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Abstract
Neural network models trained on text data have
been found to encode undesired linguistic or sen-
sitive attributes in their representation. Removing
such attributes is non-trivial because of a com-
plex relationship between the attribute, text input,
and the learnt representation. Recent work has
proposed post-hoc and adversarial methods to re-
move such unwanted attributes from a model’s
representation. Through an extensive theoretical
and empirical analysis, we show that these meth-
ods can be counter-productive: they are unable
to remove the attributes entirely, and in the worst
case may end up destroying all task-relevant fea-
tures. The reason is the methods’ reliance on
a probing classifier as a proxy for the attribute
which we prove is difficult to train correctly in
presence of spurious correlation.

1. Introduction
Neural network classifiers built using text data have been
shown to learn spuriously correlated features (Gururangan
et al., 2018a; McCoy et al., 2019) or embed sensitive at-
tributes like gender or race (Bolukbasi et al., 2016; Conneau
et al., 2018) at their representation layer. Classifiers that
use such sensitive or spurious concepts (henceforth con-
cepts) raise concerns of model unfairness and affects out-of-
distribution generalization (Sagawa et al., 2020a; Arjovsky
et al., 2020). Because the classifiers are based on hard-to-
interpret deep neural networks, removing the influence of
these concepts is non-trivial. Since many concepts cannot
be modified at the input tokens level, removal methods that
work at the representation layer have been proposed: post-
hoc removal (Bolukbasi et al., 2016; Xu et al., 2017) on
a pre-trained model (e.g., null space projection (Ravfogel
et al., 2020)), and adversarial removal (Ganin & Lempitsky,
2015; Elazar & Goldberg, 2018) by jointly training the main
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task classifier with an (adversarial) classifier for the concept.

In this paper, we theoretically show that both classes of
methods can be counter-productive in real-world settings
where the main-task label is correlated with the concept.
Examples include natural language inference (main-task)
where the presence of negative words (spurious concept)
may be correlated with the “contradicts” label. Our key
result is based on the observation that both these methods in-
ternally use an auxiliary (probing) classifier (Shi et al., 2016;
Adi et al., 2017) that aims to predict the spurious feature
based on the representation learnt by the main classifier.

We show that the auxiliary classifier cannot be a reliable
signal on whether the representation includes features that
are causally derived from the concept. As previous work has
argued (Tsipras et al., 2019; Sagawa et al., 2020c; Arjovsky
et al., 2020; Belinkov, 2022), if the representation features
causally derived from the concept are not predictive enough,
the probing classifier for the concept can be expected to rely
on correlated features to obtain a higher accuracy. However,
we show a stronger result by considering a setting where
there is no potential accuracy gain and the concept’s fea-
tures are easily learnable. Namely, even when the concept’s
causally-related features alone can provide 100% accuracy,
the probing classifier may still learn non-zero weights for
the main-task relevant features. Based on this result, under
some simplifying assumptions, we prove that both post-
hoc and adversarial training methods can fail to remove the
undesired concept, remove useful task-relevant features in
addition to the undesired concept, or do both. As an extreme
case, we show how post-hoc methods can lead to a random
main-task classifier, removing all task-relevant information
from the representation 1. Our contributions include:

• Theoretical analysis of null space and adversarial methods,
showing they fail to remove an unwanted concept from a
model’s representation, even under favorable conditions.

• Empirical results on four datasets showing that the null-
space and adversarial removal methods are unable to re-
move concept-related features fully or end up unnecessar-
ily removing task-relevant features.

• A practical spuriousness score motivated by theory for
evaluating the output of removal methods.

1Full paper version could be found at ArXiv with same title.
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2. Concept removal can be counter-productive
For a classification task, let (xi, yim)ni=1 be set of examples
in the dataset Dm, where xi ∈ X is the input feature and
yim ∈ Ym the label. We call this as the main task and label
yim as the main task label. The main task classifier can
be written as cm(h(x)) where h : X → Z is an encoder
mapping the input X to the latent representation Z and
cm : Z → Ym is the classifier on top of the representation
Z. Additionally, we are given labels for a spurious or sen-
sitive concept, yip ∈ Yp, and our goal is to ensure that the
representation h(x) learnt by the main classifier does not
include concept-causal features defined as:
Definition 2.1. A feature Zj ∈ Z (jth dimension of h(x))
at the representation layer is causally derived from a concept
(concept-causal for short) if upon changing the value of the
concept label, the corresponding change in the input’s value
x will lead to a change in the feature’s (Zj) value.

The above definition of concept-causal feature requires as-
sumption of some underlying causal mechanism generating
the text which is often not available. Hence these latent
space based removal methods (Sec 2.1) use an auxiliary
probing classifier to estimate the concept-causal feature
present in the latent representation from the concept label.

2.1. Challenge with learning a clean probing classifier

Given z = h(x) and the concept label yp, the goal of prob-
ing task is to learn a classifier cp(z) such that it only uses
the concept-causal features and the accuracy for yp is maxi-
mized. If there are features in z outside concept-causal that
improve the accuracy for the classifier, a classifier trained
on standard losses such as cross-entropy or max-margin is
expected to use those features too, as argued in the probing
literature (Hewitt & Liang, 2019; Belinkov, 2022). In this
section, however, we create a setup that is the most favorable
for the classifier to use only concept-causal features—no
accuracy gain on using features outside concept-causal, dis-
entangled representation so that no further representation
learning is needed, and concept labels that are linearly sep-
arable using concept-causal features—yet we find that a
trained classifier uses non-concept-causal features.
Assumption 2.1 (Disentangled Frozen Latent Representa-
tion). The latent representation z is disentangled and is of
form [zm, zp], where zp ∈ Rdp are the features causally de-
rived from the concept label and zm ∈ Rdm are the features
causally derived from the main task label along with rest
of the features in latent representation. Here dm and dp are
the dimensions of zm and zp respectively. Also the encoder
h(x) which maps the input X to latent representation Z is
frozen or non-trainable.

While it may be less surprising that a spurious feature is
used if the invariant feature (concept-causal) does not give

100% accuracy, we show that spurious feature will be used
even if the invariant feature is fully predictive of the label,
following (Nagarajan et al., 2021). We formalize it as,
Assumption 2.2 (concept-causal feature Linear Separabil-
ity). The concept-features of the latent representation (zp)
for every point are linearly separable/fully predictive for the
concept labels yp, i.e yip ·(ϵ̂p ·zi

p+bp) > 0 for all datapoints
(xi, yip) for some ϵ̂p ∈ Rdp . For the case of zero-centered
latent space we have bp = 0.

In addition, we assume that there is some correlation be-
tween the concept and main-task label: a function of zm
can also classify correctly a non-empty subset of points.
Assumption 2.3 (Spurious Correlation). For a subset of
training points S ⊂ Dp, zm is linearly-separable with
respect to concept label yp i.e yip · (ϵ̂m · zi

m + bm) > 0 for
some ϵ̂m ∈ Rdm and bm ∈ R. For the case of zero-centered
latent space we have bm = 0.

Now we state the key lemma: if non-concept-causal features
zm are linearly separable w.r.t. to concept label yp for only
a few special points, then the probing classifier cp(z) will
use those features. As in (Nagarajan et al., 2021), for ease
of exposition we use max-margin training loss.
Lemma 2.1. Let the latent representation be frozen and
disentangled such that z = [zm, zp] (Assm 2.1), where
concept-features zp be fully predictive (Assm 2.2). Let
c∗p(z) = wp ·zp be the desired clean/purely-invariant linear
classifier trained using max-margin objective (Suppl C.1)
which only uses zp for its prediction. Let zm be the spurious
feature s.t. for the margin points of c∗p(z), zm be linearly-
separable w.r.t. probing task label yp (Assm 2.3). Then,
assuming the latent space is centered around 0, the concept-
probing classifier trained using max-margin objective will
be of form cp(z) = wp · zp +wm · zm where wm ̸= 0.

For detailed proof see Suppl C.2. In Suppl C.3 we prove
that the assumptions for Lemma 2.1 are both sufficient and
necessary for a classifier to use non-concept-causal features
zm when zp is 1-dimensional. Lemma 2.1 generalizes a
result from (Nagarajan et al., 2021) by using fewer assump-
tions (we do not assume that zm to be binary, that zm and
zp are conditionally independent given ym or yp, and do not
assume monotonicity of classifier norm with dataset size).
We also present similar result for main-task classifier in
Suppl C.4. Sagawa et al. (2020b) shows that subsampling
the dataset help in learning clean classifier by breaking spu-
rious correlation. Note that even after subsampling as in
Sagawa et al. (2020b) Assm 2.3 could still be satisfied if it
is satisfied in the original dataset, since margin points are
few and may not be subsampled.
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Figure 1: Failure Mode of Removal Methods: Assume a 2-dimensional representation, z. Main Task feature is Profession
and sensitive feature is Gender to be removed. (a) A “clean” main-task classifier—vertical line which only uses profession—
that is input to null-space (INLP) for removal. From Lemma 2.1, INLP trains a gender classifier which is shown by
slanted line. (b) For the two points having same profession but different gender feature (marked ‘1’), post projection to the
null-space (‘2’) has their profession feature reversed (‘3’), thus making the fair pretrained classifier become unfair. (c) For
the adversarial removal method, there can be two projection directions that yield a random-guess 50% accuracy on gender
and the same main-task accuracy. However, the slanted projection direction has bigger margin for main-task and will be
preferred, again leading to a final classifier that uses the Gender feature.

2.2. Failure mode of Null-space removal (INLP)

The null space method (Ravfogel et al., 2020; Elazar et al.,
2021), henceforth referred as INLP, first estimates the sub-
space in the latent space discriminative of the concept we
want to remove by training a probing classifier cp(zi) → yip,
where yip is the concept label. Then the projection is done
on the null-space of this probing classifier which is expected
to be non-discriminative of the concept. (Ravfogel et al.,
2020) used a linear probing classifier (cp(z)) to ensure that
the any linear classifier cannot recover the removed concept
from modified latent representation z′ and hence the main
task classifier (cm(z′)) also become invariant to removed
attribute. Details for the method are in Suppl D.1. Below
we state the failure of null-space removal under the assump-
tions of Lemma 2.1 (proof in Suppl D.2). We use zi(k) to
denote the representation zi after k steps of INLP.
Theorem 2.2. Let the latent representation z be disentan-
gled (Assm 2.1), cm(z) be the pre-trained main-task clas-
sifier, and cp(z) the probing classifier used by INLP to re-
move the unwanted feature zp from the latent representation.
Let the assumptions of Lemma 2.1 be true for the probing
classifier cp(z), trained using max-margin objective.

1. Mixing: After the first projection step of linear-INLP,
the dimensions of z gets mixed such that zi(1) =
[g(zi

m,x
i
p), f(z

i
p, z

i
m)] ̸= [zi

m, z
i
p]. Also, this mixing is

non-invertible with subsequent projection steps. Thus,
the latent space is no longer disentangled and removal
of concept-causal features will also lead to removal of
task-specific features.

2. Removal: The L2-norm of the latent representation z
decreases with every projection step as long as the pa-
rameters of probing classifier at a step (wk) does not
lie completely in the space spanned by parameters of

previous probing classifiers i.e. span(w1, . . . ,wk−1).
Thus, after sufficiently many steps, INLP can destroy all
information in the representation, zi(∞) = [0,0].

2.3. Failure mode of adversarial removal methods

To remove the unwanted features zp from the latent repre-
sentation, the adversarial removal method jointly trains the
main classifier cm(z) and the probing classifier cp : z → yp
by specifying cp’s loss as an adversarial loss (Elazar & Gold-
berg, 2018) . For details refer to Suppl E.1.

Since the encoder h : x → z mapping the input the latent
representation z is frozen ( Assm 2.1), to allow training
for the main-task classifier we introduce additional repre-
sentation layers after it. For simplicity in the proof, we
assume a linear transformation to the latent representation
h2 : z → ζ. After this, we have a linear main-task classifier
cm : ζ → ym, as before. The probing classifier cp : ζ → yp
is trained adversarially to remove zp from latent represen-
tation ζ. Thus, the goal of the adversarial method can be
stated as removing the information of zp from ζ. Let the
main-task classifier satisfy the assumption of the generalized
version of Lemma 2.1 (Lemma C.5 in Suppl C.4). In addi-
tion we need an assumption on the hard-to-classify margin
points which says that main-task labels and adversarial con-
cept label are correlated on margin point of clean main-task
classifier.
Assumption 2.4 (Label Correlation of Margin Point). For
the margin points of clean classifier for the main task, the
adversarial-probing label yp and the main task labels ym are
correlated, i.e w.l.o.g. yim = yip for all margins points of
clean main-task classifier.

Theorem 2.3. Let the latent representation Z satisfy
Assm 2.1, h2(z) be a linear transformation s.t. h2 : Z → ζ,
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Figure 2: Null-Space and Adversarial Removal Failure: For discussion see Sec 3.

main classifier be cm(ζ) = wcm · ζ and the adversarial
classifier be cp(ζ) = wcp · ζ. Let all the assumptions of
generalized Lemma 2.1 (Lemma C.5 in Suppl C.4) be sat-
isfied for main-classifier cm(·) when using Z directly as
input and Assm 2.2 be satisfied on Z w.r.t. adversarial-task.
Let h∗2(z) be the desired encoder which is successful in re-
moving zp from ζ. Then there exists an undesired/incorrect
encoder h2(z) such that ζ = h2(z) = f(zm, zp) for some
function “f” and the main classifier using it cm(h2(z)) has
bigger margin than cm(h∗2(z)) and has,

1. Acc(cp(h2(z)), yp) = Acc(cp(h
∗
2(z)), yp) when adver-

sarial probing classifier cp(·) is trained using any learn-
ing objective. Thus the undesired encoder h2(z) is in-
distinguishable from desired encoder h∗2(x) in terms of
adversarial task prediction accuracy but better for main-
prediction task in terms of max-margin objective.

2. L(cp(h2(z)), yp) > L(cp(h
∗
2(z)), yp) under Assm 2.2

and Assm 2.4 where L is either max-margin or cross-
entropy loss used for training cp(·). Thus undesired
encoder h2(z) is preferable over desired encoder h∗2(z)
for both main and adversarial task objective.

Spuriousness Score. We next define a new metric which
will help us access the quality of a given classifier. To
define spuriousness score over binary labels and concepts,
we consider two subgroups, Smin and Smaj where Smaj

contains the dominant correlation exhibited in dataset while
Smin contains the rest of the data.
Definition 2.2. Given a dataset, Dm,p = Smin ∪ Smaj

containing binary task label and binary concept, let
Acccm(Smin) be the accuracy of the given main-task clas-
sifier (cm) on the minority group Smin and Acc∗(Smin)
be the accuracy on the minority group of a clean classifier
that does not use the unwanted spurious concept. We define
spuriousness score of “cm” as: ψ(cm) =

∣∣∣1− Acccm (Smin)
Acc∗(Smin)

∣∣∣
To estimate Acc∗(Smin), we subsample the dataset such
that yp takes a single value in the sample and train the
main classifier on it, as done by (Ravichander et al., 2021).
Thus, probing label yp no longer is correlated with the
main-task label ym. There can be other ways to estimate

it, e.g., by reweighting the data or using the accuracy on
Smaj . However, we found that the former had high variance
and the latter requires an equal-noise assumption such that
Acc(Smaj) = Acc(Smin) on a clean main-task classifier.

