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Abstract

As millions of papers come out every year in the biomedical domain, automatic1

knowledge discovery (KD) from biomedical literature becomes an urgent demand2

in the industry. While KD in the biomedical domain attracts much research at-3

tention in recent years, the lack of benchmark datasets significantly hinders its4

progress. In this work, we create a dataset, KD-DTI, for discovering 〈drug, target,5

interaction〉 triplets from literature, which is one of the most important KD tasks6

in the biomedical domain. KD-DTI contains 14k unique biomedical papers, each7

of which is associated with at least one 〈drug, target, interaction〉 triplet. We8

also provide a semi-supervised dataset with 139k unique papers. We present and9

analyze multiple solutions, including several extractive/generative models and two10

data enhancement methods. The results show that the performance of those models11

is far from industry demand, indicating that the dataset presents a challenging12

research problem for the community. The dataset will be freely accessible after the13

review process.14

1 Introduction15

Biomedical literature is an important data source for both research organizations and industrial16

companies to discover knowledge. PubMED, one of the most famous search engines for biomedical17

literature1, has indexed more than 30M articles, and there are millions of new papers coming out every18

year [13]. It is impossible to manually check all the papers to obtain useful knowledge. Therefore, it19

is an urgent demand to automatically discover knowledge from the literature.20

The interaction between drugs and targets in human body plays a crucial role in biomedical science21

and applications [24, 37, 38], e.g., drug discovery, drug repurposing, precision medicine, etc. In22

biomedical literature, a drug refers to any type of medication, ranging from small molecules like23

Aspirin, Penicillin to large molecules like Hepatitis B Vaccine. A target could be protein, enzyme or24

nucleic acid in our body, which binds the drugs we take. Drugs interact with targets in different ways.25

For example, Aspirin (drug) can inhibit (interaction) COX-1 (target), and Streptokinase (drug) can26

activate (interaction) Plasminogen (target). For simplicity, we call a triplet of Drug, Target and their27

Interaction as a “DTI triplet”.28

Discovering DTI triplets from biomedical papers is challenging. First, lots of terms and aliases (e.g.,29

abbreviations, synonyms) exist in an article, but only a small set of them contributes to DTI triplets,30

which makes this task harder than conventional relation extraction from general text. As shown in31

Figure 1, given the title and abstract of a paper, we want to discover the triplet 〈Clotrimazo, Ergostero,32

1https://pubmed.ncbi.nlm.nih.gov/about/
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Title: Mode of action of clotrimazole: implications for therapy.

Abstract: Ergosterol is an essential constituent of the fungal cytoplasmic membrane. Clotrimazole and other azoles interfere 

with the ergosterol biosynthesis in a concentration-dependent fashion. Although low concentrations exhibit only a partially 

inhibitory effect, high concentrations may completely block ergosterol synthesis. Reduction of fungal growth and inhibition of 

growth and fungicidal action during prolonged incubation are the corresponding effects at the cellular level that are a 

consequence of ergosterol depletion. 

… 
Even 1% of the minimum inhibitory concentration of clotrimazole may totally inhibit mycelial growth in vitro. This may be of 

clinical importance, since germination was reported to enhance adherence of C. albicans to buccal and vaginal epithelial cells.

…

( Drug: " Clotrimazole”,  Target: " Ergosterol ", Interaction: “Inhibitor” )

Generate

Figure 1: Examples of drug-target-interaction knowledge discovery from literature.

Inhibitor〉. We can see that there are many terms like “fungal cytoplasmic membrane”, “azoles” and33

“C. albicans”, which are not related to the triplet we want to discover and increase the difficulty of the34

task. Second, there are few public datasets available for this task. Therefore, it is not easy to compare35

different methods and evaluate the progress on this task.36

In this work, we present KD-DTI, a dataset that acts as a starting point of discovering DTI knowledge37

from biomedical literature. In the dataset, each article is associated with one or multiple 〈drug, target,38

interaction〉 triplets. Due to the diverse term-entity aliases, specialized expressions, and the long39

document, identifying DTI triplets from papers requires expert knowledge in biomedical domains, as40

shown in Figure 1. Fortunately, we find that several biomedical databases like DrugBank [35] and41

