
Fast Training Methods for Stochastic Compositional
Optimization Problems

Hongchang Gao1, Heng Huang2

1 Department of Computer and Information Sciences, Temple University, PA, USA
2 Department of Electrical and Computer Engineering, University of Pittsburgh, PA, USA

hongchang.gao@temple.edu, heng.huang@pitt.edu

Abstract

The stochastic compositional optimization problem covers a wide range of machine
learning models, such as sparse additive models and model-agnostic meta-learning.
Thus, it is necessary to develop efficient methods for its optimization. Existing
methods for the stochastic compositional optimization problem only focus on the
single machine scenario, which is far from satisfactory when data are distributed
on different devices. To address this problem, we propose novel decentralized
stochastic compositional gradient descent methods to efficiently train the large-
scale stochastic compositional optimization problem. To the best of our knowledge,
our work is the first one facilitating decentralized training for this kind of problem.
Furthermore, we provide the convergence analysis for our methods, which shows
that the convergence rate of our methods can achieve linear speedup with respect
to the number of devices. At last, we apply our decentralized training methods to
the model-agnostic meta-learning problem, and the experimental results confirm
the superior performance of our methods.

1 Introduction

The stochastic compositional optimization problem [20] plays an important role in the machine
learning field, since it covers numerous applications, such as policy evaluation [19], sparse additive
models [20], and model-agnostic meta-learning [6, 1]. Specifically, the stochastic compositional
optimization problem is defined as follows:

min
x∈Rd

Eζ

[
f
(
Eξ[g(x; ξ)]; ζ

)]
, (1)

where the outer-level function f(y) = Eζ [f(y; ζ)] : Rd′ → R is a smooth and nonconvex function,
the inner-level function g(x) = Eξ[g(x; ξ)] : Rd → Rd′

is a smooth function. It is obvious that
the loss function consists of two stochastic functions f and g, making it different from the non-
compositional problem.

The compositional structure in Eq. (1) leads to more challenges in optimization compared with the
non-compositional problem, since the stochastic gradient of the loss function in Eq. (1) is not an
unbiased estimation of the full gradient. Thus, efficient training of the stochastic compositional
optimization problem has attracted increasing attention in recent years. For example, [20] proposed
the stochastic compositional gradient descent (SCGD) method to deal with the two-level stochasticity
in Eq. (1). But it has a worse convergence rate than the standard stochastic gradient descent method.
To improve it, a series of variance-reduced methods have been proposed. For example, [25] developed
the composite randomized incremental gradient method based on the SAGA [4] technique. [27, 24]
further improved the convergence rate based on the SPIDER [5] method.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Although aforementioned methods have achieved much progress in optimizing Eq. (1), all of them
only focus on the single-machine scenario. In fact, data are usually distributed on different devices in
many real-world applications. It is necessary to study the distributed training method for the stochastic
compositional optimization problem. In the past few years, numerous distributed training methods
have been proposed, such as asynchronous stochastic gradient descent (SGD) [16], decentralized SGD
[13], local SGD [14]. But they are not applicable to the stochastic compositional problem. Especially,
their convergence results do not hold for Eq. (1) because those distributed training methods require
the stochastic gradient is an unbiased estimation of the full gradient. As far as we know, there are no
existing works studying distributed training methods for Eq. (1) with theoretical guarantees.

To fill the aforementioned gap, we developed two novel decentralized training methods for the
stochastic compositional optimization problem. In particular, we proposed a gossip-based decentral-
ized stochastic compositional gradient descent (GP-SCGD) method and a gradient-tracking-based
decentralized stochastic compositional gradient descent (GT-SCGD) method. With our methods,
different devices can collaboratively optimize Eq. (1). However, establishing the convergence rate of
our proposed methods is challenging. Existing convergence analysis techniques for decentralized
SGD are not applicable to our methods because the stochastic compositional gradient is different
from the stochastic gradient. To address this challenge, we proposed new convergence analysis
techniques for the decentralized SCGD method, where we show how to bound the gradient variance
and the consensus error under the decentralized setting. In particular, both GP-SCGD and GT-SCGD
can achieve the convergence rate O(1

Kϵ2) to achieve ϵ-accuracy solution, where K is the number
of devices. It indicates that our methods can achieve the linear speedup with respect to the number
of devices, which is consistent with decentralized SGD. To the best of our knowledge, our work
is the first one to establish the convergence rate of decentralized SCGD and achieving the linear
speedup. Moreover, the sample complexity of our methods is O(1

Kϵ3). It indicates that our methods
can achieve a better sample complexity O(1

ϵ3) than O(1
ϵ4) of traditional SCGD [20] when K = 1,

which further confirms the superiority of our methods. Finally, we applied our proposed methods to
optimize the model-agnostic meta-learning problem. The empirical results confirm the effectiveness
of our methods. In the following, we summarize the contributions of our work.

• We proposed two novel decentralized stochastic compositional gradient descent methods:
GP-SCGD and GT-SCGD. This is the first work studying the decentralized training method
for stochastic compositional optimization problems.