3. Experimental Results
Dataset. We demonstrate the failure of null-space (INLP)
and adversarial removal (AR) on three real-world dataset –
MultiNLI (Williams et al., 2018), Twitter-PAN16 (Rangel
et al., 2016) and Twitter-AAE (Blodgett et al., 2016). For
brevity, only show the results for MultiNLI dataset in this
section (see Suppl G for complete results). In MultiNLI
dataset, given two sentences–premise and hypothesis–the
main task is to predict whether hypothesis entails, contra-
dicts or is neutral to premise. We simplify to a binary task
of predicting whether a hypothesis contradicts the premise
or not. Since negation words like nobody,no,never and noth-
ing have been reported to be spuriously correlated with
with the contradiction label (Gururangan et al., 2018b), we
create a ‘negation’ concept denoting the presence of these
words. The goal is to remove the negation concept from the
NLI model’s representation. In general the negation feature
might be useful for the task and should not be removed
completely. But for simplicity here we consider complete
removal of this feature.

Synthetic-Text. To understand the reasons for failure, we
introduce a Synthetic-Text dataset where it is possible to
change the input text based on a change in concept (thus
implementing Def. 2.1). Here we can directly evaluate
whether the concept is being used by the main-task classifier
by intervening on the concept (adding or removing) and
observing the change in prediction scores. The main-task
is to predict whether a sentence contains a numbered word
(e.g., one, fifteen, etc.). We introduce spurious concept
(length) by increasing the length of sentences that contain
numbered words.

Predictive correlation. To assess robustness of removal
methods, we create multiple datasets with different pre-
dictive correlation between two labels ym and yp. The
predictive correlation (κ) measures how informative one
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Figure 3: Adversarial Removal Failure: For discussion see Adversarial Removal result in Sec 3.

variable is for predicting the other, κ = Pr(ym · yp >

0) =
∑N

i=1 1[ym·yp>0]

N , where N is the size of dataset and
1[·] is the indicator function which is 1 if the argument is
true otherwise 0. Predictive-correlation lies in κ ∈ [0.5, 1]
where κ = 0.5 means no-correlation and κ = 1 means the
attributes are completely correlated.

Results: Null Space Removal In general, for any model
given as input to INLP, it may be difficult to verify whether
the removal method removed the correct features. Hence,
we construct a benchmark where the input classifier is clean,
i.e., it does not use the concept at all. We do so by training
on a subset of data with the same value of the property, as
in (Ravichander et al., 2021).

In Fig 2a, iteration 7-26 shows individual steps of null-space
removal for MultiNLI dataset. Since, the given pre-trained
classifier was clean i.e not using the sensitive features, null-
space removal shouldn’t have any effect on it. Colored lines
show different datasets used by INLP with different level
of predictive correlation κ. We observe that for most value
of κ, the main-task classifier’s accuracy eventually goes to
50% random guess accuracy implying that the main-task
related attribute has been removed by the removal process,
as predicted by Theorem 2.2. Higher the value of correlation
κ, faster the removal of main-task attribute happens.

To avoid the full collapse, a stopping criteria of INLP is to
stop when the main-task classifier’s performance drops (Rav-
fogel et al., 2020). In Fig 2c we measure the sensitivity of
Synthetic-Text main-task classifier w.r.t. to sensitive concept
by changing the feature in input sentences corresponding
to sensitive concept and measuring the change in main-task
classifier prediction probability (∆Prob). At lower iterations
of INLP, the change in main-task output due to change in
sensitive concept’s value, ∆Prob, is higher than that of the
input classifier. For example, for κ = 0.8, the main-task
classifier’s performance drops for the first time at iteration
27, but it has a high ∆Prob ≈ 25% as shown in Fig 2c.
Hence it is possible that stopping prematurely will lead us
to a classifier which is more unfair or reliant to sensitive
concept than it was before, consistent with the first state-
ment in Theorem 2.2 stating that INLP will lead to mixing
of features in latent space.

Results: Adversarial Removal We compare the standard
ERM training of the main classifier with adversarial-removal
(AR) method over the same number of epochs (20). For
MultiNLI dataset, Fig 3b shows the spuriousness score
(Def 2.2) of ERM and AR classifiers as we vary the predic-
tive correlation (κ) between the main-task label and sensitive
concept label in the training dataset. While the spuriousness
score for classifier trained using AR (blue curve) is lower
than that of ERM for all values of κ, it is substantially away
from zero. Thus, the AR method fails to completely remove
the sensitive/spurious concept completely from the latent
representation. Fig 3c shows the possible reason using the
sensitive concept probing classifier accuracy for ERM and
AR. The probe accuracy after adversarial training doesn’t
decrease to 50% but stops at accuracy proportional to the
predictive correlation κ. This is expected since even if the
AR would have been successful in removing the sensitive
feature, the main-task feature would still be predictive of
sensitive concept label by κ due to the spurious correlation
between them. However, the converse is not true: an ac-
curacy of κ does not imply that sensitive concept is fully
removed. The results substantiate the first statement of The-
orem 2.3: given two representations where one (desired)
does not have concept features while the other (undesired)
contains the sensitive concept features, the undesired one
may be better for the main task loss even as both may have
the same probing accuracy. While previous empirical work
((Elazar & Goldberg, 2018)) showed a similar limitation
for adversarial methods, we extend it through theory and
empirical experiments that measure the use of unwanted
concept by classifier through the spuriousness score, not
just its presence in the representation.

4. Conclusion and Discussion
Using both theoretical analysis and empirical results over
real-world datasets, we presented a critique of recent work
that claims to remove spurious or sensitive concepts from a
text classifier. Given the practical relevance of the removal
problem, we also provided a spuriousness metric to evaluate
any classifier on its use of unwanted concepts.
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A. Broader Impact and Ethical Consideration
Removal of spurious or sensitive concepts is an important problem to ensure that machine learning classifiers generalize
better to new data and are fair towards all groups. We found multiple limitations with current removal methods and
recommend caution against the use of these methods in practice.

B. Limitations of our work
One of the limitations of our theoretical work is assuming frozen or non-trainable latent representation which makes the
analysis of task-classifier trained on top of them relatively easier. We address this limitation in our empirical work where we
do not make such assumptions. Also, our work addresses failure modes of probing based removal on two popular methods,
post-hoc removal (Null-Space Removal) and Adversarial Removal and we conjecture that similar failure could be expected
for other methods in those classes. It would be interesting to show that any concept removal method based on a probing
classifier will fail in general.

C. Probing and Main Classifier Failure Proofs
C.1. Notation and Setup: Max-margin Classifier

Assm 2.1 says encoder h : X → Z, mapping the input to latent representation is frozen/non-trainable. Thus for every
input xi in the dataset D, we have a corresponding latent representation zi which is fixed. Also, the latent representation
Z is disentangled i.e z = [zm, zp] where zm are the feature causally derived from main task label and zp are the features
causally derived from the concept label. Let cp(z) = wp · zp +wm · zm be the linear probing classifier which we train
using max-margin objective. The hyperplane cp(z) = 0 is the decision boundary of this linear classifier. The points which
falls on one side of the decision boundary (cp(z) > 0) are assigned one label (say positive label 1) and the rest are assigned
another label (say negative label -1). The margin Mcp of this hypothesis function (cp(z)) is the distance of the closest
latent representation from the decision boundary. The points which are closest to the decision boundary is called the margin
points. The distance of a given latent representation zi having class label yi, where yi ∈ {−1, 1}, from decision boundary
is given by

Mcp(z
i) :=

mcp(z
i)

∥w∥
=
yi · cp(zi)

∥w∥
=
yi · (w · zi + b)

∥w∥
(1)

Max-Margin (MM): Then the max-margin classifier is trained by optimizing the following objective:

argmax
w,b

{
min
i

Mcp(z
i)
}

(2)

For ease of exposition we could convert this objective into multiple equivalent forms. To do this we observe that scaling the
parameters of cp(z) by a factor of γ i.e w → γw and b→ γb does not change the distance of the point from the decision
boundary (Mcp(z

i)).

MM-Denominator Version: We can use this freedom of scaling the parameters to set mcp(z
i) = 1 for the closest point

of any given hypothesis function, thus all the data points will satisfy the constraint:

mcp(z
i) = yi · cp(zi) ≥ 1 (3)

and giving us the final max-margin objective:

argmax
w

{ 1

∥w∥

}
(4)

under the constraint mcp(z
i) ≥ 1 corresponding to all the points in the dataset.

MM-Numerator Version: Alternatively, one can choose γ such that ∥w∥ = c where c ∈ R is some constant value. The
the modified objective becomes:

argmax
w,b

{
mcp(z

i)
}

(5)
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under constrain ∥w∥ = c which is usually set to 1.

We will use different formulation in our proofs later based on the ease of exposition and give a clear indication when we do
so. One can refer to Chapter 7, Section 7.1 of (Bishop, 2006) for furthur details about max-margin classifier.

C.2. Proof of Sufficient Condition: Lemma 2.1 and Lemma C.5

Lemma 2.1. Let the latent representation be frozen and disentangled such that z = [zm, zp] (Assm 2.1), where concept-
features zp be fully predictive (Assm 2.2). Let c∗p(z) = wp · zp be the desired clean/purely-invariant linear classifier
trained using max-margin objective (Suppl C.1) which only uses zp for its prediction. Let zm be the spurious feature
s.t. for the margin points of c∗p(z), zm be linearly-separable w.r.t. probing task label yp (Assm 2.3). Then, assuming
the latent space is centered around 0, the concept-probing classifier trained using max-margin objective will be of form
cp(z) = wp · zp +wm · zm where wm ̸= 0.

In this section we prove that, given the assumption in Lemma 2.1 is satisfied, they are sufficient for a concept probing
classifier cp(z) to use the spuriously correlated main-task feature zm. See Sec C.1 for detailed setup and max-margin
training objective. Also, we could use the same line of reasoning to prove similar result for the main-task classifier i.e. when
condition in Lemma C.5 is satisfied, the main-task classifier will use the spurious concept-feature zp. To keep the proof
general for both the lemmas, we prove the result for a general classifier c(z) trained to predict a task label y. Here the latent
representation be of form z = [zinv, zsp] where zinv is the feature which is causally-derived from/invariant to task-label y
and zsp be the feature spurious to the task label y. With respect to concept-probing classifier cp(z) in Lemma 2.1 zinv := zp
and zsp := zm. Similarly, for the main-task classifier in Lemma C.5, zinv := zm and zsp := zp. For ease of exposition, we
define two categories of classifiers based on which features they use:
Definition C.1 (Purely-Invariant Classifier). Given a linear classifier of form c(z) = winvzinv +wspzsp + b is called
"purely-invariant" if it does not use the spurious features zsp i.e., wsp = 0.
Definition C.2 (Spurious-Using Classifier). Given a linear classifier of form c(z) = winvzinv + wspzsp + b is called
"spurious-using" if it uses the spurious features zsp i.e., both wsp ̸= 0 and winv ̸= 0.

Proof of Lemma 2.1 and C.5. Let cinv(z) = winv · zinv be the clean/purely-invariant classifier trained using the max-
margin objective using the MM-Denominator formulation given in Eq 4 such that winv ̸= 0. The classifier cinv(z) is 100%
predictive of the task labels y (from Assm 2.2 for the probing task or Assm C.1 for the main-task). Here the bias term b = 0
since we assume the latent representation z is centered. The norm of this classifier is ∥winv∥ and the distance of each input
latent representation (zi) with class label yi (yi ∈ {−1, 1}) from the decision boundary (cinv(z) = 0) is given by:

Minv(z
i) =

minv(z
i)

∥winv∥
=
yi · cinv(zi)

∥winv∥
=
yi · (winv · zi

inv)

∥winv∥
(6)

Since we have used the MM-Denominator version of max-margin to train Cinv(z) from Eq 3 we have minv(z
i) = 1 for the

margin-points and greater than 1 for rest of the points. Next we will construct a new classifier parameterized by α ∈ [0, 1]
by perturbing the clean/purely-invariant classifier cinv(z) such that:

cα(z) = α
(
winv · zinv

)
+ ∥winv∥

√
1− α2

(
ϵ̂sp · zsp

)
(7)

where ϵ̂sp ∈ Rdsp is a unit vector in spurious subspace of features, dsp is the dimension of the spurious subspace. We
observe that the norm of this perturbed classifier cα(x) is ∥winv∥, which is same as the clean/purely-invariant classifier
cinv(x). Thus the distance of any input zi with class label yi from the decision boundary of this perturbed classifier,
cα(z) = 0 is given by:

Mα(z
i) =

mα(xi)

∥winv∥
=
yi · cα(zi)

∥winv∥
(8)

The perturbed classifier will be spurious-using i.e use the spurious feature zsp when α ∈ [0, 1) since (∥winv∥
√
1− α2) ̸= 0

for these setting of α. Thus to show that there exist a spurious-using classifier which has a margin greater than the margin of
the purely-invariant classifier, we need to prove that there exist an α ∈ [0, 1) such that cα(z) has bigger margin than cinv(z)
i.e. minz Mα(z) > minz Minv(z). Since norm of parameters of both the classifier is same, substituting the expression of
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Mα and Minv from Eq 6 and 8, we need to show mα(z
i) > 1 for all zi. We have:

mα(z
i) = yi ·

(
α
(
winv · zi

inv

)
+ ∥winv∥

√
1− α2

(
ϵ̂sp · zi

sp

))
(9)

= α ·minv(z
i) + yi∥winv∥

√
1− α2

(
ϵ̂sp · zi

sp

)
(10)

Let Sm
y denote the set of margin-points of purely-invariant classifier cinv(z) with class label y having minv(z) = 1 and Sr

y

contain rest of non-margin points havingminv(z) > 1 with the label y. Here “m” stands for margin-point in superscript of S
and “r” stands for rest of point with label y. Below we show that for all non-margin points we can always choose α ∈ [0, 1)
such that mα(z

i) > 1. But we need spurious feature of margin point to be linearly separable for having mα(z
i) > 1, given

by Assm 2.3 for probing task or C.2 for main-task.

