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Abstract

In this paper, we introduce YOLA, a novel framework for object detection in
low-light scenarios. Unlike previous works, we propose to tackle this challeng-
ing problem from the perspective of feature learning. Specifically, we propose
to learn illumination-invariant features through the Lambertian image formation
model. We observe that, under the Lambertian assumption, it is feasible to ap-
proximate illumination-invariant feature maps by exploiting the interrelationships
between neighboring color channels and spatially adjacent pixels. By incorporat-
ing additional constraints, these relationships can be characterized in the form of
convolutional kernels, which can be trained in a detection-driven manner within
a network. Towards this end, we introduce a novel module dedicated to the ex-
traction of illumination-invariant features from low-light images, which can be
easily integrated into existing object detection frameworks. Our empirical find-
ings reveal significant improvements in low-light object detection tasks, as well
as promising results in both well-lit and over-lit scenarios. Code is available at
https://github.com/MingboHong/YOLA.

1 Introduction

In the field of computer vision, object detection stands as a cornerstone, driving advancements in
numerous applications ranging from autonomous vehicles to security surveillance [26, 51, 20]. The
ability to accurately identify and locate objects in digital imagery has seen remarkable progress, largely
due to the advent of deep learning techniques [16, 15, 40]. However, despite these advancements,
object detection in low-light conditions remains a significant challenge. Low-light environments lead
to poor image quality, reduced visibility, and increased misdetections in night-time surveillance and
twilight driving [48, 32].

Traditional methods in tackling low-light object detection have predominantly leaned towards image
enhancement techniques [17, 24, 53, 34]. While these methods have demonstrated effectiveness in
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Figure 1: (a): The base detector failed to recognize objects. (b, c) However, when IIM is employed
with a simple edge feature, the object is identified. (d, e) Furthermore, the full IIM utilizes a task-
driven learnable kernel to extract illumination-invariant features that are richer and more suitable for
the detection task than simple edge features.

improving visual aesthetics and perceptual quality, they often do not directly translate to improved
object detection performance. This discrepancy arises because these enhancement techniques are typ-
ically optimized for human visual perception, which does not always correlate with the requirements
for effective and accurate object detection by machine learning models.

In addition to image enhancement strategies, another research direction involves fine-tuning pre-
trained models for low-light conditions. Typically, detectors are initially trained on extensive
datasets of well-lit images, such as those from Pascal VOC [11] and Microsoft COCO [28], and
subsequently fine-tuned on smaller, low-light datasets [48, 32]. To enhance the utilization of cross-
domain information, the MAET framework [7] was developed to learn intrinsic visual structure
features by separating object features from those caused by degradation in image quality. Similarly,
methods [31, 25] aim to restore the normal appearances of corrupted images during detector training.
However, these techniques often depend heavily on synthetic datasets, which could limit their
real-world applicability.

Recent methods in low-light object detection, such as those in [36, 49], use Laplacian pyramids [2] for
multi-scale edge extraction and image enhancement. FeatEnHancer [18] further leverages hierarchical
features for improved low-light vision. However, these task-specific, loss-driven approaches often
grapple with a larger solution space due to varying illumination effects.

In this study, we introduce a novel approach that explicitly leverages illumination-invariant features,
utilizing the principles of the Lambertian image formation model [42]. Under the Lambertian
assumption, we can express the pixel values in each channel as a discrete combination of three
key components: the surface normal, the light direction (both of which are solely related to the
pixel’s position), the spectral power distribution, and the intrinsic properties of the pixel itself. The
illumination-invariant feature can be learned by eliminating the position-related term and spectral
power-related term [14]. We introduce this concept of extracting illumination-invariant features into
low-light detection tasks and demonstrate that incorporating this feature yields significant performance
improvements in low-light detection tasks. We further improve this illumination-invariant feature
using task-driven kernels. Our key observation is that by imposing a zero-mean constraint on these
kernels, the feature can simultaneously discover richer downstream task-specific patterns and maintain
illumination invariance, thereby improving performance.

Towards this end, we propose the Illumination-Invariant Module (IIM), a versatile and adaptive
component designed to integrate the information gleaned from these specialized kernels with standard
RGB images. The IIM can be seamlessly integrated with a variety of existing object detection
frameworks, enhancing their capability to perform accurately in low-light environments, whether
through naive edge features or diverse illumination-invariant characteristics, as shown in Fig 1.
We further conduct experiments on the ExDark and UG2+DARK FACE datasets to evaluate our
method. Our experimental results demonstrate that the integration of the IIM significantly enhances
the detection accuracy of existing methods, leading to substantial improvements in low-light object
detection. To summarize, our contributions are as follows:

• We introduce YOLA, a novel framework for object detection in low-light conditions by
leveraging illumination-invariant features.
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Figure 2: The overall pipeline of YOLA.YOLA extracts illumination-invariant features via IIM
and integrates them with original images by leveraging a fuse convolution block for the subsequent
detector.

• We design a novel Illumination-Invariant Module to extract illumination-invariant features
without requiring additional paired datasets, and can be seamlessly integrated into existing
object detection methods.

• We provide an in-depth analysis of the extracted illumination-invariant paradigm and propose
a learning illumination-invariant paradigm.