Therapeutic Target Database (briefly, TTD) [33] suggest several possible articles from which DTI42

triplets could be obtained. Based on those databases, we design a scoring mechanism to filter the43

spurious associations between articles and triplets and keep the remaining ones in the final dataset. We44

eventually obtain a dataset with 12k training samples, 1k validation samples, and 1.1k test samples.45

To ensure quality, we manually check all test data.46

At last, we explore several possible solutions to DTI discovery, including extractive models and47

recent generative models, and two data enhancement methods. Experimental results demonstrate48

that (1) generative models perform better than extractive ones and are more promising for this49

task; (2) leveraging unlabeled data can further boost the performance of generative models; (3) the50

performance of all the models is far from industrial demands, even boosted by data enhancement,51

which suggests that DTI discovery is a challenging task and calls for more research efforts from the52

machine learning and natural language processing community.53

Our contributions are summarized as follows:54

(1) We create KD-DTI, the one of first dataset for discovering Drug-Target-Interaction triplets from55

literature. We expect that such a dataset will boost and advance the research of knowledge discovery56

from biomedical literature.57

(2) We study several baseline methods on the dataset (§4 and §5) and point out future directions for58

the DTI discovery task (§7).59

2 The corpus60

In this section, we first introduce the acquisition of the dataset (§2.1), and then introduce its statistics61

and characteristics (§2.2). In order to let readers quickly understand our dataset, we present the data62

structure of our dataset in Figure 2, where each paper is attached with a list of DTI triples as labels:63
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{

"pmid value": {

"pmid": "pmid value“,

"title": "Regulation of ...",

"abstract": "The effects of treatment ...",

"triples": [

{

"drug": “Drug name or drug id from DrugBank",

"target": “Target name or target id from DrugBank",

"interaction": "interaction type"

},

… # more triples

],

},

... # more samples

}

Figure 2: Structure of proposed dataset.

2.1 Dataset creation64

Data collection The DTI triplets in our dataset come from two widely used databases, DrugBank65

[35] and Therapeutic Target Database (TTD) [33]. (1) DrugBank is a pharmaceutical knowledge66

base that consists of proprietary authored content describing clinical-level information about drugs.267

DrugBank covers 14, 315 drugs, 4, 885 targets, 63 types of interactions and 18, 866 DTI triplets. (2)68

TTD3 is a comprehensive collection of various types of drugs, which includes 37, 316 drugs, 3, 41969

targets, 109 interactions and 43, 874 DTI triplets. Given a DTI triplet, if the reference papers are70

provided and the abstracts of those papers are openly accessible, we record the triplet and the paper.71

As the first step, we only use the titles and abstracts of the reference papers. For ease of reference, we72

denote the dataset obtained at this step as D = {Dj , {Yj,k}
Kj

k=1}, where (1) Dj is the document (i.e.,73

title and abstract); (2) Yj,k = (dj,k, tj,k, ij,k) is the k-th triplet of Dj , with each element representing74

drug, target and interaction respectively; (3) Kj is the number of triplets associated with Dj .75

Data filtration As a starting point of structured DTI knowledge discovery, we are only interested76

in the document which contains enough information to discover a DTI triplet. However, in D, some77

papers only generally describe some drugs and targets, in which the DTI triplets do not explicitly78

appear. Therefore, we heuristically filter out the samples in D by which we cannot obtain the79

associated DTI triplets. The basic idea is that we require that the drug, target, and interaction in a80

triplet should be all included in a paper. We describe the details of the filtration process as below.81

Given a query q and a document D, we first use FuzzyMatch4 to retrieve all similar words of q and82

its synonyms in D, and denote them asR(q,D) = {rj}|R|j=1, where rj is a retrieved phrase. Here the83

query can be a drug, a target, or an interaction, and both q and rj could be a single word or a phrase84

with multiple words. Note that we obtain synonyms of a drug or target from the Drugbank and TTD85

database, where entities are attached with synonyms. Based on the retrieval results, we categorize D86

as one of the following patterns for q:87

1. Reliable pattern, where the query and the fetched words are almost the same;88

2. Positive pattern, where the query and the fetched words share lots of parts in common;89

3. Negative pattern, where the query is not related to the document.90

Detailed patterns are summarized in Appendix B.91

2https://go.drugbank.com/
3http://db.idrblab.net/ttd/
4An open-sourced tool that leverages Levenshtein distance to fetch similar words to the query. Simple

variants are allowed like “+s”, “+ed”, etc. https://github.com/taleinat/fuzzysearch
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Dataset # Document # Relation # Sentence # Words Knowledge