• We established the convergence rate of our decentralized stochastic compositional gradient
descent methods with novel theoretical analysis. This is the first work establishing the
convergence rate for decentralized SCGD and showing the linear speedup with respect to
the number of devices. In addition, our methods can achieve better sample complexities
than traditional SCGD.

• The extensive empirical evaluation on the model-agnostic meta-learning task confirms the
effectiveness of our proposed methods.

2 Related Works

2.1 Stochastic Compositional Optimization Problem

The stochastic compositional optimization problem is common in the machine learning field. However,
it is more difficult to optimize than the standard non-compositional problem. The reason is that its
stochastic gradient is not an unbiased estimation of the full gradient, which is shown as follows:

Eξ,ζ [∇g(x; ξ)T∇gf(g(x; ξ); ζ)] ̸= ∇g(x)T∇gf(g(x)) . (2)

To train the stochastic compositional problem efficiently, numerous methods have been proposed
in the past few years. Specifically, [20] developed the stochastic compositional gradient descent
(SCGD) method, which is defined as follows:

ut = (1− βt−1)ut−1 + βt−1g(xt;Bξ,t) ,

xt+1 = xt − ηt∇g(xt;Bξ,t)
T∇gf(ut;Aζ,t) ,

(3)

where Bξ,t and Aζ,t denote the random samples, 0 < βt < 1 is a hyperparameter, and ηt is the
learning rate. Here, ut serves as the estimator of the inner function g(xt), and then the gradient

2

∇gf(g(xt)) is estimated by ∇gf(ut;Aζ,t). As a result, this stochastic compositional gradient
∇g(xt;Bξ,t)

T∇gf(ut;Aζ,t) has a smaller variance to improve the accelerate the convergence speed.
However, it still has a worse theoretical convergence rate than SGD. Furthermore, to improve the
convergence speed of SCGD for nonconvex problems, advanced variance reduction techniques have
been incorporated into SCGD. For example, [25] incorporated the variance reduction technique
SAGA [15] to SCGD and obtained a better convergence rate. Later, [27] employed another variance
reduction technique SPIDER [5] for SCGD, while [23] accelerated SCGD with the STORM [3]
variance reduction technique. More recently, some works [2, 10] disclosed the connection between
stochastic bilevel optimization problems and stochastic compositional problems and developed the
alternating SGD method to solve Eq. (1). However, all of these methods only studied the convergence
rate for the single machine case, ignoring the distributed setting.

2.2 Decentralized Training Methods

Recently, with the emergence of large-scale data, numerous distributed training methods [16, 13, 14,
18, 11, 7, 9, 8] have been proposed. Among them, the decentralized training method, where different
devices conduct the peer-to-peer communication, has attracted a lot of attention. In particular, there
are two kinds of communication strategies in a decentralized training system. They are the gossip
strategy and the gradient tracking strategy. Based on the gossip strategy, [13] studied the convergence
rate of decentralized SGD and disclosed how the topology of the communication graph affects
the convergence rate. Additionally, numerous works aim to reduce the communication cost of the
gossip-based decentralized SGD by compressing gradients or skipping the communication step.
Meanwhile, based on the gradient-tracking strategy, [17] developed the distributed stochastic gradient
tracking method and established its convergence rate. Recently, some works [18, 22] combined the
variance reduction strategy and the gradient-tracking strategy to further accelerate decentralized SGD.
However, all of these methods are not applicable to SCGD. Thus, in this paper, we will develop
efficient decentralized SCGD methods for optimizing the stochastic compositional optimization
problem.

3 Decentralized Stochastic Compositional Optimization Methods

3.1 Problem Definition

Formally, we consider the distributed stochastic compositional optimization problem, which is defined
as follows:

min
x∈Rd

1

K

K∑
k=1

Eζ

[
f (k)

(
Eξ[g

(k)(x; ξ)]; ζ
)]

, (4)

where x ∈ Rd denotes the model parameter, K is the total number of devices, f (k) = Eζ [f
(k)(y; ζ)] :

Rd′ → R and g(k) = Eξ[g
(k)(x; ξ)] : Rd → Rd′

are smooth functions on the k-th device, and

accordingly Eζ

[
f (k)

(
Eξ[g

(k)(x; ξ)]; ζ
)]

is the loss function on the k-th device. In other words, each
device has its own data and all devices collaboratively learn the model parameter x by utilizing their
local data.

To efficiently train this distributed stochastic compositional optimization problem, we consider the
decentralized training method. In particular, each device connects with its neighbors, composing
a communication network. All devices conduct the peer-to-peer communication based on this
communication network. Formally, we represent the communication network with G = (V,W)
where V = {v1, v2, · · · , vK} denotes all devices and W = [wij] ∈ RK×K is the adjacency matrix
which indicates whether two devices are connected or not. Following [11, 13], the adjacency matrix
W is assumed to satisfy the following assumption.

Assumption 1. The adjacency matrix W has the following properties:

• Nonnegative: wij ≥ 0, ∀i, j.

• Symmetric: wij = wji, ∀i, j.

