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Abstract

We study the paradigmatic spiked matrix model of principal components
analysis, where the rank-one signal is corrupted by additive noise. While
the noise is typically taken from a Wigner matrix with independent entries,
here the potential acting on the eigenvalues has a quadratic plus a quartic
component. The quartic term induces strong correlations between the matrix
elements, which makes the setting relevant for applications but analytically
challenging. Our work provides the first characterization of the Bayes-optimal
limits for inference in this model with structured noise. If the signal prior is
rotational-invariant, then we show that a spectral estimator is optimal. In
contrast, for more general priors, the existing approximate message passing
algorithm (AMP) falls short of achieving the information-theoretic limits, and
we provide a justification for this sub-optimality. Finally, by generalizing the
theory of Thouless-Anderson-Palmer equations, we cure the issue by proposing
a novel AMP which matches the theoretical limits. Our information-theoretic
analysis is based on the replica method, a powerful heuristic from statistical
mechanics; instead, the novel AMP comes with a rigorous state evolution
analysis tracking its performance in the high-dimensional limit. Even if we
focus on a specific noise distribution, our methodology can be generalized to
a wide class of trace ensembles, at the cost of more involved expressions.
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1 Introduction, problem setting and main results

1.1 Introduction and related works

Given their ubiquitous appearance in the statistics literature, spiked matrix models,
which were originally formulated as probabilistic models for principal component
analysis (PCA) [58], are now a paradigm in high dimensional inference. Thanks to
their universality features they, and their generalizations, find numerous applications
in other central problems such as community detection [1, 63], group synchronization
[91, 90], sub-matrix localization or high-dimensional clustering [66]; see [67, 92] for
more applications.

In this paper we focus on the following estimation problem: a statistician needs
to extract a rank-one matrix (the spike) X∗X∗ᵀ, X∗ ∈ RN , from the data

Y =
λ

N
X∗X∗ᵀ + Z ∈ RN×N (1)

with some additive noise Z. The positive parameter λ, referred to as signal-to-noise
ratio (SNR), sets the strength of the signal with respect to that of the noise.

The spectral properties of finite rank perturbations of large random matrices like
(1) were intensively investigated in random matrix theory [7, 8, 94, 45, 30, 81, 24,
25, 6], showing the presence of a spectral transition often called BBP transition (in
reference to the authors of [7]): when λ is large enough, the top eigenvalue of Y
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detaches from the bulk of the eigenvalue distribution. Its corresponding eigenvector
has then a non trivial projection onto the sought ground truth X∗, and can be used
as its estimator.

The problem has also been approached from the angle of Bayesian inference.
In particular, besides the previous spectral estimator, there exists a whole family
of iterative algorithms, known as approximate message passing (AMP), that can
be tailored to take further advantage of prior structural information known about
the signal. AMP algorithms were first proposed for estimation in linear models
[59, 23, 22, 35, 64, 72], but have since been applied to a range of statistical estima-
tion problems, including generalized linear models [14, 68, 71, 76, 95, 96, 97] and
low-rank matrix estimation [34, 46, 61, 67, 79, 17]. An attractive feature of AMP
is that under suitable model assumptions, its performance in the high-dimensional
limit is precisely characterized by a succinct deterministic recursion called state evo-
lution [22, 27, 57]. Using the state evolution analysis, it has been proved that AMP
achieves Bayes-optimal performance for some models [34, 36, 79, 14], and a conjec-
ture from statistical physics posits that for a wide range of estimation problems,
AMP is optimal among polynomial-time algorithms.

The references mentioned above rely on the assumption of Gaussian identically
and independently distributed (i.i.d.) noise Zij ∼ N (0, 1), under which the model
identified by (1) is the well-known Wigner spiked model [40, 16, 3, 58]. This inde-
pendence, or “absence of structure ”, in the noise has many advantages from the
theoretical point of view due to the numerous simplifications it generates.

In order to relax this property, we can seek inspiration from the statistical physics
literature on disordered systems. An idea that was first brought forth in [21, 87]
for the Sherrington-Kirkpatrick model, and later imported also in high dimensional
inference [4, 5, 53], is that of giving an inhomogeneous variance profile to the noise
matrix elements (we mention that this idea in inference is similar to the earlier
definition of “spatially coupled systems” [43, 65] in coding theory, see [11, 12] for
its use in the present context). This procedure makes the (Zij) no longer identically
distributed, but it leaves them independent. This an important step towards more
structure in the noise (and therefore the data). Yet, the independence assumption is a
rather strong one. Actually, [53] showed that for a broad class of observation models,
as long as the independence assumption holds, the model is information-theoretically
equivalent to one with independent Gaussian (possibly inhomogeneous) noise.

One way to go beyond this last assumption is to consider noises that belong to the
wider class of rotationally invariant matrices. Since the appearance of the seminal
works [73, 74, 89], there has been a remarkable development in this direction, as evi-
denced by the rapidly growing number of papers on spin glasses [26, 84, 86, 42, 70, 47]
and inference [24, 25, 48, 49, 69, 98, 41, 102, 101] that try to take into account struc-
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tured disorder, including the present one. Indeed, we hereby consider a spiked model
in which the noise matrix Z is drawn from an orthogonal matrix ensemble different
from the Gaussian orthogonal ensemble (which is the only rotationally invariant en-
semble such that the matrix entries are independent). Intuitively, the presence of
dependencies in the noise should be exploitable by an algorithm that is sharp enough
to see patterns within it and use them to retrieve the sought rank one matrix more
efficiently. Going in that direction, in [41] the author proposed a version of AMP
designed for rotationally invariant noises (using earlier ideas of [86, 84]) and provided
also a rigorous state evolution analysis for it. Furthermore, in a recent work [13],
part of the authors performed a rigorous analysis of a Bayes estimator and an AMP,
both assuming Gaussian noise, whereas the actual noise in the data was drawn from
a generic orthogonal matrix ensemble. However, besides intuition and the mentioned
works, to our best knowledge there is little theoretical understanding of the true role
played by noise structure in spiked matrix estimation and more generically in infer-
ence. In particular, prior to our work there was no theoretical prediction of optimal
performance to benchmark practical inference algorithms.

Organization of the paper.

The end of this section properly defines the model and the quartic random matrix
ensemble we consider. In Section 2, we define and analyze an integral dubbed in-
homogeneous spherical integral, that will play an essential role in the analysis. For
those interested mainly in the main results this section can be skipped at first read-
ing. Section 3 contains the core information-theoretic analysis based on the replica
method. We also show at the end of it that, for rotationally invariant priors, the
spectral estimator is Bayes-optimal in the MMSE sense. Next, in Section 4, we ana-
lyze both the fixed point performance of the previously proposed AMP for structured
PCA [41] and our replica prediction for the MMSE. We deduce that, in general, the
AMP in [41] is sub-optimal, and we provide an explanation for why this is the case.
Using the theory of adaptive TAP equations [86], Section 5 lays the foundations for
defining an optimal AMP: the main outcome is an optimal pre-processing polyno-
mial function that depends on the statistical properties of the noise and has to be
applied to the data, in order to achieve Bayes-optimality. Section 6 demonstrates
that, by exploiting this pre-processing function, a novel AMP can be written down
which does match the MMSE predicted by the replica theory. This algorithm comes
with a scalar state evolution recursion which rigorously tracks its performance in the
limit of large size. The Onsager reaction coefficients of our AMP are different from
those in [41] and their calculation, as well as the state evolution analysis, requires
new ideas. To highlight these differences and emphasize the match with the replica
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MMSE, this new algorithm is dubbed Bayes-optimal AMP, or BAMP. In the final
Section 7 we provide a numerical confirmation of our theoretical predictions. In
Appendix A, we provide expectation-maximization (EM) equations that learn the
optimal pre-processing function to be used by BAMP, when noise statistics are not
known. In the last technical Appendix B, we gather the proofs of the various results
needed to reach the state evolution of our BAMP algorithm.

Notations.

Bold notations are reserved for vectors and matrices. By default a vector x is a
column vector, and its transpose xᵀ is therefore a row vector. Thus the usual L2

norm ‖x‖2 = xᵀx and xxᵀ is a rank-one projector. The notation x
W2−→ X denotes

convergence of the empirical distribution of the random vector x to the random
variable X in Wasserstein-2 distance. Symbol ∝ means “equality up to a constant”
(often, a normalization constant) and := is an equality by definition. Tr is the usual
trace operator. For a vector x, the matrix diag(x) is diagonal with x on its diagonal.
For a diagonal matrix A and a function F : R 7→ R the matrix F (A) is diagonal with
F applied componentwise to each diagonal entry of A. A function F applied to a real
symmetric N × N matrix diagonalizable as M = UAUᵀ acts in the standard way:
F (M) := UF (A)Uᵀ. EA is an expectation with respect to the random variable
A; E is an expectation with respect to all random variables entering the ensuing
expression. For a function F of one argument we denote F ′ its derivative. Notations
like i ≤ N always implicitly assume that the index i starts at 1. Notation [t] :=
{1, 2, · · · , t} = {i ≤ t}. Powers for vectors apply componentwise (this is however not
the case for matrices). We often compactly write E(· · · )2 = E[(· · · )2] ≥ (E(· · · ))2

and similarly for other functions, we denote equivalently E[f(· · · )] and Ef(· · · ).
Matrix IN is the identity of size N .

1.2 Probabilistic model of PCA with structured noise

Consider a vector X∗ = (X∗i )i≤N whose components are drawn i.i.d. from a given
distribution PX with support bounded uniformly in N . Two cases will be considered:
the factorized case

dPX(X∗) =
∏
i≤N

dPX(X∗i ) =
∏
i≤N

PX(X∗i )dX∗i ,

and the case where dPX is the uniform measure over the N -sphere of radius
√
N .

If not specified the first case is assumed. We will always consider priors with unit
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second moment ∫
dPX(x)x2 = 1.

This is just a convention as if one wants to consider a different normalization, it can
simply be included through a proper rescaling of the SNR λ.

The inference task we are interested in is the retrieval of the rank-one “spike”
P∗ := X∗X∗ᵀ from the following observed matrix

Y =
λ

N
P∗ + Z, (2)

where Z is a unknown noise matrix, λ ≥ 0 is the SNR. Whenever Z is a Wigner
matrix this model corresponds to the usual Wigner spike model. But here we no
longer assume that the noise is unstructured (namely, has independent entries). More
specifically, we will assume that is drawn from a certain orthogonal rotationally
invariant random matrix ensemble defined by a potential V : R 7→ R and a density
(with normalization constant CV )

dPZ(Z) = CV dZ exp
(
− N

2
TrV (Z)

)
. (3)

Rotational invariance means that Z equals in distribution UᵀZU for any orthogonal
matrix U (this follows from the trace in the exponent) [93]. More precisely, when
changing variables from matrix Z to eigenvalues D and eigenbasis O via Z = OᵀDO
we have

dPZ(D,O) = CV dO dD exp
(
− N

2
TrV (D)

)∏
i<j

|Di −Dj|. (4)

The measure dO is the Haar measure, i.e., uniform measure over the orthogonal group
O(N), and the last term coupling all eigenvalues in a pairwise long-range fashion
is the Vandermonde determinant. Note that only the special case V (x) = x2/(2σ)
corresponding to the Gaussian orthogonal ensemble induces independent (Gaussian
distributed) matrix entries (up to symmetry). Any other potential generates depen-
dencies among matrix elements and thus structure. E.g., if we take V (x) = x4/4,

dPZ(Z) = CV dZ
∏
i,j,k,l

exp
(
− N

8
ZijZjkZklZli

)
(5)

which clearly is not factorizable over matrix entries.
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We now introduce the Bayesian framework which we are going to analyse. Let the
projector P := xxᵀ. This allows us to write the posterior measure of the inference
problem:

dPX|Y (x | Y) =
CV

PY (Y)
dPX(x) exp

(
− N

2
TrV

(
Y − λ

N
P
))
. (6)

Because both the prior PX(x) matches the density of the signal and the likelihood
PY |X matches the noise density PZ and moreover the SNR λ is known, the poste-
rior written above is the “correct” one and we are in the Bayesian-optimal setting.
Studying the limits of inference in this setting draws a fundamental line between
what is information-theoretically possible and what is not in terms of performance
of inference. The evidence reads

PY (Y) = CV

∫
dPX(x) exp

(
− N

2
TrV

(
Y − λ

N
P
))
. (7)

One of the main object of interest is the free entropy (or minus the free energy),
which is nothing else than minus the Shannon entropy of the data:

FN(Y) := −H(Y) = E lnPY (Y). (8)

Therefore the free entropy is related to the mutual information by an additive con-
stant corresponding to the entropy of the noise, and is therefore simply computed
(while the free entropy is not):

I(P∗; Y) = −FN(Y)−H(Y | X∗)
= −FN(Y)−H(Z)

= −FN(Y)− lnCV +
N

2
ETrV (Z). (9)

Using the explicit form of the observation model (2) the free entropy reads

FN(Y) = E ln

∫
dPX(x) exp

(
− N

2
Tr
[
V
(
Z +

λ

N
(P∗ −P)

)
− V (Z)

])
+ lnCV −

N

2
ETrV (Z). (10)

We extracted the noise entropy in the second line so that we can isolate the mutual
information and to make the argument of the integrated exponential of order N . In
this way the problem is naturally mapped onto a statistical mechanics model with
extensive Hamiltonian given by minus the log-likelihood:

HN(x; Z,X∗) :=
N

2
Tr
[
V
(
Z +

λ

N
(P∗ −P)

)
− V (Z)

]
. (11)
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Indeed, our Hamiltonian can be rewritten as

1

2
Tr(P∗ −P)

∫ λ

0

dtV ′
(
Z +

t

N
(P∗ −P)

)
.

The difference between the two projectors has only two eigenvalues of order N and
the matrix inside the potential derivative has O(1) eigenvalues, hence the previous
is of O(N) too. The free entropy is thus directly linked to the expected log-partition
function associated to this Hamiltonian:

E lnZ(Y) := E ln

∫
dPX(x) exp

(
−HN(x; Z,X∗)

)
. (12)

The notation ; in HN(x; Z,X∗) emphasizes that Z,X∗ are quenched variables while
x fluctuates according the Gibbs-Boltzmann distribution associated to this Hamil-
tonian (i.e., the posterior). The same notation with same meaning for Hamiltonians
will be used later on.

1.3 A concrete example: the quartic ensemble

Analysing this model for a generic potential V is possible through the novel method-
ology presented in this paper. But as it will become apparent, if we take a generic
polynomial potential V , the higher the order of this polynomial, the more technical
and cumbersome it becomes. So for the sake of pedagogy we focus in the present
contribution on a very concrete example of non trivial correction to the i.i.d. noise
hypothesis. As a matter of fact, the simplest inference problem with correlated noise
elements is that with the quartic matrix potential: for two positive real numbers µ
and γ we restrict our analysis to the potential

V (x) =
µ

2
x2 +

γ

4
x4. (13)

This was first studied by Brézin et al in [28] to study the planar approximation of
quantum field theories with large internal symmetry groups. We could have also
considered a non-symmetric potential with a cubic term too, but for simplicity we
restrict ourselves to that case as symmetry will slightly simplify the computations
(but there is no barrier to applying our methods to that a more general, possibly
non-even, potential).

The matrix ensemble defined by (13) has a known Stieltjes transform S and
asymptotic eigenvalue density ρ, see, e.g., [93]: if Z is a sequence of matrices of
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Figure 1: Asymptotic spectral density (14) of the random noise ensemble defined by
the potential (13) from less structured (with independent entries) at (µ = 1, γ = 0),
corresponding to the standard semi-circle law, to the more structured (µ = 0, γ =
16/27) (recall relation (17).

increasing sizeN drawn from (5) with the above quartic potential and whose sequence
of eigenvalues is (Di)i≤N , then

1

N

∑
i≤N

δDi,x
N→∞−−−→ ρ(x) =

1

2π
(µ+ 2a2γ + γx2)

√
4a2 − x2, (14)

S(z) =

∫
dρ(x)

z − x
=

1

2

(
µz + γz3 − (µ+ 2a2γ + γz2)

√
z2 − 4a2

)
, (15)

for a z lying outside of the support of ρ, and where

a2 :=

√
µ2 + 12γ − µ

6γ
. (16)

It is evident that when γ → 0+ one has a2 → 1/µ and consequently ρ(x) → ρsc(x)
the standard semi-circle law, see Figure 1. In principle the choice of γ and µ is totally
free, as long as1 γ > 0. However, we are interested in a noise with unit variance in

1We use implicitly the convexity of the potential, which requires µ, γ > 0, to obtain the density
of eigenvalues [93]. But we believe that this condition can be relaxed if one can get an associated
well-defined asymptotic spectral density and that our analysis would still hold.
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order to be able to make a meaningful comparison with models with unstructured
noise. By enforcing this unitarity constraint one finds a relation between γ and µ:

γ = γ(µ) =
1

27

(
8− 9µ+

√
64− 144µ+ 108µ2 − 27µ3

)
. (17)

With this choice one can check that∫
dρ(x)x2 = 1 for any µ ∈ [0, 1].

When (µ = 1, γ(1) = 0) we recover the pure Wigner case already analyzed in great
details. On the contrary (µ = 0, γ(0) = 16/27) corresponds to a purely quartic case
with unit variance, and to the “most structured” ensemble in our restriced class of
noise ensembles. Therefore, µ can be thought of as a paramter allowing to interpolate
between unstructured and structured noise ensembles. Even for this simple family
of potentials, as soon as µ < 1, neither the Bayes-optimal nor the algorithmic limits
of inference are known (except for those of a simple spectral algorithm, see [24]).

1.4 Main results

Our main contributions can be divided in two categories: those on the fundamental,
information-theoretic, limitations of inference in structured PCA and, complemen-
tary to that, novel algorithmic ideas allowing to match these Bayes-optimal limits
efficiently. Both require conceptual insights and technical advances that we empha-
size. We gather here these results and state them informally; we refer to the main
sections for precise statements.

Information-theoretic results

• Our analysis of the information-theoretic (Bayes-optimal) performance based
on the non-rigorous replica method yields first a low-dimensional variational
formulation for the free entropy (log-partition function) of the model when PX
is factorized:

Result 1 (Free entropy). The free entropy (i.e., minus Shannon entropy of the data)
verifies in the limit of large size the following characterization:

1

N
FN(Y) = − 1

N
H(Y)

N→∞−−−→ extr fρ(τ )

where τ ∈ R13 and for an explicit real-valued function fρ : R13 7→ R depending on
the noise asympotic spectral density ρ. See (61) for the complete statement. Here
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and everywhere in the paper extr stands for the following “extremization” procedure:
if f : Rk 7→ R then

extr f(τ ) := f(τ ∗) where τ ∗ := argmax
{τ∈Rk :∇f(τ )=0}

f(τ ).

We will see that despite the apparent mess, the 13-dimensional system of equa-
tions defining τ ∗ will reduce to a much simpler 3-dimensional one thanks to special
symmetries inherent to the Bayes-optimal nature of our analysis, and known as Nishi-
mori identity in physics, which is a simple consequence of Bayes rule [18]:

Nishimori identity. For any bounded function f of the signal X∗, the data Y and
of conditionally i.i.d. samples from the posterior xj ∼ PX|Y ( · | Y), j = 1, 2, . . . , n,
we have that

E〈f(Y,X∗,x2, . . . ,xn)〉 = E〈f(Y,x1,x2, . . . ,xn)〉 (18)

where the bracket notation 〈 · 〉 is used for the joint expectation over the posterior
samples (xj)j≤n, E is over the signal X∗ and data Y.

The reduction of the replica saddle point equations thanks to this identity is done
in Section 3.3. As a consequence only three scalar quantities will remain after re-
duction, one denoted m and called “magnetization” quantifying the overlap between
the minimum mean-square error (MMSE) estimator and the signal.

• From the solution of this variational problem we deduce our second main result,
namely, an asympotically exact expression for the minimum mean-square error
of inference of the hidden spike with factorized prior:

Result 2 (Minimum mean-square error). The minimum mean-square error verifies

lim
N→∞

1

2N2
E‖X∗X∗ᵀ − E[X∗X∗ᵀ | Y]‖2

F =
1

2
(1−m2)

where m is one component of the solution τ ∗ to the variational problem for the free
entropy, studied in Section 3.3.

The main technical and conceptual novelties which lead to these formulas are:

• To the best of our knowledge, we provide the first adaptation of the replica
method to the analysis of the fundamental limits of inference in a model with
a noise having strongly dependent random entries (instead of a measurement
operator, or matrix of covariates, in a regression setting). See Section 3.
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• If the structure of the noise (i.e., its statistical properties) is encoded by a
polynomial potential V of order K + 1, then this induces in the posterior
distribution k-wise interactions between the signal’s estimator entries, for all
k ≤ K + 1. Said differently, the underlying factor graph is an hypergraph
with hyperedges of degrees K + 1, K, . . . , 1. However, we discovered that by
exploiting the low-rank structure of the signal, all these interactions can be
reduced to effective pair-wise interations. This allows to reduce the model to
an Ising model more convenient for theoretical analysis (a similar reduction
is useful for algorithmic approaches too, see next section). The reduction we
propose is general and systematic for low-rank signals corrupted by rotational
invariant noise matrices. See Section 3.1.