• Our experiments show YOLA can significantly improve the detection accuracy of existing
methods when dealing with low-light images.

2 Related work

2.1 General object detection

Current modern object detection methods can be classified as anchor-based and anchor-free. The
anchor-based detectors are derived from the sliding-window paradigm, where the dense anchor
can be viewed as the sliding-window arranged in spatial space. Subsequently, the anchors are
assigned as positive or negative samples based on the matching strategy (i.e., Intersection-over Union
(IoU) [16], Top-K [52, 50]). Common anchor-based methods include R-CNN [16, 15, 40], SSD [30],
YOLOv2 [38], and RetinaNet [27], among others. In contrast, the anchor-free detectors liberate
the handcraft anchor hyper-parameter setting, enhancing their potential in terms of generalization
capability. Prominent methods in anchor-free include YOLOv1 [37], FCOS [44], and DETR [3].
Despite the remarkable achievements of both anchor-based and anchor-free detectors in general
object detection, they exhibit unsatisfactory performance under low-light conditions.
2.2 Low-light object detection

Object detection in low-light conditions remains a significant challenge. One common line of research
involves leveraging image enhancement techniques, such as KIND [53], SMG [46], NeRCo [47],
and others [17, 24, 22, 23] to directly improve the quality of the low-light image. The enhanced
images are then deployed in the subsequent training and testing stages of detection. However, the
objective of image enhancement is inherently different from that of object detection, making this
strategy suboptimal. To address this, some researchers [21, 6] explore integrating image enhancement
with object detection during the training process. Nevertheless, the task of balancing hyperparameters
to equilibrate visual quality and detection performance remains intricate. Recently, Sun et al. [43]
proposed a targeted adversarial attack paradigm aimed at restoring degraded images to ones that are
more favorable for object detection. MAET [7] trained on a low-light synthetic dataset, obtaining
the pre-trained model endowed intrinsic structure decomposition ability for downstream lowlight
object detection. Further, IA-YOLO [31] and GDIP [25] elaborately design the differentiable image
processing module to enhance image adaptively for adverse weather object detection. Note that the
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aforementioned methods either require a dedicated low-light enhancement dataset or rely heavily on
synthetic datasets in training. To mitigate the limitations, a set of methodologies [36, 49, 18] utilize
multi-scale hierarchical features and are driven purely by task-specific loss to improve low-light
vision. Unlike those methods, we introduce illumination-invariant features to alleviate the effect
of illumination on low-light object detection, without requiring additional low-light enhancement
datasets or synthetic datasets.

2.3 Illumination invariant representation

Adverse illumination typically degrades the performance on downstream tasks, prompting researchers
to explore illumination-invariant techniques to mitigate this impact. For high-level tasks, Wang
et al. [45] proposed an illumination normalization method for Face Recognition. Alshammari et
al. [1] use illumination-invariant image representation to improve automotive scene understanding
and segmentation. Lu et al. [33] convert RGB images to illumination-invariant chromaticity space,
preparing for the following feature extraction to achieve traffic object detection in various illumination
conditions. For low-level tasks, several physics-based invariants, such as Colour Ratios [13] (CR)
and Cross Colour Ratios [14] (CCR), are employed to decompose the illumination for intrinsic image
decomposition [10, 9, 8]. However, these methods leverage illumination-invariant representations
derived from the fixed formulations, which may not adequately capture the diverse and complex
illumination scenarios that are specific to downstream applications. In contrast, our method enables
the adaptive learning of illumination-invariant features in an end-to-end manner, thereby enhancing
compatibility with downstream tasks.

3 Method

In this section, we formally introduce YOLA, a novel method for low-light object detection. As
illustrated in Fig.2, the key component of YOLA is the Illumination Invariant Module (IIM) focusing
on feature learning to derive downstream task-specific illumination-invariant features. These features
can be integrated with existing detection modules, enhancing their capability in low-light conditions.
Next, we will introduce the derivation of illumination-invariant features and provide a detailed
description of IIM’s specific implementation.

3.1 Illumination invariant feature

Notation: Let I represents an image in the standard RGB domain, and let C ∈ [R,G,B] represent
the image in the red, green, or blue channel. We define the value in channel C of a pixel pi as Cpi

,
where i ∈ I is the pixel index.

Lambertian assumption: According to body reflection term of the dichromatic reflection model,
the value of Cpi can be expressed in the discreet form as follows:

Cpi
= m(n⃗pi

, l⃗pi
)eCpi (λ)ρCpi (λ), (1)

Here, n⃗pi , l⃗pi represents surface normal and light direction respectively, and m denotes the interaction
function between them. The term eCpi represents the spectral power distribution of the illuminant at
point pi in color channel C , and ρCpi represents the intrinsic property (reflectance) of the object at
point pi in color channel C.

It becomes apparent that the term m is determined solely by the positional component, with no impact
from the color channels. This observation leads to the strategy of calculating the difference between
values of different color channels at the same spatial positions to effectively eliminate the influence of
m. To eliminate the term e, we can utilize the assumption that illumination is approximately uniform
across adjacent pixels. Consequently, by computing the difference between values of neighboring
pixels, we can further further eliminate the influence of m.