Margin Points For the margin-points in latent space, zm ∈ Sm
y we have minv(z

m) = 1 and we need to show that there
exist α ∈ [0, 1) such that mα(z

m) > 1 for all zm ∈ Sm
y . From Eq 10 we have:

mα(z
m) = α · 1 + y∥winv∥

√
1− α2

(
ϵ̂sp · xm

sp

)
> 1 (11)(

∥winv∥
√

1− α2
)
y
(
ϵ̂sp · xm

sp

)
> 1− α (12)

From Assm 2.3 for probing task or C.2 for the main-task, we know that spurious-feature zsp of margin-points are linearly-
seperable w.r.t to task label y. Thus there exist an unit vector ϵ̂sp ∈ Rdsp such that y

(
ϵ̂sp · zm

sp

)
> 0 for all zm ∈ Sm

y . Also
since α ∈ [0, 1), we have (1− α) > 0 and (∥winv∥

√
1− α2) > 0 since ∥winv∥ > 0. If Assm 2.3 or C.2 (corresponding to

the task) wouldn’t have been satisfied then the above equation would have been inconsistent since right hand side is > 0 but
left hand side wouldn’t have been always greater than 0. Then achieving mα(z

m) > 1 wouldn’t have been possible. Let
β := (y

(
ϵ̂sp · zsp

)
) then squaring both sides and cancelling (1− α) since α ∈ [0, 1) we get:

∥winv∥2����(1− α)(1 + α)

(
y
(
ϵ̂sp · xm

sp

))2

>����(1− α)(1− α) (13)

∥winv∥2(1 + α)β2 > (1− α) (14)

∥winv∥2β2 + α∥winv∥2β2 > 1− α (15)

α

(
1 + ∥winv∥2β2

)
>

(
1− ∥winv∥2β2

)
(16)

After substituting back the value of β and rearranging we get:

α >

1− ∥winv∥2 ·
(
y
(
ϵ̂sp · xm

sp

))2

1 + ∥winv∥2 ·
(
y
(
ϵ̂sp · xm

sp

))2 = α1
lb (17)

Since ∥winv∥2 ·
(
y
(
ϵ̂sp · xm

sp

))2

> 0, the right hand side of above equation α1
lb < 1 which sets a new lower bound on

allowed value of α. Thus there exist an α ∈ [0, 1) such that mp(x
m) > 1 for all xm ∈ Sm

y .

Non-Margin Points For the non-margin points zr ∈ Sr
y in the latent space we have minv(z

r) > 1. Let γ :=

minzr∈Sr
y

(
minv(z

r)
)

thus we also have γ > 1. Let α ̸= 0 and we choose α such that:

1

α
< γ (18)

α >
1

γ
(19)



Probing Classifiers are Unreliable for Concept Removal and Detection

Substituting the value of γ we get:

α >
1

minzr∈Sr
y

(
minv(zr)

) = α2
lb (20)

Since γ > 1, thus right hand side in above equation α2
lb < 1 which sets a new lower bound on allowed values of α. Since

minv(z
r) > γ > 1

α for all xr ∈ Sr
y for α ∈ (α2

lb, 1) (Eq 20), we can write minv(z
r) = 1

α + η(zr) where η(zr) > 0 for
all zr ∈ Sr

y . Now we need to show that there exist an α ∈ (α2
lb, 1) such that mp(z

r) > 1 for all zr ∈ Sr
y . Thus from Eq 10

we have:

mp(z
r) = α ·minv(z

r) + ∥winv∥
√
1− α2

(
y
(
ϵ̂sp · zsp

))
> 1 (21)

α · ( 1
α
+ η(zr)) + ∥winv∥

√
1− α2

(
y
(
ϵ̂sp · zsp

))
> 1 (22)

∥winv∥
√
1− α2

(
y
(
ϵ̂sp · zsp

))
> −

(
α · η(zr)

)
(23)

Since α ∈ (α2
lb, 1), we have (α · η(zr)) > 0 and ∥winv∥

√
1− α2 > 0. Let’s define δ(zr) := y

(
ϵ̂sp · zsp

)
. Thus for the

latent-points zr ∈ Sr
y which have δ(zr) ≥ 0, Eq 23 is always satisfied since left side of inequality is greater than or equal to

zero and right side is always less than zero. For the points for which δ(zr) < 0 we have:

∥winv∥
√

1− α2 ·���(−1) · |δ(zr)| >�−
(
α · η(zr)

)
(24)

∥winv∥
√

1− α2|δ(zr)| <
(
α · η(zr)

)
(25)

∥winv∥2
(
1− α2

)
δ(zr)2 <

(
α · η(zr)

)2
(26)

∥winv∥2δ(zr)2 < α2 ·
(
η(zr)2 + ∥winv∥2δ(zr)2

)
(27)

α >

√
∥winv∥2δ(zr)2

η(zr)2 + ∥winv∥2δ(zr)2
(28)

Now different zr will have different η(zr) which will give different lower bound of α. Since the mα(z
r) > 1 has to be

satisfied for every point in zr ∈ Sr
y . Thus it has to be satisfied for the point with minimum value ηmin = minxr∈Sr

y
(η(xr))

which will give the tightest lower bound which α need to satisfy. Thus we have:

α >

√
∥winv∥2δ(zr)2

η2min + ∥winv∥2δ(xr)2
= α3

lb (29)

Since ηmin > 0 and ∥winv∥2δ(xr)2 > 0, the lower bound α3
lb < 1 in Eq 29.

Finally, combining Eq 17, Eq 20 and Eq 29 let the overall lower bound of α be αlb is:

αlb = max{α1
lb, α

2
lb, α

3
lb} (30)

This provides a way to construct a spurious-using classifier: given any purely-invariant, we can always choose α ∈ (αlb, 1)
and construct a perturbed spurious-using classifier from Eq 7 which has a bigger margin than purely-invariant. Thus,
given all the assumptions, there always exist a spurious-using classifier which has greater margin than the purely-invariant
classifier completing our proof.

C.3. Proof of necessary condition

In this section we will show that the concept-probing classifier will use the spurious feature (zm) iff the spurious feature
2.3 is satisfied for the margin points of the clean concept-probing classifier when the concept-feature is 1-dimensional.
Also, same line of reasoning will hold for the main-task classifier where we will show that main-task classifier will use the
spurious feature (zp) iff spurious feature satisfies C.2 for the margin point of clean main-task classifier. Formally:
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Lemma C.1 (Necessary Condition for concept-Probing Classifier). Let the latent representation be frozen/non-trainable and
disentangled such that z = [zm, zp] where zp is the concept-feature which is 1-dimensional and fully predictive (Assm 2.2)
and zm ∈ Rdm . Let c∗p(z) = wp · zp be the desired clean/purely-invariant linear classifier trained using max-margin
objective which only uses zp for prediction. Then the concept-probing classifier trained using max-margin objective will
be spurious-using i.e. cp(z) = wp · zp +wm · zm where wm ̸= 0 iff the spurious feature zm is linearly separable w.r.t to
probing task label yp for the margin point of c∗p(z) (Assm 2.3) .
Lemma C.2 (Necessary Condition for Main-task Classifier). Let the latent representation be frozen/non-trainable and
disentangled such that z = [zm, zp] where zm is the main-task feature which is 1-dimensional and fully predictive
(Assm C.1) and zp ∈ Rdp . Let c∗m(z) = wm · zm be the desired clean/purely-invariant linear classifier trained using
max-margin objective which only uses zm for prediction. Then the main-task classifier trained using max-margin objective
will be spurious-using i.e. cm(z) = wm · zm +wp · zp where wp ̸= 0 iff the spurious feature zp is linearly separable w.r.t
to main task label ym for the margin point of c∗m(z) (Assm C.2) .

Since proof of both Lemma C.1 and C.2 follows same line of reasoning for brevity, following Sec C.2, we will prove
the lemma for a general classifier c(z) trained using max-margin objective to predict the task-label y. Let the latent
representation be of form z = [zinv, zsp] where zinv ∈ R is the feature causally derived from the task-label y and zsp ∈ Rd

sp

is the feature spuriously correlated to task label y. With respect to concept-probing classifier cp(z) in Lemma C.1 zinv := zp
and zsp := zm. Similarly, for the main-task classifier in Lemma C.2, zinv := zm and zsp := zp.

Proof of Lemma C.1 and C.2. Now the goal is to show that Assm 2.3 for probing classifier or Assm C.2 for the main-task
classifier is necessary for obtaining a spurious-using classifier for the case when zinv is one-dimensional. We show this by
assuming that optimal classifier is spurious-using even when Assm 2.3 or C.2 breaks and then show that this will lead to
contradiction.

Contradiction Assumption: Formally, let’s assume that the optimal classifier for the given classification task is spurious-using
c∗(z), where:

c∗(x) = w∗
inv · zinv + ∥w∗

sp∥(ŵ∗
sp · zsp) (31)

where ∥w∗
sp∥ ≠ 0 and ŵ∗

sp ∈ Rdsp is a unit vector in spurious subspace with dimension dsp.

Let cinv(z) = winv · zinv be the optimal purely-invariant classifier. Let both c∗(z) and cinv(z) be trained using the
max-margin objective using MM-Denominator formulation in Eq 4. Thus from the constraints of this formulation (Eq 3) we
have:

m∗(z) = y · c∗(z) = y · (w∗
inv · zinv + ∥w∗

sp∥(ŵ∗
sp · zsp)) ≥ 1 ,& (32)

minv(z) = y · cinv(z) = y · (winv · zinv) ≥ 1 (33)

From Assm 2.2 or C.1, the invariant feature zinv is 100% predictive and linearly separable w.r.t task label y. Then without
loss of generality let’s assume that:

zinv > 0, when y = +1 (34)
zinv < 0, when y = −1 (35)

From Eq 34 and 35 we have y · zinv > 0 thus from Eq 33 we get:

winv ≥ 0 (36)

Also, from our contradiction-assumption the max-margin trained classifier is spurious-using, thus the norm of parameters of
c∗(z) is less or equal to cinv(z) (Eq 4). Thus we have:√

(w∗
inv)

2 + (∥w∗
sp∥)2 ≤ |winv| (37)

=⇒ |w∗
inv| < |winv| (∥w∗

sp∥ ≠ 0) (38)

=⇒ |w∗
inv| < winv (winv < 0, Eq 36) (39)

=⇒ w∗
inv < winv (40)
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Suppose Assm 2.3 for concept-probing task or Assm C.2 for the main-task breaks, then we have one of the following two
case:

1. Opposite Side Failure: When the spurious part of margin point on opposite side of decision-boundary (c∗(z) = 0) are
not linearly-separable. Formally, there exist two datapoint, Pm+ := [zm+

inv , z
m+
sp ] and Pm− := [zm−

inv , z
m−
sp ] such that

they are margin points of purely-invariant classifier cinv(z) where Pm+ has class label y = +1 and Pm− has class
label y = −1 and ∀ϵ̂sp ∈ Rdsp , the spurious feature zsp of both the points lies on same side of ϵ̂sp i.e:(

(ϵ̂sp · zm+
sp ) · (ϵ̂sp · zm−

sp )
)
≥ 0 (41)

2. Same Side Failure: When the spurious part of margin point on same side of decision-boundary (c∗(z) = 0) are always
linearly-separable. There exist two datapoints, Pm1

y := [xm1
inv, z

m1
sp ] and Pm2

y := [xm2
inv, z

m2
sp ] such that they are margin

point of purely-invariant classifier cinv(z) and both points have same class label y and ∀ϵ̂sp ∈ Rdsp , w.l.o.g we have:

ϵ̂sp · zm1
sp ≥ 0, & ϵ̂sp · zm2

sp ≤ 0. (42)

We will use the following two lemma to proceed with our proof:
Lemma C.3. If Assm 2.3 or C.2 breaks by opposite-side failure mode it leads to contradiction.
Lemma C.4. If Assm 2.3 or C.2 breaks by same-side failure mode it leads to contradiction.

This implies that our contradiction-assumption which said that the max-margin trained optimal classifier is spurious-using
even when Assm 2.3 or C.2 breaks, is wrong. Thus Assm 2.3 for concept-probing task or Assm C.2 for main-task is
necessary for the optimal max-margin classifier to be spurious-using thus completing our proof.

Proof of Lemma C.3. We have two point Pm+ := [zm+
inv , z

m+
sp ] and Pm− := [zm−

inv , z
m−
sp ] which breaks the Assm 2.3 or

C.2. From Eq 34, zinv > 0 for all the points with label y = 1, thus we have xm+
inv > 0 and using Eq 40 (w∗

inv < winv) we
get:

w∗
inv < winv (43)

w∗
inv · zm+

inv < winv · zm+
inv (44)

w∗
inv · zm+

inv < 1 (45)

where the right hand side winv ·zm+
inv = 1 since Pm+ is the margin-point of cinv(z) (Eq 33). Similarly from Eq 35, zinv < 0

for all the points with label y = −1, thus we have zm−
inv < 0 and using Eq 40 (w∗

inv < winv) we get:

w∗
inv < winv (46)

(−1) · w∗
inv · zm−

inv < (−1) · winv · zm−
inv (47)

(−1) · w∗
inv · zm−

inv < 1 (48)

where the right hand side (−1) · (wp
inv · x

m−
inv ) = 1 since Pm− is the margin-point of cinv(z) (Eq 33).

Next from Eq 32 we have m∗(z) ≥ 1 for all “z” hence it is also true for Pm+ with y = 1 and Pm− with y = −1. Then:

m∗(P
m+) = y · c∗(Pm+) = 1 ·

{
w∗

invz
m+
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm+
sp

)}
≥ 1 (49)

=⇒ w∗
invz

m+
inv + ∥w∗

sp∥ · βm+ ≥ 1 (50)

=⇒ w∗
invz

m+
inv ≥ 1− ∥w∗

sp∥ · βm+ (51)

where βm+ =
(
ŵ∗

sp · xm+
sp

)
. Also we have:

m∗(P
m−) = y · c∗(Pm−) = −1 ·

{
w∗

invz
m−
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm−
sp

)}
≥ 1 (52)

=⇒ −w∗
invz

m−
inv + ∥w∗

sp∥ · βm− ≥ 1 (53)

=⇒ −w∗
invz

m−
inv ≥ 1 + ∥w∗

sp∥ · βm− (54)
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where βm− =
(
ŵ∗

sp · xm−
sp

)
. From Eq 41 we have

(
(ϵ̂sp · xm+

sp ) · (ϵ̂sp · xm−
sp )

)
≥ 0 for all ϵ̂sp ∈ Rdsp which states the

opposite-side failure of Assm 2.3 or C.2. Thus:

βm+ · βm− ≥ 0 (55)

Now we will show that Eq 45, 48, 51 and 54 cannot be satisfied simultaneously for any allowed value of βm+ and βm−

(given by Eq 55) which are:

1. βm+ > 0 and βm− > 0: From Eq 54 we have −w∗
invx

m−
inv > 1 since ∥w∗

sp∥ ̸= 0 and βm− > 0. But from Eq 48 we
have −w∗

invx
m−
inv < 1 which is a contradiction.