• Doubly Stochastic:
∑K

i=1 wij = 1,
∑K

j=1 wij = 1.

3

• The eigenvalues of W can be sorted as |λn| ≤ · · · ≤ |λ2| < |λ1| = 1.

In our convergence analysis, we denote λ = |λ2| for simplicity. In terms of the aforementioned
decentralized training setting, we proposed two descentralized stochastic compositional gradient
descent methods. The details are described in the following subsection.

3.2 Gossip-based Decentralized Stochastic Compositional Gradient Descent Method

In Algorithm 1, we developed the gossip-based decentralized stochastic compositional gradient
descent (GP-DSCGD) method. Following the standard SCGD method [20], each device estimates
the inner-level function g(k)(x

(k)
t) with u

(k)
t as follows:

u
(k)
t = (1− γβt−1)u

(k)
t−1 + γβt−1g

(k)(x
(k)
t ;B(k)

t) , (5)
where γ > 0 and βt > 0 are two hyperparameters, γβt < 1, k is the index of devices and t is the
index of iterations. Different from the standard SCGD method in Eq. (3), there is an additional
hyperparameter γ when computing u

(k)
t , which can help controlling the estimation variance. We

will show it in our theoretical analysis in Appendix. Based on this estimation, each device computes
the stochastic compositional gradient z(k)t as shown in Line 9. Then, each worker uses the gossip
communication strategy to update the local model parameter as follows:

x̃
(k)
t+1 =

∑
j∈Nvk

wkjx
(j)
t − ηz

(k)
t , (6)

where η > 0 denotes the learning rate, Nvk = {j|wkj > 0} is the neighboring devices of the k-th
device. Here, the first term on the right-hand side incurs the communication to average the model
parameter of neighboring devices, and the second term indicates to update the model parameter with
the local gradient z(k)t . Then, instead of using x̃

(k)
t+1 as the new model parameter, we compute the

model parameter of the (t+ 1)-th iteration as follows:

x
(k)
t+1 = x

(k)
t + βt(x̃

(k)
t+1 − x

(k)
t). (7)

In fact, this strategy couples the update of u(k)
t and x

(k)
t by the sharing hyperparameter βt, which can

benefit controlling the estimation variance of u(k)
t . All devices repeat the aforementioned steps until

the iterates converge.

Algorithm 1 Gossip-based Decentralized Stochastic Compositional Gradient Descent (GP-DSCGD)

Input: x
(k)
0 = x0, βt > 0, γ > 0, η > 0.

1: for t = 0, · · · , T − 1, each device k do
2: Sample a subset of samples B(k)

t to compute:
3: if t = 0 then
4: u

(k)
t = g(k)(x

(k)
t ;B(k)

t)
5: else
6: u

(k)
t = (1− γβt−1)u

(k)
t−1 + γβt−1g

(k)(x
(k)
t ;B(k)

t)
7: end if
8: v

(k)
t = ∇g(k)(x

(k)
t ;B(k)

t)

9: Sample a subset of samples A(k)
t to compute:

z
(k)
t = (v

(k)
t)T∇f (k)(u

(k)
t ;A(k)

t)

10: x̃
(k)
t+1 =

∑
j∈Nvk

wkjx
(j)
t − ηz

(k)
t

11: x
(k)
t+1 = x

(k)
t + βt(x̃

(k)
t+1 − x

(k)
t)

12: end for

3.3 Gradient-Tracking-based Decentralized Stochastic Compositional Gradient Descent
Method

Besides the gossip-based communication strategy, the gradient tracking strategy is also widely used
in the decentralized training method. Therefore, for completeness, we further proposed the gradient-
tracking-based descentralized stochastic compositional gradient descent (GT-DSCGD) method in

4

Algorithm 2. Same with Algorithm 1, we compute u
(k)
t and z

(k)
t as shown in Lines 2-9. Different

from Algorithm 1, GT-DSCGD introduces an auxiliary variable s
(k)
t for each device, which is used

to track the global stochastic compositional gradient 1
K

∑K
k=1 z

(k)
t [18, 17]. Specifically, s(k)t is

updated as follows:
s
(k)
t =

∑
j∈Nvk

wkjs
(j)
t−1 + z

(k)
t − z

(k)
t−1 . (8)

It is easy to verify that 1
K

∑K
k=1 s

(k)
t = 1

K

∑K
k=1 z

(k)
t . Then, each device uses s(k)t instead of z(k)t to

update the model parameter as follows:

x̃
(k)
t+1 =

∑
j∈Nvk

wkjx
(j)
t − ηs

(k)
t . (9)

To sum up, the difference between our two methods is that GT-DSCGD has an additional step to
track the gradient with s

(k)
t and accordingly updates the model parameter with s

(k)
t .

Algorithm 2 Gradient-Tracking-based Decentralized Stochastic Compositional Gradient Descent
(GT-DSCGD)

Input: x
(k)
0 = x0, z(k)−1 = 0, s(k)−1 = 0, βt > 0, γ > 0, η > 0.

