,X(0)).

The result shows that for a message-passing GNN with residual connections, the subspace that the
embedding X(t) lies in is governed by the initial features X(0) together with the message-passing
operator A and that any such signal is reachable by a sequence of weights. This is in contrast with
the behavior of standard message-passing GNNs, for which node representations eventually becomes
“memoryless”, i.e., independent of initial features. In particular, for standard GCNs, the subspace the
system converges to is completely governed by the message-passing operator A (Oono & Suzuki,
2020).
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Remark 4.4. Proposition 4.3 connects closely to Theorem 2 in Chen et al. (2020). Specifically,
Theorem 2 in Chen et al. (2020) implies that for any features in the Krylov subspace, there exists
weights such that the corresponding GNN outputs such features. Here, we prove in addition an upper
bound, that the GNN cannot express any features that lie beyond the Krylov subspace.

Remark 4.5. Our results also suggest that whether initial residual connections would work for
oversmoothing heavily depends on the initialization of features. If chosen poorly, they may not
be able to prevent oversmoothing. In particular, a constant initialization of features is unhelpful to
prevent oversmoothing with initial residual connections.

4.2 BATCHNORM PREVENTS COMPLETE COLLAPSE

Having discussed the effect of residual connections, in this section, we switch gears and analyze how
BatchNorm affects GNNs. We consider the following combination of GNNs with BatchNorm:

X(t+1) = BN(Y (t+1)), Y (t+1) = σ(AX(t)W (t)) . (5)

Similar to the analysis on GNNs with initial residual connections, we will show that BatchNorm
prevents complete collapse of the output embedding space to a one-dimensional subspace. We again
consider the case where σ(·) is the identity map. Note that even though the GNN computation is
now linearized, the overall system remains non-linear because of the BatchNorm operation. Let us
consider now V̸=0 ∈ Rn×k′

to be the matrix of eigenvectors associated to non-zero eigenvalues of
(In − 11⊤/n)A.

Proposition 4.6. Let v ∈ Rn s.t. ∥v∥2 = 1 and vT1 > 0. Let Rank(V ⊤
̸=0X

(0)) > 1, then there exists
c(v) > 0 such that µv(X

(t)) ≥ c(v) for all t ≥ 1 with probability 1 .

The above result suggests that with BatchNorm, µv(X
(t)) is maintained strictly greater than a

nontrivial constant at each layer, indicating that complete collapse to a one-dimensional subspace
does not happen.

Remark 4.7. A more general version of the above result holds for both linear and non-linear GNNs,
when assuming σ(·) is injective: for v ∈ Rn such that v⊤1 ̸= 0, under some regularity conditions,
there exists c(v) > 0 such that µv(X

(t)) = c(v)
√
k for all t ≥ 1, where k is the hidden dimension of

features. In particular, this would account for the case where A is the adjacency matrix of the graph
or the symmetric random walk matrix D−1/2AadjD

−1/2, and v is their corresponding dominant
eigenvector. See Appendix B.7 for a detailed discussion.

However, as what we have discussed for the case of residual connections, the measure µv(X) can
only capture complete collapse to a one-dimensional subspace. In what follows, we will provide
a more precise characterization of the convergence behaviors of GNNs with BatchNorm. Notably,
since the scaling operation of BatchNorm guarantees that the system will not diverge or collapse, we
can give an exact asymptotic characterization. Let Vk ∈ Rn×k be the matrix of the top-k eigenvectors
of (In − 11⊤/n)A. We will show that the resulting linearized GNN converges to a rank-k subspace
spanned by the top-k eigenvectors of (In − 11⊤/n)A.

Proposition 4.8. Suppose V ⊤
k X(0) has rank k, then for all weights W (t), the GNN with BatchNorm

given in (5) exponentially converges to the column space of Vk.

It is easy to see that the centering operation in BatchNorm is the reason why we use the centered
message-passing operator (In − 11⊤/n)A and its eigenvectors here. If we inspected BatchNorm
without scaling, however, we would arrive at a completely linear system, which must converge to the
dominant eigenvector (given mild assumptions). This implies that the column-wise scaling operation
is responsible for the preservation of the rank of the features. Furthermore, there are no requirements
for the weights as in the case without BatchNorm (Oono & Suzuki, 2020; Wu et al., 2023a): even
extremely large or random weights can be chosen, as the scaling ensures that the system neither
diverges nor collapses.

The convergence of the linearized system in (5) to a k-dimensional subspace can be shown to be tight:
we can choose weights such that the top-k eigenvectors are exactly recovered. This is of course only
possible if these eigenvectors have a nonzero eigenvalue, which we assume for the result below, in
that, none of the top-k eigenvectors of (In − 11⊤/n)A have eigenvalue zero.
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Proposition 4.9. Suppose |λ̂k| > 0 and V ⊤
k X(0) has rank k. For any ϵ > 0, there exists T > 0 and

a sequence of weights W (0),W (1), ...,W (T ) such that for all t ≥ T and i ∈ [k],∥∥∥ν⊤i X
(t)
:,i

∥∥∥
2
≥ 1/

√
1 + ϵ ,

where νi denotes the i-th eigenvector of (In − 11⊤/n)A.

The above result ties in nicely with recent results showing that GNNs are strengthened through
positional encodings (Dwivedi et al., 2021; 2023), where the features are augmented by the top-k
eigenvectors of the graph. This can, in some sense, be seen as emulating a deep GNN, which would
converge to the top-k eigenspace using BatchNorm. Yet it is worth noting that while BatchNorm
improves the practical expressive power of GNNs by converging to a larger subspace, under the type
of convergence given in Proposition 4.8, the information in the eigenvectors associated with small
magnitude eigenvalues is still dampened after repeated message-passing. In the limit t → ∞, the
computation is thus still memoryless.

Remark 4.10. If no initial node features X(0) are given by the dataset, common choices in practice
are to initialize the features randomly or identically for each node. In the former case, the prerequisites
of 4.8 and Proposition 4.9 are satisfied. In the latter case, the conditions are not met, as X(0) has rank
one. In that case, the system still converges. In fact, it retains its rank and converges to the dominant
eigenvector of (In − 11⊤/n)A.

Comparison between normalization and residual connections. From previous sections, we
have seen that both residual connections and batch normalization are able to prevent a complete
collapse of the node embeddings to a one-dimensional subspace. In both cases, the embeddings
converge to a larger subspace and thus oversmoothing is alleviated. However, it is clear that different
mechanisms are at play to mitigate oversmoothing. With residual connections, the system is able
to keep the dimensions of the initial input features by incorporating the initial features X(0) at each
layer; while with normalization, the system converges to the subspace of the top eigenvectors of the
message-passing operator through the scaling step.

5 CENTERING DISTORTS THE GRAPH

So far, we have analyzed the effects of residual connections and normalization layers on oversmooth-
ing. Specifically, we have shown that the incorporation of initial features of residual connections and
the scaling effect of normalization help alleviate complete rank collapse of node features. However,
there are two steps in normalization layers: centering and scaling. If already scaling helps preventing
a complete collapse, a natural question is what is the role of centering in the process? In this section,
we will show that the current centering operation used in normalization layers can in fact have an
undesirable effect altering the graph signal that message-passing can extract, as if message-passing
happens on a different graph.

5.1 CENTERING INTERFERES THE STRUCTURAL EIGENVECTORS

The centering operation in normalization layers takes away the (scaled) mean across all rows in each
column, and thus can be written as applying the operator In−τ11⊤/n to the input, where τ indicates
how much mean is taken away in centering. Specifically, for τ = 1 we recover BatchNorm, whereas
for τ ∈ R, we recover GraphNorm (Cai et al., 2021). To analyze how this step would alter the graph
signal message-pasing can extract, we make use of the concepts of quotient graph and structural
eigenvectors as introduced in Section 3.

Given a symmetric, non-negative adjacency matrix A ∈ Rn×n
≥0 , let H ∈ {0, 1}n×m be the indicator

matrix of its final WL coloring c(∞). Consider the eigenpairs V = {..., (λ, ν), ...} of A and divide
them into the set of structural eigenpairs Vstruc = {(λ, ν) ∈ V | ν = Hνπ}, and the remaining
eigenpairs Vrest = V\Vstruc. Similarly, let V̂ = {..., (λ̂, ν̂), ...} be the eigenpairs of (In − τ11⊤/n)A.
We now analyze what happens to these distinct sets of eigenvectors when applying the centering
operation. Notice that the parameter τ controls how much of the mean is taken away and thus how
much the centering influences the input graph. However, as long as τ is not zero, there is always an
effect altering the graph operator used in message-passing:
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Proposition 5.1. Assuming τ > 0,

1. Vrest ⊂ V̂ .

2. Assume that A is not regular, then the dominant eigenvector ν of A is not an eigenvector in
V̂ for any eigenvalue.

3.
∑

(λ,ν)∈Vstruc
λ >

∑
(λ̂,ν̂)∈V̂\Vrest

λ̂ .

The authors of GraphNorm Cai et al. (2021) had previously analysed the case for regular graphs.
Here, we consider a general case where the graph is not regular, meaning there is more than one color
in the final WL coloring c(∞).