• Our analysis can be mainstreamed once we have identified a key integral that we
refer to as the inhomogeneous spherical integral. This exactly solvable integral
is a generalization of the standard low-rank spherical integral appearing in
random matrix theory (as it is related to the R-transform) [93], in spin-glasses
[89, 86, 84, 42, 20], the theory of large-deviations for matrix-valued stochastic
processes [54, 55] and matrix models in high-energy physics [56, 62, 52]. Given
the breadth of applications of this integral, we foresee that the generalization
we propose and analyze in Section 2 may have applications well beyond the
present setting, for the study of models where rotationally invariant matrices
with non-independent matrices appear.

• Another important conclusion from our analysis is the fact that for signals
X∗ whose law is rotation-invariant (such as Gaussian or uniformly spherically
distributed), the simple spectral PCA procedure of [24] is Bayes-optimal:

Result 3 (Optimality of spectral PCA for rotation-invariant priors). Let X∗ be a
standard Gaussian vector or uniformly sampled on the sphere of radius

√
N . Then

its inference from Y can be optimally achieved from the naive spectral algorithm
that constructs an estimator Cννᵀ of P∗ from the eigenvector ν = ν(Y) of Y
with leading eigenvalue λmax and that is then properly rescaled by a certain factor
C = C(λ, ρ), see [24].

This is verified both by the replica method and an exact computation based on
Gaussian integration and a saddle point method, see Section 3.4. We remark that
this statement is incorrect for other priors PX .

Algorithmic results

On the algorithmic side our contributions are the following:

13



• We analytically show that the existing approximate message passing algorithms
[41, 102], whose iterates are based on the data matrix Y, do not saturate the
Bayes-optimal performance predicted by our replica theory. See Section 4.

• We employ in Section (5) the AdaTAP formalism of Opper et al [86] to analyze
the model from the algorithmic perspective. What the analysis shows is that,
like in the replica method, one can reduce the model with interactions of order
higher than two to a pure quadratic Ising model with an effective interaction
matrix J(Y) which is a non-trivial matrix polynomial of the data Y. This
explains the reason why the previously proposed AMP algorithms are sub-
optimal: the data Y is not the best choice of matrix to use in the AMP iterates,
despite being the most natural one. The Bayes-optimal choice is instead J(Y)
obtained from our theory, which cannot be guessed a-priori. We informally
state this fact as one of our main results:

Result 4 (Bayesian-optimal processing of data and optimal AMP). Consider the
matrix estimation model under structured noise (2). Given the observed matrix of
data Y, the optimal choice of matrix to use in a Bayesian inference algorithm such
as AMP is not Y but instead a proper polynomial of it, i.e., J(Y) =

∑
k≤K ckY

k,
with coefficients (ck)k∈[K] depending on V . For example, when the potential V is
given by (13) we show in Sections 5.1 and 5.2 that the optimal choice is

J(Y) = µλY − γλ2Y2 + γλY3.

Employing this matrix in the AMP iterates leads to a Bayesian-optimal inference
algorithm whose complexity scales as the dimension N , see the result below.

• After having defined the Bayesian-optimal AMP recursion, we provide a rigor-
ous state evolution recursion to track its asymptotic performance. We highlight
that, since the data matrix Y is replaced by the polynomial J(Y), we cannot
apply the state evolution result of [41]. More specifically, the Onsager correc-
tion terms will have a different form than the ones of [41], and their derivation
requires a novel analysis.

Result 5 (State evolution of the Bayes-optimal AMP (BAMP)). Consider the
Bayesian-optimal Approximate Message Passing (BAMP) algorithm defined by the
recursion

f t = J(Y)ut −
∑
i≤t

ct,iu
i, ut+1 = gt+1(f t), t ≥ 1. (19)
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When a proper choice of coefficients {ct,j}j∈[t] is considered, for a large family of
functions (gt)t≥1 and ψ, the following holds almost surely:

lim
N→∞

1

N

∑
i≤N

ψ(u1
i , . . . , u

t+1
i , f 1

i , . . . , f
t
i , X

∗
i ) = Eψ(U1, . . . , Ut+1, F1, . . . , Ft, X

∗).

Equivalently the joint empirical distribution over theN rows of theN×(2t+2) matrix
(u1, . . . ,ut+1, f1, . . . , f t,X∗) converges in a certain sense to the (2t+ 2)-dimensional
random vector (U1, . . . , Ut+1, F1, . . . , Ft, X

∗) when N increases. Here

Ui+1 = gi+1(Ft) and (F1, . . . , Ft) = (µ1, . . . , µt)X
∗ + (W1, . . . ,Wt)

with (Wi)i≤t a multivariate Gaussian vector whose covariance as well as (µi)i≤t can
be computed via a deterministic state evolution recursion.

The precise rigorous statement can be found in Section 6. The idea of the argu-
ment is to construct an auxiliary AMP which tracks the quantities (Yj−1ut)t≥1,j≤K−1.
By decomposing the iterates of this auxiliary AMP into a component aligned with
previous iterates, a component in the direction of the signal and independent Gaus-
sian noise, we obtain the form of the Onsager correction and the state evolution.
From this result we can rigorously predict the performance of the novel AMP algo-
rithm we propose. The optimality of the pre-processed matrix J(Y) and associated
AMP is then confirmed by the perfect matching of the fixed point of the state evo-
lution recursion tracking the AMP mean-square error and our replica prediction for
the MMSE.

Two important remarks are in order. First, we emphasize that the BAMP algo-
rithm (19) we propose is not the usual AMP of [41] where the data matrix Y is just
replaced by the pre-processed matrix J(Y). Indeed, the correct Onsager coefficients
{ct,i} entering BAMP require a novel type of “multi-stage” state evolution recursion
which is completely different from the one in [41], see Section 6. The novel acronym
we introduce emphasizes that crucial distinction.

Secondly, it is true that our replica prediction for the MMSE is non-rigorous.
However, our state evolution analysis of BAMP is fully rigorous (just like the analysis
of the AMP in [41]). By comparing their asymptotic fixed point performance by state
evolution in Section 7, we show that BAMP improves over the AMP in [41]. This
improvement is thus a rigorous conclusion, while the conjecture is that, thanks to
this improvement, BAMP saturates the Bayes-optimal performance.

Comments on the potential universality of our results

We comment the hypotheses under which our results are conjectured valid, and then
extrapolate on the more general settings in which the results may still hold.
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We start with a remark concerning the insensitivity of our results to the “statisti-
cal details” of the noise eigenvalues. Let us precise the hypotheses on the distribution
of the noise, in particular on its eigenvalues, under which our results are conjectured
valid. As seen from (4) the eigenvalues of the noise are strongly dependent due to
the Vandermonde determinant. However, we conjecture that all our results still hold
if one considers instead a simpler ensemble where the N eigenvalues are drawn i.i.d.
from ρ(x)dx, see (14). The reason is that all the analysis and results rely only on
the weak convergence of the empirical density of eigenvalues of the ensemble under
consideration towards ρ. Hence, as long as this is the case, our results must hold,
even if we do not rigorously prove it. To formally show it, from now on we consider
that the diagonal matrix D of eigenvalues of the noise is deterministic with the sole
constraint that the empirical density of its diagonal entries converges towards ρ(x)dx.
This of course includes as special cases the two aforementioned settings (i.i.d. and
coupled by Vandermonde determinant). We therefore work in this paper under the
following hypothesis.

Hypothesis 1 (Distribution of the noise). The noise RN×N 3 Z = OᵀDO in model
(2) is a symmetric rotationally invariant matrix, namely, it is equal in law to UᵀZU
for any orthogonal matrix U ∈ O(N) (the group of N × N orthogonal matrices).
Equivalently, O is drawn from the Haar (uniform) measure over O(N). Moreover, we
only require for its (possibly deterministic) eigenvalues (Di)i≤N that their empirical
law N−1

∑
i≤N δDi,x is tending weakly as N → ∞ to a probability measure with

support bounded uniformly in N and with density ρ with respect to the Lebesgue
measure. As mentioned earlier, for the purpose of having a uniform measure of SNR
when tuning (µ, γ(µ)) we will consider cases where

∫
dρ(x)x2 = 1 despite this is not

necessary for the analysis to hold.

A second remark concerns the rotational invariance of the noise. We believe that
our results may extend beyond this hypothesis to cases where the noise eigenbasis
may be invariant under more restrictive transformations (such as permutation in-
variant), or even “almost deterministic”. This intuition comes from a very recent
line of work concerning linear regression and phase retrieval with structured matrices
of covariates. Indeed, the authors of [37, 38, 39] show that in this context, the class
of rotationally invariant matrices leads to the same performance as a much broader
class of almost deterministic matrices (with the same spectral density), also when
AMP or its linearized version are used as inference algorithm. This is a different set-
ting from the one we consider, since in our setup the structured matrix is the noise,
but it nevertheless suggests that our predictions should remain true more generically.
The confirmation of this universality is left for future work.
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What is conjectured exact, and what is rigorous

We end this section with a remark concerning the level of rigor of our derivations.
Most of our results are based on non-rigorous but well established methods from
the statistical mechanics of mean-field disordered systems, in particular the replica
method at the replica symmetric level, and the theory of Anderson-Thouless-Palmer
equations. For a general background on these techniques we refer to [75, 85, 78]. It is
important to keep in mind that despite being non-rigorous, the results obtained from
these techniques are conjectured exact in the present setting of Bayesian-optimal
inference (or equivalently, statistical mechanical models living on their Nishimori
line [82]), in the asymptotic large size limit N →∞.

This widely admitted asymptotic exactness, first proved for the Sherrington-
Kirkpatrick model [50, 99, 88], spreads in numerous fields and in particular in the
analysis of high-dimensional inference. In this context a plethora of rigorous results
confirm the validity of replica predictions [10, 40, 16, 18, 9, 2, 19]. In particular,
replica symmetric formulas for the free entropy, mutual information and minimum
mean-square error have been systematically proved thanks to a combination of con-
centration techniques specifically adapted to the context of inference [9, 18] together
with rigorous versions of the cavity method [100, 88, 33], (adaptive) interpolation
techniques [51, 15, 16] or Hamilton-Jacobi approaches [80, 31, 32]. From this fastly
growing literature, we conjecture that it is only a matter of time before our replica-
based predictions are proven.

Concerning our algorithmic results on the novel approximate message passing
we propose (BAMP), the results are completely rigorous; full proofs are provided
as appendix. They are based on the theory of message passing algorithms and
associated state evolution recursions [22], in particular the most recent results for
structured matrices as considered here [41, 102].

2 The inhomogeneous spherical integral

In this section we derive the expression of a useful general integral that will play a
crucial role along the whole analysis, and that we believe may have an interest on its
own. For the reader interested in the information-theoretic and algorithmic analyses
directly, this section can be skipped at first reading as only its main results (22),
(23) and (33) will be used in the rest.

Indices `, `′ ≤ n will always indicate the “replica dimension” (with n which always
remains finite), while i, j, k ≤ N index the “spin dimension” (where N will diverge).
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2.1 Definition and variational characterization

Let O ∼ Haar(O(N)) be drawn from the Haar measure over the orthogonal group
of N × N matrices. Consider a fixed matrix x ∈ RN×n with rows xi ∈ Rn, i ≤ N ,
and columns x` ∈ RN , ` ≤ n. Assume it has the column-wise overlap structure

xᵀ
`x`′ = Nq``′ , `, `′ ≤ n. (20)

We let q = (q``′)`,`′≤n := N−1xᵀx. Every vector is considered a column vector, so,
e.g., (Ox)i is a n-dimensional column-vector corresponding to the transpose of the
ith row of the N × n matrix Ox, while (Ox)ᵀi is a row-vector.

Let the matrices C``′ = diag((Ci,``′)i≤N), Ci = (Ci,``′)`,`′≤n, and the “external
fields” h` = (hi,`)i≤N , hi = (hi,`)`≤n all having entries bounded uniformly in N .
The sequence (hi ∈ Rn,Ci ∈ Rn×n)i≤N is assumed to have an empirical law tending
to that of the random (h ∈ Rn,C ∈ Rn×n): for any continuous bounded function
f : Rn×n × Rn 7→ Rk with k independent of N ,

1

N

∑
i≤N

f(Ci,hi)
N→∞−−−→ Ef(C,h).

We denote by R 3 IN = IN(q, (C``′)`,`′≤n, (h`)`≤n) = IN(q, (Ci,hi)i≤N) the gen-
eralized low-rank spherical integral, which is defined as

IN :=
1

N
lnEO exp

∑
i≤N

(
(Ox)ᵀiCi(Ox)i + (Ox)ᵀihi

)
=

1

N
lnEO exp

( ∑
`,`′≤n

(Ox`)
ᵀC``′Ox`′ +

∑
`≤n

(Ox`)
ᵀh`

)
=

1

N
lnEO exp

( ∑
i,j,k≤N

∑
`,`′≤n

OijOikxj,`′xk,`Ci,``′ +
∑
i,j≤N

∑
`≤n

Oijxj,`hi,`

)
. (21)

Calling the columns (x`)`≤n “replicas”, the matrices (Ci)i≤N , (C``′)`,`′≤n are coupling
them (after the replicas have been jointly rotated by the random O). Therefore we
call them “replica coupling matrices”.

As N →∞ with n fixed this integral is given by

IN
N→∞−−−→ IC,h(q), (22)

with variational formula

IC,h(q) :=
1

2
extrq̃

(
Trqq̃ + Ehᵀ(q̃− 2C)−1h− E ln det(q̃− 2C)

)
− 1

2
(n+ ln det q). (23)
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The extremum is over symmetric matrices such q̃− 2C is positive definite for all C
living on its domain.

We remark that it may be the case that the extremum over q̃ is actually attained
on the boundary of the optimization domain, in which case the optimization requires
more care than what is done in (35) to solve it (as (35) assumes the extremum to lie
inside the optimization domain). This is however not expected in the settings of the
present paper. When this phenomenon happens, in the standard low-rank spherical
integral this leads to a “sticking phenomenon” where the solution of the optimization
is dependent on the maximum eigenvalue of the full-rank random matrix entering
the integral’s definition, see [54].

2.2 Special cases

2.2.1 Low-rank HCIZ integral

The special case hi = 0 and replica coupling matrices Ci = CDi for i ≤ N corre-
sponds to the standard rank-n spherical (or HCIZ) integral:

IN =
1

N
lnEO exp

∑
i,j,k≤N

∑
`,`′≤n

OijOikxj,`′xk,`C``′Di

=
1

N
lnEO exp

∑
`,`′≤n

C``′(Ox`)
ᵀDOx`′

=
1

N
lnEO exp Tr OᵀDO(xCxᵀ),

where D = diag((Di)i≤N) and xCxᵀ is an arbitrary rank-n symmetric matrix (ar-
bitrary given that x and C are so). Its asymptotic expression can also be obtained
from the results of [54] after diagonalizing xCxᵀ and depends only on the limit of
the empirical distribution of (Di) and on the n non-zero eigenvalues of xCxᵀ.

2.2.2 Low-rank spherical integral with external field and diagonal replica
coupling

Taking diagonal replica coupling matrices Ci = InDi/2 gives (a generalization of)
the spherical integral with external field found in [Prop. 2.7, [42]]:

IN =
1

N
lnEO exp

∑
`≤n

(1

2
(Ox`)

ᵀDOx` + (Ox`)
ᵀh`

)
. (24)
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2.2.3 Low-rank spherical integral with non-diagonal replica coupling and
replica symmetric overlap

Let the N × N diagonal matrices A = diag((Ai)i≤N) and similarly for B. The
empirical law of (Ai, Bi)i≤N tends to that of (A,B). Of particular interest to us
corresponds to taking ` ∈ {0, . . . , n}, hi = 0 and replica coupling matrices with only
non-zero entries being

(Ci)`0 = (Ci)0` =
Ai
2

for 1 ≤ ` ≤ n, (Ci)`` =
Bi

2
(1− δ`,0), (25)

or equivalently,

C0` = C`0 =
A

2
and C`` =

B

2
for 1 ≤ ` ≤ n, C``′ = 0 else. (26)

Note that this is not a special case of the standard rank-n spherical integral of the
first example: here Ci cannot be written as C times a function of i; instead different
entries of Ci vary with i differently. In this case the generalized spherical integral
reads (the sum over ` below starts at ` = 1)

IN =
1

N
lnEO exp

∑
`≤n

(
(Ox0)ᵀAOx` +

1

2
(Ox`)

ᵀBOx`

)
. (27)

So the 0th replica plays here a special role (it corresponds to the planted signal).
We consider a “replica symmetric structure” for the overlap matrix parametrized

by the vector (v0, v,m, q) ∈ R4:

q =



v0 m m m . . . m
m v q q . . . q
m q v q . . . q
m q q v . . . q
...

...
...

...
. . .

...
m q q q . . . v


∈ R(n+1)×(n+1), (28)

and, coherently, we assume that the extremum over q̃ is attained for a matrix having
the same structure with different constants (ṽ0, ṽ, m̃, q̃). Its determinant can be easily
computed via Gauss’ reduction:

ln det q = ln v0 + n ln(v − q) + ln
(

1 + n
v0q −m2

v0(v − q)

)
. (29)
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We also need to compute

Trqq̃ = v0ṽ0 + n(2mm̃+ vṽ + (n− 1)qq̃). (30)

Letting C be defined as (25) but with the random variables A,B replacing Ai, Bi, the
last missing term is obtained similarly as (29): under the replica symmetric stucture
for q̃,

E ln det(q̃− 2C) = ln ṽ0 + n ln(ṽ −B − q̃) + E ln
(

1 + n
ṽ0q̃ − (m̃− A)2

ṽ0(ṽ −B − q̃)

)
.

Combining everything in the variational formula (23), and taking into account that q
here is a (n+1)×(n+1) matrix, we obtain the following expression for the generalized
spherical integral with replica coupling (25), and under a replica symmetric structure
for the overlap and conjugate matrices (thus the upperscript):

IN → IRS
A,B(q) :=

1

2
extr(ṽ0,ṽ,m̃,q̃)

{
v0ṽ0 − ln ṽ0 + n(2mm̃+ vṽ + (n− 1)qq̃)

− nE ln(ṽ −B − q̃)− E ln
(

1 + n
ṽ0q̃ − (m̃− A)2

ṽ0(ṽ −B − q̃)

)}
− 1 + ln v0

2
− n

2

(
1 + ln(v − q)

)
− 1

2
ln
(

1 + n
v0q −m2

v0(v − q)

)
. (31)

By definition (27) of IN this formula has to cancel when n = 0. Thus

extrṽ0
{
v0ṽ0 − ln ṽ0

}
− 1− ln v0 = 0. (32)

The saddle point equation over ṽ0 then yields ṽ0 = 1/v0, in which case this latter
formula indeed cancels. So the simplified formula reads

IRS
A,B(q) =

1

2
extr(ṽ,m̃,q̃)

{
n(2mm̃+ vṽ + (n− 1)qq̃)− nE ln(ṽ −B − q̃)

− E ln
(

1 + n
q̃ − v0(m̃− A)2

ṽ −B − q̃

)}
− n

2

(
1 + ln(v − q)

)
− 1

2
ln
(

1 + n
v0q −m2

v0(v − q)

)
. (33)

2.3 Derivation of the variational formula

Let x̃` := Ox` the columns of x̃ = Ox. Under the law of O at fixed x, these random
vectors are uniform among all vectors having the overlap structure of (x`). Thus
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their law conditional on x is just a function of the symmetric overlap q = (q``′):

P (x̃ | x) = P (x̃ | q) =
1

Z(q)

1,n∏
`≥`′

δ(Nq``′ − x̃ᵀ
` x̃`′) =

1

Z(q)
δ(Nq− x̃ᵀx̃)

with normalization

Z(q) =

∫
dx̃ δ(Nq− x̃ᵀx̃).

Using the Fourier representation of the Delta function, the integral to compute reads
(below q̃ is a n× n symmetric matrix with complex entries)

exp(NIN) =
1

Z(q)

∫
dx̃ δ(Nq− x̃ᵀx̃) exp

∑
i≤N

(
x̃ᵀ
iCix̃i + x̃ᵀ

ihi
)

=
1

Z(q)

∫
dx̃dq̃ exp

(N
2

Trqq̃− 1

2
Trx̃ᵀx̃q̃ +

∑
i≤N

(
x̃ᵀ
iCix̃i + x̃ᵀ

ihi
))

=
1

Z(q)

∫
dq̃ exp

(N
2

Trqq̃
)∏
i≤N

∫
dx̃i exp

(
− 1

2
x̃ᵀ
i (q̃− 2Ci)x̃i + x̃ᵀ

ihi

)
.

We will soon evaluate the q̃-integral by saddle-point approximation. We now assume
that the dominating saddle-point belongs to a set

Dε := {q̃ ∈ Rn×n : q̃− 2C � εIn for all C living on its domain},

for some arbitrarily small ε > 0 but independent of N . Thus restricting the integral
to this domain yields a sub-leading correction exp o(N). For q̃ ∈ Dε a Gaussian
integration over x̃ is possible: exp(NIN) equals

(2π)Nn/2eo(N)

Z(q)

∫
Dε

dq̃ exp
N

2

1

N

∑
i≤N

(
Trqq̃ + hᵀ

i (q̃− 2Ci)
−1hi − ln det(q̃− 2Ci)

)
=

(2π)Nn/2eo(N)

Z(q)

∫
Dε

dq̃ exp
{N

2
E
(
Trqq̃ + hᵀ(q̃− 2C)−1h− ln det(q̃− 2C)

)}
.