1: for t = 0, · · · , T − 1 , each device k do
2: Sample a subset of samples B(k)

t to compute:
3: if t = 0 then
4: u

(k)
t = g(k)(x

(k)
t ;B(k)

t)
5: else
6: u

(k)
t = (1− γβt−1)u

(k)
t−1 + γβt−1g

(k)(x
(k)
t ;B(k)

t)
7: end if
8: v

(k)
t = ∇g(k)(x

(k)
t ;B(k)

t)

9: Sample a subset of samples A(k)
t to compute:

z
(k)
t = (v

(k)
t)T∇f (k)(u

(k)
t ;A(k)

t)

10: s
(k)
t =

∑
j∈Nvk

wkjs
(j)
t−1 + z

(k)
t − z

(k)
t−1 // gradient tracking

11: x̃
(k)
t+1 =

∑
j∈Nk

wkjx
(j)
t − ηs

(k)
t

12: x
(k)
t+1 = x

(k)
t + βt(x̃

(k)
t+1 − x

(k)
t)

13: end for

4 Convergence Analysis

4.1 Assumptions

To establish the convergence rate of our proposed two methods, we first introduce some standard
assumptions, which are also used in existing stochastic compositional gradient descent methods
[20, 21, 26, 24].

Assumption 2. (Smoothness) For ∀y1, y2 ∈ Rd′
and ∀x1, x2 ∈ Rd, there exist two constant values

Lf > 0 and Lg > 0 such that

∥∇f (k)(y1)−∇f (k)(y2)∥ ≤ Lf∥y1 − y2∥, ∥∇g(k)(x1)−∇g(k)(x2)∥ ≤ Lg∥x1 − x2∥ . (10)

Assumption 3. (Bounded gradient) For ∀x ∈ Rd and ∀y ∈ Rd′
, there exist two constant values

Cg > 0 and Cf > 0 such that

E[∥∇g(k)(x; ξ)∥2] ≤ C2
g , E[∥∇f (k)(y; ζ)∥2] ≤ C2

f . (11)

Assumption 4. (Bounded variance) For x ∈ Rd and y ∈ Rd′
, there exist three constant values

σf > 0, σg > 0, σg′ > 0, such that

E[∥∇f (k)(y; ζ)−∇f (k)(y)∥2] ≤ σ2
f , E[∥∇g(k)(x; ξ)−∇g(k)(x)∥2] ≤ σ2

g′ ,

E[∥g(k)(x; ξ)− g(k)(x)∥2] ≤ σ2
g .

(12)

5

To study the convergence rate of our two methods, we denote F (x) = 1
K

∑K
k=1 F

(k)(x) =
1
K

∑K
k=1 f

(k)(g(k)(x)). Then, F (x) is LF -smooth with LF = C2
gLf + CfLg. In addition, we

denote x̄t =
1
K

∑K
k=1 x

(k)
t and x∗ as the optimal solution.

4.2 Convergence Rate

In terms of aforementioned definitions and assumptions, we establish convergence rates of our
proposed Algorithm 1 and Algorithm 2, respectively.

Theorem 1. Assume Assumptions 1-4 hold, for Algorithm 1, by setting |Ak
t | = |Bk

t | = B, γ > 0,
βt = β ≤ min{ 1

8γ ,
1

2ηLF
, 1}, η ≤ min{η1, η2, η3} where

η1 =
γ

3
√
6C2

gLf

, η2 =
1− λ2

2

/(27C4
gL

2
f + γ2L2

F

γ2
+

γ(24C2
fL

2
g + 99C4

gL
2
f)

2C2
gL

2
f

)
,

η3 =

√
b2 + 4ac− b

2a
, a =

(24C2
fL

2
g + 3C4

gL
2
f)

8(1− λ2)C2
gL

2
f

+
12C2

g

1− λ2
+

27C4
gL

2
f

2γ2
, b =

2

1− λ2
, c =

γ

4C2
gL

2
f

,

(13)
we can get

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2E[F (x0)− F (x∗)]

ηβT
+

2(3C2
gσ

2
f + 3C2

fσ
2
g′ + C2

gL
2
fσ

2
g + 24γσ2

g)

B

+
48C2

fσ
2
g′ + 16C2

gσ
2
f + 99C2

gL
2
fσ

2
g

16βC2
gL

2
fB

+
6C2

gL
2
fσ

2
g

βγB
+

48σ2

βB
.

(14)

Corollary 1. Assume Assumptions 1-4 hold, for Algorithm 1, by setting η = O(
√
K√
T
), B = O(

√
KT),

β and γ to be two positive constant values, we can get

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2E[F (x0)− F (x∗)]

β
√
KT

+
2(3C2

gσ
2
f + 3C2

fσ
2
g′ + C2

gL
2
fσ

2
g + 24γσ2

g)√
KT

+
48C2

fσ
2
g′ + 16C2

gσ
2
f + 99C2

gL
2
fσ

2
g

16βC2
gL

2
f

√
KT

+
6C2

gL
2
fσ

2
g

βγ
√
KT

+
48σ2

β
√
KT

.