Cross color ratio: Taking into consideration two adjacent pixels, denoted as p1 and p2, along with
the red (R) and blue (B) channels, we can determine the ratio Mrb between the red and blue channels
through the following computational procedure:

Mrb =
Rp1

Bp2

Rp2
Bp1

. (2)
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Taking the logarithm of Mrb and substituting the pixel values with Eq. 1, we get:

log(Mrb) = log(m(n⃗p1
, l⃗p1

))− log(m(n⃗p1
, l⃗p1

))

+log(eRp1 (λ))− log(eRp2 (λ))

+log(ρRp1 (λ))− log(ρRp2 (λ))

+log(m(n⃗p2
, l⃗p2

))− log(m(n⃗p2
, l⃗p2

))

+log(eBp2 (λ))− log(eBp1 (λ))

+log(ρBp2 (λ))− log(ρBp1 (λ)).

(3)

With the illumination assumption that eCp1 ≈ eCp2 , the above equation can be further simplified into
an illumination-invariant form:

log(Mrb) = log(ρRp1 (λ))− log(ρRp2 (λ))

+log(ρBp2 (λ))− log(ρBp1 (λ))
(4)

By observing the elimination in Eq. 4, we can find that subtraction within the same channel eliminates
the illumination term (implemented by zero-mean constraint), while cross-channel subtraction
removes the surface normal and light direction terms, which motivates us to design the learning
illumination-invariant paradigms.

In this case, we can use a convolution operation to extract features, as shown in Fig. 2. The extracted
features are processed and fused by the IIM before being sent to the detector. When using fixed
weights of adjacent pixels with a subtraction value of 1 or −1, we refer to it as IIM-Edge. Next, we
will provide a detailed introduction to the IIM.

3.2 Illumination invariant module

While Eq. 4 offers a straightforward and effective method for calculating Illumination Invariant
features, its rigidity presents certain limitations. Specifically, the fixed nature of this equation
may not adequately capture the diverse and complex variations in illumination that are specific to
downstream tasks across different scenarios. To address this, we have evolved the equation into a more
adaptable form using convolutional operations. Instead of relying on a single kernel, our approach
involves learning a set of convolutional kernels. This strategy not only enhances the robustness
of the Illumination Invariant feature extraction but also improves its efficiency. To this end, we
propose Illumination Invariant Module comprising two main components, including learnable kernels
and a zero-mean constraint. Note that Illumination Invariant Module yield features are inherently
illumination invariant at initialization. Subsequent kernel learning is geared towards producing
task-specific illumination invariant features for downstream tasks.

Learnable kernel. The goal is to transform the fixed illumination-invariant feature into a learnable
form. Specifically, we aim to learn a set of convolutional kernels W1,W2, · · ·W∈k×k

n , where n
represents the number of kernels and k denotes the kernel size. Here, we extend the fixed feature
into a more versatile and generalized form. Let pi and wi represent a group pixel position and its
corresponding weight within a kernel Wn, where i = 0, 1, · · · k2. These parameters enable us to
evolve the Cross Color Ratio (CCR) into an adaptable form, enhancing its capability to effectively
handle varying illumination conditions. Note that wi is trainable, rendering the positive or negative
polarity inconsequential.

Mrb =

k2−1∏
i=1

(
Rpi

Bpi

)wi
(
Bpi+1

Rpi+1

)wi+1

=

k2∏
i=1

(
Rpi

Bpi

)wi

(5)

To make the extended form still satisfy Illumination Invariant, the logarithm of Mrb should satisfy
the following constraints: {∑k2

i wilog(e
Rpi (λ)) = 0∑k2

i wilog(e
Bpi (λ)) = 0

(6)
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Figure 3: Qualitative comparisons of TOOD detector on both ExDark and UG2+DARK FACE
dataset, where the top 2 rows visualize the detection results from ExDark, and the bottom 2 rows
show the results from UG2+DARK FACE. The images are being replaced with enhanced images
generated by LLIE or low-light object methods. Red dash boxes highlight the inconspicuous cases.
Zoom in red dash boxes for the best view.

If the above equation holds true, the e term and the m term are eliminated. The final feature can be
expressed in a generalized form:

log(Mrb) =

k2∑
i

wilog(ρ
Rpi (λ))−

k2∑
i

wilog(ρ
Bpi (λ)) (7)

Similarly, we can obtain log(Mrg) and log(Mgb) to form fWi
(I).

The resulting features obtained by applying the kernel Wi to the image I denoted as fWi
(I), can be

expressed as:

fWi(I) =

[ Wi ⊛ log(R) + (−Wi)⊛ log(B)
Wi ⊛ log(R) + (−Wi)⊛ log(G)
Wi ⊛ log(G) + (−Wi)⊛ log(B)

]
(8)

where ⊛ denotes the convolution.