2. βm+ < 0 and βm− < 0: From Eq 51 we have w∗
invx

m+
inv > 1 since ∥w∗

sp∥ ≠ 0 and βm+ < 0. But from Eq 45 we
have w∗

invx
m+
inv < 1 which is a contradiction.

3. βm+ = 0 and βm− ∈ R: From Eq 51 we have w∗
invx

m+
inv ≥ 1 but from Eq 45 we have w∗

invx
m+
inv < 1 which is a

contradiction.

4. βm+ ∈ R and βm− = 0: From Eq 54 we have −w∗
invx

m−
inv ≥ 1 but from Eq 48 we have −w∗

invx
m−
inv < 1 which is a

contradiction.

Thus we have a contradiction for all the possible values βm+ and βm− could take, completing the proof of this lemma.

Proof of Lemma C.4. We have two margin-points Pm1
y := [zm1

inv, z
m1
sp ] and Pm2

y := [zm2
inv, z

m2
sp ] which breaks Assm 2.3 or

C.2. From Eq 34 and Eq 35 we have y · zm1
inv > 0 and y · zm2

inv > 0. Using Eq 40 (w∗
inv < winv) we get:

w∗
inv < winv (56)

w∗
inv · (y · z

mj
inv) < winv · (y · zmj

inv) (57)

y · (w∗
inv · z

mj
inv) < 1 (58)

where j ∈ {1, 2} and right hand side winv · (y · zmj
inv) = 1 since Pmj

y is the margin point of purely-invariant classifier
cinv(z) (Eq 33).

From Eq 32 we have m∗(x) ≥ 1 for all “z” thus also true for Pm1
y and Pm2

y . Then:

m∗(P
m1
y ) = y · c∗(Pm1

y ) = y ·
{
w∗

invz
m1
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm1
sp

)}
≥ 1 (59)

=⇒ y · (w∗
invz

m1
inv) + y · (∥w∗

sp∥ · βm1) ≥ 1 (60)

=⇒ y · (w∗
invz

m1
inv) ≥ 1− y · (∥w∗

sp∥ · βm1) (61)

where βm1 =
(
ŵ∗

sp · zm1
sp

)
. Also we have:

m∗(P
m2
y ) = y · c∗(Pm2

y ) = y ·
{
w∗

invz
m2
inv + ∥w∗

sp∥
(
ŵ∗

sp · zm2
sp

)}
≥ 1 (62)

=⇒ y · (w∗
invz

m2
inv) + y · (∥w∗

sp∥ · βm2) ≥ 1 (63)

=⇒ y · (w∗
invz

m2
inv) ≥ 1− y · (∥w∗

sp∥ · βm2) (64)

where βm2 =
(
ŵ∗

sp · zm2
sp

)
. Now from Eq 42 we have βm1 ≥ 0 and βm2 ≤ 0 for all unit vector ϵ̂sp ∈ Rdsp which states

the same-side failure mode of Assm 2.3 or C.2. Now we will show that for all allowed value of βm1 and βm2, Eq 58 61 and
64 will lead to contradiction. Following are the cases for different allowed values of βm1 and βm2:

1. βm1 = 0 and βm2 ∈ R: Substituting βm1 = 0 in Eq 61 we get y · (w∗
invz

m1
inv) ≥ 1, but from Eq 58 we have

y · (w∗
invz

m1
inv) < 1. Thus we have a contradiction.
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2. βm1 ∈ R and βm2 = 0: Substituting βm2 = 0 in Eq 64 we get y · (w∗
invz

m2
inv) ≥ 1, but from Eq 58 we have

y · (w∗
invz

m2
inv) < 1. Thus we have a contradiction.

3. βm1 > 0, βm2 < 0 and y = (+1): Substituting βm2 < 0 and y = (+1) in Eq 64 we get y · (w∗
invz

m2
inv) ≥ 1, but from

Eq 58 we have y · (w∗
invz

m2
inv) < 1. Thus we have a contradiction.

4. βm1 > 0, βm2 < 0 and y = (−1): Substituting βm1 > 0 and y = (−1) in Eq 61 we get y · (w∗
invz

m1
inv) ≥ 1, but from

Eq 58 we have y · (w∗
invz

m1
inv) < 1. Thus we have a contradiction.

Thus we have a contradiction for all the possible values βm1, βm2 and y could take, completing the proof of this lemma.

C.4. Problem with learning a clean main-task classifier

In this section we will restate the assumptions and results of 2.1 for the main-task classifier (instead of the probing classifier)
and show that the same results will hold.

Assm 2.1 remains the same since it is made on the latent-representation being disentangled and frozen/non-trainable. Next,
parallel to Assm 2.2 show that even when main-task feature is 100% predictive of main-task and a linearly separable, the
trained main-task classifier will also use the concept-features. Formally,
Assumption C.1 (main-task feature Linear Separability). The main-task features of the latent representation (zm) for every
point are linearly separable/fully predictive for the main-task labels ym, i.e yim · (ϵ̂m · zi

m + bm) > 0 for all datapoints
(xi, yim) for some ϵ̂m ∈ Rdp . For the case of zero-centered latent space, we have bm = 0.

Next similar to Assm 2.3, we define the spurious correlation between main-task and concept label: a function using zp may
also be able to classify correctly w.r.t. main-task label on some non-empty subset of points.
Assumption C.2 (Main-Task Spurious Correlation). For a subset of training points S ⊂ Dp, main-task label ym is linearly
separable using zp i.e yim · (ϵ̂p · zi

p + bp) > 0 for all the points in the dataset, ϵ̂p ∈ Rdp and bp ∈ R. For the case of
zero-centered latent space we have bp = 0.

Next we rephrase Lemma 2.1 which shows that for only a few special points if the concept-features zp are linearly-separable
w.r.t. to main task classifier ym, then the main-task classifier cm(z) will use those features.
Lemma C.5 (Sufficient Condition for Main-task Classifier). Let the latent representation be frozen and disentangled such
that z = [zm, zp] (Assm 2.1), where main-task-features zm be fully predictive (Assm C.1). Let c∗m(z) = wm · zm be
the desired/clean linear main-task classifier trained using max-margin objective (Suppl C.1) which only uses zm for its
prediction. Let zp be the spurious feature s.t. for the margin points of c∗m(z), zp be linearly-separable w.r.t. task label
ym (Assm C.2). Then, assuming the latent space is centered around 0, the main-task classifier trained using max-margin
objective will be of form cm(z) = wm · zm +wp · zp where wp ̸= 0.

The proof of Lemma C.5 is identical to Lemma 2.1 and is provided in Suppl C.2.

D. Null-Space Removal Failure: Setup and Proof of Theorem 2.2
D.1. Null-Space Setup

As described in Sec 2, the given main-task classifier have an encoder h : X → Z mapping the input X to latent
representation Z. Post that the main-task classifier cm : Z → Ym is used to predict the main-task label yim from latent
representation zi for every input xi. Given this (pre) trained main-task classifier the goal of post-hoc removal method
to remove any undesired/sensitive/spurious concept from the latent representation Z without retraining the encoder h or
main-task classifier cm(z).

The null space method (Ravfogel et al., 2020; Elazar et al., 2021), henceforth referred as INLP, is one such post-hoc removal
method which removes a concept from latent space by projecting the latent space to a subspace that is not discriminative of
that attribute. First, it estimates the subspace in the latent space discriminative of the concept we want to remove by training
a probing classifier cp(z) → yp, where yp is the concept label. (Ravfogel et al., 2020) used a linear probing classifier (cp(z))
to ensure that the any linear classifier cannot recover the removed concept from modified latent representation z′ and hence
the main task classifier (cm(z′)) also become invariant to removed attribute. Let linear concept-probing classifier cp(z) be
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parametrized by a matrix W , and null-space of matrix W is defined as space N(W ) = {z|Wz = 0}. Give the basis vectors
for the N(W ) we can construct the projection matrix PN(W ) such that W (PN(W )z) = 0 for all z. This projection matrix
is defined as the guarding operator g := PN(W), when applied on the z will remove the features which are discriminative of
undesired concept from z as estimated by cp(z). For the setting when Yp is binary we have:

PN(W ) = I − ŵŵT (65)

where I is the identity matrix and ŵ is the unit vector in the direction of parameters of classifier cp(z) ((Ravfogel et al.,
2020)). Also, the authors recommend running this removal step for multiple iterations to ensure the unwanted concept is
removed completely. Thus after S steps of removal, the final guarding function is:

g :=

S∏
i=1

P i
N(W ) (66)

where P i
N(W ) is the projection matrix at ith removal step. Amnesic Probing ((Elazar et al., 2021)) builds upon this idea for

testing whether concept is being used by a given pre-trained classifier or not. The core idea is to remove the concept we
want to test from the latent representation and if the prediction of the given classifier is influenced by this removal then the
attribute was being used by the given classifier otherwise not.

D.2. Null-Space Removal Failure : Proof of Theorem 2.2

Theorem 2.2. Let the latent representation z be disentangled (Assm 2.1), cm(z) be the pre-trained main-task classifier,
and cp(z) the probing classifier used by INLP to remove the unwanted feature zp from the latent representation. Let the
assumptions of Lemma 2.1 be true for the probing classifier cp(z), trained using max-margin objective.

1. Mixing: After the first projection step of linear-INLP, the dimensions of z gets mixed such that zi(1) =
[g(zi

m,x
i
p), f(z

i
p, z

i
m)] ̸= [zi

m, z
i
p]. Also, this mixing is non-invertible with subsequent projection steps. Thus, the latent

space is no longer disentangled and removal of concept-causal features will also lead to removal of task-specific features.

2. Removal: The L2-norm of the latent representation z decreases with every projection step as long as the parameters of
probing classifier at a step (wk) does not lie completely in the space spanned by parameters of previous probing classifiers
i.e. span(w1, . . . ,wk−1). Thus, after sufficiently many steps, INLP can destroy all information in the representation,
zi(∞) = [0,0].

The proof of Theorem 2.2 proceeds in two steps:

1. We first show that after first step of null-space projection (INLP), both the main-task feature and concept-causal feature
gets emph. Then we show that the projection operation is non-invertible thus, mixing cannot be corrected in subsequent
projection steps.

2. Next we show that the projection operation is lossy, i.e removes the norm of latent representation under some condition.
Hence after sufficient steps, INLP could destroy all the information in latent representation.

Proof of Theorem 2.2. First Claim. Let cp(z) = wpzp +wmzm be the linear concept-probing classifier trained to predict
the probing label yp from the latent representation z. Since all the assumptions of Lemma 2.1 are satisfied for the probing
classifier cp(z), it is spurious using, i.e., wm ̸= 0 and wp ̸= 0. Since the concept-probing label yp is binary the projection
matrix for the first step of INLP removal is defined as P 1

N(W ) = I − ŵŵT where ŵT = [ŵm, ŵp], ŵm and ŵp are the
unit norm parameters of cp(z) i.e wm and wp respectively. On applying this projection on the latent space representation zi
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we get: [
z
i(1)
m

z
i(1)
p

]
=

(
I −

[
ŵm

ŵp

] [
ŵm ŵp

])[zm
zp

]
(67)

=

[
zm
zp

]
−
(
cp(z

i)

∥w∥

)
·
[
ŵm

ŵp

]
(68)

=

[
zm − c̃p(z

i)ŵm

zp − c̃p(z
i)ŵp

]
define c̃p(zi) :=

(
cp(z

i)

∥w∥

)
(69)

=

[
g(zm, zp)
h(zm,xp)

]
(70)

Next we will show that g(zm, zp) ̸= zm and h(zm,xp) ̸= zp. For g(zm, zp) = zm we need:

��zm − c̃p(z
i) · ŵm =��zm (71)

c̃p(z
i) · ŵm = 0 (72)

We know that wm ̸= 0 and since the probing classifier is trained using max-margin objective using the MM-Denominator
formulation we have yip · cp(zi) ≥ 1 from Eq 3. Thus cp(zi) ∈ (∞,−1] ∪ [1,∞) and c̃p(zi) ∈ (∞, −1

∥w∥ ] ∪ [ 1
∥w∥ ,∞) ̸= 0.

Since wm ̸= 0 and c̃p(zi) ̸= 0, Eq 72 cannot be true hence g(zm, zp) ̸= zm. Similarly for h(zm,xp) = zp we need:

��zp − c̃p(z
i) · ŵp =��zp (73)

c̃p(z
i) · ŵp = 0 (74)

And again since wp ̸= 0 and c̃p(zi) ̸= 0, Eq 74 cannot be true hence h(zm, zp) ̸= zp. Hence both concept-feature zp and
the main-task feature zm got mixed after the first step of projection.

Next, the following lemma proves that the above projection matrix (P 1
N(W )) is non-invertible. The subsequent steps of

INLP applies projection transformation which can be combined into one single matrix P>1
N(W ) =

∏
j>1 P

j
N(W ). In order

for mixing to be reversed, we need P>1
N(W ) × P 1

N(W ) = I , thus we need P>1
N(W ) = (P 1

N(W ))
−1 which is not possible from

Lemma D.1. Hence the mixing of main-task feature and the concept-feature which happened after first step of projection
couldn’t be corrected in the subsequent steps of INLP thus completing the first part of our proof.
Lemma D.1. The projection matrix P 1

N(W ) at any projection step of INLP is non invertible.

Proof of Lemma D.1. The projection matrix for binary target case is defined as P := P 1
N(W ) = I−A whereA = ŵŵT be a

n×nmatrix. We can see thatA is a symmetric matrix. From Eq. 6 in (Weisstein)), every symmetric matrix is diagonalizable.
Hence, we can write A = QΛQT , where Q is a some orthonormal matrix such that QQT = I and Λ = diag(λ1, . . . , λn)
be a n× n diagonal matrix where the diagonal entries (λ1 . . . λn) are the eigen-values of A. Since QQT = I we can write
P = I −A = QQT −QΛQT = Q(I − Λ)QT . For the projection matrix P to be invertible P−1 should exist. We have:

P−1 =
(
Q(I − Λ)QT

)−1

(75)

= (QT )−1(I − Λ)−1Q−1 (76)

= Q(I − Λ)−1QT (77)

So projection matrix is only invertible when (I − Λ) is invertible. We will show next that (I − Λ) is not invertible thus
completing our proof. We have I − Λ = diag(1− λ1, . . . , 1− λn), hence:

(I − Λ)−1 = diag(
1

1− λ1
, . . . ,

1

1− λ2
) (78)

Now, if one of the eigen values of A is 1, then the diagonal matrix (I − Λ) is not invertible. If one of the eigen values of A
is 1, then there exist an eigen-vector x such that Ax = ŵŵT × x = 1 × x. The vector x = ŵ is the eigen vector of A
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with eigen-value 1: Aŵ = ŵŵT × ŵ = 1× ŵ since ŵT × ŵ = 1 as it is a unit vector. Hence the projection matrix is not
invertible.