We used the convergence of the empirical law of the sequence (Ci,hi)i to turn the
above empirical mean into a statistical expectation over (C,h), including the cor-
rection in the exp o(N); this is possible because over Dε the summand is a bounded
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continuous function of (Ci,hi). As N diverges at fixed n we can estimate the integral
by saddle-point and reach that the generalized spherical integral is

IN →
1

2
extrq̃

(
Trqq̃ + Ehᵀ(q̃− 2C)−1h− E ln det(q̃− 2C)

)
− 1

2
extrq̃

(
Trqq̃− ln det q̃

)
(34)

where the term − lnZ(q)/N from the normalization has been obtained by simply
setting C and h to all-zeros in the first optimization problem. The extremum is over
n× n symmetric matrices q̃ such q̃− 2C is positive definite for all C on its domain.

Assuming that the extremum is attained inside the optimization domain we can
perform the extremization using ln det A = Tr ln A. The extremum is solution of
the matrix equation

q = Ehᵀ(q̃− 2C)−2h + E(q̃− 2C)−1. (35)

The second extremization leads instead to q̃ = q−1. Thus the result.

3 Information-theoretic analysis by the replica

method

Let us start with a remark. Express the noise Z = OᵀDO in terms of its random
Haar distributed basis O and eigenvalues D, so that the observation model becomes

Y =
λ

N
P∗ + OᵀDO. (36)

When the signal is rotationally invariant we can consider the noise diagonal right
away by absorbing O into x,X∗. If the law PX is uniform on the sphere, then this
joint rotation does not change the distribution of x,X∗ which greatly simplifies the
analysis. In this simpler case, the replica method is not needed as the computation
of the free entropy can be carried out simply using a saddle point method. We
provide this analysis in Section 3.4. The rotational invariance of the Gaussian law
implies that also that case could be treated similarly by direct computation. On the
contrary, for other priors than spherical or Gaussian this is no longer possible and
the replica method is needed.

In order to deal with such non-rotational invariant priors we are going to adapt
an approach developed by Kabashima in [60, 98] to study certain inference models
where rotational invariant random matrices appear as quenched disorder. The main
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difference compared to the works is the fact that because they consider (generalized)
linear regression, the structured matrix plays the role of covariates/data and therefore
does not influence the form of the likelihood when writing the posterior. A novelty
of the present setting is the fact that because the structured matrix is now the
noise itself, the likelihood is a function of its statistics which in turn complicates the
analysis.

The goal here is to compute the log-partition function (12) using the replica trick

lim
N→∞

1

N
E lnZ = lim

N→∞

1

N
lim
n→0

∂n lnEZn = lim
n→0

∂n lim
N→∞

1

N
lnEZn. (37)

The expectation is with respect to Y or equivalently the independent O,x0 (recall
D is deterministic). The last equality assumes the commutation of the two limits.
Another key assumption of the method is that we are going to make the computa-
tion considering n ∈ N and then assume an analytic continuation to n in a small
neighborhood of 0. Before doing all that we are going to first re-express our model
in a form more convenient for analysis.

3.1 An equivalent quadratic model

The Hamiltonian (11) of the model can be written in a more convenient way by
introducing the following shorthand notations for order parameters. Despite at the
moment only vector x has been introduced, soon a family of vectors (x`) will be intro-
duced when “replicating” the system. So we directly introduce the order parameters
for these:

v` = v(x`) :=
1

N
‖x`‖2, (38)

M(k)` = M(k)(x`,Z) :=
1

N
xᵀ
`Z

kx`, (39)

κ` = κ(x`,x0,Z) :=
1

N
xᵀ
`Zx0, (40)

q``′ = q(x`,x`′) :=
1

N
xᵀ
`x`′ , (41)

where the replica indices 0 ≤ `, `′ ≤ n with the identification x0 := X∗.
We now treat the quadratic and quartic part of the matrix potential separately.

Let us denote

∆ :=
1

N
(P∗ −P), M` := M(1)`.
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The quadratic part yields a contribution:

N

4
Tr[(Z + λ∆)2 − Z2] =

1

2

[
λ(xᵀ

0Zx0 − xᵀZx) +Nλ2
( 1

2N2
(‖x0‖4 + ‖x‖4)− q2

01

)]
= −Nλ

2
M1 +

Nλ2

2

(1

2
(v2

0 + v2
1)− q2

01

)
+ o(N). (42)

The subscript 1 indicates that only one replica x1 := x is involved yet, and by
convention it is replica number one. We used that by the law of large numbers, and
thanks to the symmetry of the chosen matrix potential, we can assert that

M(2k+1)0 = oN(1), M(2)0 = 1 + oN(1)

due to our choice of normalization, so in particular M0 = M(1)0 = oN(1). Again by
the law of large numbers we have

v0 = E(X∗1 )2 + oN(1) = 1 + oN(1).

The quartic contribution is more complicated due to the non-commutativity of
matrices:

N

8
Tr[(Z + λ∆)4 − Z4]

=
N

8
Tr[λ4∆4 + 4λ3Z∆3 + 4λ2Z2∆2 + 4λZ3∆ + 2λ2Z∆Z∆]

=
N

8

[
λ4(2q4

01 + v4
1 + 1− 4q2

01(v2
1 + 1− v1))

+ 4λ3(M0(1− q2
01)−M1(v2

1 − q2
01) + 2q01(v1 − 1)κ1)

+ 4λ2
(
M(2)0 + v1

1

N
xᵀZ2x− 2q01

1

N
xᵀZ2x0

)
+ 4λ

(
M(3)0 −

1

N
xᵀZ3x

)
+ 2λ2(M2

0 +M2
1 − 2κ2

1)
]
. (43)

Note that the only three terms which we did not write in a compact form using order
parameters are linear and quadratic forms in x that do not appear elsewhere to a
power greater than 1. This is because introducing order parameters for these would
add useless redundancy in the final equations (but it is necessary for the other order
parameters due to powers of them appearing in the Hamiltonian). Let

f` = f(q0`, v`,M`, κ`) := γ
λ4

8

(
2q4

0` + v4
` − 4q2

0`(v
2
` + 1− v`)

)
− γλ

3

2
M`(v

2
` − q2

0`)

+ γλ3q0`(v` − 1)κ` + γ
λ2

4
M2

` − γ
λ2

2
κ2
` + µ

λ2

2

(1

2
v2
` − q2

0`

)
− µλ

2
M`. (44)
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Plugging the contributions we computed into (11) shows that the Hamiltonian is
equivalently written as

HN(x; Z,x0) = Nf1 + γ
λ

2
xᵀ(λv1Z

2 − Z3)x− γq01λ
2xᵀZ2x0 + C + o(N), (45)

where we have put all irrelevant constants inside C. We will neglect the o(N) contri-
bution in the following as it yields a subleading correction to the free entropy. Also
the constant C is irrelevant, so we simply forget about it. Keep in mind that at the
moment f1 is still a function of x. This model is thus not (yet) quadratic in x due
to terms such as M1(x,Z)2 appearing in f1.

We now use delta functions to fix various order parameters. We are going to use
repeatedly the Fourier representation of the delta function, namely

δ(x) =
1

2π

∫
dx̂ exp(ix̂x). (46)

Because the integrals we will end-up with will always be at some point evaluated by
saddle point, implying a deformation of the integration contour in the complex plane,
tracking the imaginary unit i in the delta functions will be irrelevant. Similarly, the
normalization 1/(2π) will always contribute to sub-exponential corrections in the
integrals at hand. Therefore, we will allow ourselves to formally write

δ(x) =

∫
dx̂ exp(rx̂x) (47)

for a convenient constant r, keeping in mind these considerations (again, as we
evaluate the final integrals by saddle point, the choice of r ends-up being irrelevant).

We denote jointly τ := (v1,M1, κ1, q01) and τ̂ for their Fourier conjugates. Com-
ing back to the the partition function for this equivalent model (45), it can be
re-expressed using delta functions as∫

dPX(x)dτ exp
(
−HN(x; Z,x0)

)
× δ(Nq01 − xᵀx0)δ(Nv1 − ‖x‖2)δ(NM1 − xᵀZx)δ(Nκ1 − xᵀZx0)

=

∫
dPX(x)dτdτ̂ exp

(
−HN(τ , τ̂ ,x; x0,Z)

)
, (48)

where

HN(τ , τ̂ ,x; x0,Z) := Nh(τ , τ̂ ) + xᵀJ1(τ , τ̂ ,Z)x + xᵀJ0(τ , τ̂ ,Z)x0 (49)
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and

h(τ , τ̂ ) := f1 − q̂01q01 −
v̂1v1

2
− M̂1M1

2
− κ̂1κ1, (50)

J1(τ , τ̂ ,Z) :=
v̂1

2
IN +

M̂1

2
Z + γ

λ2

2
v1Z

2 − γλ
2

Z3, (51)

J0(τ , τ̂ ,Z) := q̂01IN + κ̂1Z− γq01λ
2Z2. (52)

So what this shows is that by introducing new variables (order parameters and
conjugate Fourier parameters), the original model turns out being equivalent to an
extended system with Hamiltonian (49). The key point of all this analysis is that
by introducing the new variables τ , τ̂ we have turned the interactions between the
(xi)i≤N into purely quadratic ones. This form is now more approriate to be solved
using (generalizations of) known techniques. We emphasize that despite the algebraic
manipulations leading from (11) to (49) are cumbersome, given a more complicated
polynomial potential V the very same strategy could be applied but would require the
introduction of more order parameters. Yet, the equivalent model would still collapse
into a quadratic one of the above form but with a more complicated function h and
matrices J1,J0 (still being polynomials of the noise Z of order one less than the order
of V ). The reason is that the key mechanisms behind these simplifications when
expanding the original Hamiltonian (11) are stemming from the low-rank structure
of the spike.

3.2 Replica symmetric free entropy using the inhomoge-
neous spherical integral

Having reduced the model to a quadratic one, we are now ready to replicate the
system to compute the free entropy. The partition function Z is now computed
using the equivalent model (49). The expected replicated partition function is

EZ(x0,Z)n =

∫ n∏
`=0

dPX(x`)
∏
`≤n

dτ `dτ̂ ` EZ exp
(
−
∑
`≤n

HN(τ `, τ̂ `,x`; x0,Z)
)
, (53)

with replicas (x`, τ `, τ̂ `)`≤n and shared quenched disorder x0,Z. What we do next
is to replace Z by OᵀDO and fix the overlap structure between replicas

xᵀ
`x`′ = Nq``′ , `, `′ ≤ n (54)

by introducing further variables and their Fourier conjugates (this is already taken
care of for the overlaps xᵀ

`x0 with the planted signal). The purpose will become clear
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soon. Redefining τ ` := (v`,M`, κ`) and similarly for τ̂ `, and defining the overlaps
q = (q``′)0≤`<`′≤n and similarly for q̂, the log-partition function can be recast as

EZn =

∫
dqdq̂

∏
`≤n

dτ `dτ̂ ` expN
(∑
`≤n

( v̂`v`
2

+
M̂`M`

2
+ κ̂`κ` − f`

)
+

∑
0≤`<`′≤n

q̂``′q``′
)

×
∫ n∏

`=0

dPX(x`) exp
(
−

∑
0≤`<`′≤n

q̂``′x
ᵀ
`x`′ −

1

2

∑
`≤n

v̂`‖x`‖2
)

× EO exp
∑
`≤n

(
(Ox0)ᵀA`Ox` +

1

2
(Ox`)

ᵀB`Ox`

)
(55)

where the N ×N “replica coupling matrices” are

A` := −κ̂`D + γq0`λ
2D2, (56)

B` := −M̂`D− γλ2v`D
2 + γλD3. (57)

We now assume a replica-symmetric ansatz which should lead to the correct
solution due to the strong concentration-of-measure effects taking place in the Bayes-
optimal setting as well as the Nishimori identities [82, 18]. It means that we assume
that the saddle point over the order parameters dominating the partition function
as N → ∞, which are finitely many, lies in the subset verifying the following (note
the minus sign introduced for −q̂ and −m̂ for convenience): for all ` 6= `′ = 1, . . . , n

Replica Symmetry Ansatz:



M` = M, M̂` = M̂,

κ` = κ, κ̂` = κ̂,

v` = v, v̂` = v̂,

q``′ = q, q̂``′ = −q̂,
q0` = m, q̂0` = −m̂.

(58)

Using this ansatz, the matrices (A`,B`)`≤n become independent of `. We thus
call their common value A,B. As a consequence the term EO( · ) at the third line
in (55) is recognized to be what we call an inhomogeneous spherical integral defined
and analyzed in a devoted Section 2.2.3. From Section 2 we know that the result of
such integral depends only on the overlap structure; this is the reason why we fixed
it earlier. We will thus replace it by expNIRS

A,B(n, v,m, q) whose formula is (33) and
which is parametrized by the random variables (below D ∼ ρ)

A = −κ̂D + γmλ2D2, (59)

B = −M̂D − γλ2vD2 + γλD3. (60)
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Notice that at this point the only x-integrals remaining (second line of (55)) are
completely factorized over the spin indices i. Hence after taking the saddle point the
log-replicated free entropy becomes in the limit N →∞

1

N
lnEZn → extr

{
n
( v̂v

2
+
M̂M

2
+ κ̂κ− m̂m+

1− n
2

q̂q − f(m, v,M, κ)
)

+ IRS
A,B(n, v,m, q) + ln

∫ n∏
`=0

dPX(x`)e
q̂
∑
`<`′≤n x`x`′+m̂

∑
`≤n x0x`−

v̂
2

∑
`≤n x

2
`

)}
where the extremum is over all scalars in (58). The last line can be treated by
a Hubbard-Stratonovič transform (i.e., Gaussian integral formula) to decouple the
integral over the replica indices. Doing so it becomes

E
(∫

dPX(x) exp
(√

q̂Zx− q̂ + v̂

2
x2 + m̂X0x

))n
,

with Z ∼ N (0, 1), X0 ∼ PX .
We now consider the limit of number of replicas going to 0 assuming the analytic

continuation of our formulas from integer n to real. To expand the latter term we
use lnEXn = nE lnX +O(n2). The inhomogeneous spherical integral given by (33)
(with v0 = 1) also has to be expanded in n. We get

IRS
A,B(n, v,m, q) =

n

2
extr(ṽ,m̃,q̃)

{
2mm̃+ vṽ − qq̃ − E ln(ṽ −B − q̃)

− E
q̃ − (m̃− A)2

ṽ −B − q̃

}
− n

2

(
1 + ln(v − q)

)
− n

2

q −m2

v − q
+O(n2)

with an expectation over D ∼ ρ entering A,B. Now we plug the previous expres-
sions in the log-replicated partition function and expand up to O(n) the resulting
expression:

1

N
lnEZn → extr

{
n
( v̂v

2
+
M̂M

2
+ κ̂κ− m̂m+

1− n
2

q̂q − f(m, v,M, κ)
)

+ IRS
A,B(n, v,m, q) + nE ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)}
+O(n2).

One can check that as it should limN→∞N
−1 lnEZn vanishes when n → 0. Taking

the n-derivative (recall (37)) and then sending n → 0 the final formula for the free
entropy is obtained (and recalling that we dropped irrelevant constants along the
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computation):

1

N
E lnZ → extr

{ v̂v
2

+
M̂M

2
+ κ̂κ− m̂m+

q̂q

2
+mm̃+

vṽ

2
− qq̃

2

− γλ
4

8

(
2m4 + v4 − 4m2(v2 + 1− v)

)
+ γ

λ3

2
M(v2 −m2)

− γλ3m(v − 1)κ− γλ
2

4
M2 + γ

λ2

2
κ2 − µλ

2

2

(1

2
v2 −m2

)
+ µ

λ

2
M

+ E ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)
− 1

2
E ln(ṽ − q̃ + M̂D + γλ2vD2 − γλD3)− 1

2
ln(v − q)− q −m2

2(v − q)

+
1

2
E

(m̃+ κ̂D − γmλ2D2)2 − q̃
ṽ − q̃ + M̂D + γλ2vD2 − γλD3

}
+ constant. (61)

The extremization is intended over the set of 13 variational parameters v, v̂, ṽ,m,
m̂, m̃, q, q̂, q̃,M, M̂, κ, κ̂. However, as we shall see later the saddle point equations
will reduce only to two, because thanks to the Nishimori identities the saddle point
values of many order parameters can be found right away. This is a specific and
rather convenient feature of the Bayesian-optimal setting.

3.3 Replica saddle point equations

Define the following random local measure

〈 · 〉m̂,q̂,v̂ =

∫
dPX(x)e

√
q̂Zx+m̂xX0− q̂+v̂2 x2( · )∫

dPX(x)e
√
q̂Zx+m̂xX0− q̂+v̂2 x2

, (62)

the randomness being Z ∼ N (0, 1) and X0 ∼ PX , and the random functions (random
in D ∼ ρ)

H = (ṽ − q̃ + M̂D + γλ2vD2 − γλD3)−1, (63)

Q = γmλ2D2 − κ̂D − m̃. (64)

Below follow the saddle point equations obtained by equating to 0 the gradient w.r.t.
the variational parameters of the variational free entropy in (61). The parameter
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associated to each equation are reported in the round parenthesis:

(m) µλ2m+ γλ4m(v2 + 1− v −m2)− γλ3Mm− m̂+ m̃+
m

v − q
− γλ3(v − 1)κ+ γλ2EQHD2 = 0

(m̂) m = EX0〈X〉m̂,q̂,v̂
(m̃) m = EQH

(q) q̂ − q̃ =
q −m2

(v − q)2

(q̂) q = E〈X〉2m̂,q̂,v̂
(q̃) q = E(Q2 − q̃)H2

(v) − µλ2v − γλ4(v3 −m2(2v − 1)) + 2γλ3Mv + v̂ + ṽ − 1

v − q
− m2 − q

(v − q)2

− γλ2EHD2 − 2γmλ3κ+ γλ2ED2(q̃ −Q2)H2 = 0

(v̂) v = E〈X2〉m̂,q̂,v̂
(ṽ) v = E[H +H2(Q2 − q̃)]
(M) µλ+ γλ3(v2 −m2)− γλ2M + M̂ = 0

(M̂) M = ED[H +H2(Q2 − q̃)]
(κ) κ̂ = γλ3m(v − 1)− γλ2κ

(κ̂) κ = EDQH

As in any replica symmetric mean-field theory, the physical meaning of some
order parameters makes it possible to fix their values to their expectation, obtainable
using the Nishimori identities and, as a consequence, to drastically reduce this 13-
dimensional system. To begin with, recall that we fixed v to be the squared norm
of a sample from the posterior re-scaled by the number of components. Assuming
concentration effects take place as they should in this optimal setting, and denoting
the posterior mean by 〈 · 〉, using the Nishimori identity we have that

v = lim
N→∞

1

N
E〈‖x‖2〉 = lim

N→∞

1

N
E‖X∗‖2 = 1. (65)

We have v̂ = 0 because the constraint v = 1 is enforced by the prior without the
need of a delta constraint. The (κ)-equation can then be used to directly eliminate
κ̂ by inserting κ̂ = −γλ2κ into Q. The Nishimori identity also imposes

m = EX0〈X〉m̂,q̂,0 = q = E〈X〉2m̂,q̂,0. (66)

31



It is not difficult to realize that for this to be true one also needs necessarily m̂ = q̂.
So we have 8 variables left. The most tricky parameter is M , that we introduced
to decouple the four body interactions in the Hamiltonian. Notice first that (recall
definitions (39) and (41))

1

N
E〈xᵀZx〉 =

1

N
E
〈
xᵀ
(
Y − λ

N
P∗
)
x
〉

=
1

N
EX∗ᵀYX∗ − λE

〈( 1

N
xᵀX∗

)2〉
= λ

(
1− E

〈( 1

N
xᵀX∗

)2〉)
+O

( 1

N

)
.

We used that by the Nishimori identity

E〈xᵀYx〉
N

=
EX∗ᵀYX∗

N
=

1

N
EX∗ᵀ

( λ
N

X∗X∗ᵀ + Z
)
X∗ = (E(X∗1 )2)2λ = λ. (67)

Indeed, by diagonalizing the noise,

EX∗ᵀZX∗ = E
∑
i≤N

s2
iDi = E‖X∗‖2ED1 = 0,

where s is a uniform spherical vector of same norm as X∗, and ED1 = 0 by symmetry.
By concentration happening on the Nishimori line [18] we have

E
〈( 1

N
xᵀX∗

)2〉
=
(
E
〈 1

N
xᵀX∗

〉)2

+ oN(1) = m2 + oN(1).

Hence

M = lim
N→∞

1

N
E〈xᵀZx〉 = λ(1−m2). (68)

The (M)-equation together with the other identities implies M̂ = −µλ. To summa-
rize the Nishimori identities and concentration properties enforce five constraints:

v = 1, v̂ = 0, m = q, m̂ = q̂, M = λ(1−m2) (69)

and we have 6 variables left. Our updated definitions of Q and H are

Q = γmλ2D2 + γλ2κD − m̃, (70)

H = (ṽ − q̃ − µλD + γλ2D2 − γλD3)−1. (71)
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Using the Nishimori identities we see from the (ṽ) and (q̃)-equations that

m = EH2(Q2 − q̃) ⇒ EH = 1−m. (72)

The latter has to be interpreted as an equation for the quantity Ṽ := ṽ − q̃ as a
function of m. Furthermore, one can now express m̃ as a function of κ and m. In
fact from equation (m̃), unfolding Q and then solving for m̃, one gets

m̃ =
γλ2

1−m
ED(mD + κ)H − m

1−m
. (73)

Plugging this back into the (m)-equation we get m̂, equation (79). We stress that
inside H there is still an m dependency through Ṽ .