Zero mean constraint: Drawing from Eq. 6 and the approximation eRp1i ≈ eBpi , in the context of
convolutional kernels, we simply ensure that the mean of W∈k×k

n to be 0, as depicted by:

Wn =
1

k2

k2∑
i=1

wi = 0 (9)

This constraint is enforced by substituting the mean value from the kernel Wn = Wn −Wn.
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Methods YOLOv3 TOOD

recall mAP50 recall mAP50

Baseline 84.6 71.0 91.9 72.5
KIND [53] 83.3 69.4 92.1 72.6
SMG [46] 82.3 68.5 91.8 71.5

NeRCo [47] 83.4 68.5 91.8 71.8
DENet [36] 84.2 71.3 92.6 73.5
GDIP [53] 84.8 72.4 92.2 72.8
IAT [53] 85.0 72.6 92.9 73.0

MAET [7] 85.1 72.5 92.5 74.3
YOLA-Naive 84.8 71.6 91.8 71.6

YOLA 86.1 72.7 93.8 75.2

Table 1: Quantitative comparisons of the ExDark
dataset based on YOLOv3 and TOOD detectors.

Methods YOLOv3 TOOD

recall mAP50 recall mAP50

Baseline 77.9 60.0 81.5 62.1
KIND [53] 76.0 58.4 82.4 63.8
SMG [46] 69.3 48.9 77.1 55.8

NeRCo [47] 68.9 49.1 76.8 55.6
DENet [36] 77.7 60.0 84.1 66.2
GDIP [53] 77.8 60.4 82.1 62.9
IAT [53] 77.6 59.8 82.1 62.0

MAET [7] 77.9 59.9 83.6 64.8
YOLA-Naive 76.6 59.2 82.8 64.6

YOLA 79.1 61.5 84.9 67.4

Table 2: Quantitative comparisons of the
UG2+DARK FACE dataset based on YOLOv3
and TOOD detectors.

4 Experiments

4.1 Implementation details

We evaluate the proposed method using the popular anchor-based detector YOLOv3 [39] and the
anchor-free detector TOOD [12]. Both detectors are initially pre-trained on the COCO dataset and
subsequently fine-tuned on the target datasets utilizing the SGD [41] optimizer with an initial learning
rate of 1e-3. Specifically, we resize the ExDark dataset images to 608× 608 and train both detectors
for 24 epochs, reducing the learning rate by a factor of 10 at epochs 18 and 23. For the UG2+DARK
FACE dataset, we resize images to 1500× 1000 for TOOD and maintain the 608× 608 resolution
for YOLOv3 to be consistent with MAET. YOLOv3 is trained for 20 epochs, with the learning rate
decreased by a factor of 10 at 14 and 18 epochs. TOOD are trained for 12 epochs, with the learning
rate decreased by a factor of 10 at 8 and 11 epochs. Additionally, we implement a straightforward
illumination-invariant model, denoted as YOLA-Naive, by removing the IIM and ensuring various
illumination features are consistently imposed by an MSE loss. We implement YOLA using the
MMDetection toolbox [4].

4.2 Dataset

We evaluate our proposed method on both real-world scenarios datasets: exclusively dark [32]
(ExDark) and UG2+DARK FACE [48]. ExDark dataset contains 7363 images ranging from low-
light environments to twilight, including 12 categories, 3,000 images for training, 1,800 images for
validation, and 2,563 images for testing. We calculate the overall mean average precision (mAP50)
and mean recall at the IoU threshold of 0.5 as the evaluation metric. UG2+DARK FACE dataset
contains 6,000 labeled face bounding box images, where 5,400 images are allocated for training
and 600 images are reserved for testing, and calculating the corresponding recall and mAP50 as
evaluation metrics. Additionally, we also evaluate the generalization ability of our method on the
COCO 2017 [28] dataset.

4.3 Low-light object detection

Table 1 presents the quantitative results of YOLOv3 and TOOD detectors on the ExDark dataset,
respectively. We report the low-light image enhancement (LLIE) methods, including KIND, SMG,
and NeRCo, along with the state-of-the-art low-light object detection methods, DENet, and MAET.
Compared to the low-light object detection methods, the LLIE methods fail to achieve satisfactory
performance due to inconsistency between human visual and machine perception. The enhancement
methodologies prioritize human preferences. However, it is important to note that optimizing for
enhanced visual appeal may not align with optimized object detection performance. Despite being
the current state-of-the-art in image enhancement techniques, SMG and NeRCo exhibit worse
performance compared to KIND when evaluated in the context of object detection tasks. In contrast,
end-to-end approaches such as DENet and MAET, which account for machine perception, generally
yield superior results in object detection compared to the LLIE methods. Nevertheless, our method
remains simple and effective when compared to similar approaches in the same category. Moreover,
compared to YOLA-Naive, YOLA exhibits superior performance because its extracted features
inherently possess illumination invariance, implying a smaller solution space compared to YOLA-
Naive. Specifically, our method achieves the best performance on both anchor-based YOLOv3

7



Dataset IIM IIM-Edge Zmean mAP50

Exdark

72.5
✓ 73.8

✓ 74.7
✓ ✓ 75.2

DarkFace

62.1
✓ 64.5

✓ 66.9
✓ ✓ 67.4

Table 3: The effectiveness of IIM, IIM-Edge
and the zero mean constraint Zmean based on
TOOD. The blank line denotes the baseline.

Dataset Method AP50 AP75 mAP

well-lit TOOD 59.0 45.3 41.7
+ YOLA 59.4 46.0 42.3

over-light TOOD 57.4 43.8 40.5
+ YOLA 58.3 44.6 41.2

Table 4: Ablation study for YOLA on COCO
2017val.

