Abstract

Label smoothing and vocabulary sharing are two widely used techniques in neural machine translation models. However, we argue that jointly adopting these two techniques can be conflicting and even leads to sub-optimal performance, since the soft label produced by label smoothing still considers the source-side words that would not appear at the target side. To address this issue, we propose Masked Label Smoothing (MLS), a new mechanism that masks the soft label probability of source-side words to zero. Simple yet effective, MLS manages to better integrate label smoothing with vocabulary sharing and hence improves the quality of the translation. Our extensive experiments show that MLS consistently yields improvement over original label smoothing on different datasets, including bilingual and multilingual translation in both BLEU and calibration scores.

1 Introduction

Recent advances in Transformer-based (Vaswani et al., 2017) models have achieved remarkable success in Neural Machine Translation (NMT). For most NMT studies (Vaswani et al., 2017; Song et al., 2019; Lin et al., 2020; Pan et al., 2021), there are two widely used techniques to improve the quality of the translation: Label Smoothing (LS) and Vocabulary Sharing (VS). Label smoothing (Pereyra et al., 2017) turns the hard one-hot labels into a soft weighted mixture of the golden label and the uniform distribution over the whole vocabulary, which serves as an effective regularization technique to prevent over-fitting and over-confidence (Müller et al., 2019) of the model. In addition, vocabulary sharing (Xia et al., 2019) is another commonly used technique, which unifies the vocabulary of both source and target language into a whole vocabulary, and therefore the vocabulary is shared. It enhances the semantic correlation between the two languages and reduces the number of total parameters of the embedding matrices.

However, in this paper, we argue that jointly adopting both label smoothing and vocabulary sharing techniques can be conflicting, and leads to suboptimal performance. Specifically, with vocabulary sharing, the shared vocabulary can be divided into three parts as shown in Figure 1. But with label smoothing, the soft label still considers the words at the source side that are impossible to appear at the target side. This would mislead the translation model and exerts a negative effect on the translation performance. As shown in Table 1, although introducing label smoothing or vocabulary sharing alone can outperform the vanilla Transformer, jointly adopting both of them cannot achieve further improvements but leads to sub-optimal results.

To address the conflict of label smoothing and
vocabulary sharing, we first propose a new mechanism named Weighted Label Smoothing (WLS) to control the label distribution and its parameter-free version Masked Label Smoothing (MLS). Simple yet effective, MLS constrains the soft label not to assign soft probability label towards the words belonging to the source side. In this way, we not only keeps the benefits of both label smoothing and vocabulary sharing, but also address the conflict of these two techniques to improve the quality of the translation.

According to our experiments, MLS leads to a better translation not only in BLEU scores but also reports improvement in model’s calibration. Compared with original label smoothing with vocabulary sharing, MLS outperforms in WMT’14 EN-DE(+0.61 BLEU), IWSLT’16 EN-RO (+0.33 BLEU) and other 7 language pairs including DE.RO-EN multilingual translation task.

2 Background

Label Smoothing The original label smoothing can be formalized as:

\[\hat{y}^{LS} = \hat{y}(1 - \alpha) + \alpha/K \]

\(K\) denotes the number of classes, \(\alpha\) is the label smoothing parameter, \(\alpha/K\) is the soft label, \(\hat{y}\) is a vector where the correct label equals to 1 and others equal to zero and \(\hat{y}^{LS}\) is the modified targets.

Label smoothing is first introduced to image classification (Szegedy et al., 2016) task. Pereyra et al. (2017); Edunov et al. (2018) explore label smoothing’s application in Sequence generation from token level and Norouzi et al. (2016) propose sentence level’s label smoothing. Theoretically, Gao et al. (2020); Müller et al. (2019); Meister et al. (2020) all point out the relation between label smoothing and entropy regularization. To generate more reliable soft labels, Lukasik et al. (2020) takes semantically similar n-grams overlap into consideration level label smoothing, Zhang et al. (2021) investigate generating soft labels based on the statistics of the model prediction for the target category and Wang et al. (2021) propose a new form of label smoothing to diversify dialog generation.

Vocabulary Sharing Vocabulary sharing is widely applied in most neural machine translation studies (Vaswani et al., 2017; Song et al., 2019; Lin et al., 2020; Pan et al., 2021). Researchers have conducted in-depth studies in Vocabulary Sharing. Liu et al. (2019) propose shared-private bilingual word embeddings, which give a closer relationship between the source and target embeddings. While Kim et al. (2019) point out that there is an vocabulary mismatch between parent and child languages in shared multilingual word embedding.

3 Conflict Between Label Smoothing and Vocabulary Sharing

Words or subwords in a language pair’s joint dictionary can be categorized into three classes: source, common and target using Venn Diagram according to their belonging to certain language as depicted in Figure 1. This can be achieved by checking whether one token in the joint vocabulary also belongs to the source/target vocabulary. We formalized the categorization algorithm in Appendix A.

Then we compute the tokens’ distribution in different translation directions as shown in Table 2. Tokens in source class account for a large proportion up to 50%. When label smoothing and vocabulary sharing are together applied, the smoothed probability will be allocated to words that belong to the source class. Those words have zero overlap with the possible target words, therefore they have no chance to appear in the target sentence, which might introduce extra bias for the translation system during training process.

Table 3 reveals the existence of conflict, that the joint use of label smoothing and vocabulary sharing doesn’t compare with solely use one technique in all language pairs with a maximum loss of 0.32 BLEU score.