With all these simplifications we can close the equations on (m,κ) only:

(m̂) m = EX0〈X〉m̂,m̂,0 (74)

(κ̃) κ = EDQH, (75)

where the random variables Q = Q(m,κ,D) and H = H(m,D) are

Q = γmλ2D2 + γλ2κD − γλ2

1−m
ED(mD + κ)H +

m

1−m
, (76)

H = (Ṽ − µλD + γλ2D2 − γλD3)−1, (77)

with Ṽ = Ṽ (m) and m̂ = m̂(m,κ) being determined respectively by

EH = 1−m, (78)

m̂ = γλ2EHD
(mD + κ

1−m
+DQ

)
+ µλ2m. (79)

Then the replica prediction for the MMSE is

lim
N→∞

1

2N2
E‖X∗X∗ᵀ − E[X∗X∗ᵀ | Y]‖2

F =
1

2
(1−m2). (80)

From (79) it is evident that when γ = 0 and µ = 1 (to preserve unit variance of the
noise), κ and m̂ decouple, m̂ = λ2m, and the equation (74) reduces to the standard
replica saddle point equation for the Wigner spike model.

There would be also an equation for q̃, that is decoupled though, meaning that q̃
is a simple function of m and κ in the end:

(q) q̃ = m̂(m,κ)− m

1−m
. (81)
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3.4 Spectral PCA is optimal for rotation-invariant signals

In this section we show that spectral PCA [24] is optimal for inferring X∗ such that
X∗ equals in law OX∗ for any orthogonal matrix O. This is the case for Gaussian
and spherically uniformly distributed X∗.

To do so, we first show that the previous computations can be straightforwardly
modified to accommodate the case of spherical prior. Let us assume that the signal
X∗ is uniformly distributed on a sphere of radius

√
N . We denote the uniform

measure on this sphere by ω. Thanks to the invariance property of the measure on
the sphere under rotations we know that x equals in law Ox for x ∼ ω and any
orthogonal matrix O. Therefore, we can directly diagonalize the noise without loss
of generality and work with the equivalent model

Y =
λ

N
P∗ + D. (82)

In this way we can get rid of O and as a consequence replicating the system and the
inhomogeneous spherical integral becomes useless. Only Gaussian integrations and
a saddle point estimation are needed.

The partition function is (49)–(52) but with the diagonal matrix D replacing Z
(the constraint ‖x‖2 = N is taken care of by the Hamiltonian):∫

dxdτdτ̂ exp
(
−Nh(τ , τ̂ )− xᵀJ1(τ , τ̂ ,D)x− xᵀJ0(τ , τ̂ ,D)x0

)
. (83)

Because now J1 and J0 are diagonal matrices, the x-integral in the partition function
is just a Gaussian integral: it is (up to an irrelevant multiplicative constant)∫

dτdτ̂ expN
(
− h(τ , τ̂ )− 1

2N

∑
i≤N

ln J1,i +
1

4N

∑
i≤N

x2
0,i

J2
0,i

J1,i

)
(84)

with v1 = 1 (appearing in h). Because x0 is a uniform spherical vector combined
with the convergence of the empirical law of (Di) we have

− 1

2N

∑
i≤N

ln J1,i +
1

4N

∑
i≤N

x2
0,i

J2
0,i

J1,i

= −1

2
E ln J1,1 +

1

4
E
J2

0,1

J1,1

+ oN(1).

Thus saddle point estimation of (83) yields

1

N
lnZ → const + extr

{
− f(m, 1,M, κ) + m̂m+

v̂v

2
+
M̂M

2
+ κ̂κ

− 1

2
E ln

(
v̂ + M̂D + γλ2D2 − γλD3

)
+

1

2
E

(m̂+ κ̂D − γλ2mD2)2

v̂ + M̂D + γλ2D2 − γλD3

}
, (85)
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where recall that f is defined by (44). Note that this strategy does not require the
replica method, and it could also be applied in the case of Gaussian prior PX =
N (0, 1), due to its rotational invariance.

At this point, the saddle point equations can be written and simplified similarly
as in the previous section. After doing so and from the numerical solution of the
saddle point equations, one can deduce that: (i) in the case of spherical and Gaussian
priors the MMSE is the same; and (ii) this MMSE matches the performance of the
spectral PCA algorithm studied in [24]. Additionally, (iii) the MMSE obtained from
this exact approach matches the replica prediction of the previous section in the case
of Gaussian prior (a special case of factorized PX tackled by our replica theory).
This further confirms the validity and consistency of our methodology. Therefore
we conclude that spectral PCA is Bayes-optimal in the special case of rotationally
invariant priors and noise.

Let us provide a further argument in support of Bayes-optimality of PCA in the
present setting. In this argument we consider the noise eigenvalues as quenched
random variables, and we are going to average over them. We first notice that the
MMSE estimator is diagonal in the basis of the matrix of data Y. Indeed, letting Y
be diagonalized as Y = UᵀSU then using the posterior (6),

E[X∗X∗ᵀ | Y] =
CV

PY (Y)

∫
dPX(x) exp

(
− N

2
TrV

(
S− λ

N
(Ux)(Ux)ᵀ

))
xxᵀ

=
CV

PY (Y)
Uᵀ
(∫

dPX(x) exp
(
− N

2
TrV

(
S− λ

N
xxᵀ

))
xxᵀ

)
U (86)

where we changed Ux to x, which leaves the prior invariant by rotational invariance.
We would then like to see that the matrix

L =
CV

PY (Y)

∫
dPX(x) exp

(
− N

2
TrV

(
S− λ

N
xxᵀ

))
xxᵀ

is a diagonal. Indeed, because S = diag(s1, . . . , sN) is diagonal, TrV (S− (λ/N)xxᵀ)
can be easily seen (see, e.g., the steps leading to (152)) to be a polynomial of degree
k of the k variables (∑

i≤N

x2
i ,
∑
i≤N

six
2
i , . . . ,

∑
i≤N

sk−1
i x2

i

)
.

Then, for every 1 ≤ j ≤ N , the integrand that defines L takes the same value for x
and the point x′ which results from changing the sign of the j-th coordinate of x.
We thus have that L is a diagonal matrix.
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For 1 ≤ k ≤ N , let uk be the eigenvector of the k-largest eigenvalue of Y. Then
we can express L(Y) as diag(γ1(Y), . . . , γN(Y)), where by definition we have that

E[X∗X∗ᵀ | Y] =
∑
k≤N

γkuku
ᵀ
K , (87)

i.e., γk = uᵀ
kE[X∗X∗ᵀ | Y]uk with the ordering γ1 ≥ γ2 ≥ · · · ≥ γN . This therefore

means that the “matrix magnetization” may be written according to

1

N2
ETr(E[X∗X∗ᵀ | Y]X∗X∗ᵀ) =

1

N2

∑
k≤N

E[(uᵀ
kX
∗)2γk].

We would like now to compute the asymptotic magnetization of the Bayes esti-
mator. For this we will use Nishimori identities and a bound over the projections of
X∗ onto the eigenvectors of Y that we verify numerically. More specifically, we will
assume that there is some constant K > 0 such that for all k ≥ 2 it holds that

(uᵀ
kX
∗)2 ≤ K. (88)

As mentioned before, inequality (88), which is an explicit rate of convergence for the
limit in [24, Theorem 2], has been verified through many numerical experiments for
different noise potentials and SNRs. In every case, a bound of this type is observed,
although for experiments close to the corresponding phase transition, the constant
K takes larger values and the quantity bounded exhibits a larger variance (this type
of behavior is expected to hold very close to the transition point).

Now, notice that by Nishimori identities the following holds

Eγk = E(uᵀ
kX
∗)2. (89)

Also, by [24, Theorem 2] we have that (below R is the R-transform associated with
the noise spectral density ρ)

1

N2
E[γ1(uᵀ

1X
∗)2] =

1

N

(
1− R′(1/λ)

λ2

)
Eγ1 +

1

N
E
[
γ1

((uᵀ
1X
∗)2

N
− 1 +

R′(1/λ)

λ2

)]
,

where the second term on the r.h.s. is a vanishing function of N . If we use (89) and
[24, Theorem 2] a second time, we get that

lim
N→∞

1

N2
E[γ1(uᵀ

1X
∗)2] =

(
1− R′(1/λ)

λ2

)2

.

On the other hand, by inequality (88) and the Nishimori identities (89) we get

1

N2

∑
2≤k≤N

E[γk(u
ᵀ
kX
∗)2] ≤ K

N2

∑
2≤k≤N

Eγk =
K

N2

∑
2≤k≤N

E(uᵀ
kX
∗)2.
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that by [24, Theorem 2], vanishes in the limit. We then conclude that

1

N2
ETr(E[X∗X∗ᵀ | Y]X∗X∗ᵀ) =

(
1− R′(1/λ)

λ2

)2

+ oN(1).

This in turn implies that

lim
N→∞

1

2N2
E‖E[X∗X∗ᵀ | Y]−X∗X∗ᵀ‖2 = 1−

(
1− R′(1/λ)

λ2

)2

,

which is the MSE of the optimally scaled PCA estimator [24].

4 Sub-optimality of the previously proposed AMP

Consider the following AMP iteration for t ≥ 1:

f t = Yut −
t∑
i=1

bt,iu
i, ut+1 = ht+1(f t). (90)

Here, f t = (f t1, . . . , f
t
N),ut+1 = (ut+1

1 , . . . , ut+1
N ) ∈ RN and the denoiser function

ht+1 : R → R is continuously differentiable, Lipschitz and applied component-wise,
namely ht+1(f t) = (ht+1(f t1), . . . , ht+1(f tN)). The time-dependent AMP estimate of
the spike P∗ is (ut)ᵀut.

The Onsager coefficients {bt,i}i∈[t],t≥1 are carefully chosen so that, conditioned on
the signal, the empirical distribution of the components of iterate f t is Gaussian.
The form of these Onsager coefficients was derived by [84] using non-rigorous dy-
namic functional theory techniques, and a rigorous state evolution result was recently

proved in [41]. More formally, assume that X∗
W2−→ X∗. Then, the state evolution

result of [41] gives that

(f1, . . . , f t)
W2−→ (F1, . . . , Ft) := µtX

∗ + Wt, (91)

where µt = (µ1, . . . , µt) and Wt = (W1, . . . ,Wt) is a multivariate Gaussian with
zero mean and covariance Σt = (σij)i,j≤t independent of X∗. Furthermore, the mean
vectors {µt}t≥1 and the covariance matrices {Σt}t≥1 are tracked by a deterministic
state evolution recursion. We refer to [41] for more details on this AMP and associ-
ated state evolution. Such details won’t be crucial for our argument, as we are going
to focus directly on the fixed point performance, and not on the dynamics.

For this section, we restrict the analysis to (i) Rademacher prior PX = 1
2
(δ1+δ−1),

and (ii) a “large enough” signal-to-noise ratio. We remark that our methodology
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extends to more generic factorized priors. However, since our goal is to prove sub-
optimality of AMP, this setting suffices. Moreover, we will further restrict our proof
of sub-optimality to (iii) the “one-step memory” version of the AMP in [41]. This
means that the denoiser ht+1 in (90) is allowed to depend only on the past iterate f t.
A more general “multi-step memory AMP” was proposed in [102], where the denoiser
ht+1 can depend on all the past iterates f1, . . . , f t. We remark that the analysis of
[84] suggests that the fixed points of both these versions are the same; the longer
memory of the latter AMP being only useful to improve its convergence properties.
Therefore, despite our analysis below holds under hypotheses (i)–(iii), we conclude
more generically that the existing AMP algorithms for structured PCA in [41, 102]
are sub-optimal, and this is the case for most SNR values and prior/signal’s distribu-
tions that are not rotationally invariant2. From the findings in the following sections,
the reason for the sub-optimality of these AMPs will become clear. Essentially, the
data Y is not the best choice of matrix to use in the AMP iterates, despite being
the most natural one.

4.1 Analysis of the one-step AMP fixed point performance

In this section we analyse the AMP algorithm (90) for structured PCA proposed in
[41], with a posterior mean denoiser with a single-step memory term:

ht+1(f ti ) = E[X | f ti ]. (92)

In [[41], Section 3] it is shown that the fixed point of this AMP algorithm is, for λ
sufficiently large, described by the following system:

1−∆∗ = mmse
(λ2∆2

∗
Σ∗

)
, Σ∗ = ∆∗R

′
(λ∆∗(1−∆∗)

Σ∗

)
. (93)

Here, R′(·) denotes the derivative of the R transform of the (limiting) distribution of
the noise eigenvalues D. For details about the R-transform, the interested reader is
referred to [83]. The above is related to the asymptotic overlap of the AMP estimator
through

lim
t→∞

lim
N→∞

∣∣∣ 1

N
X∗ᵀx̂t

∣∣∣ = lim
t→∞

lim
N→∞

1

N
‖x̂t‖2 = ∆∗ (94)

2We do not discard the possibility that for very peculiar choices of SNR regimes and/or priors
these generically sub-optimal AMPs end-up being optimal, but that would be for highly specific
setting-dependent reasons. One case where the AMPs of [41], and also the spectral PCA algorithm
[24], are actually optimal is when the prior is rotationally invariant (spherical or Gaussian prior),
see Section 3.4.
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and thus the AMP mean-square error is

lim
t→∞

lim
N→∞

1

2N2
E‖x̂t(x̂t)ᵀ −X∗X∗ᵀ‖2 =

1

2
(1−∆2

∗). (95)

In the case of Rademacher prior the explicit form of the posterior-mean denoiser is

ht+1(f t) = tanh
(f tµt
σ2
tt

)
(96)

where (µt, σtt) are the mean and variance of the (empirically) “Gaussian observation”
f t computed from the state evolution of [41]. The associated mmse function is (below
Z ∼ N (0, 1) is a standard Gaussian random variable and X∗ ∼ 1

2
(δ−1 + δ1))

mmse(x) = 1− E
[
X∗
∫
dPX(x)x eZx

√
m̂+m̂xX∗− m̂

2
x2∫

dPX(x)eZx
√
m̂+m̂xX∗− m̂

2
x2

]
(97)

= 1− E tanh(x+
√
xZ). (98)

We now consider the limit (λ,∆∗,Σ∗) → (∞, 1, 1) which indeed is a fixed point of
(93) as we verify at the end of this section. Moreover it is unique, see [[41], Theorem
3.1]. It implies x := λ2∆2

∗/Σ∗ → λ2 →∞. We have in this limit

mmse(x) = 1−
∫
dt
e−

1
2x

(t−x)2

√
2πx

tanh(t)

=

√
π

2

e−
x
2

√
x

(1 +O(1/x))

= exp
(
− x

2
(1 + ox(1))

)
. (99)

We plug this in the first equation of (93) which gives at leading order

∆∗ = 1− exp
(
− λ2

2
(1 + oλ(1))

)
. (100)

It just remains to check that (λ,∆∗,Σ∗) = (∞, 1, 1) is indeed the unique fixed
point of (93) in the large SNR regime. From our analysis we already know that this
fixed point is consistent with the first equation of (93). So we simply need to verify
the second one, namely,

R′
(
λ(1−∆∗)(1 + oλ(1))

)
→ 1 (101)

as λ → ∞. From (100) we have in this limit λ(1 − ∆∗) → 0 exponentially fast in
λ, and it can be readily verified that R′(0) = 1, as the noise distribution D has unit
second moment. This ends the argument.
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4.2 Analysis of the replica Bayes-optimal fixed point

We now analyse in the same large SNR regime the replica fixed point equations that
we recall below for convenience: let us rename Ṽ := ṽ − q̃ as they always appear
together. We consider that all quantities below are at their saddle point values
maximizing the replica free entropy (61).

Let us recall the outcome of the Section 3.3 on the saddle point equations. Con-
sider the random variables (random through their dependence in D)

Q = γmλ2D2 + γλ2κD − γλ2

1−m
ED(mD + κ)H +

m

1−m
, (102)

H = (Ṽ − µλD + γλ2D2 − γλD3)−1. (103)

For a given value of the parameter m, the saddle point equations require Ṽ = Ṽ (m)
to be the solution of the implicit equation

EH = 1−m. (104)

Using this implicit solution, H is a functionH(m) andQ = Q(m,κ). Let Z ∼ N (0, 1)
and X∗ ∼ PX . The saddle point equations over the order parameters (m,κ) read

m = 1−mmse(m̂), (105)

κ = EDQH, (106)

where mmse(m̂) is the same function (98) as before and

m̂ = m̂(m,κ) = γλ2EH
(mD2 + κD

1−m
+D2Q

)
+ µλ2m. (107)

Recall that the replica prediction for the MMSE is (80). In the regime λ → ∞
we thus necessarily have m → 1−. Since the solution (m,κ) of the replica saddle
point equations yields the MMSE (80) which must be at least as good as the AMP
MSE (95) then m ≥ ∆∗. Thus from (100) we deduce

1−m = O
(

exp
(
− λ2

2
(1 + oλ(1))

))
. (108)

The support of the density of D is bounded, therefore from (103) it is then clear
that for (104) to be verified under the scaling (108) in the large λ limit, the solution
Ṽ of (104) must verify

λ2

Ṽ
= oλ(1). (109)
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Thus from (104) we obtain

(1−m)Ṽ = E
(

1 +
γλD2(λ−D)− µλD

Ṽ

)−1

= 1 + oλ(1) (110)

from which we deduce using (108) that

Ṽ = Θ
( 1

1−m

)
= Ω

(
exp

(λ2

2
(1 + oλ(1))

))
. (111)

This also implies that in the limit of large SNR, H becomes deterministic:

H = Ṽ −1 +O
( λ2

Ṽ 2

)
. (112)

This equality means that H can be written as Ṽ −1 plus a possibly random term
dependent of D, which can be bounded by a non-random constant of order O(λ2/Ṽ 2).
Similarly for Q: using that κ is bounded (recall that it is the limit of the expectation
of (40)), (112) and (110), we get the following deterministic scaling in the large SNR
regime:

Q =
m

1−m
+O(λ2). (113)

Using all these scalings together with the fact that ED = 0 and κ is bounded (actually
it can now be seen from the (κ̂)-equation of Section 3.3 that κ = oλ(1)) we reach,
using ED2 = 1 and (109), (110),

m̂ = γλ2EH
(mD2 + κD

1−m
+D2Q

)
+ µλ2m

= γλ2
(
Ṽ −1 +O

( λ2

Ṽ 2

))( 2m

1−m
+O(λ2)

)
+ µλ2m

= γλ2
( 2m

Ṽ (1−m)
+O

(λ2

Ṽ

)
+O

(λ2

Ṽ
× 1

Ṽ (1−m)

)
+O

( λ4

Ṽ 2

))
+ µλ2m

= γλ2(2m+ oλ(1)) + µλ2m

= λ2(2γ + µ)(1 + oλ(1)) (114)

where also used m = 1 + oλ(1), see (108). Recall m = 1 −mmse(m̂) as well as the
scaling (99). So we have

m = 1− exp
(
− λ2

2
(2γ + µ)(1 + oλ(1))

)
. (115)
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By comparing with (100) we see that m 6= ∆∗. Moreover, since m is the Bayes-
optimal overlap, it has to be the case that m ≥ ∆∗, namely, 2γ + µ ≥ 1. From
(17) it can be verified that 2γ + µ > 1 strictly for µ < 1. Equality holds for the
pure Wigner case (µ = 1, γ = 0), as expected. This ends the proof that the MMSE
(80) is asympotically in λ strictly exponentially smaller than the MSE of AMP with
one-term memory (95) whenever µ < 1, γ > 0.

4.3 What is actually doing this sub-optimal AMP?
Mismatched estimation with Gaussian likelihood

In the same spirit as [13], we study here a mismatched estimation where the statis-
tician assumes the noise to be Gaussian, thus a wrong likelihood, whereas the noise
is drawn from the quartic ensemble with potential (13). In the same way as we did
for the quartic potential, the mismatched posterior associated to (2) is written as

dP̄X|Y (x | Y) =
1

Z̄(Y)
dPX(x) exp

(λ
2

TrYxxᵀ − λ2

4N
‖x‖4

)
(116)

where we have re-absorbed x-independent terms in the normalization. The corre-
sponding log-partition function is

E ln Z̄(Y). (117)

Notice that we have barred some quantities to distinguish them from their Bayes-
optimal analogues. We further stress that, with Gaussian likelihood, the spin-glass
model that arises already contains only two body interactions.