CPI-DS [7] N/A 1 2,613 486k Chemical Proteins Relation
BC5CDR [14] 1,500 1 11,089 282k Chemical Disease Relation
ChemProt [2] 2,432 5 24,923 650k Chemical Proteins Relation
KD-DTI 14,256 66 139,810 3,671k Drug Target Interaction
KD-DTI (semi) 139,408 66 1,556,614 39,997k Drug Target Interaction

Table 1: Statistic of document level knowledge extraction datasets. “KD-DTI (semi)” denotes
semi-supervised dataset in §5.

Denote the matching score between a query q and a document D as ϕ(q,D): If q is a reliable pattern92

of D, we set ϕ(q,D) = 5; if q is a positive pattern, we set ϕ(q,D) = 1; otherwise, ϕ(q,D) = −1.93

We tried several different score setting and determined the scores with best data quality through94

manual check. Given any document Dj and its k-th DTI triplet Yj,k = (dj,k, tj,k, ij,k), the matching95

score between the triplet and document is calculated as follows:96

c(Dj , Yj,k) = ϕ(dj,k, Dj) + ϕ(tj,k, Dj) + ϕ(ij,k, Dj).

We sort all samples according to the matching scores in descending order, filter out the low-confidence97

samples whose score is less than zero, and only keep the top 14k high-confidence documents-triplets98

pairs. We pick 1.3k documents as the initial test set, the 1k as the validation set, and the remaining99

documents (12k) as the training set.100

Human verification We then manually check all the samples in the test sets. We employ eleven101

annotators with Ph.D. background. Each (document, DTI triplets) pair is independently checked102

by two annotators. If their evaluation results are different, another two annotators are involved for103

discussions. We remove those difficult cases that a consensus is not reached after the discussions of104

four annotators. We eventually obtain 654 (document, DTI triplets) pairs from DrugBank, and 505105

pairs from TTD for test set.106

2.2 Comparisons with previous datasets107

Table 1 shows the statistics of our dataset as well as some related datasets. We have the following108

observations:109

(1) In terms of data size (including numbers of documents, sentences and words), our dataset is much110

larger than previous datasets.111

(2) Although ChemProt and CPI-DS also focus on tasks in the biomedical domain, they do not112

directly serve for drug-target interaction discovery from literature. ChemProt mainly focuses on113

relation extraction and assumes that entities are given in advance, while our KD-DTI is to discover114

DTI triplets (instead of relation only) from documents. CPI-DS is to extract relation from single115

sentences, and thus is much easier than our task that takes long documents as input.116

(3) KD-DTI includes a rich variety of relationship types that are not covered by previous datasets.117

ChemProt covers five relations, and CPI-DS and BC5CDR contain one relation only. In comparison,118

there are 66 relations in our dataset.119

(4) KD-DTI is collected from more than one data sources, i.e., DrugBank and TTD , which could be120

used to evaluate the generalization or transfer abilities of machine learning algorithms/models.121

(4) KD-DTI is collected from multiple data sources, i.e., DrugBank and TTD, which could be used to122

evaluate the generalization abilities of models.123

3 Evaluation metrics124

We define a set of metrics to evaluate the performance of a model for DTI discovery, covering125

different granularity: (1) triplet-level metrics, (2) ontology-level metrics, and (3) entity-level metrics.126
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Let N denote the number of documents/papers in a test set. For the j-th test sample/document, the127

set of its associated DTI triplets is denoted as Y ∗j . Let Ŷj denote the output of a model for the j-the128

sample, which is another set of DTI triplets.129

3.1 Triplet-level metrics130

Following previous work on knowledge extraction [40], we evaluate that given a document, whether131

the model could correctly discover the corresponding DTI triplets. Since a single paper may contain132

multiple DTI triplets, we define precision (P), recall (R) and F1 score [45] as follows:133

P =
1

N

N∑
j=1

|Y ∗j ∩ Ŷj |
|Ŷj |

, R =
1

N

N∑
j=1

|Y ∗j ∩ Ŷj |
|Y ∗j |

, F1 =
2PR

P + R
.