Second Claim. Now for proving these second statement, we will make use of the following lemma:
Lemma D.2. After every projection step of INLP, the norm of every latent representation zi decreases, i.e., ∥zi(k)∥ <
∥zi(k−1)∥ for step k and k − 1, if 1) zi(k−1) ̸= 0 and 2) the parameters of probing classifier in step “k” i.e ŵk don’t lie in
the space spanned by parameters of previous concept-probing classifier, span(ŵ1, . . . , ŵk−1).

Proof of Lemma D.2. After k − 1-steps of INLP let the latent space representation zi be denoted as zi(k−1). Let ŵk be the
parameters of classifier cp(zk−1) trained to predict the concept–probing label yp which we want to remove at step k. Then
before the projection step in the kth iteration of the INLP we can write zk−1 as:

zk−1 = zŵkŵk + zN(ŵk)N(ŵk) (79)

where {ŵk, N(ŵk)} is the basis set and N(ŵk) is the null-space of ŵk . The parameter wk in this new basis is:

wk = Iŵkŵk + 0N(ŵk) (80)

where Iŵk is identity matrix with dimension dŵk × dŵk . Now, in this new basis when we project the zk−1 to the null space
of ŵk we have:

zk = PN(ŵk)z
k−1 (81)

=

(
I −

[
Iŵk

0

] [
Iŵk 0

])[ zŵk

zN(ŵk)

]
(82)

=

[
zŵk

zN(ŵk)

]
−
[
zŵk

0

]
(83)

=

[
0

zN(ŵk)

]
(84)

Thus the norm of ∥zk∥ =
√
∥zN(ŵp)∥+ 0 is less that ∥zk−1∥ =

√
∥zŵk∥2 + ∥zN(ŵk)∥2 if zŵk ̸= 0. Next we will show

that zŵk cannot be zero. From Eq 84, we observe that at any step “k” INLP removes the part of the representation from
zk−1 which is in the direction of ŵk i.e. zŵk . Consequently, a sequence of removal steps with parameters ŵ1, . . . , ŵk−1

will remove the part of z which lies in the span(ŵ1, . . . , ŵk−1). Thus zŵk = 0 if ŵk lies in the span of parameters of
previous classifier i.e span(ŵ1, . . . , ŵk−1) which violates the assumption 2) in Lemma D.2, thus completing our proof.

Given parameters of current step concept-probing classifier doesn’t lie in the span of previous probing classifier’s parameter,
the norm of the latent representation is decreasing in every step. Thus given large number of INLP projection iteration
∥zi(∞)∥ → 0 thus completing the proof of the second statement. The proof of Lemma D.1 and Lemma D.2 is given
below.

Remark. The following lemma from (Ravfogel et al., 2020) tells us some of the sufficient condition when the parameters
of probing classifier at current iteration will not be same as previous step:
Lemma D.3 (Lemma A.1 from (Ravfogel et al., 2020)). If the concept-probing classifier is being trained using SGD
(stochastic gradient descent) and the loss function is convex then parameter of probing classifier at step k i.e wk is
orthogonal to parameter at step k − 1 i.e wk−1.

We conjecture that Lemma D.3 will be true for any loss since after k − 1 steps of projection, the component of z in
the direction of span(w1, . . . ,wk−1) will be removed. Hence the concept-probing classifier should be orthogonal to
span(w1, . . . ,wk−1) in order to have non-random guess accuracy on probing task.
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E. Adversarial Removal: Setup and Proof
E.1. Adversarial Setup

As described in Sec 2.3, let h : X → z be an encoder mapping the input xi to latent representation zi. The main task
classifier cm : Z → Ym is applied to predict the main task label yim from the input latent representation zi for every input
xi.

As described in Sec 2.3, the goal of adversarial-removal method, henceforth referred as AR, is to remove any unde-
sired/sensitive/spurious concept from the latent representation Z. Once the concept is removed from latent representation
any (main-task) classifier using the latent representation Z will not be able to use them (Ganin & Lempitsky, 2015; Xie
et al., 2017; Elazar & Goldberg, 2018). These methods train jointly trains the main-task classifier cm(z) and the probing
classifier cp : Z → Yp which is adversarially trained to predict the concept label yip from latent representation zi. Hence,
AR methods optimize the following two objectives simultaneously:

argmin
cp

L(cp(h(z)), yp) (85)

arg min
h,cm,cp

{
L(cm(h(z), ym)− L(cp(h(z), yp)

}
(86)

Here L(·) is the loss function which estimates the error given the ground truth ym/yp and corresponding prediction
cm(z)/cp(z). A valid equilibrium point of the above min-max game (and the desired solution) is an encoder h such that it
removes all the features from latent space useful for prediction of yp while keeping intact other features causally-derived
from the main-task prediction. In practice, the optimization to above min-max game is performed using gradient-reversal
(GRL) layer ((Ganin & Lempitsky, 2015)). It introduces an additional layer gλ between the latent representation h(z) and
the adversarial classifier cp(z). The gλ layer acts as an identity layer (i.e., has no effect) during the forward pass but scales
the gradient by (−λ) when back-propagating it during the backward pass. Thus resulting combined objective is:

arg min
h,cm,cp

{
L(cm(h(z)), ym) + L(cp(gλ(h(z))), yp)

}
(87)

E.2. Adversarial Proof

Theorem 2.3. Let the latent representation Z satisfy Assm 2.1, h2(z) be a linear transformation s.t. h2 : Z → ζ, main
classifier be cm(ζ) = wcm · ζ and the adversarial classifier be cp(ζ) = wcp · ζ. Let all the assumptions of generalized
Lemma 2.1 (Lemma C.5 in Suppl C.4) be satisfied for main-classifier cm(·) when using Z directly as input and Assm 2.2 be
satisfied on Z w.r.t. adversarial-task. Let h∗2(z) be the desired encoder which is successful in removing zp from ζ. Then
there exists an undesired/incorrect encoder h2(z) such that ζ = h2(z) = f(zm, zp) for some function “f” and the main
classifier using it cm(h2(z)) has bigger margin than cm(h∗2(z)) and has,

1. Acc(cp(h2(z)), yp) = Acc(cp(h
∗
2(z)), yp) when adversarial probing classifier cp(·) is trained using any learning

objective. Thus the undesired encoder h2(z) is indistinguishable from desired encoder h∗2(x) in terms of adversarial task
prediction accuracy but better for main-prediction task in terms of max-margin objective.

2. L(cp(h2(z)), yp) > L(cp(h
∗
2(z)), yp) under Assm 2.2 and Assm 2.4 where L is either max-margin or cross-entropy

loss used for training cp(·). Thus undesired encoder h2(z) is preferable over desired encoder h∗2(z) for both main and
adversarial task objective.

Proof of Theorem 2.3. Let the main classifier be of form cm(ζ) = wcm · ζ where wcm and ζ are dζ dimensional vectors.
Since both parameters wcm and ζ are learnable, for ease of exposition we constrain wcm to be [1, 0, . . . , 0]. This constraint
on wcm is w.l.o.g. since wcm uses the latent representation ζ by projecting it into one specific direction of ζ encoded by
h2(z). We constrain that direction to be the first dimension of ζ. Since the encoder is trainable it could learn to encode that
information in the first dimension of ζ. Thus, effectively a single dimension of the representation ζ encodes the main-task
information. Thus the main classifier is effectively of form cm(ζ) = w0

cm × ζ0 = 1× ζ0 where w0
cm and ζ0 are the first

element of wcm and ζ respectively and w0
cm = 1. We can now write the goal of the adversarial method as removing the

information of zp from ζ0 , because the other dimensions are not used by the main classifier . The the adversarial classifier
can be written effectively as cp(ζ) = β × ζ0 where β ∈ R is a trainable parameter. Since both the main and adversarial
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classifier are using only ζ0, the second encoder can be simplified as ζ := ζ0 := h2(z) = wm · zm +wp · zp where ζ ∈ R
and wm and wp are the weights that determine the first dimension of ζ. . Also, let the desired “correct" second encoder
which is successful in removing the spurious-concept zp from ζ be h∗2(z) = w∗

m · zm.

1. First claim. The ideal main-classifier with desired encoder can be written as, cm(h∗2(z)) = 1 × h∗2(z) = w∗
m · zm.

Therefore, it can be trained using same MM-Denominator formulation of max-margin objective and would satisfy the
constraint in Eq 3:

m(cm(h∗2(z
i))) = m(h∗2(z

i)) = yim · h∗2(zi) ≥ 1 (88)

for all the points xi with latent representation zi and m(.) is the numerator of the distance of point from the decision
boundary of classifier (Eq 1).

However, the main-task classifier which does not use the desired encoder is of the form, cm(ζ) = 1× h2(z) = wm · zm +
wp · zp. Since this main-task classifier is also trained using max-margin objective by MM-Denominator formulation, it
would satisfy the constraint in Eq 3:

m(cm(h2(z
i))) = m(h2(z

i)) = yim · h2(zi) ≥ 1 (89)

Since all assumptions of Lemma C.5 are satisfied, we use the lemma to conclude that the main-task classifier trained using
max-margin objective will be spurious-using i.e wm ̸= 0 and wp ̸= 0 (Def C.2). Hence there exists an undesired/incorrect
second encoder h2(z) such that the main classifier cm(h2(z)) has bigger margin than cm(h∗2(z)).

Given that there exists a main task classifier with an undesired encoder that has a higher accuracy than the one with the
desired encoder, our next goal is to show that the accuracy of the adversarial classifier remains the same irrespective of
whether the desired or undesired encoder h2(z) is used. The accuracy of the adversarial classifier cp(ζ) = β × ζ, using the
desired/correct encoder ζ = h∗2(z) is given by:

Accuracy(cp(h
∗
2(z))) =

∑N
i=1 1

(
sign

(
β · h∗2(zi)

)
== yip

)
N

(90)

where 1(·) is an indicator function which takes the value 1 if the argument is true otherwise 0, and sign(γ) = +1 if γ ≥ 0
and −1 otherwise. Combining Equations 88 and Eq 89, since yim ∈ {−1, 1}, we see that whenever h2(zi) > 1 we also
have h∗2(z

i) > 1 and similarly whenever h2(zi) < −1, we have h∗2(z
i) < −1. Thus,

h2(z) · h∗2(z) > 0 (91)

From Eq 91, h∗2(z
i) and h2(zi) has the same sign for every input zi. Thus we can replace h∗2(z

i) with h2(zi) in the above
equation and we have:

Accuracy(cp(h
∗
2(z))) =

∑N
i=1 1

(
sign

(
β · h∗2(zi)

)
== yip

)
N

=

∑N
i=1 1

(
sign

(
β · h2(zi)

)
== yip

)
N

= Accuracy(cp(h2(z)))

thus completing the first part our proof.

2. Second claim. In the first part of proof we have seen that from Lemma C.5 there exist an incorrect second-encoder
h2(z) such that margin of main-task classifier cm(h2(z)) is larger than cm(h∗2(z)). Next, we show that adversarial classifier
cp(β · ζ) when using incorrect/undesired second-encoder ζ = h2(z) for predicting concept-label yp will have a higher
prediction loss as compared to the case when using correct/desired second-encoder ζ = h∗2(z). Under such a scenario, the
incorrect encoder will be preferred by both the main and the adversarial task objective over the correct one. Note that the
adversarial-probing classifier prefers a higher prediction loss since this will imply that the latent representation generated by
the second encoder is less predictive of the concept-causal feature we are trying to remove.
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Construction of the undesired/incorrect encoder. Let any margin point of main-task classifier using the correct encoder
be denoted by zµ,i, where µ, denotes the points is margin-point of main-task classifier. From Assm C.2 (in Lemma C.5), we
know there exist some unit vector ϵ̂p ∈ Rdp such that spurious concept-feature (zp) of the margin points of the main-task
classifier (zµ,i) using the correct encoder is linearly separable wrt main-task label such that:

yim
(
ϵ̂p · zµ,i

p

)
> 0 ∀(zµ,i, yim) (92)

and from Lemma C.5 there exists an incorrect encoder hα2 (z) such that the main task classifier cm(h2(z)) has bigger margin
than cm(h∗2(z)) when α ∈ (αlb, 1), where αlb is given by Eq 30 in Lemma C.5:

hα2 (z) = α∥w∗
m∥
(
ŵ∗

m · zm
)
+
√

1− α2∥w∗
m∥
(
ϵ̂p · zp

)
(93)

where w∗
m is the parameter of the correct/desired encoder h∗2(x) = w∗

m · zm. We now use the assumptions in the theorem
statement for the second claim. From Assm 2.2, we have a fully predictive concept-feature zp for prediction of adversarial
label yp such that for some unit vector ŵp ∈ Rdp we have:

yip
(
ŵp · zi

p

)
> 0 ∀(zi, yip) (94)

Now from Assm 2.4, we have yip = yim for every margin point of the desired/correct main-task classifier using the
desired/correct encoder h∗2(z). Thus we can assign ϵ̂t := ŵt which satisfies the inequality in Eq 92. Thus our incorrect
encoder hα2 (z) take the following form:

hα2 (z) = α∥w∗
m∥
(
ŵ∗

m · zm
)
+
√

1− α2∥w∗
m∥
(
ŵp · zp

)
(95)

We will use the following two lemmas to prove that the adversarial prediction loss will be bigger for the incorrect/undesired
encoder than the correct/desired one.

Next the following lemmas will show that w.r.t. max-margin and cross-entropy objective, the incorrect/undesired encoder’s
loss is greater than the correct/desired encoder’s loss. We state two simpler lemmas first and then define the two main
lemmas.
Lemma E.1 (Negative adv-labels). For all the points with negative adversarial label i.e. yip = −1, we have hα2 (z

i) < h∗2(z
i)

Lemma E.2 (Positive adv-labels). For all the points with positive adversarial labels i.e yip = +1 we can choose an
α ∈ (αlb, 1) such that hα2 (z

i) > h∗2(z
i).

Definition E.1 (Boundary-Distance Based Loss). A loss function L belongs to boundary-distance-based loss family, if the
prediction loss increases as the distance from the boundary decreases. The distance from the boundary of a classifier “c”
for a point zi is calculated by dc(zi) := Mc(z

i) (Eq 1). For mis-classifed points the distance from decision boundary is
negative and for correctly classified points the distance from decision boundary is positive.
Lemma E.3. Given Lemma E.1 and Lemma E.2 holds, if the loss function L is boundary-distance-based (Def E.1),
then L(cp(h2(zi)), yip) > L(cp(h

∗
2(z

i)), yip) for every example (zi, yip). Cross-Entropy and Max-margin loss belongs to
boundary-distance-based loss.
Lemma E.4. Max-margin and Cross-Entropy Loss belongs to the boundary-distance-based loss family (Def E.1) when the
norm of parameters of classifier is fixed.