Assuming constant initialization of node features, Vstruc spans the space of all possible node features
that a GNN can compute and Proposition 5.1 states that it is exactly the space that the centering
acts on. Specifically, while leaving the eigenvectors and eigenvalues in Vrest untouched, centering
changes the eigenvector basis of the space spanned by Vstruc in two ways: some vectors, such as
the dominant eigenvector, are affected by this transformation and thus no longer convey the same
information. At the same time, the centering transformation may change the magnitude of eigenvalues
— that is, the dominant eigenvector may not be dominant anymore. Meanwhile, the whole space
is pushed downward in the spectrum, meaning that after the centering transformation, the signal
components within the structural eigenvectors are dampened and thus become less pronounced in the
node representations given by the GNN.

Notably, such an effect altering the graph signal not only applies to BatchNorm with τ = 1, but
also GraphNorm (Cai et al., 2021), which was proposed specifically for GNNs. In their paper, the
authors address the problem that BatchNorm’s centering operation completely nullifies the graph
signal on regular graphs. Their remedy is to only subtract an τ portion of the mean instead. However,
Proposition 5.1 shows that a similar underlying problem altering the graph signal would persist for
general graphs even switching from BatchNorm to GraphNorm.

Comparison with standard neural networks The use of normalization techniques in GNNs
was inspired by use of normalization methods in standard feed-forward neural networks (Ioffe &
Szegedy, 2015). Here, we want to emphasize that the issue centering causes in GNNs as described
above is not a problem for standard neural networks, as standard neural networks do not need to
incorporate the graph information in the forward pass. As a result, in standard neural networks,
normalization transforms the input in a way that it does not affect the classification performance:
for each neural network, there exists a neural network that yields an equivalent classification after
normalization. However, this is not the case for GNNs. In GNNs, the graph information is added
in through message-passing, which can be heavily altered by normalization as shown above. Such
normalization can lead to information loss, negatively impacting the model’s performance.

5.2 OUR METHOD: GRAPHNORMV2

Based on our theoretical analysis, we propose a new normalization layer for GNNs which has a
similar motivation as the original GraphNorm but improves the centering operation to not affect
the graph information in message-passing. Specifically, instead of naive centering, which can be
thought of as subtracting a projection to the all-ones space, we use a learned projection. Learning a
completely general projection may have certain downsides, however. As graphs can have different
sizes, we either would need to learn different projections for different graph sizes or use only part of
the learned projection for smaller graphs. We thus opt for learning a centering that transforms the
features by subtracting an (τj)i portion of the i-th eigenvector from the j-th column. Our proposed
graph normalization is thus:

GraphNormv2(X:,j) = γj
X:,j − (Vk+τjτ

⊤
j V ⊤

k+)X:,j

σj
+ βj ,

where τj ∈ Rk+1 is a learnable parameter, σj = ∥X:,j − (Vk+τjτ
⊤
j V ⊤

k+)X:,j∥2, and γj , βj are the
learnable affine parameters. Instead of just using the top-k eigenvectors Vk of the message-passing
operator, we use Vk and one additional vector r = 1 − VkV

†
k 1 such that 1 can be represented as

a linear combination. This ensures backward compatibility, in that, GraphNormv2 can emulate
GraphNorm and BatchNorm. We denote the set Vk+ := Vk ∪ {r}.

8
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Figure 1: Long Term behavior of GCN. Mean progression (over 10 independent trials) of µv(X
(t)) and

Rank(X(t)) over 256 iterations of message-passing in both linear and non-linear GCN, where v corresponds
to the dominant eigenvector for D−1/2AadjD

−1/2. In the linear case, µv(X
(t)) remains constant for all

methods except the vanilla GCNs, indicating that complete collapse to the dominant eigenspace does not happen.
However, PairNorm does collapse in terms of rank, while the other methods maintain a rank greater than 2.
All the phenomena are explained by our theory. In the non-linear case, the models behave similarly. Notably,
centering seems to prevent rank collapse in the non-linear case as PairNorm no longer collapses in rank.

6 NUMERICAL EXPERIMENTS

In this section, we investigate the benefits that can be derived from the proposed graph normalization
method GraphNormv2. We examine the long term behavior of linear and non-linear GNNs by
conducting an ablation study on randomly initialized, untrained GNNs. We then go on to inspect
the practical relevance of our proposed method. More details about the experiments are provided
in Appendix C.

Rank collapse in linear and non-linear GNNs We investigate the effect of normalization in deep
(linear) GNNs on the Cora dataset (Yang et al., 2016). We employ seven different architectures: an
architecture using residual connections, BatchNorm (Ioffe & Szegedy, 2015), PowerEmbed (Huang
et al., 2022), PairNorm (Zhao & Akoglu, 2020), GraphNorm (Cai et al., 2021), GraphNormv2, and
finally no normalization as a baseline. Each of these methods is used in an untrained, randomly
initialized GCN (Kipf & Welling, 2017) (without biases) with 256 layers.

We compare these models using the following measures of convergence: µv(X
(t)) as defined

in (3), where v is the dominant eigenvector, the eigenvector space projection: dev(X) :=
1
n

∥∥X − V V ⊤X
∥∥
F
, where V ∈ Rn×n is the set of normalized eigenvectors of A, and the numerical

rank of the features Rank(X(t)). The results are shown in Figure 1. The same experiment with both
GIN and GAT can be found in the appendix together with additional measures of convergence.

The two left panels of Figure 1 show that the commonly considered metric for measuring oversmooth-
ing µv(X) indeed detects the collapse of node features in vanilla GNNs to the dominant eigenspace
spanned by v of the message-passing operator, in both the linear and non-linear case. Nonetheless,
for any other methods, it does not detect any collapse of the feature space — neither in the linear
nor non-linear case. However, the right two panels show PairNorm indeed also oversmoothes in the
linear case. Specifically, it converges to the dominant eigenvector of (In − τ11⊤/n)D− 1

2AadjD
− 1

2 ).
The other methods are able to preserve a rank greater than two over all iterations. However, they
do converge to a low-dimensional subspace, e.g. PowerEmbed and GraphNormv2 converges to the
top-k eigenvector space as can be seen in the middle panel. All of these phenomena are explained
by our theoretical analysis. As for the non-linear case, the models behave similarly apart from two
things: (a) there is no convergence to the linear subspace due to the non-linearity σ(·), although the
rank can still be preserved. (b) The centering operation in PairNorm seems to prevent rank collapse
in the non-linear case as PairNorm no longer collapses in rank.

Classification performance We evaluate the effectiveness of our method GraphNormv2 for real
graph learning tasks. We perform graph classification tasks on the standard benchmark datasets
MUTAG (Schlichtkrull et al., 2017), PROTEINS (Morris et al., 2020) and PTC-MR (Bai et al.,
2019) as well as node classification tasks on Cora, Citeseer (Yang et al., 2016) and large-scale
ogbn-arxiv (Hu et al., 2020). We compare GraphNormv2 to 5 normalization baselines: BatchNorm,
PairNorm, GraphNorm, PowerEmbed and GroupNorm (Zhou et al., 2020). Following the general

9
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Table 1: Performance under different normalization layers. Performance of GIN, GCN, and GAT with
different normalization layers on graph classification task (MUTAG, PROTEINS, and PTC-MR) and node
classification task (Cora, CiteSeer, and ogbn-arxiv). Results are reported as the mean accuracy (in %) ± std. over
10 independent trials and 5 folds. Best results are highlighted in blue; second best results are highlighted in gray.

Graph Classification Node Classification Node Classification (# layers=20)
MUTAG PROTEINS PTC-MR Cora CiteSeer ogbn-arxiv Cora CiteSeer ogbn-arxiv

GCN

no norm 78.2± 7.8 70.5± 4.0 57.7± 3.0 82.6± 4.6 89.4± 0.6 67.4± 0.2 46.0± 11.5 65.6± 4.3 6.0± 6.5
batch 81.5± 2.0 70.4± 1.8 56.0± 3.5 85.2± 0.6 89.4± 0.7 68.3± 0.3 84.0± 1.6 82.2± 4.4 56.7± 0.5
graph 81.1± 4.7 71.4± 3.6 58.1± 4.8 85.1± 0.8 89.1± 0.7 68.3± 0.2 80.5± 6.3 82.7± 2.1 56.3± 0.8
pair 61.3± 10.1 59.6± 0.0 55.8± 0.0 84.2± 0.7 88.2± 0.7 63.0± 1.2 82.3± 0.5 74.0± 14.1 44.0± 1.9

group 79.9± 5.8 69.3± 4.1 55.7± 4.1 85.5± 0.9 89.4± 0.6 65.1± 0.4 64.4± 10.9 80.7± 1.1 6.0± 6.2
powerembed 82.4± 3.7 70.1± 3.6 55.2± 4.8 85.4± 0.8 89.7± 0.7 68.1± 0.2 48.0± 9.1 77.3± 3.8 55.9± 0.5

graphv2 82.6± 4.6 72.6± 2.6 56.5± 4.8 85.8± 0.5 89.5± 0.6 68.3± 0.3 84.8± 0.8 83.4± 2.0 57.4± 0.6