(15)

Remark 1. For sufficiently large T , Corollary 1 indicates that GP-DSCGD can achieve linear
speedup with respect to the number of devices, which is consistent with decentralized SGD.

Remark 2. To achieve the ϵ-accuracy solution such that 1
T

∑T−1
t=0 E[∥∇F (x̄t)∥2] ≤ ϵ, the communi-

cation complexity is O
(

1
Kϵ2

)
and the sample complexity is T ×B = O

(
1

Kϵ3

)
. When K = 1, the

sample complexity of our method is better than O(1
ϵ3) of traditional SCGD [20].

Note that when T is sufficiently large, 1
2ηLF

could be greater than 1 so that β and γ do not affect the
order of the convergence rate in Corollary 1. Additionally, our method does not use the acceleration
or variance reduction techniques as [21, 25, 24] so that the sample complexity of our method is
inferior to those methods.

Theorem 2. Assume Assumptions 1-4 hold, for Algorithm 2, by setting |Ak
t | = |Bk

t | = B, γ > 0,
βt = β ≤ min{ 1

8γ ,
1

2ηLF
, 1}, and η ≤ min{η1, η2, η3}, where

η1 =
4γ(1− λ2)

8γ2L2
F + 289C4

gL
2
f + 16C2

fL
2
g

, η2 =
γ

2
√

19C4
gL

2
f + C2

fL
2
g

,

η3 =

√
b2 + 4ac− b

2a
, a =

27C4
gL

2
f

4γ2
+

3C2
fL

2
g

8γ2
+

3C4
gL

2
f

128γ2
, b =

6

1− λ2
, c = (1− λ)2 ,

(16)

6

we can get

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2E[F (x0)− F (x∗)]

ηβT
+

6C2
gσ

2
f + 6C2

fσ
2
g′ + 3C2

gL
2
fσ

2
g

B

+
24η2(C2

fσ
2
g′ + C2

gσ
2
f)(19C

4
gL

2
f + C2

fL
2
g)

γ2B
+

48η2(C2
fσ

2
g′ + C2

gσ
2
f)(19C

4
gL

2
f + C2

fL
2
g)

γ2(1− λ2)B

+
48η(C2

fσ
2
g′ + C2

gσ
2
f)

γ(1− λ2)B
+

96η(C2
fσ

2
g′ + C2

gσ
2
f)

γ(1− λ2)2B
+

8C2
gL

2
fσ

2
g + 96(1− λ)C2

gL
2
fσ

2

γβB
.

(17)

Corollary 2. Assume Assumptions 1-4 hold, for Algorithm 2, by setting η = O(
√
K√
T
), B = O(

√
KT),

β and γ to be two positive constant values, we can get

1

T

T−1∑
t=0

E[∥∇F (x̄t)∥2] ≤
2E[F (x0)− F (x∗)]

β
√
KT

+
48(C2

fσ
2
g′ + C2

gσ
2
f)

γ(1− λ2)T
+

96(C2
fσ

2
g′ + C2

gσ
2
f)

γ(1− λ2)2T

+
24(C2

fσ
2
g′ + C2

gσ
2
f)(19C

4
gL

2
f + C2

fL
2
g)

γ2K1/2T 3/2
+

48(C2
fσ

2
g′ + C2

gσ
2
f)(19C

4
gL

2
f + C2

fL
2
g)

γ2(1− λ2)K1/2T 3/2

+
6C2

gσ
2
f + 6C2

fσ
2
g′ + 3C2

gL
2
fσ

2
g√

KT
+

8C2
gL

2
fσ

2
g + 96(1− λ)C2

gL
2
fσ

2

γβ
√
KT

.

(18)
Remark 3. For sufficiently large T , Corollary 2 also indicates that GT-DSCGD can achieve linear
speedup with respect to the number of devices, which is consistent with the decentralized SGD method.
Similar to GP-DSCGD, to achieve the ϵ-accuracy solution such that 1

T

∑T−1
t=0 E[∥∇F (x̄t)∥2] ≤ ϵ,

the communication complexity of GT-DSCGD is O
(

1
Kϵ2

)
and the sample complexity is O

(
1

Kϵ3

)
.

4.3 Proof Sketch

In this subsection, we present the main idea of establishing the convergence rate of Algorithm 1 and
Algorithm 2. More details are deferred to Appendix.

Proof sketch of Theorem 1 To establish the convergence rate of Algorithm 1, we proposed a novel
potential function as follows:

Pt = E[F (x̄t)] +
3ηC2

gL
2
f

γ

1

K

K∑
k=1

E[∥u(k)
t − g(k)(x

(k)
t)∥2] + 4η

K

K∑
k=1

E[∥u(k)
t − ūt∥2]

+
γηβ

4C2
gL

2
f

1

K

K∑
k=1

E[∥z(k)t − z̄t∥2] +
1

K

K∑
k=1

E[∥x(k)
t − x̄t∥2] .