Lemma E.3 and Lemma E.4 state that there exists an incorrect/undesired encoder hα2 (z) which has the same norm as
correct/desired encoder h∗2(z), such that L(cp(hα2 (z

i)), yip) > L(cp(h
∗
2(z

i)), yip) where L is max-margin or cross-entropy
loss for all zi. Hence the overall loss which is the sum of the loss for every sample is also greater for adversarial classifier
with incorrect encoder hα2 (z). Thus the incorrect encoder is preferred over the correct encoder for both the main task (bigger
margin) and the adversarial task objective (bigger prediction loss).

We now prove all the required lemmas stated in the above proof.

Proof of Lemma E.1. From Eq 94, for the points having adversarial label yip = −1, we have ŵp · zi
p < 0. Now, since
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0 < αlb < α < 1 we have
√
1− α2∥w∗

m∥ > 0, and can write,

α∥w∗
m∥
(
ŵ∗

m · zi
m

)
< ∥w∗

m∥
(
ŵ∗

m · zi
m

)
(96)

α∥w∗
m∥
(
ŵ∗

m · zi
m

)
+
√

1− α2∥w∗
m∥
(
ŵp · zi

p

)
< ∥w∗

m∥
(
ŵ∗

m · zi
m

)
(97)

hα2 (z
i) < h∗2(z

i) (98)

since
√
1− α2∥w∗

m∥
(
ŵp · zi

p

)
< 0 for points with yip = −1, thus completing our proof.

Proof of Lemma E.2. We have to show that there exist an α ∈ (αlb, 1) such that hα2 (z
i) > h∗2(z

i) for every zi in the dataset.
For hα2 (z

i) > h∗2(z
i) we need:

α���∥w∗
m∥
(
ŵ∗

m · zi
m

)
+
√
1− α2���∥w∗

m∥
(
ŵp · zi

p

)
>���∥w∗

m∥
(
ŵ∗

m · zi
m

)
(99)√

1− α2
(
ŵp · zi

p

)
> (1− α)

(
ŵ∗

m · zi
m

)
(100)

ŵp · zi
p

ŵ∗
m · zi

m

>

√
����
(1− α)2

����(1− α)(1 + α)
(101)

γ2(zi) >
1− α

1 + α
(102)

γ2(zi) + αγ2(zi) > 1− α (103)

α(1 + γ2(zi)) > 1− γ2(zi) (104)

α >
1− γ2(zi)

1 + γ2(zi)
(105)

since α ̸= 1. We defined γ(zi) =
ŵp·zi

p

ŵ∗
m·zi

m
, where the denominator (ŵ∗

m · zi
m) ̸= 0 since yim(ŵ∗

m · zi
m) ≥ 1 and

yim ∈ {−1, 1} (Eq 88). Also, from Eq 94 we have (ŵp · zi
p) ̸= 0, thus γ2(zi) > 0, hence we have 0 < 1−γ2(zi)

1+γ2(zi) < 1.
Hence we can choose an α to construct h2(z)) such that,

α ∈

(
max

i

{
αlb,

1− γ2(zi)

1 + γ2(zi)

}
, 1

)
. (106)

Then we have 1) hα2 (zi) > h∗2(z
i) for all zi and 2) margin of main classifier using incorrect/undesired encoder hα2 (z) is

bigger than correct/desired encoder (h∗2(z)), thus proving our lemma.

Proof of Lemma E.3. From Lemma E.2 we have hα2 (z) > h∗2(z) for all the points which have adversarial label yip = +1
and the value of α given by Eq 106. Since, β is a trainable parameter, the adversarial classifier could choose any value
for it which will help it increase the adversarial loss. Let’s set trainable parameter β = (−1) for the adversarial classifier
cp(h

α
2 (z)) = β · hα2 (z) = −hα2 (z) and cp(h∗2(z)) = β · h∗2(z) = −h∗2(z). Since by construction the norm of parameters

of both hα2 (z) and h∗2(z) = w∗
m (Eq 93) , we have:

hα2 (z
i) > h∗2(z

i) (107)

(−1) · hα2 (zi) < (−1) · h∗2(zi) (108)

cp(h
α
2 (z

i)) < cp(h
∗
2(z

i)) (109)

yip · cp(hα2 (zi))

∥w∗
m∥

<
yip · cp(h∗2(zi))

∥w∗
m∥

(110)

Mcp(hα
2 (z)(z

i) <Mcp(h∗
2(z)

(zi) (111)
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for all the points with yip = +1. Similarly for the points with adversarial label yip = −1, from Lemma E.1 we have
hα2 (z) < h∗2(z) and:

hα2 (z
i) < h∗2(z

i) (112)

(−1) · hα2 (zi) > (−1) · h∗2(zi) (113)

cp(h
α
2 (z

i)) > cp(h
∗
2(z

i)) (114)

yip · cp(hα2 (zi))

∥w∗
m∥

<
yip · cp(h∗2(zi))

∥w∗
m∥

(115)

Mcp(hα
2 (z)(z

i) <Mcp(h∗
2(z)

(zi) (116)

for all points with yip = −1. In Def E.1, we have defined the distance of an input from decision boundary of classifier “c” as
dc(z

i) := Mc(z
i). Hence from Eq 111 and 116 we have

dcp(hα
2 (z)(z

i) < dcp(h∗
2(z)

(zi) (117)

for all zi. So, the distance of all the latent-points from margin is smallar when adversarial classifier cp uses incor-
rect/undesired encoder hα2 (z) than correct/desired h∗2(z). If the loss function “L” is boundary-distance-based loss (Def E.1),
then L(chα

2 (zi), y
i
p) > L(ch∗

2(z
i), y

i
p) for every zi, yip, thus completing our proof.

Proof of Lemma E.4. Max-Margin: From Eq 2, the max-margin loss (to be minimized) for a classifier “c” taking input zi is
defined as:

L(max-margin) = (−1)
{
min
i

Mc(z
i)
}

(118)

where ∥wc∥ are the parameters of the classifier “c”. If the distance of all the point from decision boundary of classifier
“c” i.e. dc(zi) := Mc(z

i) is decreasing, then mini Mc(z
i) is decreasing hence (−1) ·

{
mini Mc(z

i)
}

is increasing.
Max-margin loss in Eq 118 is increasing as the distance of points from boundary of classifier is decreasing. Thus from
(Def E.1) L(max-margin) belongs to boundary-distance-based family of losses.

Cross-Entropy: Next for the binary-cross-entropy loss for a linear classifier c(zi) = σ(wc · zi) taking input zi is defined as

L(x-entropy) = − log(c(zi)) when yi = 1 (119)

= − log(1− c(zi)) when yi = −1 (120)

where σ(x) = 1
1+exp−x is the sigmoid function. In E.1 the distance of a point from the decision boundary is defined as:

dc(z
i) := Mc(z

i) =
yi · c(zi)

∥wc∥
(121)

When yi = 1, keeping ∥wc∥ as fixed, if the distance of the point decreases the from Eq 121, c(zi) decreases. Hence the
cross entropy loss given by:

L(x-entropy) = −yi · log(c(zi)) = − log(c(zi)) (122)

increases since − log(c(zi)) is a decreasing function. Similarly for the points with yi = −1, keeping ∥wc∥ fixed, if the
distance of the point decreases, from Eq 121, c(zi) increases. Then the cross-entropy loss given by:

L(x-entropy) = −(1− yi) · log(1− c(zi)) = − log(1− c(zi)) (123)

increases, since − log(1 − c(zi)) is an increasing function. Cross-entropy loss with fixed parameter norm is increasing
as the distance of points from the boundary of classifier is increasing. Thus from (Def E.1) L(max-margin) belongs to
boundary-distance-based family of losses.
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F. Extension to real-world data: A metric for quantifying degree Of spuriousness
Our theoretical analysis shows that probing-based removal methods fail to make the main task classifier invariant to unwanted
concept. However, to verify whether the final classifier is using the concept or not, the theorem statements require knowledge
of the concept’s features zp. For practical usage, we propose a metric that quantifies the degree of failure or spuriousness for
both the main and probing classifier. For simplicity, we define it assuming that both main task and concept are binary.

Let Dm,p be the dataset where for every input xi we have both the main task label ym and the concept label yp. We define
2× 2 groups, one for each combination of (ym, yp). Without loss of generality, assume that the main-task label ym = 1 is
spuriously correlated with concept label yp = 1 and similarly ym = 0 is correlated with yp = 0. Thus, (ym = 1, yp = 1)
and (ym = 0, yp = 0) are the majority group Smaj while groups (ym = 1, yp = 0) and (ym = 0, yp = 1) make up the
minority group (Smin). We expect the main classifier to exploit this correlation and hence perform badly on Smin where the
correlation breaks. Following (Sagawa et al., 2020a), we posit that minority group accuracy i.e Acc(Smin) can be a good
metric to evaluate the degree of spuriousness. We bound the metric by comparing it with the accuracy on Smin of a “clean”
classifier that does not use the concept features.
Definition 2.2. Given a dataset, Dm,p = Smin ∪ Smaj containing binary task label and binary concept, let Acccm(Smin)
be the accuracy of the given main-task classifier (cm) on the minority group Smin and Acc∗(Smin) be the accuracy on the
minority group of a clean classifier that does not use the unwanted spurious concept. We define spuriousness score of “cm”

as: ψ(cm) =
∣∣∣1− Acccm (Smin)

Acc∗(Smin)

∣∣∣
To estimate Acc∗(Smin), we subsample the dataset such that yp takes a single value in the sample and train the main
classifier on it, as done by (Ravichander et al., 2021). Thus, probing label yp no longer is correlated with the main-task label
ym. There can be other ways to estimate it, e.g., by reweighting the data or using the accuracy on Smaj . However, we found
that the former had high variance and the latter requires an equal-noise assumption such that Acc(Smaj) = Acc(Smin) on a
clean main-task classifier.

G. Experimental Results
Theorems 2.2 and 2.3 show the failure of concept removal methods under a simplified setup and max-margin loss. But
current deep-learning models are not trained using max-margin objective and might not satisfy the required assumptions
(Assm 2.1,2.2,2.3,2.4). Thus, we now verify the failure modes on three real-world and one synthetic datasets, without
making any restrictive assumptions. We use RoBERTa ((Liu et al., 2019)) as default encoder and fine-tune it over each
real-world dataset. For Synthetic-Text dataset we use sum of pre-trained GloVe embeddings ((Pennington et al., 2014)) of
words in sentence as default encoder. For more details of experimental setup refer Suppl H.

G.1. Datasets: Main task and spurious/sensitive concept

Real-world data. We use three different real-world datasets: MultiNLI (Williams et al., 2018), Twitter-PAN16 (Rangel et al.,
2016) and Twitter-AAE (Blodgett et al., 2016). In MultiNLI dataset, given two sentences—premise and hypothesis–the
main task is to predict whether hypothesis entails, contradicts or is neutral with respect to premise. We simplify to a binary
task of predicting whether a hypothesis contradicts the premise or not. Since negation words like nobody,no,never and
nothing have been reported to be spuriously correlated with with the contradiction label (Gururangan et al., 2018b), We
create a ‘negation’ concept denoting the presence of these words. The goal is to remove the negation property from the NLI
model’s representation space. In Twitter-PAN16 dataset, the main task is to detect whether a tweet mentions another user or
not, as in (Elazar & Goldberg, 2018). The dataset contains gender label for each tweet, which we consider as the sensitive
concept to be removed from the main model’s representation. In Twitter-AAE dataset, again following (Elazar & Goldberg,
2018), the main-task is to predict binary sentiment labels from a tweet’s text. The tweets are associated with race of the
author, the sensitive concept that should be removed from the main model’s representation.

Synthetic-Text. To understand the reasons for failure, we introduce a Synthetic-Text dataset where it is possible to change
the input text based on a change in concept Here we can directly evaluate whether the concept is being used by the main-task
classifier by intervening on the concept (adding or removing) and observing the change in prediction scores. The main-task
is to predict whether a sentence contains a numbered word (e.g., one, fifteen, etc.). We introduce spurious concept (length)
by increasing the length of sentences that contain numbered words.

Predictive correlation. To assess robustness of removal methods, we create multiple datasets with different predictive
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Figure 4: Null-Space Removal Failure: For discussion see Sec G.2.

correlation between two labels ym and yp. The predictive correlation (κ) measures how informative one variable is for

predicting the other, κ = Pr(ym · yp > 0) =
∑N

i=1 1[ym·yp>0]

N , where N is the size of dataset and 1[·] is the indicator
function which is 1 if the argument is true otherwise 0. Predictive-correlation lies in κ ∈ [0.5, 1] where κ = 0.5 means
no-correlation and κ = 1 means the attributes are completely correlated. For complete description of all datasets and how
we vary the predictive-correlation, refer to Suppl H; and for additional results refer Suppl I.

G.2. Results: Null Space Removal

In general, for any model given as input to INLP, it may be difficult to verify whether the removal method removed the
correct features. Hence, we construct a benchmark where the input classifier is clean, i.e., it does not use the concept at all.
We do so by training on a subset of data with the same value of the property, as in (Ravichander et al., 2021). Since the
input classifier does not have any concept features in its representation, we should expect that INLP should not have any
effect on the main task classifier.

Eventually all task-relevant features are destroyed. We start with the Synthetic-Text dataset by training a clean classifier
on the main-task and input it to INLP for removing the sensitive concept. To keep the conditions favorable for INLP, both the
main task and sensitive-concept probing task can achieve 100% accuracy using their causally derived features respectively.
In Fig 4a, iteration 21-40 shows individual steps of null-space removal. Since, the given pre-trained classifier was clean i.e
no using the sensitive features, null-space removal shouldn’t have any effect on it. Colored lines show different datasets
used by INLP with different level of predictive correlation κ. We observe that for all value of κ, the main-task classifier’s
accuracy eventually goes to 50% random guess accuracy implying that the main-task related attribute has been removed
by the removal process, as predicted by Theorem 2.2. Higher the value of correlation κ, faster the removal of main-task
attribute happens. We obtain a similar pattern over the real-world datasets, MultiNLI, Twitter-PAN16 and Twitter-AAE.
Fig 4d,4e and 4f show a decrease in the main-task accuracy to random-guess even when the input classifier for each dataset
is ensured to be clean, thus demonstrating the failure of INLP method.

Early stopping increases the reliance on spurious features. To avoid the full collapse, a stopping criteria of INLP is to
stop when the main-task classifier’s performance drops (Ravfogel et al., 2020). In Fig 4b we measure the sensitivity of
Synthetic-Text main-task classifier w.r.t. to sensitive concept by changing the feature in input sentences corresponding to
sensitive concept and measuring the change in main-task classifier prediction probability ∆Prob. At lower iterations of
INLP, the change in main-task output due to change in sensitive concept’s value, ∆Prob, is higher than that of the input
classifier. For example, for κ = 0.8, the main-task classifier’s performance drops at iteration 27, but it has a high ∆Prob
≈ 25% as shown in Fig 4b. Hence it is possible that stopping prematurely will lead us to a classifier which is more unfair or
reliant to sensitive concept than it was before, consistent with the first statement in Theorem 2.2 stating that INLP will lead
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Figure 5: Adversarial Removal Failure: For discussion see Sec G.3.

to mixing of features in latent space.