We aim at approximating (117). Indeed, we are going to perform a replica sym-
metric computation, which has no a-priori reasons to be exact as we are not anymore
in the Bayesian-optimal setting [18] (nor the mismatched posterior is log-concave
[19], see also [29] as a counter-example). We denote jointly τ = (v1, q01) and τ̂ their
Fourier conjugates. The partition function can then be expressed using deltas to fix
the τ parameters and expanding Y as in (2). Up to irrelevant constants it reads

Z̄(Y) =

∫
dPX(x)dτdτ̂ exp

(
− H̄N(τ , τ̂ ,x; x0,Z)

)
(118)

where

H̄N(τ , τ̂ ,x; x0,Z) := Nh̄(τ , τ̂ ) + xᵀJ̄(τ , τ̂ ,Z)x + q̂01x
ᵀx0 (119)
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and

h̄(τ , τ̂ ) :=
λ2

4
v2

1 −
λ2

2
q2

01 − q01q̂01 −
v1v̂1

2
, (120)

J̄(τ , τ̂ ,Z) :=
v̂1

2
IN −

λ

2
Z. (121)

While replicating we will need as before to fix the entire overlap structure (and not
only q01), i.e., (Nq)``′ = Nq``′ = xᵀ

`x`′ , the diagonal elements being denoted as v`.
As usual, we also introduce the corresponding Fourier conjugates q̂. The expected
replicated partition function then reads as

EZ̄n =

∫
dqdq̂ expN

(∑
`≤n

(λ2

2
q2

0` −
λ2

4
v2
` +

v`v̂`
2

)
+

∑
0≤`<`′≤n

q̂``′q``′
)

×
∫ n∏

`=0

dPX(x`) exp
(
−

∑
0≤`<`′≤n

q̂``′x
ᵀ
`x`′ −

1

2

∑
`≤n

v̂`‖x`‖2
)

× EO exp
(λ

2
TrODOᵀ

∑
`≤n

x`x
ᵀ
`

)
. (122)

In the last line we recognize a rank-n (standard) spherical integral, see Section 2.2.1
and [54]. Recall the spectrum is deterministic with empirical law tending weakly to ρ.
Hence we can use the results from Section 2.2.3, with the difference that C = In

λ
2
D

is virtually a scalar random variable, and thus w.l.o.g. we can also assume q, and
thus q̃ to be diagonal in (23). If we aim for a replica symmetric ansatz

Replica Symmetric Ansatz:


v` = v, v̂` = v̂

q0` = m, q̂0` = −m̂
q``′ = q, q̂``′ = −q̂ (` 6= `′)

(123)

then q has a non degenerate eigenvalue v+(n−1)q and n−1 degenerate eigenvalues
v − q. Within this ansatz we can thus replace the mentioned spherical integral with

EO exp
(λ

2
TrODOᵀ

∑
`≤n

x`x
ᵀ
`

)
= expN

(
(n− 1)ID(v − q) + ID(v − q + nq)

)
= expNn

(
ID(v − q) + I ′D(v − q)q +O(n)

)
(124)

as done in [86], where ID(·) are rank-one spherical integrals. The rest can be treated
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exactly as in Section 3.2, yielding

lim
N→∞

1

N
E ln Z̄(Y) = extr

{λ2

2
m2 − λ2

4
v2 +

v̂v

2
− m̂m+

q̂q

2
+ ID(v − q)

+ qI ′D(v − q) + E ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)}
(125)

where extremization is intended over m, m̂, q, q̂, v, v̂. With the same notation for the
local measure (62), the fixed point equations read

(m) m̂ = λ2m (126)

(m̂) m = EX0〈X〉m̂,q̂,v̂ (127)

(q) q̂ = 2qI ′′D(v − q) (128)

(q̂) q = E〈X〉2m̂,q̂,v̂ (129)

(v) v̂ = λ2v − 2I ′D(v − q)− 2qI ′′D(v − q) (130)

(v̂) v = E〈X2〉m̂,q̂,v̂. (131)

The computation above follows the same lines as that in [86], with the only difference
being the presence of a planted signal. In case of Gaussian likelihood, the term arising
from the spike though is easily tractable, as well as the term containing the fourth
norm of the estimator (see (116)). This suggests that the AMP algorithm designed
in [41], whose aim was to make the results in [86, 84] rigorous, has to match the
performance predicted by our replica computation, measured by the MSE

lim
N→∞

1

2N2
E‖X∗X∗ᵀ − Ē[X∗X∗ᵀ | Y]‖2

F =
1

2
(1− 2m2 + q2). (132)

in the large N limit, where the Ē denotes the expectation w.r.t. (116), and m and q
solve (126)–(131).

An alternative to (126)–(131), which turns out to be more practical from the
numerical point of view, can be obtained by keeping q as it is, without diagonalizing
it. In this case one needs the entire formula (23), with q̃ having the same RS structure
as q, in a similar fashion as that of Section 2.2.3. The spherical integral then takes
the form (up to constants)

EO exp
(λ

2
TrODOᵀ

∑
`≤n

x`x
ᵀ
`

)
∝ exp

(
Nn extr

{vṽ − qq̃
2

− 1

2
E ln(ṽ − q̃ − λD)

− q̃

2
E(ṽ − q̃ − λD)−1 − 1

2
ln(v − q)− q

2(v − q)
+O(n)

})
(133)
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where extremization is w.r.t. the tilded variables only, for now. Consequently, the
free entropy rewrites as follows

lim
N→∞

1

N
E ln Z̄(Y) = extr

{λ2

2
m2 − λ2

4
v2 +

(v̂ + ṽ)v

2
− m̂m+

(q̂ − q̃)q
2

− 1

2
E ln(ṽ − q̃ − λD)− q̃

2
E(ṽ − q̃ − λD)−1 − 1

2
ln(v − q)− q

2(v − q)

+ E ln

∫
dPX(x) exp

(√
q̂Zx− q̂ + v̂

2
x2 + m̂X0x

)}
. (134)

Here instead, extremization is intended over the tilded and hatted variables, together
with m, q, v.

The fixed point equations are

(m) m̂ = λ2m (135)

(m̂) m = EX0〈X〉m̂,q̂,v̂ (136)

(q) q̂ − q̃ =
q

(v − q)2
(137)

(q̂) q = E〈X〉2m̂,q̂,v̂ (138)

(q̃) q = −q̃E(ṽ − q̃ − λD)−2 (139)

(v) v̂ + ṽ − λ2v − 1

v − q
+

q

(v − q)2
= 0 (140)

(v̂) v = E〈X2〉m̂,q̂,v̂ (141)

(ṽ) v − E(ṽ − q̃ − λD)−1 + q̃E(ṽ − q̃ − λD)−2 = 0. (142)

Plugging (q̃) into (ṽ) we readily see that

v − q = E(Ṽ − λD)−1 (143)

that works as an equation for Ṽ := ṽ − q̃ as a function of v, q. Analogously, we can
plug (q) into (v) obtaining

v̂ + q̂ = λ2v +
1

v − q
− Ṽ (144)

that determines v̂ + q̂ as a function of v and q, thanks to the above equation for Ṽ .
Finally, from (q̃) and (q) we have respectively

q̃ = − q

E(Ṽ − λD)−2
(145)

q̂ =
q

(v − q)2
+ q̃. (146)
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Notice that, being in a mismatched setting, there cannot be any simplifications due
to the Nishimori identities.

It is not difficult to verify a posteriori that the systems (126)–(131) and (135)–
(142) are equivalent. The extremization over the tilded variables has indeed the
purpose of reproducing ID and its derivatives. From (143) one can infer

Ṽ = RλD(v − q) +
1

v − q
(147)

where RλD denotes the R-transform of λD, and deriving both sides w.r.t. v one also
has

Ṽ ′ = − 1

E(Ṽ − λD)−2
= R′λD(v − q)− 1

(v − q)2
. (148)

Therefore, from (145)

q̃ = qR′λD(v − q)− q

(v − q)2
⇒ q̂ = qR′λD(v − q), (149)

and from (144)

v̂ + q̂ = λ2v −RλD(v − q), (150)

both in perfect agreement with (128) and (130), as long as RλD = 2I ′D [54].
The system of fixed point equations (135)–(142) can be solved numerically as

follows: (i) initialize m = m0, q = q0, v = v0 (the latter being identically 1 if we use
a Rademacher prior); (ii) solve (143) for Ṽ ; (iii) compute q̂, q̃, m̂ and v̂ + q̂ from
(146), (145), (135) and (144) respectively; (iv) update the values of m, q, v through
(m̂), (q̂) and (v̂) obtaining m1, q1 and v1; (v) repeat the steps (i)–(iv) starting from
m = m1, q = q1 and v = v1, thus obtaining m2, q2 and v2, and so forth.

The numerics arising from this procedure though turns out to be delicate for ex-
treme values of the overlap, namely when v−q is really small, which in turn happens
when λ is large (typically > 3 for Rademacher prior). The equation that seems to
generate numerical instability is (146), and in particular the two contributions there
appearing. With reference to the Rademacher prior, and the related Figure 2, when
λ > 3 the overlap gets close to ∼ 0.999. At this value 1/(v − q)2 ∼ 106. q̃, that is
also contributing to (146), on the contrary becomes really negative, and is such that
q̂ is typically ∼ 10 near λ ∼ 3. The subtraction of these two big numbers apparently
dooms the iterations for larger SNRs. This was not the case in the Bayes-optimal
setting, thanks to the simplifications introduced by the Nishimori identities. Indeed,
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Figure 2: Comparison between the fixed point of the AMP algorithm in [41] and
that obtained via the replica computation (cf. (135)–(142)), for i.i.d. Rademacher
distributed (X∗i )i. The agreement between these two fixed points is excellent when
the SNR is between 2 and 3.

from (76), (77), (78) and (79) we see that 1−m appears at most at the first power
in denominators. The only issue there was that Ṽ can grow exponentially fast, and
this can be solved by allowing for a wide range of search of the solution of (78).

The fixed point of the MSE arising from (135)–(142) is compared with the fixed
point (93), which corresponds to the MSE of the AMP proposed in [41]. The match
between these two computations is excellent, as long as the SNR is not too large,
because of the aforementioned numerical issues in iterating (135)–(142). The plot
of Figure 2 is a compelling numerical confirmation of the arguments put forward in
this section. The conclusion is the following: the AMP algorithm of [41] is solv-
ing a replica symmetric approximation to the TAP equations associated with the
mismatched posterior distribution (116).

5 Towards an optimal AMP: AdaTAP formalism

We have previously shown that the AMP found in the literature for structured PCA
[41] is sub-optimal. In this section we understand the fundamental reason behind this
issue by generalizing the Adaptive Thouless-Anderson-Palmer (AdaTAP) formalism
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of [86, 84]. Using our new insights we will then be able in the next section to cure the
issue and derive a Bayes-optimal AMP. Like in the replica method and in particular
Section 3.1, a key ingredient will be to reduce the model to a quadratic one of the
Ising type.

5.1 The AdaTAP single-instance free entropy

Recall that the posterior distribution is given by (6). Denoting p := xxᵀ/N and
v := ‖x‖2/N the trace of the matrix potential (13) can be expanded as follows:

TrV (Y − λp) = C +
µ

2
Tr
{
λ2v2 − 2λYp

}
+
γ

4
Tr
{
λ4v4 − 4λ3v2Yp + 4λ2vY2p− 4λY3p + 2λ2YpYp

}
where C is independent of x. Define the matrix polynomial:

R(v,Y) := −(µλ+ γλ3v2)Y + γλ2vY2 − γλY3. (151)

Then

− N

2
TrV (Y − λp) ∝

− N

4
λ2v2

(
µ+

γλ2v2

2

)
− xᵀR(v,Y)x

2
− N

4
γλ2
(xᵀYx

N

)2

. (152)

The partition function of the model defined by (12) can then be written in the form

Z ∝
∫
dPX(x)dvdfδ(Nv − ‖x‖2)δ(Nf − xᵀYx)

× exp
(
− N

4
λ2v2

(
µ+

γλ2v2

2

)
− 1

2
xᵀR(v,Y)x− N

4
γλ2f 2

)
=

∫
dvdv̂dfdf̂ exp

(
Nv̂v +Nf̂f − N

4
λ2v2

(
µ+

γλ2v2

2

)
− N

4
γλ2f 2

)
×
∫
dPX(x) exp

(
− v̂‖x‖2 − f̂xᵀYx− 1

2
xᵀR(v,Y)x

)
=

∫
dvdv̂dfdf̂ exp

(
Nv̂v +Nf̂f − N

4
λ2v2

(
µ+

γλ2v2

2

)
− N

4
γλ2f 2

)
×
∫
dPX(x) exp

(1

2
xᵀJ(v, v̂, f̂ ,Y)x

)
, (153)
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where the overall symmetric interaction matrix of this “Ising model” is

J(v, v̂, f̂ ,Y) := −R(v,Y)− 2v̂IN − 2f̂Y. (154)

Now, defining the free entropy at fixed (v, v̂, f̂)

ΦN(v, v̂, f̂ ,Y) := ln

∫
dPX(x) exp

(1

2
xᵀJ(v, v̂, f̂ ,Y)x

)
, (155)

because the prior is factorized and we have an Ising-type of model, we can directly
use the AdaTAP result [86]: it tells us that

ΦN(v, v̂, f̂ ,Y) = −extrm,τ ,V

{1

2
mᵀJ(v, v̂, f̂ ,Y)m

+
1

2
ln det

(
Ω− J(v, v̂, f̂ ,Y)

)
− 1

2
Vᵀm2 +

1

2

∑
i≤N

ln(τi −m2
i )

−
∑
i≤N

ln

∫
dPX(x) exp

(1

2
Vix

2 +
(
(J(v, v̂, f̂ ,Y)m)i − Vimi

)
x
)}

+ oN(1). (156)

The extremization is over (m, τ ,V) ∈ RN×(RN
≥0)2, m2 = (m2

i )i≤N , and the diagonal
matrix

Ω := diag(V + (τ −m2)−1). (157)

Let the bracket notation 〈 · 〉 be used as expectation with respect to the posterior
(6), while 〈 · 〉\i is the mean with respect to the Gibbs measure of the “cavity graph”
where (Jij)j are set to 0. Define also the cavity fields

hi := (Jx)i.

The various variables at their extremum values are (asymptotically exact approxi-
mations to) the marginals means, second moments and variances of the cavity fields

mi = 〈xi〉, τi = 〈x2
i 〉, Vi = 〈h2

i 〉\i − 〈hi〉2\i.

From the AdaTAP free entropy at fixed (v, v̂, f̂) we can compute the total log-
partition function by saddle-point and get

1

N
lnZ(Y) ∝ oN(1)

+ extr
{
v̂v + f̂f − 1

4
λ2v2

(
µ+

γλ2v2

2

)
− 1

4
γλ2f 2 + ΦN(v, v̂, f̂ ,Y)

}
(158)

where the extremization is over (v, v̂, f, f̂).
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5.2 Saddle point: reduction to an Ising model, AdaTAP
equations and optimal pre-processing of the data

By extremization of the AdaTAP single-instance free entropy (158) we derive the
AdaTAP equations. We start with the intensive parameters. The extremization
with respect to f is trivial and gives

f̂ =
1

2
γλ2f.

So the leading order of the AdaTAP free entropy simplifies to

extrv,v̂,f

{
v̂v +

1

4
γλ2f 2 − 1

4
λ2v2

(
µ+

γλ2v2

2

)
+ ΦN

(
v, v̂,

1

2
γλ2f,Y

)}
. (159)

The remaining saddle point equations can simply be written down. But this is not
necessary as the solution of the three remaining intensive order parameters at the
saddle point is simply deduced from their physical meaning, concentration properties,
and the Nishimori identity: in the large size limit,

v → lim
N→∞

1

N
E〈‖x‖2〉 = lim

N→∞

1

N
E‖X∗‖2 = 1,

as well as (recall (67))

f → lim
N→∞

1

N
E〈xᵀYx〉 = λ.

Moreover we know that
v̂ → 0

because the prior is already enforcing the constraint that v = ‖x‖2/N → 1 in (153)
without the need to introducing a further, redundant, delta constraint; note that
for Rademacher or spherical prior this is simply true as no delta function is needed.
Therefore the AdaTAP free entropy becomes

1

8
γλ4 − 1

4
µλ2 + ΦN

(
1, 0,

1

2
γλ3,Y

)
+ oN(1). (160)

From this AdaTAP free entropy we see that the values of the marginal means and
variances correspond to the solution of the variational problem (156) with interaction
matrix

J
(

1, 0,
1

2
γλ3,Y

)
= µλY − γλ2Y2 + γλY3 =: J(Y). (161)
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So we end-up with the following effective partition function of an Ising-like model:∫
dPX(x) exp

(1

2
xᵀJ(Y)x

)
. (162)

This shows that the original model is equivalent to an Ising model with interaction
matrix J(Y), which can thus be interpreted as a Bayes-optimal pre-processing of the
data. This will be verified in Section 6, as the use of J(Y) instead of Y will turn
AMP into an optimal algorithm. Ising models like this are precisely studied in [86]
and we can therefore again exploit directly the AdaTAP formalism. Let

ηi(J,m, Vi) :=

∫
dPX(x)x e

1
2
Vix

2+((Jm)i−Vimi)x∫
dPX(x)e

1
2
Vix2+((Jm)i−Vimi)x

, (163)

gi(J,m, Vi) :=

∫
dPX(x)x2 e

1
2
Vix

2+((Jm)i−Vimi)x∫
dPX(x)e

1
2
Vix2+((Jm)i−Vimi)x

. (164)

The associated AdaTAP equations over (m, τ ,V), namely the saddle point equations
associated with the AdaTAP free entropy (156) with J(v, v̂, f̂ ,Y) replaced by J =
J(Y), read

mi = ηi(J,m, Vi), (165)

τi = gi(J,m, Vi), (166)

τi −m2
i =

(
[diag(V + (τ −m2)−1)− J]−1

)
ii
, (167)

where the last equation is understood as an implicit equation for V.

5.3 Simplifying the AdaTAP equations by self-averaging of
the Onsager reaction term

The variances Vi are expected to be self-averaging with respect to the interaction
matrix, i.e., in the large size limit Vi = V̄ := limN→∞ EJVi. The computation we
are going to carry out now could be performed in various ways leading to different
but equivalent expressions. For pedagogical reasons we take a path that remains as
close as possible to the approach of [86]. Following this reference we compute the
expectation of the AdaTAP equation for V. In this section, all quantities V, m and
τ are fixed to a solution of the AdaTAP equations (165)–(167).

We start from the convenient identity(
[Ω− J]−1

)
ii

= ∂Ωii ln det(Ω− J). (168)
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We are going to average the right-hand side. As for a Gaussian model there is no
spin glass phase and strong concentrations take place, the quenched and annealed
averages match [86]: we can thus simply compute the logarithm of the average of
the determinant. A Gaussian identity then gives

E det(Ω− J)−1/2 =

∫
dz

(2π)N/2
exp

(
− 1

2
zᵀΩz

)
E exp

(1

2
zᵀJz

)
. (169)

We denote J =
∑

k≤3 ckY
k where c = (µλ,−γλ2, γλ). The term we need to compute

therefore reads

E exp
(1

2
zᵀJz

)
= E exp

1

2
(zᵀ(c1Y + c2Y

2 + c3Y
3)z) (170)

Define the order parameters

p :=
1

N
zᵀX∗, v :=

1

N
‖z‖2, pD :=

1

N
(Oz)ᵀDOX∗. (171)

We also have ‖X∗‖2/N = 1 + oN(1). Our goal is to identify the generalized spherical
integral (21). Replacing Y by λp∗ + OᵀDO (with p∗ := X∗X∗ᵀ/N) we expand the
various terms. The first term is then simply

c1z
ᵀ
(
λp∗ + OᵀDO

)
z = c1

(
λNp2 + (Oz)ᵀDOz

)
. (172)

The second term is

c2z
ᵀ
(
λ2(‖X∗‖2/N)p∗ + λp∗OᵀDO + λOᵀDOp∗ + OᵀD2O

)
z

= c2

(
Nλ2p2 + 2NλppD + (Oz)ᵀD2Oz

)
+ o(N). (173)

Finally the last term is a bit more cumbersome:

c3z
ᵀ
(
λ3(‖X∗‖4/N2)p∗ + λ2p∗OᵀDOp∗ + λ2(‖X∗‖2/N)OᵀDOp∗ + λOᵀD2Op∗

+ λ2(‖X∗‖2/N)p∗OᵀDO + λp∗OᵀD2O + λOᵀDOp∗OᵀDO + OᵀD3O
)
z

= c3

(
Nλ3p2 + λ2p2(OX∗)ᵀDOX∗ + 2λp(Oz)ᵀD2OX∗

+ 2Nλ2ppD + λNp2
D + (Oz)ᵀD3Oz

)
+ o(N). (174)

Combining all we reach

E exp
(1

2
zᵀJz

)
=

∫
dτdτ̂ exp

(
NK +

1

2
v̂‖z‖2 − N

2
v̂v + o(N)

)
× EO exp

(
(Oz)ᵀCz,zOz + (OX∗)ᵀC∗,∗OX∗ + (OX∗)ᵀCz,∗Oz

)
(175)
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with dτ := (dp, dv, dpD) and dτ̂ := (dp̂, dv̂, dp̂D), and (all coupling matrices below
are N ×N and symmetric)

K :=
1

2

(
µλ2p2 − γλ2(λ2p2 + 2λppD) + γλ(λ3p2 + 2λ2ppD + λp2

D) + p̂p+ p̂DpD
)
,

C∗,∗ :=
1

2
γλ3p2D,

Cz,z :=
1

2

(
µλD− γλ2D2 + γλD3

)
,

Cz,∗ :=
1

2

(
− p̂IN − p̂DD + 2γλ2pD2

)
.