(19)

Then, the task boils down to bound each term in this potential function. In particular, we obtain
these bounds in Lemmas 3, 4, 5, 6, respectively in Appendix. With these lemmas, by setting the
hyperparameter as shown in Theorem 1, we can get

Pt+1 − Pt ≤ −ηβ

2
E[∥∇F (x̄t)∥2] +

ηβ(3C2
gσ

2
f + 3C2

fσ
2
g′ + C2

gL
2
fσ

2
g + 24γσ2

g)

B

+
24C2

fσ
2
g′ + 8C2

gσ
2
f + 3C2

gL
2
fσ

2
g

B

γηβ

4C2
gL

2
f

.

(20)

By summing t, we can complete the proof.

Proof sketch of Theorem 2 Similar to the convergence analysis of Algorithm 1, we also proposed
a novel potential function to facilitate the theoretical analysis. Here, different from the proof of
Theorem 1, we didn’t directly use E[∥s(k)t − s̄t∥2] in the potential function. Instead, we introduce an
additional variable h

(k)
t , which is defined as follows:

h
(k)
−1 = 0 , h

(k)
t =

∑
j∈Nvk

wkjh
(j)
t−1 + q

(k)
t − q

(k)
t−1 , (21)

7

where q
(k)
t = ∇g(k)(x

(k)
t)T∇gf

(k)(u
(k)
t) and q

(k)
−1 = 0. Here, the difference between h

(k)
t and s

(k)
t

is that h(k)
t uses the full gradient of each function while s

(k)
t uses the stochastic gradient. Note that

h
(k)
t is just used for theoretical analysis. It does NOT need to be computed in practice. Based on this

new variable, we define the following potential function:

Pt = E[F (x̄t)] +
4ηC2

gL
2
f

γ

1

K

K∑
k=1

E[∥u(k)
t − g(k)(x

(k)
t)∥2] + η(1− λ)

γ

1

K

K∑
k=1

E[∥h(k)
t − h̄t∥2]

+
1

γ

1

K

K∑
k=1

E[∥x(k)
t − x̄t∥2] .

(22)
Similar to the proof of Theorem 1, the task boils down to bound each term in the potential function,
respectively. The detailed bounds can be found in Lemmas 9, 13, 11. Then, we can also get the bound
for Pt+1 − Pt and complete the proof by summing t over all iterations like the proof of Theorem 1.

5 Experiment

5.1 Model-Agnostic Meta-Learning
Model-Agnostic Meta-Learning (MAML) [6] is to learn a meta-initialization model parameter for a
set of new tasks. Specifically, it is to optimize the following model:

min
x∈Rd

Ei∼p,Di
test
li

(
EDi

train

(
x− α∇li

(
x,Di

train

))
, Di

test

)
, (23)

where p is the task distribution, α is the learning rate, li is the loss function for the i-th task, Di
train

is the training set of the i-th task and Di
test is the testing set of the i-th task. Note that we omit the

superscript k for simplication. MAML can be reformulated as a stochastic compositional optimization
problem as follows:

f(y; ζ) = li
(
y,Di

test

)
, where ζ =

(
i,Di

test

)
g(x; ξ) = x− α∇li

(
x,Di

train

)
, where ξ = Di

train .
(24)

Then, we can use the stochastic compostional gradient to optimize MAML. In particular, we can use
ut to track g(xt) as follows:

ut = (1−γηt−1)ut−1+γηt−1g(xt;Bξ,t) = (1−γηt−1)ut−1+γηt−1(xt−1−α∇li
(
xt−1, D

i
train

)
) .

(25)
In our experiment, we will use GP-DSCGD and GT-DSCGD to solve the distributed MAML problem,
where tasks are distributed on different devices.

5.2 Regression Task

Following [6], we verify the performance of our methods with the regression problem. In particular,
each task in MAML is a regression task, which maps the input to a sine wave. Different sine waves
have different amplitudes and phases. Specifically, to generate a set of sine waves, the amplitude
is uniformly drawn from [0.1, 5.0] and the phase is uniformly drawn from [0, π]. Additionally, the
input a is randomly drawn from [−5.0, 5.0]. Then, we use a parameterized neural network f(x; a) to
approximate the sine wave. In our experiment, f(x; a) has two hidden layers and the dimensionality
of different layers is [1, 40, 40, 1]. In each hidden layer, we use the ReLU function as the activation
function. There are numerous regression tasks, the goal of MAML is to learn a good initialization for
the model parameter x such that it can be quickly adapted to new regression tasks and have good
performance.