4 Methods

4.1 Weighted Label Smoothing

To deal with the conflict when executing label smoothing, we propose a plug-and-play Weighted Label Smoothing mechanism to control the smoothed probability’s distribution.
Weighted Label Smoothing (WLS) has three parameters $\beta_t, \beta_c, \beta_s$ apart from the label smoothing parameter α, where the ratio of the three parameters represents the portion of the smoothed probability allocated to the target, common, and source class and the sum of the three parameters is 1. The distribution within the token class follows a uniform distribution. WLS can be formalized as:

$$\hat{y}_{WLS} = \hat{y}(1-\alpha) + \beta$$ \hspace{1cm} (2)

where \hat{y} is a vector where the element corresponding to the correct token equals to 1 and others equal to zero. β is a vector that controls the distribution of probability allocated to incorrect tokens. We use t_i, c_i, s_i to represent probability allocated to the i-th token in the target, common, source category, all of which form the distribution controlling vector β with $\sum_i^K \beta_i = \alpha$. The restriction can be formalized as:

$$\sum t_i : \sum c_i : \sum s_i = \beta_t : \beta_c : \beta_s$$ \hspace{1cm} (3)

4.2 Masked Label Smoothing

Based on the Weight Label Smoothing mechanism, we can now implement Masked Label Smoothing by setting β_s to 0 and regard the target and common category as one category. In this way, Masked Label Smoothing is parameter-free and implicitly injects external knowledge to the model. And we have found out that this simple setting can reach satisfactory results according to our experiments.

We illustrate different label smoothing methods in Figure 2. It’s worth noticing that MLS is different from setting WLS’s parameters to 1-1-0 since there might be different number of tokens in the common and target categories.

![Figure 2: Illustration of different label smoothing methods. The height of each bar in the graph denotes the probability allocated to each token. y' is the current token during current decoding phase. We assume that there are only 10 tokens in the joint vocabulary and t1-t3 belongs to target class, c1-c3 belongs to common class and s1-s3 belongs to source class.]

5 Experiments

5.1 Task Settings

For bilingual translation, we conduct experiments on 7 translation tasks. We choose language pairs that have different ratio of common subwords. These include WMT’14 DE-EN, EN-DE,
6.2 Exploring of Weighted Label Smoothing

As reported in Table 5, we further explore the influence of different weighted label smoothing settings on multiple translation tasks including IWSLT’16 RO-EN, EN-RO and WMT’14 DE-EN.

According to the result, though the best BLEU score’s WLS setting vary from different tasks, we still have two observations: First, applying WLS can generally boost the quality of translation compared to the original label smoothing. Second, only WLS with β_t, β_c, β_s each equals to 1/2-1/2-0 can outperform the original label smoothing on all tasks, which suggests the setting is the most robust one. Thus we recommend using this setting as the initial setting when applying our WLS.

Furthermore, the winner setting agrees with the form of Masked Label Smoothing since they both allocate zero probability to the source category’s tokens, which further proves the effectiveness and robustness of Masked Label Smoothing.

7 Conclusion

We reveal and analyse the conflict between label smoothing and vocabulary sharing techniques, and point out that jointly adopting them may lead to sub-optimal performance. To address this issue, we introduce a plug-and-play Masked Label Smoothing mechanism to eliminate the conflict. Simple yet effective, MLS shows a consistent and robust improvement over original label smoothing with vocabulary sharing.

1https://github.com/shuo-git/InfECE
References

Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’ Aurelio Ranzato. 2018. Classical structured prediction losses for sequence to sequence learning. In NAACL.

Xuebo Liu, Derek F. Wong, Yang Liu, Lidia S. Chao, Tong Xiao, and Jingbo Zhu. 2019. Shared-private bilingual word embeddings for neural machine translation. In ACL.

Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. 2019. When does label smoothing help? In NeurIPS.

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. 2019. Tied transformers: Neural machine translation with shared encoder and decoder. In AAAI.

A Algorithms

Algorithm 1 Divide Token Categories

Input: List: S, T, J
Output: List: A,B,C
Description: S is the vocabulary list for source language, T for target language, J for joint vocabulary. A is the output vocabulary for source tokens, B for common tokens, C for target tokens.

1. Initialize empty list A,B,C
2. for i in J do
3. if i in S and i in T then
4. B.add(i)
5. else
6. if i in S then
7. A.add(i)
8. else
9. C.add(i)
10. return A,B,C

B Experiment Details

We use the official train-dev-test split of WMT’14 and IWSLT’14,15,16 dataset. For CASIA ZH-EN dataset, we randomly select 5000 sentences as development set and 5000 sentences as test set from the total dataset.

We evaluate our method upon Transformer-Base (Vaswani et al., 2017) and conduct experiments under same hyper-parameters for fair comparison. Before training, we first apply BPE(Sennrich et al., 2016) to tokenize the corpus for 16k steps each language and then learn a joint dictionary. During training, the label smoothing parameter α is set to 0.1 in all experiments. We use Adam optimizer with betas to be (0.9,0.98) and learning rate is 0.0007. During warming up steps, the initial learning rate is 1e-7 and there are 5000 warm-up steps. We use a batchsize of 4096 together with an update-freq of 4 on two Nvidia 3090 GPUs. Dropout rate is set to 0.3 and weight decay is set to 0.0001 for all experiments. We use beam size as 5 during all testing.

C Result Analysis

Multilingual Compared with the imbalanced version, the balanced version gave better BLEU scores in DE-EN direction while much worse performance in RO-EN translation for both the original label smoothing and MLS.

It indicates that the cut down on RO-EN training examples does weaken the generalization of model in RO-EN translation however doesn’t influence the DE-EN translation quality since the RO-EN data might introduce bias to the training process for DE-EN translation. Compared with the bilingual translation, DE-EN translation outperform by a large margin with RO-EN data enhancement no matter whether MLS is applied, which is consistent to (Aharoni et al., 2019).