Note the asymmetry for the variable v̂ compared to the other hat-variables, which
has not been injected in the definition of the coupling matrices as the others, but
instead leads to a term appearing explicitly in (175) (both choices are equivalently
valid ones). The term averaged over O is an inhomogeneous spherical integral as
studied in Section 2. In particular, we are in the case of Section 2.2.3 with ` ∈ {0, 1}
with the exception that X∗ also (playing the role of the 0th replica) has a non-zero
self-coupling. So this trivial modification of the computation of Section 2.2.3 yields

Ee
1
2
zᵀJz =

∫
dτdτ̂ exp

(
NK +

1

2
v̂‖z‖2 − N

2
v̂v +NIC(p, v, p̂, p̂D) + o(N)

)
where the 2× 2 random coupling matrix C has entries

2C00 = γλ3p2D, (176)

2C11 = µλD − γλ2D2 + γλD3, (177)

2C01 = 2C10 =
1

2
(−p̂− p̂DD + 2γλ2pD2), (178)

with D ∼ ρ drawn from the noise asymptotic spectral density, and

IC(p, v, p̂, p̂D) =
1

2
extr(ṽ0,ṽ,p̃)

{
ṽ0 + 2p̃p+ ṽv

− E ln
(
(ṽ0 − 2C00)(ṽ − 2C11)− (p̃− 2C01)2

)}
− 1

2
ln(v − p2)− 1. (179)

One can check that IC is null when C00 = C11 = C01 as it should. Therefore equation
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(169) becomes at leading exponential order

lnE det(Ω− J)−1/2

= ln

∫
dz

(2π)N/2
dτdτ̂ exp

(
− 1

2
zᵀ(Ω− v̂IN)z +NK − N

2
v̂v +NIC + o(N)

)
= ln

∫
dτdτ̂ exp

(
NK − N

2
v̂v +NIC −

1

2
ln det(Ω− v̂IN) + o(N)

)
= extr

{
NK − N

2
v̂v +NIC −

1

2
ln det(Ω− v̂IN)

}
+ o(N),

where we used Gaussian integration followed by a saddle point estimation. By the
aforementioned strong concentration properties of the Gaussian model, this is also
equal to −1

2
lnE det(Ω− J) ≈ −1

2
E ln det(Ω− J) so we reach at leading order

E ln det(Ω− J) ≈ extr
{
− 2NK +Nv̂v − 2NIC + ln det(Ω− v̂IN)

}
= extr(v̂,v)

{
Nv̂v +

∑
i≤N

ln(Ωii − v̂)− 2NG̃(v)
}

(180)

where the extremization is over all variables and

G̃(v) := extr(p,pD,p̂,p̂D)

{
IC(p, v, p̂, p̂D) +K(p, pD, p̂, p̂D)

}
. (181)

This is the analogue of the G-function appearing, e.g., in [86]. The extremization
over v̂ in (180) yields that at the saddle point,

v =
1

N

∑
i≤N

1

Ωii − v̂
.

Moreover, combining the TAP equation (167) with (168) and (180) we have

E(τi −m2
i ) = ∂ΩiiE ln det(Ω− J) =

1

Ωii − v̂
(182)

where v̂ is evaluated at its saddle point value. Therefore, summing over i the last
identity and recalling the definition of Ωii we reach

χ̄ :=
1

N
E
∑
i≤N

(τi −m2
i ) = v =

1

N
E
∑
i≤N

1

Vi + (τi −m2
i )
−1 − v̂

. (183)

Under the concentration assumption Vi = V̄ for all i ≤ N , this identity implies

Vi = v̂. (184)
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Additionally the saddle point equation for v extracted from (180) yields

v̂ = 2∂vG̃(v)|v=χ̄ ⇒ Vi = V̄ := 2∂vG̃(v)|v=χ̄. (185)

The variable χ̄ is instance-independent and can be deduced from our replica theory:
it is equal to twice the MMSE (80), namely,

χ̄ = 1−m2 (186)

where m is solution to the replica fixed point equations (74)–(79). Computing V̄
from (185) is then easy, as taking a derivative w.r.t. v of G̃(v) is straightforward: all
the quantities appearing on the right-hand side of (181) are at the saddle point, so
it simply amounts to a partial derivative of (179). It gives

V̄ = ṽ − 1

1−m2 − p2
(187)

where ṽ = ṽ(p, v) takes its saddle point value from (179) while p = p(v) from (181)
with v = χ̄ fixed.

Thanks to these simplifications the AdaTAP equation reads in the large size limit

mi = ηi(J,m, V̄ ). (188)

Or, when written in a fashion closer to the form of AMP algorithms, the AdaTAP
equations read

f = Jm− V̄m, m = ηV̄ (f), (189)

where the “denoiser”, which is applied component-wise above, is

ηV̄ (f) :=

∫
dPX(x)x e

1
2
V̄ x2+fx∫

dPX(x)e
1
2
V̄ x2+fx

. (190)

6 Approximate message passing, optimally

We will now describe an AMP algorithm that matches the replica prediction for
the minimum mean-square error. We therefore conjecture it to be Bayes-optimal.
The main difference between this new AMP and the previously proposed one for
structured PCA is that it is constructed from iterates based on the pre-processed
matrix J(Y) rather than Y as in [41]. Consequently, the Onsager reaction terms
will have to be adapted.
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6.1 BAMP: Bayes-optimal AMP

The AdaTAP approach described in Section 5 suggests that, in order to achieve
Bayes-optimal performance, one should consider the BAMP iteration which is of the
form

f t = J(Y)ut −
t∑
i=1

ct,iu
i, ut+1 = gt+1(f t), t ≥ 1. (191)

As in the AMP iteration (90), the denoiser function gt+1 : R → R is continuously
differentiable, Lipschitz and applied component-wise. Crucially, the Onsager co-
efficients {ct,i}i∈[t],t≥1 need to ensure that, conditioned on the signal, the empirical
distribution of the iterate f t is Gaussian, namely, the convergence result in (91) holds
for some mean vector µt and covariance matrix Σt.

We highlight that the matrix Y in (90) is replaced by the matrix J(Y) in (191).
This means that the state evolution result of [41] cannot be applied and the Onsager
coefficients {ct,i}i∈[t],t≥1 will have a different form with respect to {bt,i}i∈[t],t≥1.

In what follows, we will consider the general case in which J(Y) is an arbitrary
polynomial of degree K in Y, namely,

J(Y) =
∑
i≤K

ciY
i.

To compute {ct,i}i∈[t],t≥1 and obtain a state evolution result for the iteration (191),
the key idea is to map the first T iterations of (191) to the first K × T iterations of
an auxiliary AMP with iterates (z̃t, ũt)t∈[KT ] and denoisers {h̃t+1}t∈[KT ], whose state

evolution can be deduced from [41]. The denoisers {h̃t+1}t∈[KT ] of this auxiliary AMP
are chosen so that, for t ∈ [T ] and ` ∈ [K],

lim
N→∞

1

N
‖ũK(t−1)+` −Y`−1ut‖2

2 = 0. (192)

More specifically, for t ∈ [T ] and ` ∈ {2, . . . , K}, the denoiser h̃K(t−1)+` giving
ũK(t−1)+` is a linear combinations of the past iterates ũ1, . . . , ũK(t−1)+`−1 and of
z̃K(t−1)+`−1; furthermore, the coefficients of these linear combinations are chosen
to ensure that ũK(t−1)+` ≈ Y`−1ut. Hence, from z̃Kt and (ũK(t−1)+`)`∈{2,...,K}, one
obtains (Y`ut)`∈[K] (up to an oN(1) error). As a result, J(Y)ut can be expressed
as a linear combination of (ũ1, . . . , ũKt, z̃Kt), which in turn is a linear combination
of (i) the past iterates {ui}i∈[t], (ii) the signal X∗, plus (iii) independent Gaussian
noise. By inspecting the coefficients of this linear combination, one deduces (i)
the values of the Onsager coefficients {ct,i}i∈[t],t≥1 (as the coefficients multiplying the
past iterates {ui}i∈[t]), (ii) the mean µt (as the coefficient multiplying the signal X∗),
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and (iii) the covariance matrix Σt (as the covariance matrix of the remaining noise
terms). Finally, by making h̃Kt+1 depend on gt+1, we enforce that ũKt+1 ≈ ut+1. We
highlight that the auxiliary AMP is employed purely as a proof technique. Its formal
description is deferred to Appendix B.1, and its state evolution follows in Appendix
B.2.

For simplicity, we assume to have access to an initialization u1 ∈ RN , which is
independent of the noise Z and has a strictly positive correlation with X∗, i.e.,

(X∗,u1)
W2−→ (X∗, U1), E[X∗ U1] := ε > 0, E[U2

1 ] = 1. (193)

The requirement (193) is rather standard in the analysis of AMP algorithms. How-
ever, as having access to such an initialization is often impractical, a recent line of
work has designed AMP iterations which are initialized with the eigenvector of the
data matrix Y associated to the largest eigenvalue, see [79, 77, 102]. By following
the approach detailed in [77], one can design a Bayes-optimal AMP with spectral
initialization. As this would be out of the scope of the current contribution – whose
goal is to obtain an algorithm with a Bayes-optimal fixed point – we will not pursue
this extension here.

6.2 Onsager coefficients and state evolution recursion

We now detail the calculation of the Onsager coefficients {ct,i}i∈[t],t≥1 and of the
state evolution parameters µt,Σt associated to the AMP algorithm (191). We ob-
tain these quantities from the state evolution recursion of the auxiliary AMP which,
up to a oN(1) error, tracks (Y`−1ut)`∈[K] and, as such, has a number of iterations K
times larger. To express the latter, we define a number of auxiliary quantities: the
vector µ̃Kt ∈ RKt, the matrices ∆̃Kt, Φ̃Kt, Σ̃Kt, B̃Kt ∈ RKt×Kt, and the coefficients
{αi,j}j∈[i],i∈[Kt], {βi,j}j∈[b(i−1)/Kc+1],i∈[Kt], {γi}i∈[Kt], {θi,j}i∈[t],j∈[Kt]. The quantities

µ̃Kt, ∆̃Kt, Φ̃Kt, Σ̃Kt, B̃Kt are directly connected to the state evolution of the auxil-
iary AMP (see the remark at the end of Appendix B.2). Furthermore, the coefficients
{αi,j}j∈[i],i∈[Kt], {βi,j}j∈[b(i−1)/Kc+1],i∈[Kt], {γi}i∈[Kt], {θi,j}i∈[t],j∈[Kt] allow for a useful
(approximate) decomposition of the vectors (Y`ut)`∈[K−1], see the remark at the end
of this section.

We start with the initialization

Ũ1 := U1, (194)

where U1 satisfies (193), and we set

µ̃1 := λε, (∆̃1)1,1 := 1, (Φ̃1)1,1 := 0, (B̃1)1,1 := κ̄1, (Σ̃1)1,1 := κ̄2,

α1,1 := 0, β1,1 := 1, γ1 := 0.
(195)
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Here and in what follows, we denote by {κ̄k}k≥1 the sequence of free cumulants
associated to D. The free cumulants can be recursively computed from the moments,
see e.g. [83, Section 2.5].

For t ≥ 1, let us define

ŨK(t−1)+1+` := Z̃K(t−1)+` + µ̃K(t−1)+`X
∗ +

K(t−1)+`∑
j=1

(B̃K(t−1)+`)K(t−1)+`,jŨj, ` ∈ [K − 1],

(196)

ŨKt+1 := gt+1

(
µtX

∗ +
Kt∑
j=1

θt,jZ̃j

)
, (197)

(Z̃1, . . . , Z̃Kt) ∼ N (0, Σ̃Kt) and independent of X∗, U1. (198)

We note that the function gt+1 in (197) is the AMP denoiser in (191). Let us also
define

µ̃K(t−1)+1+` = λE[ŨK(t−1)+1+`X
∗], (199)

(∆̃K(t−1)+1+`)K(t−1)+1+`,j = (∆̃K(t−1)+1+`)j,K(t−1)+1+` = E[ŨK(t−1)+1+`Ũj], (200)

j ∈ [K(t− 1) + 1 + `],

(Φ̃K(t−1)+1+`)K(t−1)+1+`,j = E[∂Z̃j ŨK(t−1)+1+`], j ∈ [K(t− 1) + `], (201)

B̃K(t−1)+1+` =

K(t−1)+`∑
j=0

κ̄j+1Φ̃
j

K(t−1)+1+`, (202)

Σ̃K(t−1)+1+` =

2(K(t−1)+`)∑
j=0

κ̄j+2

j∑
k=0

(Φ̃K(t−1)+1+`)
k∆̃K(t−1)+1+`(Φ̃

ᵀ
K(t−1)+1+`)

j−k. (203)

Now, we obtain µ̃K(t−1)+1, ∆̃K(t−1)+1, Φ̃K(t−1)+1, B̃K(t−1)+1, Σ̃K(t−1)+1 by setting ` =
0 in (199)–(203) (and by using the initialization (195) for t = 1). This allows us to
define ŨK(t−1)+2 by setting ` = 1 in (196). Next, we obtain µ̃K(t−1)+2, ∆̃K(t−1)+2,

Φ̃K(t−1)+2, B̃K(t−1)+2, Σ̃K(t−1)+2 by setting ` = 1 in (199)–(203). This allows us

to define ŨK(t−1)+2 by setting ` = 2 in (196). We iterate this procedure until

we have obtained (µ̃K(t−1)+`, ∆̃K(t−1)+`, Φ̃K(t−1)+`, B̃K(t−1)+`, Σ̃K(t−1)+`)`∈[K] and

(ŨK(t−1)+1+`)`∈[K−1]. We note that, for any i ≥ 1, B̃i and Σ̃i are the top left sub-

matrices of B̃i+1 and Σ̃i+1, respectively.
At this point, for ` ∈ [K−1], we compute the quantities {αK(t−1)+1+`,j}j∈[K(t−1)+`],
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{βK(t−1)+1+`,j}j∈[t], γK(t−1)+1+` as

αK(t−1)+1+`,j = δK(t−1)+`,j +

K(t−1)+`∑
i=1

i 6≡1(modK)

αi,j (B̃K(t−1)+`)K(t−1)+`,i, j ∈ [K(t− 1) + `],

(204)

βK(t−1)+1+`,j = (B̃K(t−1)+`)K(t−1)+`,K(j−1)+1 +

K(t−1)+`∑
i=1

i 6≡1(modK)

βi,j (B̃K(t−1)+`)K(t−1)+`,i, j ∈ [t],

(205)

γK(t−1)+1+` = µ̃K(t−1)+` +

K(t−1)+`∑
i=1

i 6≡1(modK)

(B̃K(t−1)+`)K(t−1)+`,iγi. (206)

In (204), δi,j denotes the Kronecker symbol (δi,j = 1 if i = j and 0 otherwise), and
αi,j is assumed to be 0 if j ≥ i; in (205), βi,j is assumed to be 0 if j > d(i− 1)/Ke.

Recall that {ci}Ki=1 are the coefficients of the polynomial J(Y) (in Y), i.e., J(Y) =∑K
i=1 ciY

i. Finally, we are ready to express µt, {θt,j}j∈[Kt]:

µt =
K∑
i=1

ci

(
µ̃K(t−1)+i +

K(t−1)+i∑
k=1

γk (B̃K(t−1)+i)K(t−1)+i,k

)
, (207)

θt,j =
K∑
i=1

ci

(
δK(t−1)+i,j +

K(t−1)+i∑
k=1

αk,j (B̃K(t−1)+i)K(t−1)+i,k

)
, j ∈ [Kt]. (208)

As before, αi,j is assumed to be 0 if j ≥ i. This allows us to define ŨKt+1 via
(197) and, after setting βKt+1,t = 1, βKt+1,j = 0 for all j ∈ [t − 1], αKt+1,j = 0 for
all j ∈ [Kt + 1] and γKt+1 = 0, the definition of the state evolution recursion is
complete.

From the state evolution recursion defined above, we can derive the Onsager
coefficients {ct,j}j∈[t] as

ct,j =
K∑
i=1

ci

K(t−1)+i∑
k=1

βk,j (B̃K(t−1)+i)K(t−1)+i,k, j ∈ [t]. (209)

At this point, we are ready to present our result concerning the characterization
of the iterates of the AMP algorithm (191), with Onsager coefficients given by (209),
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in the high-dimensional limit N → ∞: we prove that the convergence (91) holds,
where µt is given by (207) and Wt =

∑Kt
j=1 θt,jZ̃j, with {θt,j, Z̃j}j∈[Kt] described

by the recursion above. Equivalently [44, Corollary 7.21], the convergence can be
expressed in terms of pseudo-Lipschitz test functions. A function ψ : Rm → R is
pseudo-Lipschitz of order 2, denoted by ψ ∈ PL(2), if there exists a constant C > 0
such that

‖ψ(x)− ψ(y)‖2 ≤ C
(

1 + ‖x‖2 + ‖y‖2

)
‖x− y‖2,

for all x,y ∈ Rm.

Theorem 1 (State evolution of the BAMP). Let Y be given by (2) and which verifies
Hypothesis 1, and let J(Y) =

∑K
i=1 ciY

i. Consider the AMP algorithm (191), with
initialization (193), Onsager coefficients {ct,j}j∈[t] given by (209) and where, for
t ≥ 1, gt+1 is continuously differentiable and Lipschitz. Then, the following limit
holds almost surely for any PL(2) function ψ : R2t+2 → R, for t ≥ 1 as N →∞:

1

N

∑
i≤N

ψ(u1
i , . . . , u

t+1
i , f 1

i , . . . , f
t
i , X

∗
i )→ Eψ(U1, . . . , Ut+1, F1, . . . , Ft, X

∗). (210)

Equivalently, as N →∞, the joint empirical distribution of (u1, . . . ,ut+1, f1, . . . , f t,X∗)
converges almost surely in Wasserstein-2 distance to (U1, . . . , Ut+1, F1, . . . , Ft, X

∗).
Here, for i ∈ [t], Ui+1 = gi+1(Ft) and (F1, . . . , Ft) = µtX

∗ + (W1, . . . ,Wt), with
Wt =

∑Kt
j=1 θt,jZ̃j and where µt can be computed via (207), {θt,j}j∈[Kt] via (208) and

{Zj}j∈[Kt] is given by (198).

The proof of Theorem 1 is deferred to Appendix B.3. A few remarks are now
in order. First, we highlight that (210) directly implies a high-dimensional charac-
terization of the performance of the AMP (191). In fact, by taking the pseudo-
Lipschitz functions ψ(Ut+1, X

∗) = (Ut+1 − X∗)2, ψ(Ut+1, X
∗) = Ut+1 · X∗ and

ψ(Ut+1, X
∗) = (Ut+1)2, we obtain the limit mean-square error and overlap of the

AMP iterates as

lim
N→∞

1

2N2
E‖X∗(X∗)ᵀ − ut(ut)ᵀ‖2

F =
1

2

(
1− 2

(
E[Ut ·X∗]

)2

+ (E[(Ut)
2])2
)
,

lim
N→∞

|〈X∗,ut〉|
‖ut‖ · ‖X∗‖

=
|E[Ut ·X∗]|√

E[(Ut)2]
.

(211)

Next, note that Theorem 1 holds for any family of denoisers {gt+1}t≥1, subject
to some mild regularity requirement. A natural choice is to pick the posterior mean

gt+1(f) = E[U∗ | Ft = f ]. (212)
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Such a choice requires estimating the state evolution parameters µt, {θt,j}j∈[Kt] and

Σ̃Kt. These parameters, as well as the Onsager coefficients (209), can be estimated
consistently from the data. To do so, first we obtain ∆̃Kt and Φ̃Kt by replacing expec-
tations with empirical averages in (200) and (201), respectively. Next, we compute
B̃Kt and Σ̃Kt by plugging in such estimates in (202) and (203), respectively. Hav-
ing done that, we obtain {αK(t−1)+1+`,j}j∈[K(t−1)+`],`∈[K−1], {βK(t−1)+1+`,j}j∈[t],`∈[K−1],
{γK(t−1)+1+`}`∈[K−1] via (204)–(206). Finally, µt, {θt,j}j∈[Kt] and {ct,j}j∈[t] can be
computed from (207), (208) and (209), respectively.

As a final remark, we provide an interpretation of the coefficients {αi,j}, {βi,j},
{γi}. As a by-product of the argument proving Theorem 1, we will show that, for
` ∈ [K − 1], (cf. (234)–(235))

lim
N→∞

‖Y`ut−
∑K(t−1)+`

j=1 αK(t−1)+1+`,j z̃
j−
∑t

j=1βK(t−1)+1+`,ju
j−γK(t−1)+1+`X

∗‖2

N
= 0.

(213)

This formalizes the fact that Y`ut can be approximately expressed as a linear com-
bination of (i) the past iterates {uj}j∈[t], (ii) the signal X∗, plus (iii) independent
Gaussian noise (represented by the z̃j’s). The quantities {αi,j}, {βi,j}, {γi} repre-
sent the coefficients of this linear combination. The characterization (213) allows to
subtract from J(Y)uk just the right Onsager terms, so that this difference equals a
component in the direction of the signal (whose size is captured by µt) plus indepen-
dent Gaussian noise (given by the linear combination of the z̃j’s via the coefficients
{θi,j}).