Failure of causally-inspired probing like Amnesic probing. Amnesic Probing (Elazar et al., 2021) declares that a sensitive
concept is being used by the model if, after removal of the concept from from the latent representation using INLP, there is a
drop in the main-task performance. But Fig 4a, 4d, 4e and 4f show that even when the input classifier for their corresponding
main-task is clean, i.e., does not use the sensitive concept, INLP leads to drop in performance of the main-classifier. Hence,
removal-based methods like Amnesic probing will falsely claim that the sensitive concept is being used.

G.3. Results: Adversarial Removal Method

We demonstrate the failure of adversarial-removal method (AR) in removing the spurious/unwanted concept from the main
classifier. Here we compare the standard ERM training of the main classifier with AR method over the same number of
epochs (20). We follow the training procedure of (Elazar & Goldberg, 2018), and conduct a hyper-parameter sweep on the
adversarial training strength to select the value which is most effective in removing the unwanted property. For more details,
refer to Suppl H.

Cannot remove the spurious concept fully. For MultiNLI, Fig 5b shows the spuriousness score (Def 2.2) of ERM and AR
classifiers as we vary the predictive correlation (κ) between the main-task label and sensitive concept label in the training
dataset. While the spuriousness score for classifier trained using AR (blue curve) is lower than that of ERM for all values
of κ, it is substantially away from zero. Thus, the AR method fails to completely remove the sensitive/spurious concept
completely from the latent representation. Fig 5c shows the possible reason using the sensitive concept probing classifier
accuracy for ERM and AR. The probe accuracy after adversarial training doesn’t decrease to 50% but stops at accuracy
proportional to the predictive correlation κ. This is expected since even if the AR would have been successful in removing
the sensitive feature, the main-task feature would still be predictive of sensitive concept label by κ due to the spurious
correlation between them. However, the converse is not true: an accuracy of κ does not imply that sensitive concept is fully
removed. The results substantiate the first statement of Theorem 2.3: given two representations where one (desired) does
not have concept features while the other (undesired) contains the sensitive concept features, the undesired one may be
better for the main task loss even as both may have the same probing accuracy. Fig 5d, 5e and 5f show the spuriousness
score of AR in comparison to classifier trained with ERM on Twitter-PAN16, Twitter-AAE and Synthetic-Text datasets
respectively. The failure of AR is worse here: there is no significant reduction in spuriousness score for AR in comparison
to ERM. In case of Synthetic-Text dataset, ERM has zero spuriousness score but AR have non-zero score. We expand more
on this observation in Suppl I.3.

Comparison with previous work. Our experimental results extend the observations from previous work on adversarial
removal failure (Elazar & Goldberg, 2018). If post-removal the latent representation used by the main-task classifier is still
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predictive of the removed concept, (Elazar & Goldberg, 2018) claimed it as a failure of the removal method. However, this
claim may not be correct since a feature could be present in the latent space and yet not used by model (Ravichander et al.,
2021).Therefore, we propose the spuriousness score for the main classifier as a metric to verify if a feature is being used. We
also confirm the observation from (Elazar & Goldberg, 2018) that adversarial removal can fail even if there is no correlation
between concept and task label (κ = 0.5), and extend their work by showing failure modes on multiple values of κ. For
more details on verifying this observation with other metrics and other ablations, see Suppl I.3.

Ablations. In Suppl., we report results on using BERT instead of RoBERTa as the input encoder (Suppl. I.2, I.3), the effect
of using different modeling choices like loss-function, regularization, e.t.c. (I.4), and the behavior of probing classifiers
when concept is not there in latent space (I.1).

H. Experimental Setup
H.1. Dataset Description

As described in Sec G, we demonstrate the failure of Null-Space Removal (Sec G.2) and Adversarial Removal (Sec G.3)
in removing the undesired concept from the latent representation on three real world datasets: MultiNLI (Williams et al.,
2018), Twitter-PAN16 (Rangel et al., 2016) and Twitter-AAE (Blodgett et al., 2016); and a synthetic dataset, Synthetic-Text.
The detailed generation and evaluation strategies for each dataset are given below.

MultiNLI Dataset. In MultiNLI dataset, given two sentences—premise and hypothesis—the main-task is to predict
whether the hypothesis entails, contradicts or is neutral to the premise. As described in Sec G, we simplify it to a binary task
of predicting whether a hypothesis contradicts the premise. The binary main-task label, ym = 1 when a given hypothesis
contradicts the premise otherwise it is -1. That is, we relabel the MNLI dataset by assigning label ym = 1 to examples with
contradiction labels and ym = −1 to the example with neutral or entailment label. It has been reported that the contradiction
label is spuriously correlated with the negation words like nobody,no,never and nothing(Gururangan et al., 2018b). Thus, we
created a ‘negation’ concept denoting the presence of these words in the hypothesis of a given (hypothesis, premise) pair.
The concept-label yp = 1 when the negation-concept is present in the hypothesis otherwise it is −1.

The standard MultiNLI dataset has approximately 90% of example in training set, 5% as publicly available development set
and the rest of 5% in a separate held out validation set accessible through online competition leader-board not accessible to
the public. Thus, we create our own train and test split by subsamping 10k examples from the initial training set, converting
it into binary contradiction vs. non-contradiction labels, labelling the negation-concept label, and splitting them into 80-20
train and test split. For pre-training a clean classifier that does not use the spurious-concept, we create a special training
set following the method described in Sec H.2. For evaluating the robustness of both null-space and adversarial removal
methods, we create multiple datasets with different predictive-correlation as described in Sec H.3 .

Twitter-PAN16 Dataset. In Twitter-PAN16 dataset (Rangel et al., 2016), following (Elazar & Goldberg, 2018), given
a tweet, the main task is to predict whether it contain a mention to another user or not. The dataset contains manually
annotated binary Gender information (i.e Male or Female) of 436 Twitter user with atleast 1k tweets each. The Gender
annotation was done by assessing the name and photograph of the LinkedIn profile of each user (Elazar & Goldberg, 2018).
The unclear cases were discarded in this process. We consider “Gender” as a sensitive concept that should not be used for
main-task prediction. The dataset contains 160k tweets tweets for training and 10k tweets for test. We merged the full
dataset, subsampled 10k examples, and created a 80-20 train and test split. For pre-training a clean classifier, we create a
special training set following the method described in Sec H.2. To generate datasets with different predictive correlation,
we follow the method from H.3. The dataset is acquired and processed using the code2 made available by the (Elazar &
Goldberg, 2018).

Twitter-AAE Dataset. In Twitter-AAE dataset (Blodgett et al., 2016), again following (Elazar & Goldberg, 2018), the
main-task is to predict a binary sentiment (Positive or Negative) from a given tweet. The dataset contain 59.2 million tweets
by 2.8 million users. Each tweet is associated with “race” information of the user which is labelled by taking both words in
tweet and geo-location of user into account. We consider “race” as sensitive concept which should not be used for the main
task of sentiment prediction. Following (Elazar & Goldberg, 2018), we use the AAE (African America English) and SAE

2The code for Twitter-PAN16 and Twitter-AAE dataset acquisition is available at: https://github.com/yanaiela/
demog-text-removal

https://github.com/yanaiela/demog-text-removal
https://github.com/yanaiela/demog-text-removal
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(Standard American English) as a proxy for non-Hispanic blacks and non-Hispanic whites race. Again, we subsampled
10k examples with 80-20 split from the dataset and followed the method described in Sec H.2 and H.3 to generate a clean
dataset for pre-training a clean classifier and generating a dataset with different predictive correlation respectively.

Synthetic Dataset. To accurately evaluate the whether a classifier is using the spurious concept or not, we introduce a
Synthetic-Text dataset where it is possible to change the text input based on the change in concept (thus implementing
Def 2.1). The main-task is to predict whether a sentence contains a numbered word (e.g. one, fifteen etc) or not, and
the spurious concept is the length of the sentence which is correlated with the main task label. To create a sentence with
numbered words, we randomly sample 10 words from the following set and combine them to form the sentence.

Numbered Words = one, two, three, four, five, six, seven, eight,
nine, ten, eleven, twelve, thirteen, fourteen,
fifteen, sixteen, seventeen, eighteen, twenty,
thirty, forty, fifty, sixty, seventy, eighty,
ninety, hundred, thousand

otherwise 10 non-numbered words randomly sampled from the following set were added to sentence :

Non-Numbered Words = nice, device, try, picture, signature, trailer,
harry, potter, malfoy, john, switch, taste,
glove, balloon, dog, horse, switch, watch,
sun, cloud, river, town, cow, shadow,
pencil, eraser

Next, we introduce the spurious concept (length) by increasing the length of the sentences which contain numbered words.
We do so by adding a special word “pad” 10 times. In our experiment we used 1k examples created using the above described
method and create 80-20 split for train and test set. Again, we follow the method described in Sec H.2 and H.3 to generate a
clean dataset for training a clean classifier and to generate datasets with different predictive correlations respectively.

H.2. Creating a “clean” dataset with no spurious correlation with main-label

To construct a new dataset with no spurious correlation between the main-task and the concept label, we subsample only
those examples from the the given dataset which have a fixed value of the spurious-concept label (yp). Thus, if we train
main-task classifier using this dataset, it cannot use the spurious-concept since they are not discriminative of the main task
label (Ravichander et al., 2021).

In MultiNLI dataset we select only those examples which have no negation words in the sentence for the main-task for
creating a clean dataset. Similarly, for Twitter-PAN16 dataset, we only select those examples which have gender label
yp = −1 in the processed dataset. . And for Twitter-AAE dataset, we only select those examples which have non-Hispanic
whites race label.

H.3. Creating datasets with spurious correlated main and concept label

Since in our experiment, both the main-task label (ym) and concept label (yp) are binary (−1 or 1), they divide the dataset into
2× 2 subgroups for each combination of (ym, yp). In MultiNLI dataset, the contradiction label (ym = 1) is correlated with
the presence of negation words yp = 1, this implies that the not-contradiction label ym = −1 is also correlated with absence
of negation words in the sentence yp = −1. Thus, the input example with (ym = 1, yp = 1) and (ym = −1, yp = −1)
form the majority group, henceforth referred as Smaj while groups (ym = 1, yp = −1) and (ym = −1, yp = 1) forms
the minority group Smin. To evaluate the robustness of the removal methods, we create multiple datasets with different
predictive correlation (κ) between the two labels ym and yp where κ = P (ym · yp) > 0 as defined in Sec G. In other
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words, to create a dataset with a particular predictive correlation κ, we vary the size of Smaj and Smin. More precisely, the
predictive correlation can be equivalently defined in terms of the size of the these groups as:

κ =
|Smaj |

|Smaj |+ |Smin|
(124)

Similarly for Twitter-PAN16, Twitter-AAE and Synthetic-Text dataset, the we artificially create spurious correlation between
ym and yp by creating the Smaj and Smin to have the desired predictive correlation (κ).

H.4. Encoder for real datasets

For all the experiments on real datasets in Sec G we used RoBERTa as default encoder h. In Sec I, we report the results
when using BERT instead of RoBERTa as input encoder.

RoBERTa We use the Hugging Face(Wolf et al., 2019) transformers implementation of RoBERTa(Liu et al., 2019)
roberta-base model, starting with pretrained weights for encoding the text-input to latent representation. We use default
tokenizer and model configuration in our experiment.

BERT We use the Hugging Face(Wolf et al., 2019) transformers implementation of BERT(Devlin et al., 2019) bert-base-
uncased model, starting with pretrained weights for encoding the text-input to latent representation. We use default tokenizer
and model configuration in our experiment.

For both BERT and RoBERTa, the parameters of the encoder were fine-tuned as a part of training the main-task classifier for
null-space removal and then frozen. For adversarial removal, the encoder, main-task classifier and the adversarial probing
classifier are trained jointly. For both BERT and RoBERTa, we use the pooled output ([CLS] token for BERT) from the the
model, as the latent representation and is given to main-task and probing classifier.

H.5. Encoder for synthetic Dataset

nBOW: neural Bag of Word. For Synthetic-Text dataset, we use sum of pretrained-GloVe embedding(Pennington
et al., 2014) of the words in the sentence to encode the sentence into latent representation. We used Gensim (Rehurek &
Sojka, 2011) library for acquiring the 100-dimensional GloVe embedding (glove-wiki-gigaword-100). Throughout all our
experiments, the word embedding was not trained. Post encoding, the latent representation were further passed through
hidden layers consisting of a linear transformation layer followed by relu (Agarap, 2018) non-linearity. We will specify how
many such hidden layers were used when discussing specific experiments in Sec I. The hidden layer dimensions were fixed
to 50 dimensional space.

H.6. Null-Space Removal Experiment Setup

For null-space removal (INLP) experiment on both real and synthetic dataset the following procedure is followed:

1. Pretraining Phase: A clean pretrained main-task classifier is trained using the clean dataset obtained by method
described in Suppl H.2. This is to ensure that the main-task classifier does not use the spurious feature, so that the
INLP method doesn’t have any effect on the main-task classifier. The main-task classifier is a linear-transformation on
the latent-representation provided by encoder followed by softmax layer for prediction. Both the encoder and main-task
classifier is fine-tuned during this process.

2. Removal Phase: Both the encoder and main-task classifier is frozen (made non-trainable). Next, a probing classifier is
trained from the latent representation of the encoder (refer Suppl H.4 and H.5 for more details about encoder). The
probing classifier is also a linear transformation layer followed by softmax layer for prediction.

The main-task classifier and encoder in the pretraining phase and the probing classifier in the removal phase is trained using
cross-entropy loss for both real and synthetic datasets. For the real dataset, a fixed learning rate of 1× 10−5 is used when
RoBERTa is used as encoder and 5× 10−5 when using BERT as encoder. For synthetic experiments, a fixed learning rate
of 5× 10−3 is used when training both the nBOW encoder and main-task classifier in the pretraining stage and probing
classifier in removal stage.
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H.7. Adversarial Removal Experiment Setup

For adversarial removal (AR) experiment, for both real and synthetic datasets, first the input text is encoded to latent
representation using the encoder (Suppl H.4 and H.5). Then for the main-task classifier a linear transformation layer
followed by softmax layer is applied for the main-task prediction. The same latent representation output from encoder is
given to the probing classifier which is a separate linear transformation layer followed by softmax layer. All components of
the model, encoder, main-task classifier and probing classifier are trained using the following modified objective from Eq 87:

arg min
h,cm,cp

{
L(cm(h(z)), ym) + λL(cp(g−1(h(z))), yp)

}
where h is the encoder, cm is the main task classifier, cp is the probing classifier, g−1 is the gradient reversal layer with
fixed reversal strength of −1. The first term in the objective is for training the main task classifier and the second term is the
adversarial objective for training the probing classifier using gradient reversal method (Ganin & Lempitsky, 2015; Elazar
& Goldberg, 2018) . The hyperparameter λ controls the strength of the adversarial objetive. In our experiment we very
λ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 2.0}. When describing the experimental results in Sec I.3 we choose the λ
which performs the best for all datasets with different predictive correlation κ in removing the undesired concept from the
latent representation.