In our experiment, we use four GPUs where each GPU is viewed as a device. These devices compose
a ring graph. On each device, the number of tasks in each meta-batch is set to 200. The number
of samples in each task for training is set to 10. As for the testing set, the number of tasks is set to
500 and the number of samples in each task is also set to 10. In addition, the number of iterations
for adaptation in the training phase is set to 1 while it is set to 10 in the testing phase. To verify the
performance of our methods, we compare them with the gossip-based decentralized SGD (DSGD)

8

method. Specifically, the decentralized SGD method directly uses ut = g(xt). In other words, DSGD
directly uses xt−1−α∇li

(
xt−1, D

i
train

)
for adaptation rather than that in Eq. (25). In our experiment,

α is set to 0.01. For adaptation, the learning rate η of DSGD is set to η = 0.001. Sine Adam has
better performance in MAML [6], we actually use the decentralized Adam in our experiment as
the baseline method. Accordingly, for fair comparison, we also use the adaptive learning rate for
our two methods based on the stochastic compositional gradient z(k)t and s

(k)
t . In addition, we set

γ = 3.0, η = 0.03, β = 0.33. The reason for this setting is that x(k)
t+1 ≈ x

(k)
t − βηz

(k)
t . Therefore,

the effective learning rate βη of our methods is approximately equal to that of the baseline method,
which is a fair comparison.

In Figure 1(a), we show the average and standard deviation of the training loss across different devices.
It can be seen that our two methods converge much faster than DSGD. The reason is that our methods
use ut to track the g(xt) so that the estimation variance for g(xt) is smaller than DSGD. Meanwhile,
it can be seen that our two methods achieve similar performance. Moreover, in Figure 1(b), we plot
the loss function value when using the learned model parameter as the initialization for new tasks and
then conducting 10 gradient descent steps. It can be seen that our two methods can achieve better
performance in adaptation to the new task.

0 200 400 600 800 1000
Iteration

1

2

3

4

Lo
ss

DSGD
GP-DSCGD
GT-DSCGD

(a) Sine: meta-training

0 2 4 6 8
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

DSGD
GP-DSCGD
GT-DSCGD

(b) Sine: meta-test

0 50 100 150 200 250
Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

DSGD
GP-DSCGD
GT-DSCGD

(c) Omniglo: meta-training

DSGD GP-DSCGD GT-DSCGD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(d) Omniglot: meta-test

Figure 1: Meta-training and meta-test for the regression and classification task.

5.3 Classification Task

Besides the regression task, we also verify the performance of our distributed training methods with
the classification task. Here, we use the Omniglot image dataset [12]. It has 1623 characters and each
character has 20 images. Under the MAML setting, recognizing each character corresponds to a task
so that there are 1623 tasks totally. In our experiment, we use 1200 tasks as the training set and the
rest tasks as the testing set. To recognize the character, we use the same convolutional neural network
as [6]. To get the meta-initialization for the model parameter, we use the 5-way 1-shot setting. As

9

for the distributed training, we still use four devices. The meta batch-size on each device is 8. The
number of iterations for adaptation in the training phase is set to 1 while it is set to 3 in the testing
phase. Additionally, we set the inner learning rate α = 0.4, the learning rate of DSGD η = 0.001.
As for our methods, we keep the same learning rates as the regression task.

From Figure 1(c), we also plot the loss function value for the classification task. We can still find that
our two methods converge much faster than DSGD, which further confirms the effectiveness of our
proposed methods. Additionally, we show the classification accuracy after adaptation for new tasks
in Figure 1(d). It is obvious that our two methods can achieve higher accuracy and smaller variance
compared with DSGD, which further confirms the effectiveness of our methods.

5.4 Additional Experiment

In this experiment, we verify the performance of our methods with different number of devices. In
particular, we compare the performance using four GPUs and that using eight GPUs for the regression
task. For these two settings, we use the same overall meta-batch size as that in Section 5.2, and then
uniformly distribute the tasks on all devices. As for other hyperparameters, they are the same for
these two settings. In Figure 2, we plot the training loss function value with respect to the consumed
time. It can be observed that our two methods converge much faster when using more devices, which
confirms the speedup of the decentralized training.

0 200 400 600 800
Time(seconds)

1

2

3

4

5

Lo
ss

GP-DSCGD-8
GP-DSCGD-4

(a) GP-DSCGD

0 200 400 600 800
Time(seconds)

1

2

3

4

5
Lo

ss
GT-DSCGD-8
GT-DSCGD-4

(b) GT-DSCGD

Figure 2: Meta-training for the regression task by using GP-DSCGD and GT-DSCGD.

6 Conclusion

In this paper, we studied the distributed training methods for the stochastic compositional optimization
problem. In particular, we proposed two novel decentralized stochastic compositional gradient descent
method based on the gossip communication mechanism and the gradient tracking communication
mechanism. As far as we know, our work is the first one facilitating distributed training for large-scale
stochastic compositional optimization problem. Meanwhile, we established the convergence rate
of our proposed methods with novel theoretical analysis. The theoretical results indicate that our
two methods can achieve linear speedup with respect to the number of devices. This is the first
work disclosing this favorable result. At last, extensive experimental results on the MAML task
demonstrate the superior performance of our methods.

Acknowledgments and Disclosure of Funding

This work was partially supported by NSF IIS 1845666, 1852606, 1838627, 1837956, 1956002, OIA
2040588. In addition, this research includes calculations carried out on HPC resources supported
in part by the National Science Foundation through major research instrumentation grant number
1625061 and by the US Army Research Laboratory under contract number W911NF-16-2-0189.