GAT

no norm 78.5± 5.3 71.2± 2.0 61.3± 4.2 85.9± 0.9 93.7± 0.5 68.3± 0.9 79.2± 0.7 89.1± 0.5 44.6± 2.8
batch 82.5± 4.1 68.4± 5.2 55.7± 0.7 86.2± 0.7 94.9± 0.5 71.0± 0.1 85.8± 0.7 94.2± 0.6 55.7± 0.5
graph 81.2± 4.8 71.9± 2.4 60.3± 5.4 86.3± 0.9 94.8± 0.5 71.0± 0.1 85.7± 0.8 94.0± 0.6 55.9± 0.6
pair 59.7± 11.1 60.1± 0.9 55.7± 1.1 85.4± 1.0 93.4± 1.2 70.0± 0.2 84.9± 0.7 92.5± 1.0 6.2± 0.9

group 73.9± 3.6 69.1± 4.0 59.8± 3.8 87.4± 0.8 95.3± 0.5 70.9± 0.1 85.1± 0.7 94.2± 0.5 55.6± 0.6
powerembed 75.0± 5.4 69.6± 4.0 58.4± 3.7 87.0± 0.8 95.5± 0.5 71.0± 0.1 85.4± 0.6 93.8± 0.4 55.6± 0.5

graphv2 81.6± 3.8 71.0± 2.6 59.5± 4.4 86.3± 0.8 94.8± 0.5 70.9± 0.2 85.7± 0.8 94.4± 0.5 57.5± 0.6

GIN

no norm 79.7± 5.9 70.7± 3.6 59.2± 3.9 33.4± 45.4 47.0± 3.1 21.6± 0.0 28.2± 6.2 23.4± 5.1 25.7± 10.8
batch 82.5± 5.0 69.2± 5.3 52.9± 5.3 68.4± 4.0 49.7± 6.8 21.1± 7.9 31.4± 5.4 23.6± 6.1 6.0± 6.1
graph 83.7± 4.2 72.6± 2.4 59.1± 5.1 33.2± 3.4 63.0± 11.0 21.6± 0.0 26.9± 5.2 27.1± 4.6 6.2± 0.8
pair 65.2± 3.2 64.5± 4.3 55.5± 1.6 37.2± 3.5 51.1± 9.2 20.7± 9.6 28.6± 6.2 26.9± 4.7 6.2± 0.9

group 79.9± 5.8 69.3± 4.1 58.2± 2.7 85.9± 0.7 89.4± 0.6 20.1± 8.0 76.2± 9.1 94.0± 0.6 6.0± 8.1
powerembed 82.4± 3.7 70.1± 3.6 59.8± 3.5 86.0± 1.1 89.7± 0.7 21.1± 6.5 40.0± 6.1 53.0± 3.6 6.0± 6.1

graphv2 84.9± 3.6 71.0± 3.6 60.1± 5.5 86.5± 0.9 94.9± 0.5 68.9± 0.3 83.8± 2.0 93.8± 0.7 56.6± 0.7

set-up of (Errica et al., 2019), we investigate the performance of GIN, GCN and GAT in a 5-fold cross-
validation setting. Details on hyperparameter tuning and other specifics can be found in Appendix C.
The final test scores are obtained as the mean scores across the 5 folds and 10 independent trials with
the selected hyperparameters. We then also repeat the same experiment on Cora and Citeseer where
we fix the depth of the models to 20 layers. The results are reported in Table 1.

Table 1 shows improvements on most benchmarks for our proposed normalization technique
GraphNormv2. Although our method yields weak performance improvements in certain cases,
this trend is apparent across datasets and tasks and even seems to be independent of the architecture.
It is however worth mentioning that our method seems to not perform as well with GAT. This may
be the result of GAT having both asymmetric and time-varying message-passing operators due to
the attention mechanism (Wu et al., 2023a) — both aspects are outside the scope of our current
analysis. More experimental results on other GNN backbones and heterophilic datasets can be found
in Appendix D.

7 DISCUSSION

In this paper, we have analyzed the effect of both residual connections and normalization layers in
GNNs. We show that both methods provably alleviate oversmoothing through the incorporation of the
initial features and the scaling operation, respectively. In addition, by identifying that the centering
operation in a normalization layer alters the graph information in message-passing, we proposed
GraphNormv2, a novel normalization layer which does not distort the graph and empirically verified
its effectiveness.

Our experiments showed that the trends described by our theoretical analysis are visible even in the
non-linear case. Future work may concern itself with closing the gap and explaining how centering
together with non-linearity can prevent node representations from collapsing to a low-dimensional
subspace.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY

For the theoretical statements made in the main text, a number of assumptions are made. These are
detailed in Section 3 and Section 4. All other needed assumptions are part of the respective statements.
The proofs of all of these statements can be found in Appendix B.

The results in Figure 1, can be reproduced by running the ablation_study.ipynb notebook
in the supplementary material. Aggregating the statistics over multiple runs strengthens the repro-
ducibility of the results.

The results in Table 1 can be reproduced by running the bash scripts graph_level_norm.sh and
node_level_norm.sh respectively on a machine with a GPU. This will schedule all experiments
reported in Table 1.

Further details regarding the experiments can be found in Appendix C.
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A FURTHER BACKGROUND MATERIALS

A.1 AN ALGEBRAIC PERSPECTIVE ON THE WEISFEILER-LEMAN COLORING

We briefly restate part of what has already been stated in the main text. So that notation is clear again.
The Weisfeiler-Leman (WL) algorithm iteratively assigns a color c(v) ∈ N to each node v ∈ V
starting from a constant initial coloring c(0)(v) = 1 ∀v ∈ V . In each iteration, an update of the
following form is computed:

c(t+1)(v) = hash
(
c(t)(v), {{c(t)(x) | x ∈ N(v)}}

)
(6)

where hash is an injective hash function, and {{·}} denotes a multiset in which elements can appear
more than once. The algorithm returns the final colors c(∞) when the partition {(c(t))−1(c(t)(v))|v ∈
V } no longer changes for consecutive t. citetmorris2019weisfeiler and citetxu2018powerful showed
that GNNs cannot compute different features for nodes that are in the same class in the final coloring
c(∞).

For this paper, the equivalent algebraic perspective of the WL algorithm will be more useful: Given
c(∞) with Im(c(∞)) = {c1, .., ck}, define H ∈ {0, 1}n×k such that Hv,i = 1 if and only if c(∞)(v) =
ci. It holds that

AH = H(H⊤H)−1H⊤AH = HAπ , (7)
where Aπ := (H⊤H)−1H⊤AH ∈ Rk×k is the adjacency matrix of the quotient graph. Looking at
this equation, there are two things of interest here.

Firstly, AH = HAπ . Considering this equation more closely, the left side AH counts, for each node,
the number of neighbors of color ci. More formally,

(AH)v,i =
∑

x∈(c(∞))−1(ci)

[x ∈ N(v)] =
∑

x∈N(v)

[c(x) = ci]

where the Iverson bracket [·] returns 1 if the statement is satisfied and 0 if it is not. The right hand
side of the equation (HAπ) states that nodes in the same class have the same rows. It is not hard to
verify that if c(∞)(v) = ci

(HAπ)v,: = (Aπ)i,:

Now, combining both sides of the equation, the statement AH = HAπ reads, that the number
of neighbors of any color that a node has is the same for all nodes of the same class meaning
{{c(t)(x) | x ∈ N(v)}} is the same for all nodes of the class. It becomes clear that at this point we
have a fixed point of the WL update (6) and conversely whenever we have such a fixed point, the
equation AH = HAπ holds. The difference between the WL algorithm and (7) is that the latter
equation holds for any so called equitable partition while the WL algorithm converges to the coarsest
partition - meaning the partition with fewest distinct colors. For instance, on regular graphs, the WL
algorithm returns the partition with 1 color i.e. H = 1. However, the trivial partition with n colors
H = I also fulfills (7).

Secondly Aπ := (H⊤H)−1H⊤AH ∈ Rk×k is the adjacency matrix of the so-called quotient graph.
Noticing that H⊤H = diag({|(c(∞))−1(ci)|}i∈[k]) it quickly becomes clear that Aπ is the graph of
mean connectivity between colors. In other words, a supernode in the quotient graph represent a class
of nodes in the original graph who share the same number of neighbors in each final coloring and an
edge connecting two such supernodes is weighted by the number of edges there were going from
nodes of the one color to nodes of the other color. In this sense, the quotient graph is a compression
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of the graph structure. It now only has k supernodes compared to the n nodes that there were in
the original graph. Still the quotient graph is an adequate depiction of the structure of the graph.
Most relevantly, the adjacency matrix A of the original graph inherits all eigenpairs from the quotient
graph: Let (λ, νπ) be an eigenpair of Aπ , then

AHνπ = HAπνπ = λHνπ .