H.8. Metrics Description

For simplicity, in all our experiments we assume that both the main and the correlated attribute label are binary. We measure
the degree of spuriousness using the following two metrics:

1. Spuriousness Score: As defined in Sec F, this metric help us quantify, how much a classifier is using the spurious
feature.

2. ∆ Probability: In Synthetic-Text dataset as described in H.1, we have the ability to change the input corresponding
to the change in concept label (thus implementing Def 2.1) . Thus we could measure if the main-classifier is using
the spurious-concept by changing the concept in the input and measuring the corresponding change in the main-
task classifier’s prediction probability. Higher the change in prediction probability higher the main-task classifier is
dependent on spurious-concept.

I. Additional Results
I.1. Probing classifier Quality

Fig 6 shows different failure modes of the probing classifier. In Fig 6a and 6b, a clean main-task classifier which doesn’t use
the concept feature is trained on Synthetic-Text and MultiNLI dataset respectively using the method described in Sec H.2.
Thus the latent representation doesn’t have the concept feature. Then, to test the presence of concept-causal feature in the
latent representation we train a probing classifier to predict concept-label. The first row show the accuracy of the probing
classifier for testing the presence of concept in latent space. When κ = 0.5 i.e no correlation between the main-task and the
concept label, the probing accuracy is approximately 50% which correctly shows the absence of the concept-causal feature in
the latent representation. The accuracy increases as the correlation κ between the main and concept-causal feature increases
in dataset. This shows that even when concept-causal feature is not present in the latent representation, probing classifier will
still claim presence of concept-causal feature if any correlated feature (main-task feature in this case) is present in the latent
space. In Fig 6c, the latent space contains the concept-causal feature as shown by accuracy of approximately 94.5% when
κ = 0.5. But as κ increases the probing classifier’s accuracy increases in the presence of correlated main-task feature which
falsely increases the confidence of presence of the concept-causal feature. The second row shows the spuriousness-score
of concept-probing classifier is increasing as the correlation between the main-task and concept-causal feature increases
which implies that the probing classifier is using relatively large amount of correlated main-task feature for concept-label
prediction in all settings.

I.2. Extended Null-Space Removal Results

Fig 7 and 8, shows the failure mode of null-space removal (INLP) in the real dataset when using RoBERTa and BERT as
encoder respectively. Different columns of the figure are for three different real datasets — MultiNLI, Twitter-PAN16, and
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Figure 6: Failure Modes of Probing classifier: The first row in Fig 6a and 6b shows that even when the latent representation
doesn’t contain the probing concept-causal feature, the probing classifier is still has >50% accuracy when other correlated
feature is present. The accuracy increases as the correlation κ between the probing concept-causal feature and other
correlated feature increases. The first row Fig 6c shows, that presence of correlated feature could increase the probing
classifier’s accuracy thus increasing the confidence in the presence of concept-causal feature in latent representation. The
second row of all the figures shows that the probing classifier is getting more spurious as the κ increases thus implying that
the probing classifier is using some other correlated feature than concept-causal feature. For more discussion see Suppl I.1.

Twitter-AAE respectively. The x-axis from step 8-26 are different INLP removal steps. The y-axis shows different metrics
to evaluate the main-task and probing classifier. Different colored lines shows the spurious correlation (κ) in the probing
dataset used by INLP for removal of spurious-concept. The pretrained classifier is clean, i.e., does not use the spurious
concept-causal feature; hence INLP shouldn’t have any effect on main-classifier when removing concept-causal feature from
the latent space. The first row shows that as the INLP iteration progresses, the norm of latent representation, which is being
cleaned of concept-causal feature, decreases. This indicates that some features are being removed. However, the results are
against our expectation from the second statement of Theorem 2.2, which states that the norm of classifier will tend to zero
as the INLP removal progresses. The possible reason is that, from Theorem 2.2 the norm of latent representation will go to
zero when the the latent representation only contains the spurious concept-causal feature and the other features correlated
to it. But, the encoder representation could have other features which are not correlated with concept-label and hence not
removed. Since, the pretrained classifier given for INLP was clean (using method described in Sec H.2), we do not expect
the INLP to have any effect on the main-task classifier.

The second row in Fig 7 and 8 shows that the main-classifier accuracy drops to random guess i.e 50% except for the case
when probing dataset have κ = 0.5 i.e no correlation between the main and concept label. Thus INLP method corrupted a
clean-classifier and made it useless. The reason behind this could be observed from the fourth and fifth row. The fourth
row show the accuracy of the probing classifier before the projection step. We can see that at step 8 on x-axis κ = 0.5,
the probing classifier correctly has accuracy of 50% showing that the concept-causal feature is not present in the latent
representation. But for other value of κ, the probing classifier accuracy is proportional to value of κ implying that the
probing classifier is using the main-task feature for its prediction. Hence at the time of removal, it removes the main-task
feature which leads drop in the main-task accuracy. This can also be verified form the last row of Fig 7 and 8, which shows
that the spuriousness score of probing classifier is high; thus it is using the main-task feature for its prediction. We observe
similar results for Synthetic-Text dataset when using INLP in Fig 9. For all the INLP experiment on Synthetic-Text dataset,
there were no hidden layers after the nBOW encoder (see Sec H.5).

I.3. Extended Adversarial Removal Results

Adversarial removal failure in real-world datasets. Fig 10 shows the failure mode of adversarial removal AR on
real-world datasets. In x-axis we vary the predictive correlation κ between the main and the concept-label in different
datasets and measure the performance of AR on different metrics on the y-axis. The second row shows the spuriousness
score of the main-task classifier after AR as we vary κ on the x-axis. When using RoBERTa as the encoder, the orange curve
in second row shows the spuriousness score of the main-task classifier when trained using the ERM loss. The spuriousness
score describes how much unwanted concept-causal feature the main-task classifier is using. The blue curve shows that
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the AR method reduces the spuriousness of main-task though cannot completely remove it. The reason for this failure can
be attributed to probing classifier. Even when AR has successfully removed the unwanted concept feature, the accuracy
of concept-probing classifier will be proportion to κ due to presence of correlated main-task feature in the latent space.
This can be seen in the third row of the of Fig 10. Thus we cannot be sure if the unwanted concept-causal feature has
been completely removed from the latent space or just became noisy enough to have accuracy proportional to κ after AR
converges. In Fig 10, for each dataset and encoder, we manually choose the hyperparameter described λ described in Sec H.7
which reduces the spuriousness score most for the main-task classifier while not hampering the main-task classifier accuracy.
In Fig 11, we show the trend in spuriousness score is similar for all choices of hyperparameter λ in our search. No value of
λ is able to completely reduce the spuriousness score to zero.

Adversarial removal makes a classifier unfair. Fig 12 shows that when the adversarial classifier is initialized with a clean
main-task classifier which doesn’t use unwanted-concept causal features, it makes matters worse by making the main-task
classifier use the unwanted-concept feature. For the Synthetic-Text dataset, since the word embedding are non-trainable, one
single hidden layer is applied after the nBOW encoder so that AR methods could remove the unwanted-concept feature from
the new latent representation.

I.4. Synthetic-Text dataset Ablations

Adversarial Removal Failure in Synthetic-Text dataset: Figure 13 shows the failure of AR on the synthetic dataset
as we vary the noise in the main-task label and unwanted concept-label. For the experiment, since the words embedding
are non-trainable, one single hidden layer is applied after the nBOW encoder so that AR methods could remove the
unwanted-concept feature from the new latent representation.

Dropout Regularization Helps AR method: Continuing on observation from Fig 14a, 14b and 14c shows the ∆-Prob of
the main-task classifier after we apply the AR on Synthetic-Text dataset and how they changes as we increase the dropout
regularization. As we increase the dropout (drate in the figure), the ∆-Prob of the main classifier decreases showing that the
regularization methods could help improve the the removal methods.
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Figure 7: Failure of Null Space Removal when using RoBERTa as encoder: Different columns of the figure are for
three different real datasets — MultiNLI, Twitter-PAN16, and Twitter-AAE respectively. The x-axis from steps 8-26 are
different INLP removal steps. The y-axis shows different metrics to evaluate the main-task and probing classifier. Different
colored lines shows the spurious correlation (κ) in the probing dataset used by INLP for removal of spurious-concept.
The pretrained classifier is clean i.e. doesn’t uses the spurious concept-causal feature, hence INLP shouldn’t have any
effect on main-classifier when removing concept-causal feature from the latent space. Against our expectation, the second
row shows that the main-task classifier’s accuracy is decreasing even when it is not using the concept-feature. The main
reason for this failure to learn a clean concept-probing classifier. This can be verified from the last row which shows that
the concept-probing classifier has high spuriousness score thus implying that it is using the main-task feature for concept
label prediction and hence during removal step, wrongly removing the main-task feature which leads to drop in main-task
accuracy. For more discussion see Suppl I.2.
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Figure 8: Failure of Null Space Removal when using BERT as encoder: The observation is similar to the case when
RoBERTa was used as encoder (see Fig 7) . Different columns of the figure are for three different real datasets — MultiNLI,
Twitter-PAN16, and Twitter-AAE respectively. The x-axis from steps 8-26 are different INLP removal steps. The y-axis
shows different metrics to evaluate the main-task and probing classifier. Different colored lines shows the spurious correlation
(κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained classifier is clean i.e. doesn’t uses
the spurious concept-causal feature, hence INLP shouldn’t have any effect on main-classifier when removing concept-causal
feature from the latent space. Against our expectation, the second row shows that the main-task classifier’s accuracy is
decreasing even when it is not using the concept-feature. The main reason for this failure to learn a clean concept-probing
classifier. This can be verified from the last row which shows that the concept-probing classifier has high spuriousness score
thus implying that it is using the main-task feature for concept label prediction and hence during removal step, wrongly
removing the main-task feature which leads to drop in main-task accuracy. For more discussion see Suppl I.2.
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(a) Synthetic-Text + n=0.0
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(c) Synthetic-Text + n=0.3

Figure 9: Failure Mode of INLP in Synthetic-Text dataset: Different columns of the figure are Synthetic-Text dataset
with different level of noise in the main-task and probing task label. The x-axis from step 22-40 are different INLP removal
steps. The y-axis shows different metrics to evaluate the main-task and probing classifier. Different colored lines shows the
spurious correlation (κ) in the probing dataset used by INLP for removal of spurious-concept. The pretrained classifier is
clean i.e. doesn’t uses the spurious concept-causal feature, hence INLP shouldn’t have any effect on main-classifier when
removing concept-causal feature from the latent space. Contrary to our expectation, the first row shows main-task classifier
accuracy drops as the INLP progresses. Higher the correlation between the main-task and concept label, faster is the drop in
the main-task accuracy. The last row shows the change in prediction probability (∆-Prob) of main-task classifier when we
change the input corresponding to concept-label. This shows, how much sensitive the main-task classifier is wrt. to concept
feature. We observe that the ∆-Prob increases in the middle of INLP showing that the main-classifier which was not using
the concept initially (as in iteration 21), started using the sensitive concept because of INLP removal. Thus stopping INLP
prematurely could lead to a more unclean classifier than before whereas running INLP longer removes all the correlated
feature and could make the classifier useless. For more discussion see Suppl I.2.
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Figure 10: Failure Mode of Adversarial removal on real-dataset: Different column shows the result on three different real
datasets —MultiNLI, Twitter-PAN16 and Twitter-AAE respectively. The second row shows that accuracy of spuriousness
score of the main-task classifier after AR, when the dataset contains different level of spurious correlation between the
main-task and unwanted-concept label, denoted by κ in the x-axis. When using RoBERTa as the encoder, the orange curve
in second row shows the spuriousness score of the main-task classifier when trained using the ERM loss. The spuriousness
score describes how much unwanted concept-causal feature the main-task classifier is using. The blue curve shows that the
AR method reduces the spuriousness of main-task though cannot completely remove it. When using BERT as encoder, the
observation is same i.e green curve in second row shows AR is able to reduce the spuriousness of main classifier than the red
curve which is trained using ERM, but not able to complete remove the spurious feature. For more discussion see Sec I.3.
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Figure 11: Choice of Adversarial Strength Parameter λ: The second plot shows that trend in spuriousness score after AR
is similar for all the choice of hyperparameter λ we have taken in our search. None of the setting of λ is able to completely
reduce the spuriosuness score to zero. For more discussion see Sec I.3.
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Figure 12: Adversarial Removal Makes a classifier unfair: We test if the AR method increases the spuriousness of a
main-task classifier if initialized with a clean classifier. In 12a, from iteration 1-20 in x-axis, a clean classifier is trained on
Synthetic-Text datset such that it doesn’t uses the unwanted concept-causal feature using method described in Suppl H.2.
Then the classifier is given to AR method for removing the the unwanted concept feature which make the initially clean
classifier unlean. This can be seen from the second row of the 12a which shows the spuriousness score of main-classifier is
0 during 1-20 iteration but increases after the AR starts from 21-40. Also the last row shows the δ-Prob of the main-task
classifier on changing the unwanted-concept in input which increases for large dataset which have large κ i.e correlation
between the main and concept label. Similar result can be seen for the MultiNLI dataset where a clean classifier is trained in
iteration 1-6 which is made unclean by AR. Second row again show that spuriousness score of main-task classifier increases
after AR starts in iteration 7-12. For more discussion see Sec I.3.
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(c) Synthetic-Text + n=0.3

Figure 13: Failure of Adversarial Removal method on Synthetic-Text dataset: Different columns show the adversarial
removal method on Synthetic-Text dataset with different level of noise in the main-task and concept label. When there is
no noise, from the second row in Fig 13a, we see that both the classifier trained by ERM and AR has zero-spuriousness
score. But as we increase the noise to 10% in Fig 13b, we observe that the the spuriousness score increases when AR is
applied in contrast to classifier trained by ERM which stays at 0. Also, higher the predictive correlation κ, higher is the
increase in spuriousness. This observation augments to the the observation in Fig 12 which shows that using AR makes a
clean classifier unclean. Similarly in Fig 13c when we increase the noise to 30% we observe in second row, AR is increase
the spuriousness unlike ERM which is at 0. For discussion see Suppl I.4
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(a) Synthetic-Text + drate=0.0
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(b) Synthetic-Text + drate=0.5
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Figure 14: Dropout Regularization helps in Adversarial Removal: ∆-Prob of the main-task classifier after we apply
the AR on Synthetic-Text dataset decreases as we increase the dropout regularization from 0.0 to 0.9. For discussion see
Suppl I.4.


