
PUSHING THE ACCURACY-GROUP ROBUSTNESS FRON-
TIER WITH INTROSPECTIVE SELF-PLAY

Jeremiah Zhe Liu, Krishnamurthy Dj Dvijotham, Jihyeon Lee, Quan Yuan,
Balaji Lakshminarayanan∗, Deepak Ramachandran∗
Google Research
{jereliu,dvij,jihyeonlee,yquan, balajiln,ramachandrand}@google.com

ABSTRACT

Standard empirical risk minimization (ERM) training can produce deep neural
network (DNN) models that are accurate on average but underperform in under-
represented population subgroups, especially when there are imbalanced group
distributions in the long-tailed training data. Therefore, approaches that improve
the accuracy - group robustness tradeoff frontier of a DNN model (i.e. improving
worst-group accuracy without sacrificing average accuracy, or vice versa) is of
crucial importance. Uncertainty-based active learning (AL) can potentially im-
prove the frontier by preferentially sampling underrepresented subgroups to create
a more balanced training dataset. However, the quality of uncertainty estimates
from modern DNNs tend to degrade in the presence of spurious correlations and
dataset bias, compromising the effectiveness of AL for sampling tail groups. In this
work, we propose Introspective Self-play (ISP), a simple approach to improve the
uncertainty estimation of a deep neural network under dataset bias, by adding an
auxiliary introspection task requiring a model to predict the bias for each data point
in addition to the label. We show that ISP provably improves the bias-awareness
of the model representation and the resulting uncertainty estimates. On two real-
world tabular and language tasks, ISP serves as a simple “plug-in” for AL model
training, consistently improving both the tail-group sampling rate and the final
accuracy-fairness trade-off frontier of popular AL methods.

1 INTRODUCTION

Figure 1: Example of accuracy-
fairness frontier. Under a more bal-
anced training data distribution, the
model can attain a better accuracy-
fairness frontier (Red) when com-
pared to training under an imbal-
anced distribution (Blue) at every
tradeoff level λ (Equation (1)).

Modern deep neural network (DNN) models are commonly trained on
large-scale datasets (Deng et al., 2009; Raffel et al., 2020). These datasets
often exhibit an imbalanced long-tail distribution with many small popu-
lation subgroups, reflecting the nature of the physical and social processes
generating the data distribution (Zhu et al., 2014; Feldman & Zhang,
2020). This imbalance in training data distribution, i.e., dataset bias,
prevents deep neural network (DNN) models from generalizing equitably
to the underrepresented population groups (Hasnain-Wynia et al., 2007).

Accuracy-Group Robustness Frontier: In response, the existing bias
mitigation literature has focused on improving training procedures under a
fixed and imbalanced training dataset, striving to balance performance be-
tween model accuracy and fairness (e.g., the average-case v.s. worst-group
performance) (Agarwal et al., 2018; Martinez et al., 2020; 2021). Formally, this goal corresponds to
identifying an optimal model f ∈F that attains the Pareto efficiency frontier of the accuracy-group
robustness trade-off (e.g., see Figure 1), so that under the same training data D = {yi,xi}n

i=1, we
cannot find another model f ′ ∈F that outperforms f in both accuracy and worst-group performance.
In the literature, this accuracy-group robustness frontier is often characterized by a trade-off objective
(Martinez et al., 2021):

fλ = argmin
f∈F

Fλ ( f |D); Fλ ( f |D) := Racc( f |D)+λRrobust( f |D), (1)

where Racc and Rrobust are risk functions for a model’s accuracy and group robustness (modeled
here-in as worst-group accuracy), and λ > 0 a trade-off parameter. Then, fλ cannot be outperformed
by any other f ′ at the same trade-off level λ . The entire frontier under a dataset D can then be
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characterized by finding fλ that minimizes the robustness-accuracy objective (1) at every trade-off
level λ , and tracing out its (Racc,Rrobust) performances (Figure 1).