3.2 Ontology-level metrics134

For industrial applications, given a corpus of documents, one of the important objectives is to find out135

all possible knowledge from the corpus. To evaluate the knowledge coverage from the corpus level,136

we define ontology-level metrics (i.e., corpus-level metric) that evaluates how many triplets of the137

entire corpus are correctly extracted.138

Define Y ∗ = ∪Nj=1Y
∗
j and Ŷ = ∪Nj=1Ŷj . The ontology level precision (P), recall (R) and F1 are:139

P =
|Y ∗ ∩ Ŷ |
|Ŷ |

, R =
|Y ∗ ∩ Ŷ |
|Y ∗|

, F1 =
2PR

P + R
.

3.3 Entity-level metrics140

As mentioned before, a biomedical paper often contains lots of entities, but many of them are not141

related to the DTI triplets we want to discover. It is important to extract the right drugs, targets,142

and interactions from literature. Therefore, we assess the accuracy for drugs (Ad), targets (At),143

interactions (Ai) respectively.144

Let D∗j and D̂j denote the sets of all drugs in the ground-truth triplets and model outputs for the j-th145

sample, and similarly for T ∗j , T̂j , I∗j , Îj . We define drug accuracy, target accuracy, and interaction146

accuracy as below:147

Ad =
1

N

N∑
j=1

|D∗j ∩ D̂j |
|D∗j ∪ D̂j |

,At =
1

N

N∑
j=1

|T ∗j ∩ T̂j |
|T ∗j ∪ T̂j |

,Ai =
1

N

N∑
j=1

|I∗j ∩ Îj |
|I∗j ∪ Îj |

.

4 Extractive vs. generative approaches148

We explore two types of strategies, the extractive approach (§4.1) and the generative approach (§4.2)149

for DTI triplet discovery. Experimental results are reported in §4.3.150

4.1 Extractive approach151

For extractive approaches [15, 47, 17], we need to apply named entity recognition (briefly, NER,152

which is to tag entities), relation extraction (briefly, RE, which is to classify the relations among the153

discovered entities). We explore two methods: Cascade Relation extraction (CasRel), which is the154

state-of-the-art extractive method [34] and a pure NER method, which regards relation as a special155

entity.156

CasRel CasRel is a cascade tagging method that can jointly perform NER and RE. CasRel leverages157

BERT to extract representations for input sequences. To find out DTI triplets, CasRel first tags out all158

possible drugs (i.e., subject) of the input. After that, CasRel searches interactions (i.e, relation) and159

targets (i.e., objective) for the discovered drugs. For this purpose, we train a classifier for each relation,160

whose input is the discovered drug and the output is the position of the target, i.e., classifications of161
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whether each token is the start or end token for the target phrase. The classifier is allowed to output162

null, indicating that there is no target for this relation.163

To use CasRel, we obtain the named entity annotations of drugs and targets by searching the document164

with FuzzyMatch. Although CasRel achieved great success in standard relation extraction tasks like165

NYT [23] and WebNLG [8], in our setting, the annotations for all entities are automatically obtained166

without manually check, which limits the performance of CasRel.167

Pure NER method In biomedical literature, interactions often explicitly appear in documents168

with specific forms (e.g., noun, verb, past/present participle). Therefore, it is natural to regard the169

interaction as a special entity, and use a NER model to figure out the DTI triplets. For this purpose,170

after obtaining the mentions of drugs, targets and interactions using FuzzyMatch, we train a BERT-171

based NER model where interactions are also types of entity. During training, the BERT-based NER172

model is trained to predict the possibility of whether a token belongs to entity spans of drugs, targets173

and interactions. At the inference phase, the trained model tags out token spans of drugs, targets174