10

References
[1] T. Chen, Y. Sun, and W. Yin. Solving stochastic compositional optimization is nearly as easy as solving

stochastic optimization. arXiv preprint arXiv:2008.10847, 2020.

[2] T. Chen, Y. Sun, and W. Yin. Tighter analysis of alternating stochastic gradient method for stochastic
nested problems. arXiv preprint arXiv:2106.13781, 2021.

[3] A. Cutkosky and F. Orabona. Momentum-based variance reduction in non-convex sgd. In Advances in
Neural Information Processing Systems, pages 15236–15245, 2019.

[4] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. arXiv preprint arXiv:1407.0202, 2014.

[5] C. Fang, C. J. Li, Z. Lin, and T. Zhang. Spider: Near-optimal non-convex optimization via stochastic
path-integrated differential estimator. In Advances in Neural Information Processing Systems, pages
689–699, 2018.

[6] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
International Conference on Machine Learning, pages 1126–1135. PMLR, 2017.

[7] H. Gao and H. Huang. Periodic stochastic gradient descent with momentum for decentralized training.
arXiv preprint arXiv:2008.10435, 2020.

[8] H. Gao, A. Xu, and H. Huang. On the convergence of communication-efficient local sgd for federated
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7510–7518,
2021.

[9] H. Gao, H. Xu, and S. Vucetic. Sample efficient decentralized stochastic frank-wolfe methods for
continuous dr-submodular maximization. Thirtieth International Joint Conference on Artificial Intelligence,
2021.

[10] R. Grazzi, M. Pontil, and S. Salzo. Convergence properties of stochastic hypergradients. In International
Conference on Artificial Intelligence and Statistics, pages 3826–3834. PMLR, 2021.

[11] A. Koloskova, T. Lin, S. U. Stich, and M. Jaggi. Decentralized deep learning with arbitrary communication
compression. arXiv preprint arXiv:1907.09356, 2019.

[12] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015.

[13] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu. Can decentralized algorithms outperform
centralized algorithms? a case study for decentralized parallel stochastic gradient descent. arXiv preprint
arXiv:1705.09056, 2017.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282. PMLR,
2017.

[15] A. Mokhtari, H. Hassani, and A. Karbasi. Stochastic conditional gradient methods: From convex mini-
mization to submodular maximization. Journal of Machine Learning Research, 21(105):1–49, 2020.

[16] F. Niu, B. Recht, C. Ré, and S. J. Wright. Hogwild!: A lock-free approach to parallelizing stochastic
gradient descent. arXiv preprint arXiv:1106.5730, 2011.

[17] S. Pu and A. Nedić. Distributed stochastic gradient tracking methods. Mathematical Programming, pages
1–49, 2020.

[18] H. Sun, S. Lu, and M. Hong. Improving the sample and communication complexity for decentralized
non-convex optimization: Joint gradient estimation and tracking. In International Conference on Machine
Learning, pages 9217–9228. PMLR, 2020.

[19] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[20] M. Wang, E. X. Fang, and H. Liu. Stochastic compositional gradient descent: algorithms for minimizing
compositions of expected-value functions. Mathematical Programming, 161(1-2):419–449, 2017.

[21] M. Wang, J. Liu, and E. X. Fang. Accelerating stochastic composition optimization. The Journal of
Machine Learning Research, 18(1):3721–3743, 2017.

11

[22] R. Xin, U. A. Khan, and S. Kar. A near-optimal stochastic gradient method for decentralized non-convex
finite-sum optimization. arXiv preprint arXiv:2008.07428, 2020.

[23] J. Yang and W. Hu. Stochastic recursive momentum method for non-convex compositional optimization.
arXiv preprint arXiv:2006.01688, 2020.

[24] H. Yuan, X. Lian, and J. Liu. Stochastic recursive variance reduction for efficient smooth non-convex
compositional optimization. arXiv preprint arXiv:1912.13515, 2019.

[25] J. Zhang and L. Xiao. A composite randomized incremental gradient method. In International Conference
on Machine Learning, pages 7454–7462, 2019.

[26] J. Zhang and L. Xiao. Multi-level composite stochastic optimization via nested variance reduction. arXiv
preprint arXiv:1908.11468, 2019.

[27] J. Zhang and L. Xiao. A stochastic composite gradient method with incremental variance reduction. In
Advances in Neural Information Processing Systems, pages 9078–9088, 2019.

12

	Introduction
	Related Works
	Stochastic Compositional Optimization Problem
	Decentralized Training Methods

	Decentralized Stochastic Compositional Optimization Methods
	Problem Definition
	Gossip-based Decentralized Stochastic Compositional Gradient Descent Method
	Gradient-Tracking-based Decentralized Stochastic Compositional Gradient Descent Method

	Convergence Analysis
	Assumptions
	Convergence Rate
	Proof Sketch

	Experiment
	Model-Agnostic Meta-Learning
	Regression Task
	Classification Task
	Additional Experiment

	Conclusion
	Appendix
	Convergence Analysis of Algorithm 1
	Convergence Analysis of Algorithm 2