We call such eigenvectors of A the structural eigenvectors. They are profoundly important and
may even completely determine processes that move over the edges of a network. The structural
eigenvectors span a linear subspace that is invariant to multiplication with A. This means that once
inside this subspace a graph dynamical system cannot leave it. This holds true for GNNs as Morris
et al. (2019) and Xu et al. (2019) showed.

A.2 UNIFYING PERSPECTIVES ON OVERSMOOTHING

Oversmoothing is a phenomenon observed in Graph Neural Networks (GNNs) where, as the number
of layers increases, the node representations tend to become indistinguishable from each other. This
phenomenon has its root cause in the underlying linear system, where it is known that, given mild
assumptions that the system is well-behaved (ergodic and non-diverging), the linear system converges
to the dominant eigenvector of the graph operator A.

In different analyses of the topic, different measures of convergence are used. Oono & Suzuki (2020)
used the distance from the dominant eigenvector space

dM(X) = inf{∥X − Y ∥ |Y ∈ M} (8)

where M is the dominant eigevector space. Cai & Wang (2020) used the graph Dirichlet energy

E(X) =
1

2

∑
e∈E

(
Xi,:√
di

− Xj,:√
dj

)2

Finally, Rusch et al. (2023); Wu et al. (2023a) used the distance to the all-ones vector

µ(X) =

∥∥∥∥X − 11T

n
X

∥∥∥∥2
2

While all of these measures of oversmoothing look different, the idea behind them is similar: They
characterize the convergence of the features to a rank 1 matrix by showing that the respective functions
φ(X(t)) → ∞ as t → ∞, where φ ∈ {dM, E , µ(X)}. On can further strengthen the statement by
showing that φ(X(t)) ≤ C1e

−C2t, i.e. that the features converge exponentially fast.

In this paper, we turn our analysis to µv as defined in Equation (3). We now show that each of the
above definitions is equivalent to our in the sense that for any graph G there exists a v ∈ Rn and
C3, C4 > 0 such that

C3µv(X) ≤ φ(X) ≤ C4µv(X)

This is useful to our analysis, since φ(X) = 0 ⇐⇒ µv(X) = 0. Additionally, if we find a lower
bound µv(X

(t)) > c (like in Proposition 4.1 and 4.6) this translates to a lower bound φ(X(t)) > c′.

For φ = µ the equivalence is easy to see. Choosing v = 1/
√
n,

µv =
∥∥X − vvTX

∥∥2
2
=
∥∥∥X − 11T /

√
n
2
X
∥∥∥2
2
= µ(X)

So C3 = C4 = 1.

For φ = dM this equivalence can be established if the graph is ergodic (strongly connected and
aperiodic). Then, the dominant eigenspace is non-degenerate meaning there is a unique dominant
eigenvector ν (up to scaling). Then,

dM = inf{∥X − Y ∥ |Y ∈ M} = inf{∥X − Y ∥ |Yi ∈ {aν|a ∈ R}} =
∥∥X − ννTX

∥∥ = µν(X)

So again, C3 = C4 = 1.
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Lastly, for φ = E , given, that the graph is connected, it is quite easy to see that E(X) = 0 ⇐⇒
X ∈ Span(D

1
21). Thus, we choose v = D

1
21/

∥∥∥D 1
21
∥∥∥. For simplicity, we show this for X ∈ Rn

with ∥X∥2 = 1. The generalisation is straight forward. Let d = maxi Di,i:

µv(X)

2n2
√
d
≤ max

(u,x)∈E

(
|Xu − vu|+ |Xx − vx|

2
√
d

)2

≤ max
(u,x)∈E

(
| Xu

2
√

Du,u

− Xx

2
√

Dx,x

|

)2

≤ 1

2

∑
e∈E

(
Xi,:√
di

− Xj,:√
dj

)2

= E(X) ≤ µv(X)

This shows that our findings (4.1, 4.6) that show that oversmoothing does not happen when using
BatchNorm or residual connections carry over to GCN and attention-based GNNs for which the
oversmoothing was shown to be a problem previously.

B PROOFS

B.1 PROOF FOR PROPOSITION 4.1

Proposition 4.1. Let v ∈ R s.t. ∥v∥2 = 1. If µv(X
(0)) > 0, then w.h.p ∃c > 0 s.t. µv(X

(t)) ≥ c.

To prove this proposition, we first need to prove the following lemma:

Lemma B.1. Let q ∈ Rn and ∥qTX(0)∥22 > 0 and let each (W
(t)
l )y,z

i.i.d.∼ N (η, s2). Then for any

ϵ > 0,
∥∥q⊤X(t)

∥∥
2
≥ α · ϵ · ∥qTX(0)∥22 with probability at least p = 1− exp

(
− ϵ2

2s2

)
.

Proof. We start by deconstructing X(t) as

X(t) = (1− α)AX(t−1)W
(t−1)
1 + αX(0)W

(t−1)
2

Define q̂ = 1
∥qTX(0)∥2

2
q. We then have:

q̂⊤X(t) = (1− α)q̂⊤AX(t−1)W
(t−1)
1 + αq̂⊤X(0)W

(t−1)
2

= φ+ αq̂⊤X(0)W
(t−1)
2

(9)

Resulting in:∥∥∥q̂⊤X(t)
∥∥∥
2
≥
∥∥∥q̂⊤X(t)

∥∥∥
∞

=
∥∥∥φ+ αq̂⊤X(0)W

(t−1)
2

∥∥∥
∞

= max
j

|φj + α(q̂⊤X(0)W
(t−1)
2 )j |

≥ |φj + α(q̂⊤X(0)W
(t−1)
2 )j |

= |φj + αq̂⊤(X(0)W
(t−1)
2 ):,j |

= |φj + αq̂⊤X(0)(W
(t−1)
2 ):,j |

= |φj + α
∑
a

(q̂⊤)a(X
(0))a,:(W

(t−1)
2 ):,j |

= |φj + α
∑
b

∑
a

(q̂⊤)a(X
(0))a,b(W

(t−1)
2 )b,j | = |Ẑ|

(10)

Ẑ is a weighted sum of Gaussian variables and as such, is Gaussian itself (N (η̂, ŝ2)) with mean
η̂ = η(φj)+ η

∑
b

∑
a(q̂

⊤)a(X
(0))a,b and variance ŝ2 = s2(φj)+α2s2

∑
b(
∑

a(q̂
⊤)a(X

(0))a,b)
2.

Because we defined q̂ = 1
∥qTX(0)∥2

2
q, we have that

∑
b(
∑

a(q̂
⊤)a(X

(0))a,b)
2 = ∥qTX(0)∥22 ≥ 1 and

as such ŝ2 ≥ α2s2.
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Define the helper variable Ẑ/α, which is Gaussian with Ẑ/α ∼ N ( η̂α ,
ŝ2

α2 ) and define the variable
Z ∼ N (0, s2). Notice that Ẑ/α has higher variance than Z. To finish the proof, notice that

Pr(|Ẑ| ≥ αϵ) = Pr(|Ẑ|/α ≥ ϵ) ≥ Pr(|Z| ≥ ϵ) = 1− Pr(|Z| < ϵ) ≥ 1− exp

(
− ϵ2

2s2

)
,

where the last inequality is based on the Chernoff Bound. To finish the proof, notice that:∥∥∥q̂⊤X(t)
∥∥∥
2
=

∥∥q⊤X(t)
∥∥
2

∥qTX(0)∥22
and thus:

Pr(
∥∥∥q̂⊤X(t)

∥∥∥
2
≥ ϵα) ≥ Pr(

∥∥q⊤X(t)
∥∥
2

∥qTX(0)∥22
≥ ϵα)

= Pr(
∥∥∥q⊤X(t)

∥∥∥
2
≥ ϵα · ∥qTX(0)∥22) ≥ 1− exp

(
− ϵ2

2s2

)

We can now resume the proof of Proposition 4.1.

Proof. Let the weights be randomly initialized (W
(t)
l )y,z

i.i.d.∼ N (η, s2). Assume

µv(X
(0)) = ∥(I − vv⊤)X(0)∥2F =

k∑
i=1

∥(I − vv⊤)X
(0)
:,i ∥

2
2 > 0

There must be a column X
(0)
:,i such that X(0)

:,i is not a scaled version of v. Equivalently, X(0)
:,i =

av + br, where vT r = 0 and (X
(0)
:,i )

T r = b > 0. Using Lemma B.1, we get that
∥∥r⊤X(t)

∥∥
2
≥

α · ϵ · ∥rTX(0)∥22 with probability p = 1− exp
(
− ϵ2

2s2

)
. By construction, ∥rTX(0)∥22 > 0 and we

choose ϵ > 0 such that p = 0.9. Thus, α · ϵ · ∥rTX(0)∥22 = c > 0. Lets now look at µv(X
(t)). Since

∥v∥ = 1:

∥vTX(t)∥2F ≤
∥∥∥vTX(t)

∥∥∥2
2
−
∥∥∥r⊤X(t)

∥∥∥2
2
≤
∥∥∥vTX(t)

∥∥∥2
2
− c2 (11)

This means that ∥∥∥vvTX(t)
∥∥∥2
2
≤
∥∥∥X(t)

∥∥∥2
2
− c2

And thus:

µv(X
(t)) =

∥∥∥X(t) − vvTX(t)
∥∥∥2
2
≥
∥∥∥X(t)

∥∥∥2
2
−
∥∥∥vvTX(t)

∥∥∥2
2
≥ c2

B.2 PROPOSITION 4.1: DETERMINISTIC CASE

For the deterministic version, we adopt the following regularity conditions on weight matrices:

Assumption B.2. For the system described in (4), assume: there exists ϵ > 0 such that

1.
∑t

m=0 α(1 − α)mλm
i W

(t−m)
2 W

(t−m+1)
1 · · ·W (t)

1 + (1 − α)t+1λt+1
i W

(0)
1 · · ·W (t)

1 has
smallest singular value σmin ≥ ϵ for all i ∈ [n].