and interactions. For simplification, we choose the drug, target and interaction with the maximum175

probability (normalized with the length of the BIO representation) to constitute the DTI triplet. With176

this method, we can predict at most one DTI triplet for each document.177

4.2 Generative approach178

To avoid labeling intermediate annotations (i.e., labels for entities mentions and relations between179

each pair of entities) and sequentially applying multiple models as extractive methods, we explore180

generative methods for this task [44, 41]. Specifically, we use a Transformer model [30]. The encoder181

of Transformer is used to encode the document, and the decoder of Transformer works for generating182

the DTI triplets. The output of the decoder follows the following format:183

<d> drug1 <i> interaction1 <t> target1 <d> drug2 <i> interaction2 <t> target2 · · · ,184

where the drug, interaction and target are separated with special tokens <d>, <i> and <t>, and all185

triplets are concatenated as a longer sequence.186

Recently, pre-training achieves great success in NLP areas. We explore two ways of using pre-trained187

models (The pre-trained model is flexible and we choose both BERT [6] and PubMedBERT [11]188

models in our experiments.):189

(1) Transformer+BERT and Transformer+PubMedBERT: The encoder of the triplet generator is190

initialized by the pre-trained models;191

(2) Transformer+BERT-Fuse and Transformer+PubMedBERT-Fuse: Following [49], which suc-192

cessfully incorporates the pre-training models like BERT into sequence generation, we adapt it into193

our task: In addition to the encoder-decoder based Transformer, we use a pre-trained model like194

BERT to extract features for the document, which will be fed into both the encoder and decoder of195

Transformer with attention modules.196

4.3 Experiments197

Settings For CasRel, we mainly follow the hyperparameters suggested by [34]. A modification to198

CasRel is that since our input text can be longer than 512 (After BPE, there are 762 abstract longer199

than 512 tokens, and 19 abstract longer than 1k tokens), we cut the document into several pieces,200

each with a length of 512. We use BERT to encode each piece and concatenate all the representations201

for further processing. We use 66 relation-classifiers in total, where each classifier is a single-layer202

feed-forward network with ReLU activation that taking BERT embedding as input. The drug and203

target identifier is a single-layer feed-forward network.204

For generative models, after tokenization, we apply BPE [26] to both the source sequences and target205

sequences to reduce vocabularies. We set the number of layers as 2, and the embedding dimension206

as 256. We use Adam optimizer with the inverse_sqrt scheduler. The learning rate is 5× 10−4207

and warm-up steps are 8k. The dropout and attention dropout of Transformer are set as 0.2 and 0.1.208

The label smoothing is set as 0.2. The batch size is 12k tokens per GPU. For the Transformer with209

pre-trained models, we explore two methods as introduced in §4.2. We try the conventional BERTbase210
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DrugBank Triplet Level Ontology Level Entity Level (Acc.)

F1 P R F1 P R Drug Target Interact

CasRel 15.42 13.74 17.57 18.62 20.74 16.89 27.12 23.14 31.32
Pure NER 18.20 19.11 17.37 17.25 19.40 15.54 60.72 35.25 79.26
Transformer 27.41 28.38 26.50 25.49 26.64 24.43 53.05 52.86 79.54
Transformer + BERT 30.32 31.46 29.26 29.50 31.64 27.64 53.00 55.27 79.47
Transformer + PubMedBERT 34.82 35.88 33.82 32.87 34.73 31.22 55.73 58.91 82.11
Transformer + BERT-Fuse 34.60 35.50 33.74 33.26 35.50 33.74 56.80 55.12 79.82
Transformer + PubMedBERT-Fuse 36.97 37.82 36.16 34.32 36.64 32.28 57.33 58.69 82.59

TTD Triplet Level Ontology Level Entity Level (Acc.)