Method Kind SMG NeRco DENet MAET Ours
Size(M) 8.21 17.90 23.30 0.04 40 0.008

Table 5: Model size of different methods.

and anchor-free detectors TOOD, surpassing the baseline by significant gains of 1.7 and 2.5 mAP,
indicative of its superiority and effectiveness. Meanwhile, compared with most LLIE and lowlight
object detection techniques, the number of parameters in our YOLA (0.008M) is significantly lower,
as presented in Table 5. This highlights the potential for our method to be deployed in lightweight
practical applications. For a more detailed quantitative comparison, please refer to our appendix.

4.4 Low-light face detection

We have shown the results on the ExDark dataset. Next, we showcase the results on a dataset that
includes small-sized objects. Table 2 presents the quantitative results of the detector YOLOv3 and
TOOD on UG2+DARK FACE dataset. Significantly, it is worth noting that most LLIE methods
integrated into the YOLOv3 detector fail to achieve satisfactory results. This implies that the
utilization of enhancement-based approaches can impair the details of small faces, hindering the
learning of useful representations in such images. On the other hand, methods considering the object
detection task demonstrate better performance, where YOLA increases the 1.5 mAP, demonstrating
its superior performance and generalization capability. For the recently advanced detector TOOD, our
method still outperforms these LLIE and low-light object detection methods, achieving a remarkable
mAP of 67.4. This underscores YOLA’s superior generalization capabilities in improving the
performance of both anchor-based and anchor-free detection paradigms.

4.5 Quantitative results

The top 2 rows of Figure 3 show the qualitative results from the ExDark dataset using the TOOD
detector, where existing methods exhibit missed detections, highlighted by the red dashed boxes. In
contrast, YOLA excels in detecting these challenging cases, demonstrating its superior performance
in complex scenarios. The bottom 2 rows exhibit the qualitative results of the UG2+DARK FACE
dataset using the TOOD detector. These faces are typically tiny under low-light conditions, making it
difficult for most methods to achieve comprehensive results.

Although our method does not explicitly constrain image brightness, the enhanced images tend to
display increased brightness in the final results. The visual results shown in the figures may appear
slightly grayish due to the absence of value range constraints on the enhanced images. For image
display, we conducted channel-wise normalization.

4.6 Ablation studies

4.6.1 Illumination invariant module

We evaluate the effectiveness of the IIM in detectors TOOD, as presented in Table 3, respectively. The
1st and 5th rows of Table 3 show the baseline detectors evaluated on ExDark and UG2+DARK FACE
dataset. By incorporating the IIM to introduce illumination-invariant features, the detector yields
considerable performance gains (2.3 and 4.8 mAP for ExDark and UG2+DARK FACE, respectively).

4.6.2 Zero mean constraint

By imposing a zero mean constraint on the convolutional kernels, the subtraction formed by the
kernels can factor out the illumination items. To evaluate the impact of this constraint, we exclude it
from IIM, and the results are shown in Table 3. It is evident that the removal of this constraint leads
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IIM-Edge

IIM

Figure 4: Visualization of the features (columns 2 and 4) generated by IIM-Edge and IIM(kernels
are normalized for better visibility, we average the features across the channel dimensions and then
conduct spatial normalization), along with detection results (columns 1 and 3). Best viewed by
zooming in.

to a decline in performance, with reductions of 0.3 and 0.5 mAP for TOOD. These results indicate
that utilizing the zero mean constraint to mitigate the effects of illumination is beneficial to low-light
object detection.

4.6.3 Learnable kernel

The IIM is formed with the learnable kernels, encouraging the illumination-invariant features that
are adaptively learned in an end-to-end fashion. In this experiment, we evaluate the fixed kernels
(as specified in Eq. 4, also referred to as IIM-Edge), the results of which are shown in Table 3.
It outperforms the baseline by 1.3 mAP on ExDark and 2.4 mAP on UG2+DARK FACE, which
demonstrates that the incorporation of illumination-invariant features is beneficial for low-light object
detection. Subsequently, we substitute the fixed kernels with the learnable kernels, yielding further
gains of 1.4 mAP on ExDark and 2.9 mAP on UG2+DARK FACE. These results clearly prove the
effectiveness of learnable kernels. In addition, we also impose a consistency loss for IIM’s output
feature to stabilize the kernel learning to prevent trivial solutions within the kernel, mitigating the
impact of uneven lighting. (please refer to the appendix A for details).

Visualization: Illumination-invariant features exhibit considerable diversity, but the diversity captured
by fixed kernels is limited. We visualize and compare the fixed kernel and learnable kernel as shown
in Fig. 4. The features yielded by fixed kernels appear relatively uniform, primarily consisting of
simple edge features. In contrast, learnable kernels extract more diverse patterns, resulting in visually
richer and more informative representations.

4.7 Generalization

In this section, we broaden the application of the YOLA to the general object detection dataset COCO
2017, investigating the YOLA’s generalization capability beyond low-light object detection. The
metrics mAP (average for IoU [0.5:0.05:0.95]), AP50, and AP75 are adopted to evaluate performance
on COCO 2017val (also called minival) as presented in Table 4. Specifically, we trained 12 epochs
with 8 GPUs and a mini-batch of 1 per GPU in an initial learning rate of 1e-2 by the SGD optimizer on
both well-lit and over-lit (generated by brightening the origin image) scenarios. By observing Table 4,
we can see that detectors integrated with YOLA in both scenarios exhibit notable improvements in
performance.