7 Numerics

For all experiments in this section, random instances of Y are generated according to
the model (2). The signal has Rademacher prior, i.e., i.i.d. entries X∗i ∼ 1

2
(δ1 + δ−1).

The noise matrices Z = OᵀDO are generated by first drawing N i.i.d. eigenvalues
(Di)i≤N according to the density (14), and then multiplying from left and right the
diagonal matrix of eigenvalues D by a random Haar distributed orthogonal matrix
O sampled independently for each realization. As mentioned at the end of Section
1.4, the results are expected to be the same if we were to draw Z according to the
harder to sample3 measure (5).

3This can be done using the Dyson Brownian motion, see [93].
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Figure 3: Ranked eigenvalues of the data matrix Y (orange) and the optimally pre-
processed matrix J(Y) (blue) for N = 4000 for (left) λ = 2 and (right) λ = 5. The
gap between the largest detached eigenvalue on the extreme right and the second
highest one is much bigger for the pre-processed matrix. Moreover, all the eigenvalues
of J(Y) in its non-informative bulk are negative.

7.1 Spectral properties of the pre-processed matrix J(Y)

Let us discuss the effect on the spectrum of Y that has the application of the optimal
pre-processing function J(·); clearly, this function does not influence the eigenvectors
of Y which therefore has the same basis as J(Y). From Figures 3 and 4, the effect
is clear: the function J (Figure 4, middle plots (b)) “cleans” the eigenvalues of the
data Y (Figure 4, upper plots (a)) by shifting the non-informative bulk eigenvalues of
Y to negative values, while the largest, informative, eigenvalue is further separated
from the bulk. This results in the histograms (Figure 4, lower plots (c)) for the
processed data J(Y). It thus become much easier to distinguish the informative
eigenvalue, which may be of interest for smaller instances where the finite-size effects
are stronger.

7.2 BAMP improves over the existing AMP and matches
the replica prediction for the MMSE

The plots of Figure 5 consider the quartic ensemble discussed in Section 1.3 for three
values of the parameter µ, namely, µ ∈ {0, 0.5, 1} (recall γ = γ(µ) is fixed by relation
(17)). Again, in all cases the signal X∗ is assumed to have a Rademacher prior. The
estimators of the spike X∗X∗ᵀ are compared in terms of the MSE (y-axis) achieved
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(a) Empirical spectral density of Y. The largest, informative, eigenvalue is emphasized.

(b) The function J(x) = µλx−γλ2x2+γλx3 with (µ = 0, γ(0) = 16/27) is used to optimally
pre-process the (eigenvalues of the) data Y and obtain J(Y). The dashed curve indicates 0.
By comparison with the plots (a) above, we understand that the noise bulk will be pushed
to negative values, while the spike towards the right, which results in a “cleaning” effect.

(c) Empirical spectral density of the pre-processed matrix J(Y). The largest eigenvalue is
emphasized and well separated from the negative bulk by the application of J(x).

Figure 4: Effect of the optimal pre-processing J(x) on the eigenvalues of Y. All
experiments are for the most structured noise ensemble (µ = 0, γ(0) = 16/27) and
N = 4000. The left column corresponds to λ = 2, while the right column to λ = 5.
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at the fixed point, as a function of the SNR λ (x-axis). All algorithms are run for
N = 8000 and the results are averaged over ntrials = 50 independent trials; the state
evolution recursions (and the replica prediction as well) correspond to N →∞. We
compare the following inference procedures:

• In black, we plot the replica prediction (80), obtained as the fixed point of
(74)–(79).

• In red, we plot the performance of the BAMP algorithm described in Section
6, where gt+1 is the posterior mean denoiser (212). More specifically, the red
line corresponds to the fixed point of the MSE given by the state evolution
recursion discussed in Section 6.2 (cf. (211)), and the red stars denote the
MSE obtained by running the BAMP algorithm (191).

• In blue, we plot the performance of the AMP proposed in [41]. More specif-
ically, the blue line corresponds to the fixed point of the MSE (93) obtained
by choosing the posterior mean denoiser with a single-step memory term (92).
The blue diamonds denote the MSE obtained by running the AMP (90) with
this single-step denoiser.

• Finally, the green squares denote the MSE obtained by running the AMP in
[102], which consists in employing the following posterior mean denoiser with
a multi-step memory term in the iteration (90):

ht+1(f1, . . . , ft) = E[X∗ | (F1, . . . , Ft) = (f1, . . . , ft)]. (214)

We note that all algorithms converge rapidly: 10 iterations are sufficient to reach
the corresponding fixed points. A few remarks concerning the numerical results
displayed in Figure 5 are now in order:

• In all settings, the fixed point of the BAMP state evolution (in red) matches the
replica prediction (in black). This is a strong numerical evidence supporting
our conjecture that the proposed BAMP algorithm is Bayes-optimal. These
theoretical curves for N → ∞ are also remarkably close to the MSE achieved
by the BAMP algorithm (191) at N = 8000.

• When µ = 0, i.e., the noise is sufficiently far from being independent Gaussian,
there is a clear performance gap between our proposed BAMP (in red) and the
existing AMP algorithms [41, 102] (single-step denoiser in blue, and multi-step
in green). As predicted by our theory, this gap is reduced for µ = 0.5, and all
curves collapse for µ = 1.
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(a) µ = 1.
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(b) µ = 0.5.
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(c) µ = 0.

Figure 5: Performance comparison between the replica prediction for the MMSE (in
black), the proposed BAMP (in red), and the existing AMP [41, 102] (in blue and
green). BAMP matches the Bayes-optimal MSE predicted via the replica method,
and it outperforms the existing AMP when the noise is not Gaussian. This improve-
ment is more evident as the noise distribution gets further from a Wigner distribution.
Taken all together, these numerical results provide an empirical confirmation of the
(Bayes-)optimality of the proposed BAMP algorithm.

• Finally, we note that the BAMP algorithm exhibits a numerical instability for
low SNR. More specifically, when µ = 0 and λ = 2.3, 5 out of the 50 trials of the
iteration (191) do not reach the fixed point of state evolution (and are therefore
discarded). Furthermore, by inspecting Figure 5c, one notices that the curve
representing the BAMP state evolution detaches from the replica prediction as
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the SNR get smaller than 2.3. As expected, considering an initialization closer
to the fixed point mitigates the issue. This numerical instability is likely due
to the state evolution of BAMP corresponding to the recursion of an auxiliary
AMP that triples the number of iterations. This fact leads to an amplification
of the numerical errors.

Let us re-emphasize that all these results hold in the Bayesian-optimal setting
where all hyper-parameters of the model are known and optimally used. In practical
situations this may not be the case. In particular the statistical properties of the
correlated noise Z may be only partially known, preventing one to obtain the coef-
ficients (ck) defining the optimal pre-processing of the data J(Y) =

∑
k≤K ckY

k as
done in Section 5. In Appendix A we provide a learning procedure based on expec-
tation maximization to overcome this issue and which can be of help to practitioners
aiming at using BAMP in more realistic situations. Its testing is left for future work.
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A Learning the optimal pre-processing J(Y) by

expectation maximization

Until now we have assumed that we are in the Bayesian-optimal setting where, in
particular, the polynomial potential V defining the noise statistics is completely
known and correctly exploited. As seen from section 5.2, given a potential V we
could deduce from the AdaTAP formalism an optimal polynomial

J = J(Y) =
∑
k≤K

ckY
k

to pre-process the data Y before using it in AMP. The Bayes-optimal case corre-
sponds to matrix (161), i.e., J = c1Y + c2Y

2 + c3Y
3 with c = (µλ,−γλ2, γλ).

We here consider an extension of the previously derived AMP to a case where
V is not known and therefore the optimal J cannot be deduced by the AdaTAP
approach as we did in Section 5.2. What is known instead is an upper bound on the
order of V . In the base-case model studied in details in the present paper the order
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is four. The procedure we propose below will not be tested numerically yet, but
we believe it may be of interest to practitioners eager to improve the Bayes-optimal
AMP for more practical settings than the specific ones studied here.

To directly learn the coefficients (ck)k≤K from the data, we propose to use an
expectation maximization (EM) approach, with a routine inside AMP performing
the parameter estimation by maximizing the current estimate of the free entropy,
i.e., of the log-likelihood of the observed data lnP (Y | c).

Assume that, at the AMP iterate t, the current estimate of the unknown coef-
ficients c = (ck)k≤K is c(t) = (ck(t))k≤K , the AMP estimate of the marginal means
is m(t), and of the Onsager reaction term is V̄ (t) (which is related to the set of
Onsager coefficients, see Section 6.2). Let also the data matrix polynomial currently
used by AMP be

J(t) :=
∑
k≤K

ck(t)Y
k.

From the analysis of Section 5.3 we know that at the saddle point we can safely
replace the Onsager reaction term Vi by V̄ in the AdaTAP equations. When this is
plugged back into (182), this identity implies that also the following concentration
is consistently valid: E(τi−m2

i ) = τi−m2
i , which is also equal by exchangeability to

N−1
∑

i≤N E(τi−m2
i ). Let us call χ̄(t) the AMP estimate of the variance E(τi−m2

i ).
Applying these simplifications to the AMP iterates we get that the matrix Ω(t) :=
diag(V(t) + (τ (t)−m(t)2)−1) can be simplified as

Ω(t) = (V̄ (t) + χ̄(t)−1)IN .

From section 5.1 the AdaTAP approximation to the free entropy at iterate t then
reads, using these simplifications, as

ΦN(t, c(t)) =
1

2
m(t)ᵀJ(t)m(t) +

1

2
ln det

(
Ω(t)− J(t)

)
− 1

2
V̄ (t)

∑
i≤N

mi(t)
2 +

1

2
χ̄(t)

−
∑
i≤N

ln

∫
dPX(x) exp

(1

2
V̄ (t)x2 +

(
(J(t)m(t))i − V̄ (t)mi(t)

)
x
)
. (215)

The free entropy ΦN(t, c(t)) is the current best approximation to the marginal log-
likelihood of the data lnP (Y | c), which we thus aim at maximizing with respect to
the unknown parameters, all other quantities being fixed at their current values:

∂ckΦN |t,c(t) = m(t)ᵀYk
(1

2
m(t)− η(J(t),m(t), V̄ (t))

)
− 1

2
Tr
(
Yk(Ω(t)− J(t))−1

)
, (216)
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where we used (163) and the notation η(J(t),m(t), V̄ (t)) = (ηi(J(t),m(t), V̄ (t))i≤N .
Because J is diagonalizable in the same basis as the data Y, the eigenvalues of which
are denoted σi = σi(Y), we have

Tr
(
Yk(Ω(t)− J(t))−1

)
=
∑
i≤N

σki
V̄ (t) + χ̄(t)−1 −

∑
`≤K c`(t)σ

`
i

. (217)

Then

∂ckΦN |t,c(t) = m(t)ᵀYk
(1

2
m(t)− η(J(t),m(t), V̄ (t))

)
− 1

2

∑
i≤N

σki
V̄ (t) + χ̄(t)−1 −

∑
`≤K c`(t)σ

`
i

. (218)

We aim at maximizing the free entropy so given a learning rate ζ > 0 the learning
rule finally reads

ck(t+ 1) = ck(t) + ζ∂ckΦN |t,c(t). (219)

B Proofs for BAMP

B.1 Auxiliary AMP

The iterates of the auxiliary AMP are denoted by z̃t, ũt ∈ RN , and they are computed
as follows, for t ≥ 1:

z̃t = Zũt −
t∑
i=1

b̄t,iũ
i, ũt+1 = h̃t+1(z̃1, . . . , z̃t,u1,X∗). (220)

The iteration (220) is initialized with ũ1 = u1, where u1 satisfies (193). For t ≥ 1,
the functions h̃t+1 : Rt+2 → R are applied component-wise, and they are recursively
defined as

h̃K(t−1)+1+`(z1, . . . , zK(t−1)+`, u1, x
∗) = zK(t−1)+` + (B̃K(t−1)+`)K(t−1)+`,1 u1

+

K(t−1)+`∑
i=2

(B̃K(t−1)+`)K(t−1)+`,i h̃i

(
z1, . . . , zi−1, u1, x

∗
)

+ µ̃K(t−1)+`x
∗, ` ∈ [K − 1],

h̃Kt+1(z1, . . . , zKt, u1, x
∗) = gt+1

(
µtx

∗ +
Kt∑
i=1

θt,izi

)
.

(221)
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The idea is that the choice (221) for the denoisers {h̃t+1}t≥1 ensures that ũK(t−1)+`

tracks the quantity Y`−1ut for ` ∈ [K] and t ≥ 1, where {ut} are the iterates of the
AMP iteration (191) we are interested in analyzing.

In (221), gt+1 is the denoiser of the AMP (191). The parameters (B̃K(t−1)+`,
µ̃K(t−1)+`, µt, θt,i) come from the state evolution recursion detailed in Section 6.2:

B̃K(t−1)+` is given by (202), µ̃K(t−1)+` by (199), µt by (207) and θt,i by (208). We
now discuss how to obtain the coefficients {b̄t,i}ti=1 needed in (220). Let us define
the matrix Φ̄t ∈ Rt×t as

(Φ̄t)i,j = 0, for i ≤ j, (Φ̄t)i,j = 〈∂jũi〉, for i > j, (222)

where, for j < i, the vector 〈∂jũi〉 ∈ RN denotes the partial derivative of h̃i :
Ri+1 → R with respect to the j-th input (applied component-wise). Then, the
vector (b̄t,1, . . . , b̄t,t) is given by the last row of the matrix B̄t ∈ Rt×t defined as

B̄t =
t−1∑
j=0

κj+1Φ̄
j
t . (223)

where {κk}k≥1 denotes the sequence of free cumulants associated to the matrix Z.

B.2 State evolution of auxiliary AMP

Using Theorem 2.3 in [102], we provide a state evolution result for the auxiliary AMP
(220). In particular, we show in Proposition 2 that the joint empirical distribution
of (z̃1, . . . , z̃t) converges to a t-dimensional Gaussian N (0, Σ̂t).

The covariance matrices {Σ̂t}t≥1 are defined recursively, starting with Σ̂1 =

κ̄2E[U2
1 ], where U1 is defined in (193). Given Σ̂t, let

(Ẑ1, . . . , Ẑt) ∼ N (0, Σ̂t) and independent of (X∗, U1),

Ûs = h̃s

(
Ẑ1, . . . , Ẑs−1, U1, X

∗
)
, for s ∈ {2, . . . , t+ 1},

(224)

where h̃s is defined via (221) and we set Û1 = U1. Let Φ̂t+1, ∆̂t+1 ∈ R(t+1)×(t+1) be
matrices with entries given by

(Φ̂t+1)i,j = 0, for i ≤ j, (Φ̂t+1)i,j = E[∂jÛi], for i > j,

(∆̃t+1)i,j = E[Ûi Ûj], 1 ≤ i, j ≤ t+ 1,
(225)
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where ∂jÛi denotes the partial derivative ∂Ẑj h̃i(Ẑ1, . . . , Ẑi−1, U1, X). Then, we com-

pute the covariance matrix Σ̂t+1 as

Σ̂t+1 =
2t∑
j=0

κ̄j+2

j∑
i=0

(Φ̂t+1)i∆̂t+1(Φ̂
ᵀ

t+1)j−i. (226)

It can be verified that the t× t top left sub-matrix of Σ̂t+1 is given by Σ̂t.

Proposition 2 (State evolution for auxiliary AMP). Consider the auxiliary AMP in
(220) and the state evolution random variables defined in (224). Let ψ̃ : R2t+2 → R
be a PL(2) function. Then, for each t ≥ 1, we almost surely have

lim
N→∞

1

N

N∑
i=1

ψ̃(z̃1
i , . . . , z̃

t
i , ũ

1
i , . . . , ũ

t+1
i , X∗i )

= E[ψ̃(Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X
∗)]. (227)

Equivalently, as N →∞, almost surely:

(z̃1, . . . , z̃t, ũ1, . . . , ũt+1, X∗)
W2−→ (Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X

∗). (228)

Furthermore,

(Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X
∗)

d
= (Z̃1, . . . , Z̃t, Ũ1, . . . , Ũt+1, X

∗), (229)

where (Z̃1, . . . , Z̃t, Ũ1, . . . , Ũt+1, X
∗) are obtained via (196)–(198).

Proof. The result follows from Theorem 2.3 in [102]. In fact, Assumption 2.1 of
[102] holds because of the model assumptions on Z, Assumption 2.2(a) holds be-

cause (X∗, ũ1) = (X∗,u1)
W2−→ (X∗, U1) from (193), and Assumption 2.2(b) follows

from the definition of h̃t+1 in (221) and the fact that gt+1 is continuously differen-
tiable and Lipschitz. As the auxiliary AMP in (220) is of the standard form for
which the state evolution result of Theorem 2.3 in [102] holds, we readily obtain
(228). The equivalence between (228) and (227) follows from [44, Corollary 7.21].
Finally, by inspecting the state evolution recursions (196)–(198) and (224) giving
(Z̃1, . . . , Z̃t, Ũ1, . . . , Ũt+1, X

∗) and (Ẑ1, . . . , Ẑt, Û1, . . . , Ût+1, X
∗) respectively, (229) is

readily obtained.

Proposition 2 gives that the state evolution recursion discussed in Section 6.2 (cf.
(196)–(198)) coincides with the state evolution tracking the iterates of the auxiliary
AMP algorithm (220). In particular, ∆̃3t = ∆̂3t, Φ̃3t = Φ̂3t, and Σ̃3t = Σ̄3t.
Furthermore, in the proof of Theorem 1 contained in Appendix B.3, we will show
that B̄3t → B̃3t as N →∞.
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B.3 Proof of Theorem 1

We start by presenting a useful technical lemma.

Lemma 3. Let F : Rt → R be a Lipschitz function, and let ∂kF denote its derivative
with respect to the k-th argument, for 1 ≤ k ≤ t. Assume that ∂kF is continuous al-
most everywhere in the k-th argument, for each k. Let (V

(m)
1 , . . . , V

(m)
t ) be a sequence

of random vectors in Rt converging in distribution to the random vector (V1, . . . , Vt)
as m → ∞. Furthermore, assume that the distribution of (V1, . . . , Vt) is absolutely
continuous with respect to the Lebesgue measure. Then,

lim
m→∞

E[∂kF (V
(m)

1 , . . . , V
(m)
t )] = E[∂kF (V1, . . . , Vt)], 1 ≤ k ≤ t. (230)

The result was proved for t = 2 in [22, Lemma 6]. The proof for t > 2 is basically
the same, see also [44, Lemma 7.14]. At this point, we are ready to give the proof of
Theorem 1.

Proof of Theorem 1. We show that, for any PL(2) function ψ : R2t+2 → R, the
following limit holds almost surely for t ≥ 1:

lim
N→∞

∣∣∣ 1

N

N∑
i=1

ψ
(
u1
i , u

2
i , . . . , u

t+1
i , f 1

i , f
2
i , . . . , f

t
i , X

∗
i

)
− 1

N

N∑
i=1

ψ
(
ũ1
i , ũ

K+1
i , . . . , ũKt+1

i , f̃ 1
i , f̃

2
i , . . . , f̃

t
i , X

∗
i

)∣∣∣ = 0,

(231)

where we have defined for s ∈ {1, . . . , t},

f̃ s = µsX
∗ +

Ks∑
i=1

θs,iz̃
i. (232)

From here till the end of the argument, all the limits hold almost surely, and we use
C to denote a generic positive constant, which can change from line to line and is
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independent of N . By using that ψ is pseudo-Lipschitz, we have that

∣∣∣ 1

N

N∑
i=1

ψ
(
u1
i , u

2
i , . . . , u

t+1
i , f 1

i , f
2
i , . . . , f

t
i , X

∗
i

)
− 1

N

N∑
i=1

ψ
(
ũ1
i , ũ

K+1
i , . . . , ũKt+1

i , f̃ 1
i , f̃

2
i , . . . , f̃

t
i , X

∗
i

)∣∣∣
≤ C

N

N∑
i=1

(
1 + |X∗i |+ 2|u1

i |+
t∑

k=1

(
|fki |+ |f̃ki |+ |uk+1

i |+ |ũKk+1
i |

))
·
( t∑
k=1

(
|fki − f̃ki |2 + |uk+1

i − ũKk+1
i |2

))1/2

≤ C(4t+ 3)
[
1 +
‖X∗‖2

N
+

t∑
k=1

(‖fk‖2

N
+
‖f̃k‖2

N
+
‖uk+1‖2

N
+
‖ũKk+1‖2

N

)]1/2

·
( t∑
k=1

(‖fk − f̃k‖2

N
+
‖uk+1 − ũKk+1‖2

N

))1/2

,

(233)

where the last step uses twice Cauchy-Schwarz inequality. We now inductively show
that as N →∞: (i) each of the terms in the last line of (233) converges to zero, and
(ii) the terms within the square brackets in (233) all converge to finite, deterministic
limits. To achieve this goal, we will also show that, for k ∈ [t] and ` ∈ [K − 1],

lim
N→∞

‖Y`uk − ũK(k−1)+1+`‖2

N
= 0, (234)

lim
N→∞

‖ũK(k−1)+1+`−
∑K(k−1)+`

j=1 αK(k−1)+1+`,j z̃
j−
∑k

j=1βK(k−1)+1+`,ju
j−γK(k−1)+1+`X

∗‖2

N
= 0.