F1 P R F1 P R Drug Target Interact

CasRel 5.74 4.87 7.00 6.05 9.30 4.49 18.77 18.51 18.06
Pure NER 6.66 6.77 6.55 6.32 9.23 4.81 33.82 16.93 68.40
Transformer 6.32 6.73 5.96 5.75 6.41 5.22 10.89 56.53 87.43
Transformer + BERT 7.63 7.87 7.41 7.36 8.44 6.53 14.44 51.98 87.72
Transformer + PubMedBERT 7.81 8.28 7.41 7.11 7.83 6.52 12.83 58.47 86.93
Transformer + BERT-Fuse 8.34 8.42 8.27 7.59 8.14 7.10 15.46 53.37 87.03
Transformer + PubMedBERT-Fuse 8.88 9.21 8.57 7.87 8.83 7.10 14.60 61.97 89.50

Table 2: Results of the document to triplet discovery on DrugBank and TTD. “CasRel” and “Pure
NER” are two extractive methods leveraging BERT, and the remaining are generative ones. “-Fuse”
denote using pre-trained language models in the fusing manner following [49],

model and PubMedBERTbase model, in which PubMedBERTbase is trained using abstracts of all211

PubMed papers. All models are trained on a single V100 GPU.212

Results and analysis: The test results of DrugBank and TTD are reported in Table 2. Due space213

limits, we leave the standard deviation of results in Appendix D and the case study in Appendix E.214

We have the following observations:215

(1) Generative methods obtain better results than the extractive method (i.e., CasREL) on KD-DTI,216

in terms of triplet-level metric and ontology-level metric. One reason is that our task lacks manual217

annotation of intermediate labels such as the BIO representations of all entities and relations among218

any two entities. We obtain such intermediate labels with FuzzyMatch, which are usually of poor219

quality and therefore impair performance of extractive methods. For DTI triplet discovery task,220

such intermediate labels are often hard to obtain, and we should keep exploring how to improve221

performances without intermediate labels.222

(2) For extractive methods, the pure NER method outperforms CasRel on triplet-level metric and223

entity-level metric. Specifically, for entity-level drug accuracy, the pure NER method even achieves224

the second best result. This shows when intermediate labels are lacking and the relations among225

entities are comprehensive, simplifying this problem (like extracting only one triplet for a document)226

is another choice.227

(3) Using pre-trained models is helpful for our task. Taking DrugBank as an example, for triplet-level228

F1, after using conventional BERT to initialize the encoder, the metric can be improved from 27.41229

to 30.32. After using PubMedBERT, which is a model pre-trained on all abstracts of PubMed, we230

achieve an even higher F1 score, 34.82. This demonstrates the effectiveness of pre-training, especially231

in-domain pre-training.232

(4) The manner of using pre-trained models also matters. Comparing with directly initializing the233

encoder with a pre-trained model, we find that fusing pre-trained language model following [49] can234

further boost the performance: “BERT-Fuse” and “PubMedBERT-Fuse” obtain more than 4 and 2235

point improvement over BERT and PubMedBERT respectively.236

(5) The scores on TTD are lower than DrugBank because TTD is a harder dataset. To verify this,237

we calculate the minimal distance between drugs and targets: Given a document D and a DTI238

triplet (d, t, i), let Pd and Pt denote two sets which are positions of drugs and targets obtained by239

FuzzyMatch in D. The distance is defined as minpd∈Pd,pt∈Pt
|pd − pt|. For DrugBank and TTD,240
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Triplet Order D-I-T D-T-I I-D-T I-T-D T-I-D T-D-I

DrugBank Transformer 27.41 26.34 26.66 25.15 25.38 25.18
Transformer + PubMedBERT-Fuse 36.97 36.13 32.48 33.75 34.89 36.54

TTD Transformer 6.32 5.01 5.87 4.72 5.81 4.37
Transformer + PubMedBERT-Fuse 8.88 8.52 7.83 7.28 8.42 7.12

Table 3: Results of the generation with different triplet orders.

the average minimal distances over all test samples are 34 and 51, which shows that identifying the241

DTI triplet from TTD requires understanding a longer document.242

(6) While using pre-trained models achieves the best results, we observe that it suffers from overfitting:243