2.
∑t

m=0 α(1 − α)mλm
i W

(t−m)
2 W

(t−m+1)
1 · · ·W (t)

1 + (1 − α)t+1λt+1
i W

(0)
1 · · ·W (t)

1 con-
verges as t → ∞ and has smallest singular value σmin ≥ ϵ for all i ∈ [n].
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Suppose A is full-rank. If weights W (t)
1 ,W

(t)
2 are orthogonal, then Assumption B.2.1 holds. On

the other hand, Assumption B.2.2 is an asymptotic technical condition to ensure that weights are
non-collapsing and non-diverging in the limit. Some ways to satisfy the assumptions is to have the
spectral radius of A, ρ(A) ≤ 1 and W

(t)
1 ,W

(t)
2 = Ik for any t ≥ 0.

We restate Proposition 4.1 with full conditions: let V ∈ Rn×n be the matrix of eigenvectors for A.

Proposition B.3. Under Assumption B.2, let νq ∈ V be such that ν⊤q v = 0. If X(0) is properly
initialized, such as if X(0) is not the zero matrix and ∥ν⊤q X(0)∥2 = c > 0, then µv(X

(t)) ≥ cϵ/
√
k

for all t ≥ 0 and limt→∞ µv(X
(t)) ≥ cϵ/

√
k.

In particular, if v ∈ V and and there exists νq ∈ V such that νq ̸= v and ∥ν⊤q X(0)∥2 = c > 0,
meaning that if the initial feature X(0) contains a component in eigenvector νq other than v, that
signal would always be maintained in X(t), even asymptotically.

Proof. Writing (4) recursively, we get that

X(t+1) = α

t∑
m=0

(1− α)mAmX(0)W
(t−m)
2 W

(t−m+1)
1 ...W

(t)
1

+ (1− α)t+1At+1X(0)W
(0)
1 ...W

(t)
1 .

For each column X
(t+1)
:,i , similarly, one can prove by induction that

X
(t+1)
:,i =

n∑
l=1

t∑
m=0

σ
(t,m)
l,i λm

l νl ,

where

• Σ(0,0) = V ⊤X(0),

• Σ(t,0) = αΣ(0,0)W
(t−1)
2 for all t ≥ 0,

• Σ(t,m) = α(1− α)mΣ(0,0)W
(t−m−1)
2 W

(t−m)
1 ...W

(t−1)
1 , for all 1 ≤ m ≤ t− 1,

• Σ(t,t) = (1− α)tΣ(0,0)W
(0)
1 ...W

(t−1)
1 .

Then ν⊤q X(t)

= ν⊤q X(0)

(
t∑

m=0

α(1− α)mλm
i W

(t−m)
2 W

(t−m+1)
1 · · ·W (t)

1 + (1− α)t+1λt+1
i W

(0)
1 · · ·W (t)

1

)
.

(12)

Since by construction, ∥ν⊤q X(0)∥2 = c, it follows from the regularity conditions on weights that

∥ν⊤q X(t)∥2 ≥ cϵ .

This implies that

∥ν⊤q X(t)∥∞ ≥ cϵ/
√
k ,

which means that there exists i ∈ [k] such that∣∣∣ν⊤q X
(t)
:,i

∣∣∣ = cϵ/
√
k .
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Note that since νq ∈ V and ν⊤q v = 0, we get that

µv(X
(t)) =

∥∥∥X(t) − vv⊤X(t)
∥∥∥
F
=

√√√√ k∑
l=1

∥∥∥X(t)
:,l − vv⊤X

(t)
:,l

∥∥∥2
2

≥
√∥∥∥X(t)

:,i − vv⊤X
(t)
:,i

∥∥∥2
2

≥
∣∣∣ν⊤q X

(t)
:,i

∣∣∣
which means that µv(X

(t)) ≥ cϵ/
√
k.

Similarly, we can show that limt→∞ µv(X
(t)) ≥ cϵ/

√
k.

B.3 PROOF FOR PROPOSITION 4.2

Proposition 4.2. Let xi = X
(0)
:,i , ∥xi∥2 = 1 and let each (W

(t)
l )y,z

i.i.d.∼ N (η, s2). Then for any

ϵ > 0,
∥∥x⊤

i X
(t)
∥∥
2
≥ ϵ with probability at least p = 1− exp

(
− ϵ2

2α2s2

)
.

Proof. Notice that
∥∥xT

i X
(0)
∥∥2
2
≥
∥∥∥xT

i X
(0)
:,i

∥∥∥2
2
= 1. Using Lemma B.1, we get that

∥∥xt
iX

(t)
∥∥2
2
> αϵ

with probability at least p = 1− exp
(
− ϵ2

2s2

)
. From there it is easy to see that that

∥∥xt
iX

(t)
∥∥2
2
> ϵ

with probability at least p = 1− exp
(
− ϵ2

2s2α2

)
.

B.4 PROPOSITION 4.2: DETERMINISTIC CASE

We complement 4.2 with the following result. Let V ∈ Rn×n be the matrix of eigenvectors of A and
define

V ⋆ := {νq ∈ V :
∥∥∥ν⊤q X(0)

∥∥∥
2
= cq}

V 0 := {νp ∈ V :
∥∥∥ν⊤p X(0)

∥∥∥
2
= 0} ,

where cq > 0 for all q. In words, V ⋆ is the set of eigenspaces of A onto which X(0) has a non-trivial
projection, and V 0 is the set of eigenspaces of A onto which X(0) has no projection.

Proposition B.4. Under Assumption B.2.1, for all t ≥ 1,∥∥∥ν⊤q X(t)
∥∥∥
2
= cqϵ, ∀νq ∈ V ⋆,

∥∥∥ν⊤p X(t)
∥∥∥
2
= 0,∀νp ∈ V 0.

Under Assumption B.2.2,

lim
t→∞

∥∥∥ν⊤q X(t)
∥∥∥
2
> cqϵ,∀νq ∈ V ⋆ , lim

t→∞

∥∥∥ν⊤p X(t)
∥∥∥
2
= 0,∀νp ∈ V 0 .

Proof. The proof follows directly from the form (12).

The above result states that the signal excited in the original graph input X(0) is precisely what stays
and the signal that is not excited in X(0) can never be created through message-passing.

We give the following concrete example of the above result:

Example Suppose W
(t)
1 ,W

(t)
2 = I , then

X(t+1) =

(
α

t∑
k=0

(1− α)kAk + (1− α)t+1At+1

)
X .
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Note that when ρ(A) < 1/(1− α) such as A = D−1/2AadjD
−1/2, as t → ∞,

lim
t→∞

X(t) = α(In − (1− α)A)−1X .

Let (λi, νi) be the i-th eigenpair of A and σl,i = ⟨vl, X:,i⟩ , then

X
(t+1)
:,i =

n∑
l=1

(
t∑

k=1

α(1− α)kλk
l + (1− α)t+1λt+1

l

)
σl,iνl ,

and when ρ(A) < 1/(1− α) such as A = D−1/2AadjD
−1/2,

lim
t→∞

X
(t+1)
:,i =

n∑
l=1

α

1− (1− α)λl
σl,iνl .

This implies that for all νq ,

∥ν⊤q X(t)∥2 =

√√√√ k∑
i=1

((
t−1∑
m=1

α(1− α)mλm
q + (1− α)tλt

q

)
σq,i

)2

=

(
t−1∑
m=1

α(1− α)mλm
q + (1− α)tλt

q

)
∥σq,:∥2

and as t → ∞,

lim
t→∞

∥ν⊤q X(t)∥2 =
α

1− (1− α)λq
∥σq,:∥2 .

B.5 PROOF OF PROPOSITION 4.3

Proposition 4.3. Let Kr(A,X(0)) = Span({Ai−1X
(0)
:,j }i∈[n],j∈[k]) be the Krylov subspace. Let

Y ∈ Rn×k. Then there exist a T ∈ N and sequence of weights W (0)
1 ,W

(0)
2 , · · · ,W (T−1)

1 ,W
(T−1)
2

such that X(T ) = Y if and only if Y ∈ Kr(A,X(0)).