Goal: However, the limited size of the tail-group examples restricts the DNN model’s worst-group
performance, leading to a compromised accuracy-group robustness frontier (Zhao & Gordon, 2019;
Dutta et al., 2020), and thus we ask: Under a fixed learning algorithm, can we meaningfully push
the model’s accuracy-group robustness frontier by improving the training data distribution using
active learning? That is, denoting by Dα,n = {(yi,xi)}n

i=1 a training dataset with K subgroups and
the group size distribution α = [α1, . . . ,αK ], we study whether a model’s accuracy-group robustness
performance Fλ can be improved by rebalancing the group distribution of the training data Dα,n, i.e.,
we seek to optimize an outer problem:

minimize
α∈D|G |

h
min
f∈F

Fλ ( f |Dα,n)
i
, (2)

where DK is the simplex of all possible group distributions (Rolf et al., 2021). Our key observation
is that given a sampling model with well-calibrated uncertainty (i.e., the model uncertainty is
well-correlated with generalization error), active learning (AL) can preferentially acquire tail-group
examples from unlabelled data without needing group annotations, and add them to the training data
to reach a more balanced data distribution (Branchaud-Charron et al., 2021). Appendix A.5 discusses
the connection between group robustness with fairness.

Challenges with DNN Uncertainty under Bias: However, recent work suggests that a DNN model’s
uncertainty estimate is less trustworthy under spurious correlations and distributional shift, potentially
compromising the AL performance under dataset bias. For example, Ovadia et al. (2019) show
that a DNN’s expected calibration error increases as the testing data distribution deviates from the
training data distribution, and Ming et al. (2022) show that a DNN’s ability in detecting out-of-
distribution examples is significantly hampered by spurious patterns. Looking deeper, Liu et al.
(2022); Van Amersfoort et al. (2020) suggest that this failure mode in DNN uncertainty can be caused
by an issue in representation learning known as feature collapse, where the DNN over-focuses on
correlational features that help to distinguish between output classes on the training data, but ignore
the non-predictive but semantically meaningful input features that are important for uncertainty
quantification (Figure 2). In this work, we show that this failure mode can be provably mitigated by a
training procedure we term introspective training (Section 2). Briefly, introspective training adds
an auxiliary introspection task to model training, asking the model to predict whether an example
belongs to an underrepresented group. It comes with a guarantee in injecting bias-awareness into
model representation (Proposition 1), encouraging it to learn diverse hidden features that distinguish
the minority-group examples from the majority, even if these features are not correlated with the
training labels. Hence it can serve as a simple “plug-in” to the training procedure of any active
learning method, leading to improved uncertainty quality for tail groups (Figure 2).

Contributions: In summary, our contributions are:
• We introduce Introspective Self-play (ISP), a simple training approach to improve a DNN model’s

uncertainty quality for underrepresented groups (Section 2). Using group annotations from the
training data, ISP conducts introspective training to provably improve a DNN’s representation
and uncertainty quality for the tail groups. When group annotations are not available, ISP can
be combined with a cross-validation-based self-play procedure that uses a noise-bias-variance
decomposition of the model’s generalization error (Domingos, 2000).

• Theoretical Analysis. We theoretically analyze the optimization problem in Equation (2) under a
group-specific learning rate model (Rolf et al., 2021) (Section 3). Our result elucidates the depen-
dence of the group distribution α in the model’s best-attainable accuracy-group robustness frontier
Fλ . In particular, it confirms the theoretical necessity of up-sampling the underrepresented groups
for obtaining the optimal accuracy-group robustness frontier, and reveals that underrepresentation
is in fact caused by an interplay of the subgroup’s learning difficulty and its prevalence in the
population.

• Empirical Effectiveness. Under two challenging real-world tasks (census income prediction
and toxic comment detection), we empirically validate the effectiveness of ISP in improving the
performance of AL with a DNN model under dataset bias (Section 4). For both classic and state-
of-the-art uncertainty-based AL methods, ISP improves tail-group sampling rate, meaningfully
pushing the accuracy-group robustness frontier of the final model.