5 Conclusion

In this work, we have revisited the complex challenge of object detection in low-light conditions and
demonstrated the effectiveness of illumination-invariant features in improving detection accuracy
in such environments. Our key innovation, the Illumination-Invariant Module (IIM), harnesses
these features to great effect. By integrating a zero-mean constraint within the framework, we have
effectively learned a diverse set of kernels. These kernels are adept at extracting illumination-invariant
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features, significantly enhancing detection precision. We believe that our developed IIM module can
be instrumental in advancing low-light object detection tasks in future applications.

Acknowledgement: This work was supported in part by National Natural Science Foundation of
China (NSFC) under grant No.62372091 and Natural Science Foundation of Sichuan Province under
grant Nos. 2023NSFSC0462 and 2023NSFSC1972.
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A Appendix / supplemental material

Derivation of IIM. Referring to the Eq. 5 in the main text, the IIM defines a feature extracted from
neighboring pixels. Consider a convolutional kernel Wk×k, where k represents the kernel size. Here,
pi and wi denote a pixel position and its associated weight within the kernel W , with i ranging from
1 to k2.

Mrb =

k2−1∏
i=1

(
Rpi

Bpi

)wi
(
Bpi+1

Rpi+1

)wi+1

=

k2∏
i=1

(
Rpi

Bpi

)wi

(10)

log(Mrb) =

k∑
i=1

wilog(Rpi)−
k∑

i=1

wilog(Bpi)

=

k∑
i=1

wi(log(m(n⃗pi
, l⃗pi

)) + log(eRpi (λ)) + log(ρRpi (λ)))

−
k∑

i=1

wi(log(m(n⃗pi , l⃗pi)) + log(eBpi (λ)) + log(ρBpi (λ)))

=

k∑
i=1

wilog(e
Rpi (λ))−

k∑
i=1

wilog(e
Bpi (λ))

+

k∑
i=1

wilog(ρ
Rpi (λ))−

k∑
i=1

wilog(ρ
Bpi (λ))

(11)

To eliminate the e term, it is imperative to adhere to the following constraints::{∑k2

i wilog(e
Rpi (λ)) = 0∑k2

i wilog(e
Bpi (λ)) = 0

(12)

Assuming that all pixels in a given convolutional kernel are neighboring pixels, we obtain eRpi ≈
eRpj , where i, j = 1, 2, · · · , k2, j ̸= i. The above constraints can be equivalently expressed as∑k2

i wi = 0

Illumination Invariant Loss. As mentioned in Sec. 4.6.3, to optimally constrain the kernel learning
process and harness the full potential of illumination-invariant information, we further employ a
consistency loss, denoted as Illumination Invariant Loss (II Loss). This loss function is specifically
designed to align features extracted from pairs of images taken under different lighting conditions.
The fundamental concept of the II Loss is to guarantee consistency in the features extracted from
these images, regardless of the variations in illumination. This is achieved by leveraging a luminance
transformation function σ to adjust the illuminations, as defined as follows:

L =

{
1
2 (fWi(I)− fWi(σ(I)))

2 |fWi(I)− fWi(σ(I))| ≤ β

|fWi(I)− fWi(σ(I))| − 1
2β, otherwise.

(13)

In our experiments, we use the gamma transformations as the function for the function σ, setting β
empirically to 1, and scaling the II Loss to 0.01 of the other losses.

As discussed in Sec. 3.1, we obtain illumination-invariant features by assuming neighboring pixels
exhibit high similarity of illumination. Specifically, illumination items can be factored out by
performing the subtraction among the neighboring pixels, which is accomplished by imposing the
zero mean constraint on the convolutional kernels. However, to eliminate the illumination term
ideally, it is necessary for the average value of adjacent positions within the kernel to approach zero.
The sole constraint of a zero mean does not guarantee that the illumination elimination occurs strictly
between adjacent pixels; it can occur between distant pixels as well. For instance, Fig. 5(a) presents
an example of a convolutional kernel that satisfies the zero-mean constraint. Even though this kernel
has a zero mean, it fails to extract illumination-invariant features due to the relatively large spatial

13



1 0 0

0 0 0

0 0 -1

(a) Trivial Weight (b)  w/o II loss (c)  w/ II loss

Figure 5: Illustration of a trivial case (a), and
visualization of performing 3× 3 mean filter-
ing on the kernel weights guided by with (b)
and without (c) II loss.

1) Dataset IIM II-Loss Ks YOLOv3 TOOD
2)

Exdark

3 71.0 72.5
3) ✓ 3 71.1 74.8
4) ✓ ✓ 3 72.7 75.0
5) ✓ 5 71.5 75.0
6) ✓ ✓ 5 72.7 75.2
7)

DarkFace

3 60.0 62.1
8) ✓ 3 61.0 66.9
9) ✓ ✓ 3 61.5 67.4
10) ✓ 5 60.2 65.8
11) ✓ ✓ 5 60.7 67.1

Figure 6: Ablation study of YOLOv3-based
and TOOD-based detectors on ExDark and
UG2+DARK FACE datasets, where Ks denotes
the kernel size within IIM.