Proof. Set T = n, α = 0.5 and W
(t)
1 = I for t > 0 and W

(0)
1 = 0. Begin by unrolling the recursive

equation (4):
X(1) = (1− α)AX(0)W

(0)
1 + αX(0)W

(0)
2

And in turn:

X(2) = (1− α)AX(1)W
(1)
1 + αX(0)W

(1)
2

= (1− α)A((1− α)AX(0)W
(0)
1 + αX(0)W

(0)
2 )I + αX(0)W

(1)
2

= 0.52AX(0)W
(0)
2 + 0.5X(0)W

(1)
2

Iterating this, yields:

X(n) =

n∑
i=1

0.5iAi−1X(0)W
(i−1)
2

Now consider a single column of X(n):

(X(n)):,j =

n∑
i=1

0.5iAi−1X(0)(W
(i−1)
2 ):,j

=

k∑
l=1

n∑
i=1

0.5i(W
(i−1)
2 )l,jA

i−1X
(0)
:,l
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Now let Y:,j ∈ Kr(A,X(0)) be in the Krylov subspace. Then Y:,j =
∑k

l=1

∑n
i=1 wl,iA

i−1X
(0)
:,l .

Setting (W
(i−1)
2 )l,j =

wl,i

0.5i yields X(n)
:,j = Y:,j .

For the other direction, begin similiarly by unrolling the recursive equation:

X(2) = (1− α)AX(1)W
(1)
1 + αX(0)W

(1)
2

= (1− α)A((1− α)AX(0)W
(0)
1 + αX(0)W

(0)
2 )W

(1)
1 + αX(0)W

(1)
2

= (1− α)2A2X(0)W
(0)
1 W

(1)
1 + (1− α)αAX(0)W

(0)
2 W

(1)
1 + αX(0)W

(1)
2

Iterating this, yields:

X(n) =

n+1∑
i=1

Ai−1X(0)W(i−1)

Now consider a single column of X(n):

(X(n)):,j =

k∑
l=1

n+1∑
i=1

Ai−1X
(0)
:,l W

(i−1)
l,j

Now, setting wl,i = W(i−1)
l,j and Y:,j =

∑k
l=1

∑n+1
i=1 wl,iA

i−1X
(0)
:,l verifies that X(n)

:,j = Y:,j ∈
Kr(A,X(0)).

B.6 PROOF FOR PROPOSITION 4.6

Proposition 4.6. Let v ∈ Rn s.t. ∥v∥2 = 1 and vT1 > 0. Let Rank(V ⊤
̸=0X

(0)) > 1, then there exists
c(v) > 0 such that µv(X

(t)) ≥ c(v) for all t ≥ 1 with probability 1 .

Proof. We prove this by induction. The base case for 0 holds. Assume Rank(V ⊤
̸=0X

(t)) has rank at

least 2. Then, there exist at least 2 columns X(t)
:,i and X

(t)
:,j such that Rank(V ⊤

̸=0

[
X

(t)
:,i , X

(t)
:,j

]
) = 2.

Consider their eigenvector decomposition in terms of eigenvectors of (I − 11⊤/n)A:

X
(t)
:,i =

n∑
l=1

σ
(t)
l,i vl, X

(t)
:,j =

n∑
l=1

σ
(t)
l,j vl .

Consider the action of (I − 11⊤/n)A:

X̃
(t)
:,i = (I − 11⊤/n)AX

(t)
:,i =

n∑
l=1

λlσ
(t)
l,i vl, X̃

(t)
:,j = (I − 11⊤/n)AX

(t)
:,j =

n∑
l=1

λlσ
(t)
l,j vl .

Since X(t)
:,i and X

(t)
:,j are linearly independent and the eigenvectors of a symmetric matrix are orthogo-

nal, there exists q such that σ(t)
q,i ̸= σ

(t)
q,j with λq ̸= 0. This exists because Rank(V ⊤

̸=0

[
X

(t)
i,: , X

(t)
j,:

]
) =

2. It follows that σ(t)
q,iλq ̸= σ

(t)
q,jλq , and thus the centered features X̃(t)

:,i ̸= X̃
(t)
:,j and neither X̃(t)

:,i = 0

nor X̃(t)
:,j = 0 (otherwise X

(t)
:,i would be a 0 eigenvector and be orthogonal to V ̸=0). Thus, they

are linearly independent. Furthermore, X̃(t)
:,i , X̃

(t)
:,j ,1 are linearly independent, since (I − 11⊤/n)

projects to the space orthogonal to Span{1}. Write:

X
(t+1)
:,i =

1

Γi
(I − 11⊤/n)AX(t)W

(t)
:,i

=
1

Γi

k∑
a=1

W
(t)
a,i X̃

(t)
:,a

=
1

Γi

k∑
a=1,a̸=i,a ̸=j

W
(t)
a,i X̃

(t)
:,a +W

(t)
i,i X̃

(t)
:,i +W

(t)
j,i X̃

(t)
:,j

=
1

Γi
(φ(i) +W

(t)
i,i X̃

(t)
:,i +W

(t)
j,i X̃

(t)
:,j ) .
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We now consider the event that column i collapses to the all-ones space. Notice that dividing the
whole column by Γi does not change whether or not the column has converged to the all-ones space
or not. Thus,

A = {W (t) ∈ Rk×k | X(t+1)
:,i = β1}

= {W (t) ∈ Rk×k | 1

Γi
(φ(i) +W

(t)
i,i X̃

(t)
:,i +W

(t)
j,i X̃

(t)
:,j ) = β1}

= {W (t) ∈ Rk×k | φ(i) +W
(t)
i,i X̃

(t)
:,i +W

(t)
j,i X̃

(t)
:,j = β′1}

= {W (t) ∈ Rk×k | W (t)
i,i X̃

(t)
:,i +W

(t)
j,i X̃

(t)
:,j − β′1 = −φ(i)}

Since X̃(t)
:,i , X̃

(t)
:,j ,1 are linearly independent, given φ(i), there is only 1 solution to this equation. A is

a proper hyperplane in Rk×k and as such has Lebesgue measure 0. The event A thus has probability
0 and the opposite event, that column i does not collapse to the all-ones space, has probability 1.

The same holds for X(t+1)
:,j and by the same reasoning, X(t+1)

:,i and X
(t+1)
:,j are linearly independent

with probability 1. Notice, that thus Rank(V ⊤
̸=0

[
X

(t+1)
:,i , X

(t+1)
:,j

]
) = 2 still holds. Notice that

1TX(t) = 0 because of the centering operation. However, since 1T v = b > 0:∥∥∥vT [X(t+1)
:,i , X

(t+1)
:,j

]∥∥∥2
2
≤
∥∥∥[X(t+1)

:,i , X
(t+1)
:,j

]∥∥∥2
2
− b2

This means that:

µv(X
(t+1)) ≥ µv(

[
X

(t+1)
:,i , X

(t+1)
:,j

]
)

=
∥∥∥[X(t+1)

:,i , X
(t+1)
:,j

]
− vvT

[
X

(t+1)
:,i , X

(t+1)
:,j

]∥∥∥
≥
∥∥∥[X(t+1)

:,i , X
(t+1)
:,j

]∥∥∥− ∥∥∥vvT [X(t+1)
:,i , X

(t+1)
:,j

]∥∥∥
≥ b2

B.7 PROPOSITION 4.6: GENERAL CONDITIONS

We adopt the following regularity conditions:
Assumption B.5. For the system described in (5), assume:

1. For nonzero x ∈ Rn such that x⊤1 = 0, Ax /∈ Span{1}.

2. If µ1((AX(t)):,i) > 0, then µ1((AX(t)W (t)):,i) > 0 for all i ∈ [k].

Assumption B.5.1 ensure that the adversarial situation where one step of message-passing automati-
cally leads to oversmoothing to the all-one subspace does not happen. Note that this is a more relaxed
condition than requiring Span{1}⊥ to be an invariant subspace of A.

Assumption B.5.2 ensures that the case where weights are deliberately chosen for oversmoothing
to happen in one layer does not happen, either. Note that for the second condition, such weights
exist, i.e. let W (t) = Ik. Moreover, if weights are randomly initialized, then Assumption B.5.2 holds
almost surely.

We restate Proposition 4.6 under general conditions, which accounts for both linear and non-linear
systems:
Proposition B.6. For the system in (5), suppose σ(·) is injective and Assumption B.5 holds. Without
loss of generality, also suppose the initial features X(0) are centered and all columns are nonzero.
Then for v ∈ Rd where v⊤1 ̸= 0, there exists c(v) > 0 such that µv(X

(t)) ≥ c(v)
√
k for all t ≥ 0.

In particular, the most relevant case of our interest is that the message-passing A corresponds to an
graph operator such as the adjacency matrix (in the case of GIN), or the symmetric random walk
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matrix D−1/2AD−1/2 (in the case of GCN) and v is its dominant eigenvector. Under the assumption
that the graph is connected, Perron-Frobenius Theorem implies v is positive and hence v⊤1 > 0
holds.