(235)

The limit (234) formalizes the idea discussed in Section 6.1 (see (192)) that the iterate
ũK(k−1)+1+` of the auxiliary AMP tracks the quantity Y`uk, where uk is the iterate
of the AMP we wish to analyze, up to an oN(1) error. The limit (235) formalizes the
interpretation of the coefficients {αi,j}, {βi,j}, {γi} provided at the end of Section
6.2 (see (213)).
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Base case (t = 1). We have that

Yu1 − ũ2 = Zu1 + λ
〈X∗,u1〉

N
X∗ − z̃1 − (B̃1)1,1u

1 − µ̃1X
∗

=
(
λ
〈X∗,u1〉

N
− µ̃1

)
X∗ +

(
b̄1,1 − (B̃1)1,1

)
u1,

(236)

where the first equality uses the definition of Y and of h̃2 (see (221)), and the second
equality uses (220) and that ũ1 = u1. Hence, by triangle inequality,

‖Yu1 − ũ2‖2

N
≤ 2
(
λ
〈X∗,u1〉

N
− µ̃1

)2‖X∗‖2

N
+ 2
(
b̄1,1 − (B̃1)1,1

)2‖u1‖2

N

≤ C
((
λ
〈X∗,u1〉

N
− µ̃1

)2

+
(
b̄1,1 − (B̃1)1,1

)2
)
,

(237)

where the last inequality uses that (X∗,u1) converges in W2 to a pair of random
variables with finite second moments. As µ̃1 = λε (cf. (195)), we have

lim
N→∞

λ
〈X∗,u1〉

N
= λE[U1X

∗] = λε = µ̃1. (238)

Furthermore, note that (B̃1)1,1 = κ̄1 (cf. (195)) and b̄1,1 = κ1 (cf. (223)). Hence,
by the model assumptions, as N → ∞, κ1 → κ̄1 and, therefore, b̄1,1 → (B̃1)1,1.
By combining this observation with (237) and (238), we obtain that (234) holds for
k = 1 and ` = 1.

By using (204)–(206), we readily obtain that α2,1 = 1, β2,1 = (B̃1)1,1 and γ2 = µ̃1.
Hence, by using the definition (221) of h̃2, we obtain that (235) holds for k = 1 and
` = 1.

Next, by using the definitions of Y, of the auxiliary AMP (220) and of h̃3 (cf.
(221)), we have

Y2u1 − ũ3 = Y(Yu1 − ũ2) + Yũ2 − z̃2 − (B̃2)2,1u
1 − (B̃2)2,2ũ

2 − µ̃2X
∗

= Y(Yu1 − ũ2) + Zũ2 − z̃2 − (B̃2)2,1u
1 − (B̃2)2,2ũ

2 +
(
λ
〈X∗, ũ2〉

N
− µ̃2

)
X∗

= Y(Yu1 − ũ2) +
(
b̄2,1 − (B̃2)2,1

)
u1 +

(
b̄2,2 − (B̃2)2,2

)
ũ2 +

(
λ
〈X∗, ũ2〉

N
− µ̃2

)
X∗.

(239)
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Hence, by triangle inequality,

‖Y2u1 − ũ3‖2

N
≤ C

(‖Y(Yu1 − ũ2)‖2

N
+
(
b̄2,1 − (B̃2)2,1

)2‖u1‖2

N

+
(
b̄2,2 − (B̃2)2,2

)2‖ũ2‖2

N
+
(
λ
〈X∗, ũ2〉

N
− µ̃2

)2‖X∗‖2

N

)
:= C(T1 + T2 + T3 + T4).

(240)

Consider the first term. As Y has bounded operator norm and (234) holds for k = 1
and ` = 1, we have that T1 → 0 as N →∞.

Consider the second and third terms. The following chain of equalities holds

lim
N→∞

(Φ̄2)2,1 = lim
N→∞

〈∂1ũ
2〉 = E[∂1Û2] = E[∂1Ũ2] = (Φ̃2)2,1. (241)

Here, the first equality uses the definition (222); the second equality follows from
Lemma 3, as ũ2 converges in W2 (and therefore in distribution) to Ũ2 and ∂1Ũ2 is
continuous; the third equality uses (229); and the fourth equality uses the definition
of (Φ̃2)2,1 in (201). By the model assumptions, as N →∞, κj → κ̄j for all j. Thus,
by combining (241) with the definitions of B̄2 and B̃2 in (223) and (202), respectively,
we conclude that, as N → ∞, b̄2,i → (B̃2)2,i for i ∈ {1, 2}. By Proposition 2,
‖ũ2‖2/N converges to a finite limit, hence we conclude that T2, T3 → 0 as N →∞.

Consider the fourth term. Then,

lim
N→∞

λ
〈X∗, ũ2〉

N
= λE[X∗ Ũ2] = µ̃2.

Here, the first equality uses Proposition 2 and the second equality uses the definition
of µ̃2 in (199). As ‖X∗‖2/N = 1, we conclude that T4 → 0 as N →∞. This proves
that the RHS of (240) vanishes and gives that (234) holds for k = 1 and ` = 2.

By using (204)–(206), we readily obtain that α3,1 = (B̃2)2,2, α3,2 = 1, β3,1 =
(B̃2)2,1 + (B̃2)2,2 (B̃2)1,1 and γ3 = µ̃2 + µ̃1 (B̃2)2,2. Hence, by using the definition
(221) of h̃3, we obtain that (235) holds for k = 1 and ` = 2.

The proof of (234)–(235) for k = 1 and ` ∈ {3, . . . , K − 1} follows from similar
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arguments. In particular, we write

Y`u1 − ũ1+` = Y(Y`−1u1 − ũ`) + Yũ` − z̃` − (B̃`)`,1u
1 −

∑̀
j=2

(B̃`)`,jũ
j − µ̃`X∗

= Y(Y`−1u1 − ũ`) + Zũ` − z̃` − (B̃`)`,1u
1 −

∑̀
j=2

(B̃`)`,jũ
j +
(
λ
〈X∗, ũ`〉
N

− µ̃`
)
X∗

= Y(Y`−1u1 − ũ`) +
(
b̄`,1 − (B̃`)`,1

)
u1 +

∑̀
j=2

(
b̄`,j − (B̃`)`,j

)
ũj

+
(
λ
〈X∗, ũ`〉
N

− µ̃`
)
X∗,

(242)

which by triangle inequality gives

‖Y`u1 − ũ1+`‖2

N
≤ C

(‖Y(Y`−1u1 − ũ`)‖2

N
+
(
b̄`,1 − (B̃`)`,1

)2‖u1‖2

N

+
∑̀
j=2

(
b̄`,j − (B̃`)`,j

)2‖ũj‖2

N
+
(
λ
〈X∗, ũ`〉
N

− µ̃`
)2‖X∗‖2

N

)
.

(243)

As Y has bounded operator norm and ‖Y`−1u1 − ũ`‖2/N → 0 (by the previous
step), we have that

lim
N→∞

‖Y(Y`−1u1 − ũ`)‖2

N
= 0.

Next, by following passages analogous to those in (241), we have that limN→∞ Φ̄` =
Φ̃`. As κj → κ̄j for all j, this implies that limN→∞ B̄` = B̃`. Hence, for all j ∈ [`],
as ‖ũj‖/N is bounded, we have that

lim
N→∞

((
b̄`,1 − (B̃`)`,1

)2‖u1‖2

N
+
∑̀
j=2

(
b̄`,j − (B̃`)`,j

)2‖ũj‖2

N

)
= 0.

Finally, as

lim
N→∞

λ
〈X∗, ũ`〉
N

= λE[X∗ Ũ`] = µ̃`,

we conclude that the last term in the RHS of (243) vanishes as well, which proves
that (234) holds for k = 1 and a generic ` ∈ {3, . . . , K − 1}. Furthermore, by using
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(204)–(206) and the definition (221) of h̃`+1, one can readily verify that (235) holds
for k = 1 and a generic ` ∈ {3, . . . , K − 1}.

By using (220) and the definition of Y, we have that

YKu1 − z̃K −
K∑
i=1

b̄K,iũ
i − µ̃KX∗ = Z

(
YK−1u1 − ũK

)
+
(
λ
〈X∗,YK−1u1〉

N
− µ̃K

)
X∗.

(244)

Hence, by using the definition of µ̃K in (199) and (234) with k = 1, ` = K − 1, we
obtain

lim
N→∞

‖YKu1 − z̃K −
∑K

i=1 b̄K,iũ
i − µ̃KX∗‖2

N
= 0. (245)

Recall that J(Y) =
∑K

j=1 cjY
j. Then, by combining (234) with k = 1 and (245), we

have

lim
N→∞

‖J(Y)u1 −
∑K

j=1 cj
(
z̃j +

∑j
i=1 b̄j,iũ

i + µ̃jX
∗)‖2

N
= 0. (246)

By following the same argument as in (241), we have that limN→∞ Φ̄K = Φ̃K . As
κj → κ̄j for all j, this implies that limN→∞ B̄K = B̃K . Therefore,

lim
N→∞

∥∥∥∥ K∑
j=1

cj
(
z̃j +

j∑
i=1

b̄j,iũ
i + µ̃jX

∗)− K∑
j=1

cj
(
z̃j +

j∑
i=1

(B̃j)j,iũ
i + µ̃jX

∗)∥∥∥∥2

N
= 0.

(247)

Recall that ũ1 = u1 and (235) holds for k = 1. Hence, by plugging in the formulas
for c1,1, µ1 and {θ1,i}i∈[K] (cf. (209), (207) and (208)), we have

lim
N→∞

∥∥∥∥ K∑
j=1

cj
(
z̃j +

j∑
i=1

(B̃j)j,iũ
i + µ̃jX

∗)− c1,1u
1 − µ1X

∗ −
K∑
i=1

θ1,iz̃
i

∥∥∥∥2

N
= 0.

(248)

By combining (246)–(248) with the definitions of f1 and f̃1(cf. (191) and (232)), we
conclude that

lim
N→∞

‖f1 − f̃1‖2

N
= 0. (249)

As g2 is Lipschitz, (249) immediately implies that

lim
N→∞

‖u2 − ũK+1‖2

N
= 0. (250)
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An application of the triangle inequality gives that, for any i ≥ 1,

‖f̃ i‖ − ‖f i − f̃ i‖ ≤ ‖f i‖ ≤ ‖f̃ i‖+ ‖f i − f̃ i‖,
‖ũKi+1‖ − ‖ui+1 − ũKi+1‖ ≤ ‖ui+1‖ ≤ ‖ũKi+1‖+ ‖ui+1 − ũKi+1‖.

(251)

Thus, by using (251) with i = 1 and Proposition 2, we obtain that

lim
N→∞

‖f1‖2

N
= lim

N→∞

‖f̃1‖2

N
= E

[(
µ1X

∗ +
K∑
i=1

θ1,iZ̃i

)2]
,

lim
N→∞

‖u2‖2

N
= lim

N→∞

‖ũK+1‖2

N
= E[(ŨK+1)2],

(252)

which concludes the base step.
Induction step. Assume towards induction that (234)–(235) hold for k ∈ [t], ` ∈
[K − 1] and that, for k ∈ [t],

lim
N→∞

‖fk − f̃k‖2

N
= 0, (253)

lim
N→∞

‖uk+1 − ũKk+1‖2

N
= 0, (254)

lim
N→∞

‖fk‖2

N
= lim

N→∞

‖f̃k‖2

N
= E

[(
µkX

∗ +
Kk∑
i=1

θk,iZ̃i

)2]
, (255)

lim
N→∞

‖uk+1‖2

N
= lim

N→∞

‖ũKk+1‖2

N
= E[Ũ2

Kk+1]. (256)

We now show that (253)–(256) hold for k = t + 1, and that (234)–(235) hold for
k = t+ 1, ` ∈ [K − 1]. By doing so, we will have proved also the induction step and
consequently that (231) holds.

Using similar passages as in (236), we obtain

Yut+1 − ũKt+2 = Zut+1 + λ
〈X∗,ut+1〉

N
X∗ − z̃Kt+1 −

Kt+1∑
i=1

(B̃Kt+1)Kt+1,iũ
i − µ̃Kt+1X

∗

= Z(ut+1 − ũKt+1) +
(
λ
〈X∗,ut+1〉

N
− µ̃Kt+1

)
X∗ +

Kt+1∑
i=1

(
b̄Kt+1,i − (B̃Kt+1)Kt+1,i

)
ũi.

(257)
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Hence, by triangle inequality,

‖Yut+1 − ũKt+2‖2

N
≤ C

(‖Z(ut+1 − ũKt+1)‖2

N

+
(
λ
〈X∗,ut+1〉

N
− µ̃Kt+1

)2‖X∗‖2

N
+

Kt+1∑
i=1

(
b̄Kt+1,i − (B̃Kt+1)Kt+1,i

)2‖ũi‖2

N

)
:= C(T̄1 + T̄2 + T̄3).

(258)

Consider the first term. Since ‖Z‖op ≤ C, the induction hypothesis (254) implies
that T̄1 → 0 as N →∞.

Consider the second term. The following chain of equalities holds:

lim
N→∞

λ
〈X∗,ut+1〉

N
= lim

N→∞
λ
〈X∗, ũKt+1〉

N
= λE[X ŨKt+1] = µ̃Kt+1. (259)

Here, the first equality uses (254) together with the fact that ‖X∗‖2/N = 1; the
second equality follows from Proposition 2; and the third equality uses the definition
of µ̃Kt+1 in (199). Finally, using (259) and again that ‖X∗‖2/N = 1 gives that
T̄2 → 0 as N →∞.

Consider the third term. By following the same argument as in (241), we have
that limN→∞ Φ̄Kt+1 = Φ̃Kt+1. As κj → κ̄j for all j, this implies that limN→∞ B̄Kt+1 =
B̃Kt+1. By using the induction hypothesis (256), which shows that ‖ũi‖2/N con-
verges to a finite limit, we conclude that T̄3 → 0 as N → ∞. This proves that the
RHS of (258) vanishes and gives that (234) holds for k = t+ 1 and ` = 1.

For ` ∈ {2, . . . , K − 1}, by following passages similar to (242), we have

Y`ut+1 − ũKt+`+1 = Y(Y`−1ut+1 − ũKt+`) +
Kt+`∑
i=1

(
b̄Kt+`,i − (B̃Kt+`)Kt+`,i

)
ũi

+
(
λ
〈X∗, ũKt+`〉

N
− µ̃Kt+`

)
X∗,

which by triangle inequality gives

‖Y`ut+1 − ũKt+`+1‖2

N
≤ C

(‖Y(Y`−1ut+1 − ũKt+`)‖2

N

+
Kt+`∑
i=1

(
b̄Kt+`,i − (B̃Kt+`)Kt+`,i

)2‖ũi‖2

N
+
(
λ
〈X∗, ũKt+`〉

N
− µ̃Kt+`

)2‖X∗‖2

N

)
.

(260)
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The first term on the RHS of (260) vanishes as Y has bounded operator norm and we
have just proved in the previous step that ‖Y`−1ut+1 − ũKt+`‖2/N → 0. To bound
the second term, note that, by following the same argument as in (241), we have that
limN→∞ Φ̄Kt+` = Φ̃Kt+`. As κj → κ̄j for all j, this implies that limN→∞ B̄Kt+` =
B̃Kt+`. By using the induction hypothesis (256), we have that ‖ũi‖2/N converges to
a finite limit for i ∈ [Kt+ `− 1]. Furthermore, as ‖Y`−1ut+1 − ũKt+`‖2/N → 0, we
also have that ‖ũKt+`‖2/N converges to a finite limit. As a result, the second term
on the RHS of (260) vanishes. Finally, we can write a chain of equalities analogous
to (259) with Kt + ` in place of Kt + 1, from which we deduce that the third term
vanishes. This concludes the proof that (234) holds for k = t+ 1 and ` ∈ [K − 1].

For ` ∈ [K − 1], by definition (221) of hKt+1+`, we have

ũKt+1+` = z̃Kt+` + µ̃Kt+`X
∗ +

Kt+`∑
i=1

(B̃Kt+`)Kt+`,iũ
i. (261)

Let us define:

ûKt+1+` := z̃Kt+` + µ̃Kt+`X
∗ +

t+1∑
i=1

(B̃Kt+`)Kt+`,K(i−1)+1u
i

+
Kt+`∑
i=1

i 6≡1(modK)

(B̃Kt+`)Kt+`,i

( i−1∑
j=1

αi,j z̃
j +

d(i−1)/Ke∑
j=1

βi,ju
j + γiX

∗
)
.

(262)

Then, by using the recursive definitions (204)–(206), we readily have that the RHS
of (262) is equal to

Kt+`∑
j=1

αKt+1+`,j z̃
j +

t+1∑
j=1

βKt+1+`,ju
j + γKt+1+`X

∗. (263)

Recall that, by induction hypothesis, (254) holds for k ∈ [t], and (235) holds for
k ∈ [t] and ` ∈ [K − 1]. Thus, by using the expressions in (261) and (262) for ` = 1,
one readily obtains that

lim
N→∞

‖ũKt+2 − ûKt+2‖2

N
= 0. (264)

Since the RHS of (262) is equal to the expression in (263) for ` = 1, we conclude
that (235) holds for k = t+ 1 and ` = 1. At this point, we have that (235) holds for
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k ∈ [t], ` ∈ [K − 1] and also for k = t+ 1, ` = 1. Hence, by using the expressions in
(261) and (262) for ` = 2, we obtain

lim
N→∞

‖ũKt+3 − ûKt+3‖2

N
= 0. (265)

Since the RHS of (262) is equal to the expression in (263) for ` = 2, we conclude that
(235) holds for k = t+ 1, ` = 2. By iterating this procedure for ` ∈ {3, . . . , K − 1},
we obtain that (235) holds for k = t+ 1, ` ∈ [K − 1].

By using (220) and the definition of Y, we have that

YKut+1 − z̃K(t+1)−
K(t+1)∑
i=1

b̄K(t+1),iũ
i − µ̃K(t+1)X

∗

= Z
(
YK−1ut+1 − ũK(t+1)

)
+
(
λ
〈X∗,YK−1ut+1〉

N
− µ̃K(t+1)

)
X∗.

(266)

Hence, by using (234) with k = t + 1, ` = K − 1 and the definition of µ̃K(t+1) in
(199), we obtain

lim
N→∞

‖YKut+1 − z̃K(t+1) −
∑K(t+1)

i=1 b̄K(t+1),iũ
i − µ̃K(t+1)X

∗‖2

N
= 0. (267)

As J(Y) =
∑K

j=1 cjY
j, by combining (267) with (234) with k = t + 1, ` ∈ [K − 1],

we have

lim
N→∞

‖J(Y)ut+1 −
∑K

j=1 cj
(
z̃Kt+j +

∑Kt+j
i=1 b̄Kt+j,iũ

i + µ̃Kt+jX
∗)‖2

N
= 0. (268)

By following the same argument as in (241), we have that limN→∞ Φ̄Kt+j = Φ̃Kt+j

for all j ∈ [K]. As κj → κ̄j for all j, this implies that limN→∞ B̄Kt+j = B̃Kt+j for
all j ∈ [K]. Therefore, (268) implies that

lim
N→∞

‖J(Y)ut+1 −
∑K

j=1 cj
(
z̃Kt+j +

∑Kt+j
i=1 (B̃Kt+j)Kt+j,iũ

i + µ̃Kt+jX
∗)‖2

N
= 0.

(269)

Recall that (254) holds for k ∈ [t] by the induction hypothesis and (235) holds for
k ∈ [t+1], ` ∈ [K−1] (thanks to the induction hypothesis and the argument above).
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Hence, by plugging in the formulas for {ct+1,i}i∈[t+1], µt+1 and {θt+1,i}i∈[K(t+1)] (cf.
(209), (207) and (208)), we have

lim
N→∞

‖J(Y)ut+1 −
∑t+1

i=1 ct+1,iu
i − µtX∗ −

∑K(t+1)
i=1 θt+1,iz̃

i‖2

N
= 0. (270)

By recalling the definitions of f t+1 and f̃ t+1 (cf. (191) and (232)), (270) implies that

lim
N→∞

‖f t+1 − f̃ t+1‖2

N
= 0. (271)

As gt+2 is Lipschitz, (271) also gives that

lim
N→∞

‖ut+2 − ũK(t+1)+1‖2

N
= 0. (272)

Then, by using (251) with i = t + 1 and Proposition 2, we obtain that (255) and
(256) hold for k = t + 1, thus concluding the inductive proof. The result we have
just proved by induction, combined with (233), gives that (231) holds.

Another application of Proposition 2, together with (231), gives that

lim
N→∞

1

N

N∑
i=1

ψ
(
ũ1
i , ũ

K+1
i , . . . , ũKt+1

i , f̃ 1
i , f̃

2
i , . . . , f̃

t
i , X

∗
i

)
= E[ψ(Ũ1, ŨK+1, . . . , ŨKt+1, F1, . . . , Ft, X

∗)],

(273)

where we recall that, by the definition in the theorem statement, for s ∈ {1, . . . , t},

Fs = µsX
∗ +

Ks∑
i=1

θs,iZ̃i. (274)

As Us+1 = gs+1(Fs), we have ŨKs+1 = Us+1 for all s ∈ [t], and the proof is complete.
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[64] Florent Krzakala, Marc Mézard, Francois Sausset, Yifan Sun, and Lenka Zde-
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