Method Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table mAP50

Baseline 79.8 72.1 70.9 82.8 79.5 64.4 67.6 70.6 79.5 62.4 77.7 44.2 71.0
MBLLEN [34] 77.5 72.5 70.2 80.7 80.6 65.0 65.2 70.6 77.9 64.9 77.3 41.8 70.3
KIND [53] 80.2 74.4 71.5 81.0 80.3 62.2 61.3 67.5 75.8 62.1 75.9 40.9 69.4
Zero-DCE [17] 81.8 74.6 70.1 86.3 79.5 61.0 66.2 71.7 78.4 62.9 77.3 43.1 71.1
EnlightenGAN [24] 81.1 74.2 69.8 83.3 78.3 63.3 65.5 69.3 75.3 62.5 76.7 41.0 70.0
RUAS [29] 76.4 69.2 62.7 77.3 74.9 59.0 64.3 64.8 73.1 55.8 71.5 38.8 65.7
SCI [35] 80.3 74.2 73.6 82.8 78.4 64.4 65.8 71.3 78.1 62.7 78.2 42.4 71.0
NeRCo [47] 80.8 73.6 66.3 81.3 75.6 62.8 62.5 67.7 75.6 61.8 75.1 39.0 68.5
SMG [46] 78.1 72.1 65.8 81.6 78.3 63.7 64.5 67.6 76.3 57.4 73.7 42.4 68.5
DENet [36] 81.1 75.0 73.9 87.1 79.7 63.5 66.3 69.6 76.3 61.4 76.7 44.9 71.3
PENet [49] 76.5 71.9 67.4 84.2 78.0 59.9 64.6 66.7 74.8 62.5 73.9 45.1 68.8
MAET [7] 81.5 73.7 74.0 88.2 80.9 68.8 66.9 71.8 79.3 60.2 78.8 46.3 72.5

Ours 82.4 74.0 72.7 85.4 81.0 67.2 66.5 71.5 81.8 65.2 78.6 45.7 72.7

Table 6: Quantitative comparisons of the ExDark dataset based on YOLOv3 detector.

separation between the positive and negative positions. Unfortunately, as the convolutional kernel size
increases, this issue becomes more pronounced and leads to a degradation in performance. To this end,
the II Loss is proposed to encourage consistency of outputs from IIM across images with different
illuminations, preventing trivial solutions within the kernel implicitly. As shown in Fig. 5(b)(c), we
visualize the 5 × 5 kernel with and without the II Loss. For each position in the 5 × 5 kernel, we
compute the mean value using a sliding window of size 3× 3. It can be observed that without the II
Loss, the local means within the kernel do not tend towards zero, indicating that the features extracted
using this kernel are may not illumination-invariant. In contrast, when the II Loss is applied, the local
values of the kernel are significantly constrained. To further validate the effectiveness of the II Loss,
we present the results of the II Loss on different convolutional kernel sizes within IIM in rows 3∼6
and 8∼11 of Table 6. By comparing the performance gains of different convolutional kernel sizes,
we can see that the larger kernel sizes lead to more significant improvements. This strongly suggests
the effectiveness of our II Loss in constraining the degrees of freedom in the kernel.

Detailed Results on ExDark. In this section, we report the average precision for each category
of the ExDark dataset as shown in Table 6 and 7. Note that, we further introduce more advanced
LLIE methods, including Zero-DCE [17], EnlightenGAN [24], SCI [35], and NeRCo [47] based on
YOLOv3 and TOOD. Unfortunately, despite the outstanding performance exhibited by these LLIE
methods in image restoration tasks, they struggle with effectively enhancing specific downstream
tasks. For example, the state-of-the-art LLIE method, NeRCo, exhibits the worst performance
compared to other LLIE methods. This phenomenon further proves the existence of the gap between
optimization goals for image restoration and object detection tasks. Additionally, compared to
end-to-end approaches, such cascade paradigms limit the potential for deploying these LLIE-based
low-light detection techniques to practical applications.

YOLA vs. FeatEnHancer. For a fair comparison, we follow the FeatEnHancer’s [18] experimental
setting to implement the RetinaNet [27]-based detectors as shown in Table 8. We can see that
even though our baseline implementation on the ExDark dataset is inferior to FeatEnHancer’s, the
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Method Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table mAP50