We prove the statement below:

Proof. For each column in X(0), since it is centered and nonzero, X(0)
:,i ∈ Span{1}⊥\{0} for all

i ∈ [k]. Then given Assumption B.5.1, AX
(0)
:,i /∈ Span{1} and thus can be written as

AX
(0)
:,i = a1+ w⊥

0 ,

where a ∈ R, w⊥
0 ∈ Span{1}⊥ and w⊥

0 ̸= 0.

Then given Assumption B.5.2, AX(0)W
(0)
:,i /∈ Span{1} and since σ(·) is injective, σ(AX(0)W

(0)
:,i ) /∈

Span{1} and

σ(AX(0)W
(0)
:,i ) = b1+ w⊥

1 ,

where b ∈ R, w⊥
1 ∈ Span{1}⊥ and w⊥

1 ̸= 0.

Then after the centering step of batch normalization,

(I − 11⊤/n)σ(AX(0)W
(0)
:,i ) = w⊥

1 ,

and after the scaling step of batch normalization,

X
(1)
:,i = BN(σ(AX(0)W

(0)
:,i )) =

w⊥
1

∥w⊥
1 ∥2

,

which means each column of X(1) ∈ Span{1}⊥\{0} and has norm 1. Note that the above argument
applies for all t ≥ 0 going from X(t) to X(t+1).

Let v = c1/
√
n+ w⊥

v , where c ̸= 0, w⊥
v ∈ Span{1}⊥ and ∥w⊥

v ∥22 = 1− c2. Notice that

µ2
v(X

(t)) =

k∑
i=1

∥X(t)
:,i − vv⊤X

(t)
:,i ∥

2
2 =

k∑
i=1

∥X(t)
:,i ∥

2
2 − ∥vv⊤X(t)

:,i ∥
2
2

=
k∑

i=1

∥X(t)
:,i ∥

2
2 − ∥v(w⊥

v )
⊤X

(t)
:,i ∥

2
2

≥
k∑

i=1

1− ∥w⊥
v ∥22 = kc2 ,

where the last inequality is because that ∥v(w⊥
v )

⊤X
(t)
:,i ∥22 is maximized if X(t)

:,i and wv is aligned.
We thus conclude that there exists c(v) > 0 such that µv(X

(t)) ≥ c(v)
√
k for all t ≥ 0.

B.8 PROOF FOR PROPOSITION 4.8

Proposition 4.8. Suppose V ⊤
k X(0) has rank k, then for all weights W (t), the GNN with BatchNorm

given in (5) exponentially converges to the column space of Vk.

Proof. We will prove by induction on t that

X
(t)
:,i =

1

Γ(t)

n∑
l=1

σ
(t)
l,i λ

t
lνl (13)
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where (λi, νi) is the i-th eigenpair of (In − 11⊤/n)A with |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, Γ(t) is the
normalization factor in the t-th round and σ

(t)
l,i ∈ R. The base case follows from the decomposition of

X(0) in the eigenvector basis of (In − 11T /n)A: X(0)
:,i =

∑n
l=1⟨X

(0)
:,i , νl⟩νl (and the fact that X(0)

is normalized).
For the induction step, the system can be rewritten as

X(t+1) = (AX(t)W (t) − 11⊤AX(t)W (t)/n) diag(...,
1

var((AX(t)W (t)):,i)
, ...))

= (In − 11⊤/n)AX(t)W (t)Dvar .

Assuming (13),

((In − 11⊤/n)AX(t)):,i =
1

Γ(t)

n∑
l=1

σ
(t)
l,i λ

t+1
l νl .

Further the action of W (t) is the following:

((In − 11⊤/n)AX(t)W (t)):,i =
1

Γ(t)

k∑
j=1

W
(t)
j,i

n∑
l=1

σ
(t)
l,j λ

t+1
l νl

=
1

Γ(t)

n∑
l=1

k∑
j=1

(W
(t)
j,i σ

(t)
l,j )λ

t+1
l νl

=
1

Γ(t)

n∑
l=1

σ
(t+1)
l,i λt+1

l νl .

(14)

Notice that σ(t+1)
l,i =

∑k
j=1(W

(t)
j,i σ

(t)
l,j ) or equivalently, Σ(t+1) = Σ(t)W (t), where Σ(t) = [σ

(t)
l,i ].

Thus, Σ(t+1) = Σ(0)W (0)W (1) · · ·W (t). Lastly, the action of Dvar is:

((In − 11⊤/n)AX(t)W (t)Dvar):,i =
1

|| 1
Γ(t)

∑n
l=1 σ

(t+1)
l,i λt+1

l νl||2

1

Γ(t)

n∑
l=1

σ
(t+1)
l,i λt+1

l νl

=
1

| 1
Γ(t)

√∑n
l=1(σ

(t+1)
l,i λt+1

l )2|

1

Γ(t)

n∑
l=1

σ
(t+1)
l,i λt+1

l νl

=
1

|
√∑n

l=1(σ
(t+1)
l,i λt+1

l )2|

n∑
l=1

σ
(t+1)
l,i λt+1

l νl

=
1

Γ(t+1)

n∑
l=1

σ
(t+1)
l,i λt+1

l νl .

This concludes the induction. Notice that superscripts in brackets do not denote exponentiation, but
rather an iterate at iteration t. Using this intermediate result (13), we show the following:

Lemma B.7. For all q > k,

||ν⊤q X(t)||2 ≤ C0

(
λq

λk

)t

.

Proving this directly yields Proposition 4.8. We have that Σ(0) = V ⊤X(0) due to the base case of the
induction and by assumption, Σ(0)

:k,: = V ⊤
k X(0) ∈ Rk×k has rank k and is therefore full rank. It is

therefore invertible, meaning that there exists (Σ(0)
:k,:)

−1 ∈ Rk×k such that V ⊤
k X(0)(Σ

(0)
:k,:)

−1 = Ik.

We can thus write for the simplicity of notation:

Σ(0) = Σ(0)(Σ
(0)
:k,:)

−1Σ
(0)
:k,: = Σ(⊥)W (⊥) =

[
Ik

Σ
(⊥)
(k+1):,:

]
W (⊥) .
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This has the nice property that σ
(⊥)
i,i = 1 for i ≤ k. Now, let’s revisit (14) in that we

can write Σ(t+1) = Σ(0)W (0)W (1) · · ·W (t). Let W(t) = W (⊥)W (0) · · ·W (t), meaning that
σ
(t)
i,j =

∑k
l=1 W

(t)
i,l σ

(⊥)
l,j . We now have everything to conclude the proof:

Consider now, the contribution of an eigenvector νq with q > k at iteration t.
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As we have that λq < λk by construction, ∥ν⊤q X(t)||2 → 0 exponentially as t → ∞.

B.9 PROOF FOR PROPOSITION 4.9

Proposition 4.9. Suppose |λ̂k| > 0 and V ⊤
k X(0) has rank k. For any ϵ > 0, there exists T > 0 and

a sequence of weights W (0),W (1), ...,W (T ) such that for all t ≥ T and i ∈ [k],∥∥∥ν⊤i X
(t)
:,i

∥∥∥
2
≥ 1/

√
1 + ϵ ,

where νi denotes the i-th eigenvector of (In − 11⊤/n)A.

Proof. The proof idea is simple: we use Gaussian elimination to cancel out all “top-k" eigenvectors
but the one in that row and then use the power iteration until the smaller eigenvectors are “drowned
out" below the ϵ error margin. Assuming the columns of X(0)

:k,: are linearly independent (which is the
case if it has rank k), this leads to the desired output: choose

W
(0)
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Then from (14) for each column X:,i, we get that
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Now for l = 1, the factor σ(0)
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Iterating this idea and choosing

W
(k)
j,i =


1 if j = i

− σ
(k)
k+1,i

σ
(k)
k+1,k+1

if j = k + 1 and i ̸= k + 1

0 else ,

we arrive at
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)
.

Now, we switch gears and use W (t) = In for t ≥ k, it follows that
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The statement left to prove is thus:
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) ≤ t .

Thus, setting T to be larger than this bound yields the desired claim.

B.10 PROOF FOR PROPOSITION 5.1

Proposition B.8. Let A ∈ Rn×n
≥0 be a symmetric non-negative matrix. Let H ∈ {0, 1}n×m such

that AH = HAπ is the coarsest EP of A. Divide the eigenpairs V = {..., (λ, ν), ...} of A into the
following two sets: Vstruc = {(λ, ν) ∈ V | ν = Hνπ},Vrest = V\Vstruc. Let V̂ = {..., (λ̂, ν̂), ...} be
eigenpairs of (In − τ11⊤/n)A, for τ ̸= 0. Then

1. Vrest ⊂ V̂ .

2. Assume Vstruc ̸= {(λ,1)}. Let (λ, ν) be the dominant eigenpair of A. Then ν is not an
eigenvector of (In − τ11⊤/n)A.

3.
∑

(λ,ν)∈Vstruc
λ >

∑
(λ̂,ν̂)∈V̂\Vrest

λ̂

Proof. Let H ∈ {0, 1}n×m indicate the coarsest EP of A (AH = HAπ). As each node belongs to
exactly 1 class, it holds that H1n = 1m. We prove that for any eigenpair (λ, ν) ∈ Vrest, it holds that
ν⊤1 = 0. From this, the first statment follows quickly:

(In − τ11T /n)Aν = Aν − τ11TAν/n = λν − τλ11T ν/n = λν .