The F1 score on the training set is 70.29 for PubMedBERT, which is much higher than those on the244

validation set (23.33) and test set (22.9, the average score of two test sets). We find that simply using245

larger dropout or label smoothing does not help, which suggests better regularization techniques are246

needed for this task. More details are in Appendix C.247

Effect of generation order. As mentioned before, we learn to generate drug-target-interaction248

triplets sequentially for generative methods. An advantage of this method is that we could leverage249

the dependency among the triplets to improve the generation quality. A question arises: does the250

order of elements in DTI triplet matter? To find it out, we enumerate all six orders of the triplet251

on the standard Transformer model and the PubMedBERT-fused model. The results are in Table 3.252

Generally, the order of (drug, interaction, target) performs better, indicating that the order of triplet253

should be consistent with natural language order (i.e., subject-verb-object).254

5 Data enhancement255

As shown in the previous section, our dataset is not very large in terms of training data, and thus256

pre-trained models (e.g., PubMedBERT) helps a lot by using unlabeled data. In this section, we257

explore two data enhancement methods to leverage unlabeled data: distance supervision [16] and258

knowledge distillation. We first introduce how we collect and filter the unlabeled data, followed by259

the description of the two methods, and finally report the results.260

We download abstracts of indexed by PubMed. For each document (i.e., title and abstract), we use261

ScispaCy [20], an open-sourced NER tool to find out all possible drug and target entities, and use262

FuzzyMatch to find out all possible interactions included in KD-DTI. By doing so, we collect a set263

of 〈drug, target, interaction〉 triplets extracted from those documents/abstracts. We then count the264

numbers of occurrences of each DTI triplet across all documents, and delete DTI triplets with less265

than 10 occurrences.5 We keep the documents that have at least one DTI triplet after the deletion.266

We eventually obtain a dataset with 139k documents, denoted as Dsemi, and we will also release it.267

We call the triplets in this dataset “pseudo” triplets, since they may be noisy. Next we describe two268

methods to filter out low-quality data from Dsemi.269

5.1 Two data enhancement methods270

Distance supervision: Given any DTI triplet (d, t, i) in KD-DTI, we use FuzzyMatch to search all271

D̄j in Dsemi. If we find reliable patterns or positive patterns of both d and t, we assign a pseudo272

label/triplet (d, t, i) to D̄j . Denote the obtained dataset as DDS, which has 15k samples.273

Knowledge distillation: We use a pre-trained Transformer model to generate DTI triplets for each274

document.6 If the Transformer model does not generate any triplet for a document from Dsemi,275

we remove such a document from Dsemi. Each remaining document in Dsemi is associated with at276

least one generated triplet and at least one pseudo triplet. If at least two elements (e.g., drug-target,277

5According to our preliminary exploration, if we randomly select a drug, a target and an interaction from our
dataset, most of those DTI triplets occur less than 4 times in all the PubMed papers.

6For simplicity, we use the “Transformer” model without BERT in Section 4.3. We will explore more
advanced models in the future.
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DrugBank Triplet Level Ontology Level

No Enhance + DS + KD No Enhance + DS + KD

Transformer 27.41 29.92 30.57 25.49 27.26 28.04
Transformer + PubMedBERT-Fuse 36.97 35.11 39.78 34.32 35.15 38.87

TTD Triplet Level Ontology Level

No Enhance + DS + KD No Enhance + DS + KD

Transformer 6.32 6.99 7.20 5.75 6.19 6.66
Transformer + PubMedBERT-Fuse 8.88 10.83 11.27 7.87 8.01 9.64

Table 4: Comparison of data enhanced methods.

drug-interaction, or target-interaction) of a pseudo triplet are the same as those of a generated triplet,278

we keep this document; otherwise, we delete it. After filtration, there are 5.8k documents left in the279

dataset. Denote this dataset as DKD. Note we will use the pseudo triplets in DKD for the following280

experiments; the generated triplets are only used for filtration, but not for model training.281

5.2 Results282

As generative models perform better than extractive ones, we focus on generative ones in this sub283

section and conduct experiments with Transformer model and Transformer + PubMedBERT-fused284

model. We merge the KD-DTI corpus with DDS and DKD respectively to get two enlarged datasets,285

and then train models on them. Instead of training from scratch, we find that initializing the parameters286

from a model trained on the parallel corpus KD-DTI is better.287

The results are shown in Table 4. We have the following observations:288

(1) Enhanced with DKD, we achieve more than two point improvement on DrugBank, for both289