Baseline 80.6 75.8 71.1 88.1 76.8 70.4 66.8 69.2 85.4 61.5 76.1 48.2 72.5
MBLLEN [34] 80.8 77.8 72.8 89.3 78.7 73.5 67.5 69.4 85.2 62.9 77.3 47.2 73.5
KIND [53] 81.7 77.7 70.3 88.4 78.1 69.7 67.2 67.8 84.1 61.6 76.6 47.8 72.6
Zero-DCE [17] 81.8 79.0 72.9 89.6 77.9 71.9 68.5 69.8 84.8 62.9 78.0 49.5 73.9
EnlightenGAN [24] 80.7 77.6 70.4 88.8 76.9 70.6 67.9 68.7 84.4 62.2 77.5 49.6 73.0
RUAS [29] 78.4 74.3 67.4 85.1 72.4 67.7 67.3 65.2 77.9 56.1 73.4 47.0 69.4
SCI [35] 81.3 78.1 71.6 89.4 77.6 71.1 68.0 70.9 85.0 63.0 77.2 49.2 73.5
NeRCo [47] 78.8 75.6 70.8 87.6 75.7 69.1 66.8 69.5 82.5 59.9 76.0 49.3 71.8
SMG [46] 78.2 75.9 69.9 87.3 75.1 71.3 66.5 67.2 84.2 60.1 75.1 46.7 71.5
DENet [36] 80.9 78.2 70.9 88.3 77.5 71.6 67.2 70.3 87.3 62.0 77.3 49.9 73.5
PENet [49] 76.0 72.3 66.7 84.4 72.2 65.4 63.3 65.8 79.1 53.1 71.0 44.6 67.8
MAET [7] 80.5 77.3 74.0 90.1 78.3 73.4 69.6 70.7 86.6 64.4 77.6 48.5 74.3

Ours 83.9 78.7 75.3 88.8 79.0 73.4 69.9 71.9 86.8 66.3 78.3 49.8 75.2

Table 7: Quantitative comparisons of the ExDark dataset based on TOOD detector.

Baseline EnlightenGANZero-DCE RUAS

DENetNeRCoSCI Ours

Baseline EnlightenGANZero-DCE RUAS

DENetNeRCoSCI Ours

Figure 7: Qualitative comparisons of Mask R-CNN-based detector on LIS dataset. Our YOLA shows
more comprehensive segmentation and detection results, with an increased number of bottles detected
(top 2 rows) and successful recognition of the challenging car (right side of the bottom 2 rows). Best
viewed with zooming in.

integration of YOLA enables our method to achieve the best performance (1.9 mAP significant
improvement compared to baseline). For UG2+DARK FACE dataset, FeatEnHancer decreases
the baseline performance by 0.1 mAP, which is attributed to hierarchical features that failed to be
captured by RetinaNet, as claimed in [18]. In contrast, our YOLA, triggered from the physics-based
model perspective without elaborate design, surpassing the baseline with a remarkable improvement
of 2.5 mAP. It strongly suggests the generalizability and effectiveness of YOLA.

More Visualization. In Fig. 7 and 8, additional visual results are presented, showcasing selected
challenging cases. In comparison to other methods, our method exhibits superior recall and more
precise segmentation performance under extreme low-light conditions.

YOLA on Lowl-light Instance Segmentation. To further explore YOLA’s capabilities, we also
evaluate YOLA in the low-light instance segmentation tasks. We report the quantitative comparisons
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Dataset Method mAP50

Exdark

Baseline 72.1
w/ FeatEnHancer [18] 72.6(+0.5)
Baseline† 70.9
w/ YOLA 72.8(+1.9)

DarkFace

Baseline 47.3
w/ FeatEnHancer [18] 47.2(-0.1)
Baseline† 50.2
w/ YOLA 52.7(+2.5)

Table 8: Quantitative comparisons (YOLA vs.
FeatEnHancer) of ExDark and UG2+DARK
FACE datasets based on RetinaNet. Red and
blue colors represent improvement and degra-
dation of performance, respectively, compared
to the baseline. † indicates our implemented
baseline.

Method APseg APseg
50 APseg

75 APbox APbox
50 APbox

75

Baseline 34.2 55.6 34.7 41.3 63.9 44.6
DENet [36] 38.6 61.7 39.8 46.4 70.1 51.0
PENet [49] 36.1 58.8 36.4 43.6 67.3 47.1
Zero-DCE [17] 38.7 62.0 39.0 46.4 70.0 50.9
EnlightenGAN [24] 38.4 61.5 39.2 45.8 69.5 49.7
RUAS [29] 36.1 58.6 36.4 43.8 66.7 48.0
SCI [35] 36.5 59.5 37.0 44.3 67.3 48.4
NeRCo [47] 36.7 60.3 38.6 44.6 68.3 48.6
SMG [46] 37.4 60.3 38.7 44.7 67.4 49.2

Ours 39.8 63.5 41.4 47.5 70.9 51.8

Table 9: Quantitative comparisons of the LIS
dataset based on Mask RCNN, where APseg and
APbox indicate the average precision of segmenta-
tion and detection, respectively.

Baseline EnlightenGANZero-DCE RUAS

DENetNeRCoSCI Ours

Baseline EnlightenGANZero-DCE RUAS

DENetNeRCoSCI Ours

Figure 8: Qualitative comparisons of Mask R-CNN-based detector on LIS dataset. Our YOLA
outperforms LLIE-based and low-light object detection methods. Best viewed with zooming in.

of several advanced LLIE and low-light object methods using Mask R-CNN [19] on the low-light
instance segmentation (LIS) [5] dataset, as shown in Table 9. We can see that our YOLA achieves
the best performance across all metrics, indicating that YOLA not only facilitates low-light object
detection but also low-light instance segmentation.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See abstract and introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

17



• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We include the assumptions in Section 3.1, and complete proofs of IIM in
appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See section 4.1

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: This work only use public datasets, and we provide the code in supplemental
materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See section 4.1.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: [TODO]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: [TODO]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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