To prove this, let’s look at Aπ . Aπ is not symmetric, but its eigenpairs are associated to A’s eigenpairs
in the following way. Let (λ, νπ) be an eigenpair of Aπ, then (λ,Hνπ) is an eigenpair of A:
AHνπ = HAπ = Hλνπ. As A is a symmetric matrix, its eigenvectors are orthogonal implying
(Hνπi )

⊤(Hνπj ) = 0.
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Lemma B.9. The eigenvectors νπ1 , ..., ν
π
m of Aπ are linearly independent.

For simplicity, choose the eigenvectors νπi to be normalized in such a way, that (Hνπi )
⊤(Hνπi ) = 1.

Suppose for a contradiction, that they are linearly dependent and without loss of generality, νπm =∑m−1
i=1 aiν

π
i . Take j such that aj ̸= 0, this must exist otherwise νm = 0. Now,

(Hνπm)⊤(Hνπj ) = (H

m−1∑
i=1

aiν
π
i )

⊤(Hνπj ) =

m−1∑
i=1

(Haiν
π
i )

⊤(Hνπj ) = aj ̸= 0 ,

which is a contradiction.

Since the eigenvectors of Aπ are linearly independent, there exists a unique β ∈ Rm s.t.
∑m

i=1 βiν
π
i =

1m. Finally let φ ∈ Vrest,

φ⊤1n = φ⊤H1m = φ⊤H

m∑
i=1

βiν
π
i =

m∑
i=1

βiφ
⊤Hνπi = 0 .

This concludes the proof of the first statement.

To prove the second statement, let (λ, ν) be a dominant eigenpair of A, such that ν ≥ 0 is non-
negative. This exists as A is a non-negative matrix. Additionally, ν is not the all-zeros vector and as
such 1⊤ν > 0. By assumption ν ̸= 1. Then:

(I − τ11⊤/n)Aν = λ̂ν ⇐⇒ λν − τ11⊤λν/n = λ̂ν ⇐⇒ (λ− λ̂)ν − τλ11⊤ν/n = 0 .

As ν ̸= 1, there exist i, j s.t. νi ̸= νj thus, (λ − λ̂)νi − τλ(11⊤ν)i/n = 0 and (λ − λ̂)νj −
τλ(11⊤ν)j/n = 0 cannot be true at the same time. Thus, this equation has no solution and ν is not
an eigenvector of (In − τ11⊤/n)A.

For the third and final statement, notice that the trace of A is larger than the trace of (In−τ11⊤/n)A.
Since the trace of a matrix is the sum of its eigenvalues, we have∑

(λ,ν)∈V

λ = Tr(A) > Tr((In − τ11⊤/n)A) =
∑

(λ̂,ν̂)∈V̂

λ̂ .

Consequently,∑
(λ,ν)∈V

λ =
∑

(λ,ν)∈Vstruc

λ+
∑

(λ,ν)∈Vrest

λ >
∑

(λ̂,ν̂)∈V̂\Vrest

λ̂+
∑

(λ,ν)∈Vrest

λ =
∑

(λ̂,ν̂)∈V̂

λ̂ .

Subtracting
∑

(λ,ν̂)∈Vrest
λ from both sides yields the final statement.
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C EXPERIMENTS

We compare these models using the measures of convergence: µv(X
(t)) as defined in (3), where in

this case for GATs and GINs, the dominant eigenvector v is 1/
√
n, the numerical rank of the features

Rank(X(t)), the column distance used in (Zhao & Akoglu, 2020):

dcol(X) :=
1

d2

∑
i,j

∥∥∥∥ X:,i

∥X:,i∥1
− X:,j

∥X:,j∥1

∥∥∥∥
2

,

the column projection distance:

dp-col(X) :=
1

d2

∑
i,j

1−
X⊤

:,i

∥X:,i∥2
X:,j

∥X:,j∥2
,

and the eigenvector space projection:

dev(X) :=
1

n

∥∥X − V V ⊤X
∥∥
F
,

where V ∈ Rn×n is the set of normalized eigenvectors of A, and finally, the rank of X: Rank(X).

Datasets We provide summary statistics for datasets used in experiments in Section 6 in Table 2.

Table 2: The summary statistics of the datasets used in Section 6.
Dataset #graphs #nodes #edges #features # classes

MUTAG 188 ∼17.9 ∼39.6 7 2
PROTEINS 1,113 ∼39.1 ∼145.6 3 2
PTC-MR 344 ∼14.29 ∼14.69 18 2

Cora 1 2,708 10,556 1,433 7
Citeseer 1 3,327 9,104 3,703 6
ogbn-arxiv 1 169,343 1,166,243 128 40

Training details We perform a within-fold 90%/10% train/validation split for model selection. We
train the models for 200 epochs using the AdamW optimizer and search the hyperparameter space
over the following parameter combinations:

• learning rate ∈ {10−4, 10−3, 10−2, 10−1}
• feature size ∈ {32, 64}
• weight decay ∈ {0, 10−2, 10−4}
• number of layers ∈ {3, 5}

We select the hyperparameters of the model with the best mean validation accuracy over its 30 best
epochs. The code and all non publicly available data will be made available here.

Compute We ran all of our experiments on a system with two NVIDIA L40 GPUs, two AMD
EPYC 7H12 CPUs and 1TB RAM.

Licenses

• PyG (Fey & Lenssen, 2019): MIT license

• OGB (Hu et al., 2020): MIT license

• ogbn-arxiv: ODC-BY
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 LONG-TERM MODEL PERFORMANCE

5 10 15 20 25 30

50

60

70

80

Classification Accuracy by Model Depth

graphv2
group
batch

Figure 2: Long-term behavior of GCN performance. Classification accuracy and standard deviation of GCN
models of varying depth. The x-axis show the depth of the GCN while the y axis shows classification accuracy
and standard deviations.

D.2 NODE CLASSIFICATION PERFORMANCE ON HETEROPHILIC GRAPHS

It is worth noting that our theoretical results in the paper hold for any initial features and any target
labels and thus hold for datasets exhibiting either homophily or heterophily and even those that are
not necessarily either of the two. In particular, the graph-level tasks we present in Section 6 can be
seen as heterophilic (in terms of nodes features while the targets are neither). We can see in those
cases, GraphNormv2 also performs well.

For the node classification task, we conduct additional node classification experiments using GCN as
the backbone on the heterophilic dataset Cornell Pei et al. (2020), using the default splits provided
in PyG. The results are shown in Table 3. We see that our method, GraphNormv2 still performs
competitively with baseline methods and outperforms the baselines in the deep architecture regime.

Table 3: Performance on heterophilic graphs. Performance of GCN with different normalization layers on
the heterogeneous node classification dataset Cornell. Results are reported as the mean accuracy (in %) ± std.
over 10 independent trials and the 10 fixed splits. Best results are highlighted in blue; second best results are
highlighted in gray.

Node Classification Node Classification (# layers=20)
Cornell Cornell

GCN

no norm 50.9± 6.2 47.4± 4.4
batch 50.1± 4.4 45.7± 4.9
graph 52.8± 3.5 48.6± 4.6
pair 47.0± 5.2 44.9± 4.0

group 52.8± 4.0 49.8± 4.4
powerembed 50.8± 5.4 48.8± 5.4

graphv2 52.2± 4.2 51.0± 4.2

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 4: Performance of GraphSAGE under different normalization layers. Performance of GraphSAGE
with different normalization layers on the node classification dataset Cora. Results are reported as the mean
accuracy (in %) ± std. over 10 independent trials and 5 folds. Best results are highlighted in blue; second best
results are highlighted in gray.

Node Classification Node Classification (# layers=20)
Cora Cora

GraphSAGE

no norm 85.0± 0.7 83.3± 1.2
batch 32.1± 5.8 30.1± 3.8
graph 30.9± 4.7 30.1± 3.8
pair 32.7± 4.3 29.7± 5.2

group 87.2± 0.7 85.6± 0.9
powerembed 86.3± 0.8 85.2± 0.6

graphv2 85.1± 0.9 85.9± 0.8

D.3 NODE CLASSIFICATION PERFORMANCE WITH GRAPHSAGE BACKBONE

For the node classification task, we conduct additional node classification experiments using Graph-
SAGE Hamilton et al. (2017) as the backbone under the same cross-validation setup specified in the
paper (see Section 6). The results are shown in Table 4.

Our method, GraphNormv2 still performs competitively with baseline methods and outperforms the
baselines in the deep architecture regime. Note that the message-passing operator for GraphSAGE is
a row-stochastic matrix, hence its dominant eigenvector is the all-ones vector. We suspect that this
might be the case why BatchNorm and GraphNorm perform so poorly with this backbone, as their
centering step uses the all-ones vector and thus distorts the graph signal as discussed in Section 5 of
the paper.
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