Transformer and Transformer + PubMedBERT; On TTD, significant improvements are also observed.290

(2) Enhanced with DDS, the generation performance is also generally improved, but not as much291

as DKD, which shows that the quality of the synthetic data is not as good as that from knowledge292

distillation. This is consistent with the discovery in [40]. Our conjecture is that the documents are293

rich of entities and noises, and simply using distance supervision without a scoring mechanism cannot294

lead to significant improvement, especially when the model equips pre-trained knowledge.295

From observation (1) and (2), we can also conclude that pre-training and assigning pseudo labels to296

the unlabeled data are two orthogonal ways, both of which deserve more attention in the future.297

(3) We also directly combine Dsemi with the parallel KD-DTI dataset (which is up sampled by five298

times) and get the largest training dataset in our experiments. However, while training Transformer299

(without BERT) with this large dataset, the triplet-level F1 scores on DrugBank and TTD are 18.19300

and 3.15 respectively, which are much worse than training on KD-DTI only. This demonstrates the301

necessity of quality control in data enhancement.302

(4) Even if data enhancement can boost DTI discovery, the overall accuracy is still not very high.303

For example, the triplet-level F1 on TTD is less than 11.2. That is, DTI discovery is a challenging304

task. We need to design better models, algorithms, and/or data enhancement methods to meet the305

expectation of real-world applications.306

6 Related work307

Early research efforts on knowledge discovery focus on discovering knowledge within single sen-308

tences [43, 18, 1, 46]. However, lots of knowledge are expressed by multiple sentences [31, 40].309

Therefore, document level knowledge discovery is explored, where the existing solutions are often310

graph-based methods [22, 21, 31, 4, 19] and pre-trained language model based methods [5, 29, 32, 12].311

When comes to biomedical knowledge discovering, previous work on this task mainly focus on312

mining knowledge on large, unstructured, and unsupervised data [39, 48, 27, 42, 9, 28, 10]. Unlike us,313
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most of these works do not directly extract knowledge triples from papers. [25] propose to discover314

knowledge from knowledge graph, while we directly discover knowledge from paper text. [3] focus315

on predicting the relations between bio-concepts and disease. For discovering knowledge triplets316

from literature, existing works attempt to generate the relationships between disease and genes and317

targets, e.g., GDA [36] and BC5CDR [14]. Note GDA is a pure weakly-supervised data without318

direct human supervision. The genes, diseases, and chemical substances in those work are easier319

to recognize, and the extracted relationships are relatively simple (only one relation type) Different320

from them, our dataset covers much more diverse entity terms and more relations. ChemProt [2]321

and CPI-DS [7] are two related datasets that are about to discover chemical proteins relation on322

document-level and sentence-level respectively. However, both of the two datasets mainly focus323

on relation extraction and the entities are given in advance, while our KD-DTI is about to jointly324

discover the DTI triplets from the document. On the other hand, our datasets have more target and325

relational types and are much larger in volume than existing datasets.326

7 Conclusions and future directions327

In this work, we have created the first dataset, KD-DTI, for discovering 〈drug, target, interaction〉328

triplets from biomedical literature, which is one of the most important knowledge discovery tasks in329

the biomedical domain. We hope this dataset will boost and advance the research for this task.330

There are multiple directions to explore, based on this dataset and to improve it.331

(1) Accuracy improvement: We have shown that the performance of several state-of-the-art models332

is still far from industry demand. Therefore, how to improve accuracy for the task is an important333

research problem. As shown in this paper, designing better generative models and combing with334

pre-trained models properly are promising directions. How to effectively leverage unlabeled data335

(beyond pre-training) is also worthy of exploration. In addition, we should propose more effective336

regularization techniques to improve the generalization abilities of DTI models.337

(2) Dataset improvement: We have created the first dataset for the DTI discovery task. The dataset can338

be improved in terms of scale and quality. Furthermore, there are many other knowledge discovery339

tasks in the biomedical domain, which also need public datasets for algorithm evaluation and fair340

comparison.341
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