Appendix D surveys related work.
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Notation and Problem Setup. We consider a dataset D where each labeled example {xi,yi} is
associated with a discrete group label gi ∈ G = {1, . . . , |G |}. We denote D = P(y,x,g) the joint
distribution of the label, feature and groups, so that D can be understood as a size-n set of i.i.d.
samples from D We denote the prevalence of each group as γg = E(y,x,g)∼D (1G=g) and associate
dataset bias with the imbalance in group distribution P(G) = [γ1, . . . ,γ|G |] (Rolf et al., 2021). In
the applications we consider, there exists a subset of underrepresented groups B ⊂ G which are
not sufficiently represented in the population distribution D so that γg � 1

|G | for g ∈B (Sagawa
et al., 2019; 2020). We denote L(y, ŷ) as a loss function from the Bregman divergence family, and
F the hypothesis space of predictors f : X 7→ Y . We require the model class F to be sufficiently
expressive so it can model the Bayes-optimal predictor ỹ(x) = argmin′y Ey∼P(y|x)(L(y,y′))). We also
assume F has a certain degree of smoothness, so that the model f ∈F cannot arbitrarily overfit to
the noisy labels in the training set.1

2 METHOD

In this section, we introduce Introspective Self-play (ISP), a simple training approach to improve
model quality in representation learning and uncertainty quantification under dataset bias. Briefly,
ISP performs introspective training by adding a underrepresention prediction head to the model and
training it to distinguish whether an example (yi,xi,gi) is from the set of underrepresented groups B
(Section 2.1). When the underrepresentation label bi = I(gi ∈B) is not available, ISP estimates it
based on a cross-validation-based procedure we term cross-validated self-play (Section 2.2). As we
will show, ISP carries a guarantee for the model’s representation learning and uncertainty estimation
quality under dataset bias (Proposition 1).

2.1 INTROSPECTIVE TRAINING

We consider models of the form p(y|x) = σ
�

fy(x)
�
= σ

�
β>y h(x)

�
, where h : X → RD is a D-

dimensional embedding function, βy ∈RD the output weights, and σ(·) the activation function. Given
model fy = β>y h, introspective training adds a bias head fb = β>b h to the model, so it becomes a
multi-task architecture f = ( fy, fb) with shared embedding:

p(y|x) = σ( fy(x)), p(b|x) = σsigmoid( fb(x)); where ( fy, fb) =
�
β
>
y h+by, β

>
b h+bb

�
. (3)

Given examples D = {xi,yi,gi}n
i=1, we generate the underrepresentation labels as bi = I(gi ∈B)

and train the model with the target and underrepresentation labels (yi,bi) by minimizing a standard
multi-task learning objective:

L((yi,bi),xi) = L(yi, fy(xi))+Lb(bi, fb(xi)), (4)

where L is the standard loss function for the task, and Lb is the cross-entropy loss. As a result,
given training examples {xi}n

i=1, introspective training not only trains the model to predict the
outcome yi, but also instructs it to recognize its potential bias bi by predicting whether xi is from an
underrepresented group.

Despite its simplicity, introspective training has a significant impact on the model’s representation
learning that is particularly important for quantifying uncertainty when dataset exhibits significant bias.
Figure 2 illustrates this on a binary classification task under severe group imbalance (Sagawa et al.,
2020), where we compare two dense ResNet ensemble models trained using the introspection objective
v.s. the empirical risk minimization (ERM) objective (i.e., only use L(yi, fy(xi)) in Equation (4)),
respectively.

Comparing figures 2a and 2e, we observe that the decision boundaries for the predicted label are very
similar between introspective training and ERM. However, the predictive variance (obtained via a
Gaussian process (GP) layer (Liu et al., 2022)) exhibits sizable differences. In particular, the variance
estimates for introspective training are uniformly high outside of the two clouds of underrepresented
groups in the data. However, for ERM, the model confidence is high along the decision boundary,
even in the unseen regions without training data. This is due to the fact that when training with ERM,
the representation collapses in the direction that is not correlated with training label (i.e., parallel

1In the case of over-parameterized models, this usually implies F is subject to certain regularization appropriate for the model class (e.g., early
stopping for SGD-trained neural networks) (Li et al., 2020).
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