
Scaling Sparse Feature Circuits For Studying In-Context Learning

Dmitrii Kharlapenko * 1 Stepan Shabalin * 2 Arthur Conmy 3 Neel Nanda 3

Abstract
Sparse autoencoders (SAEs) are a popular tool
for interpreting large language model activations,
but their utility in addressing open questions in
interpretability remains unclear. In this work, we
demonstrate their effectiveness by using SAEs
to deepen our understanding of the mechanism
behind in-context learning (ICL). We identify ab-
stract SAE features that (i) encode the model’s
knowledge of which task to execute and (ii) whose
latent vectors causally induce the task zero-shot.
This aligns with prior work showing that ICL is
mediated by task vectors. We further demonstrate
that these task vectors are well approximated by a
sparse sum of SAE latents, including these task-
execution features. To explore the ICL mecha-
nism, we scale the sparse feature circuits method-
ology of Marks et al. (2024) to the Gemma 1 2B
model for the more complex task of ICL. Through
circuit finding, we discover task-detecting fea-
tures with corresponding SAE latents that activate
earlier in the prompt, that detect when tasks have
been performed. They are causally linked with
task-execution features through the attention and
MLP sublayers.

1. Introduction
Sparse autoencoders (SAEs; Ng (2011); Bricken et al.
(2023); Cunningham et al. (2023)) are a promising method
for interpreting large language model (LLM) activations.
However, the full potential of SAEs in interpretability re-
search remains to be explored, since most recent SAE re-
search either i) interprets a single SAE’s features rather than
the model’s computation as a whole Bricken et al. (2023),
or ii) performs high-level interventions in the model, but
does not interpret the effect on the downstream computation

*Equal contribution 1ETH Zurich, Switzerland 2Georgia Insti-
tute of Technology, US 3Joint senior authors. Correspondence to:
Dmitrii Kharlapenko <dkharlapenko@ethz.ch>, Stepan Shabalin
<sshabalin3@gatech.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

caused by the interventions Templeton et al. (2024). In this
work, we address these limitations by interpreting in-context
learning (ICL), a widely studied phenomenon in LLMs. In
summary, we show that SAEs a) enable the discovery of
novel circuit components (task-detection features; Sec-
tion 4.2) and b) refine existing interpretations of ICL, by e.g.
decomposing task vectors Todd et al. (2024); Hendel et al.
(2023) into task-execution features (Section 3).

In-context learning (ICL; Brown et al. (2020)) is a fun-
damental capability of large language models that allows
them to adapt to new tasks without fine-tuning. ICL is a
significantly more complex and important task than other
behaviors commonly studied in circuit analysis (such as IOI
in Wang et al. (2022) and Kissane et al. (2024), or subject-
verb agreement and Bias-in-Bios in Marks et al. (2024)).
Recent work by (Todd et al., 2024) and Hendel et al. (2023)
has introduced the concept of task vectors to study ICL in
a simple setting, which we follow throughout this paper.1

In short, task vectors are internal representations of simple
operations performed by language models during the pro-
cessing of few-shot prompts, e.g. as “hot → cold, big →
small, fast → slow”. We call these simple operations tasks.
Task vectors can be extracted and added into different LLM
forward passes to induce 0-shot task behavior, e.g. making
LLMs predict that “slow” follows “fast →” without explicit
context. Section 2.3 provides a full introduction.

Unfortunately, it is not possible to decompose task vec-
tors by naively applying sparse autoencoders to reconstruct
them. This is because task vectors are out-of-distribution
for SAEs and empirically, their SAE decompositions tend
to be cluttered with irrelevant features. To address this
limitation, we developed the TASK VECTOR CLEANING
(TVC) algorithm (Section 3.1), which enabled us to extract
task-execution features: SAE latents that preserve most of
the task vector’s effect on task loss while being more inter-
pretable. These task-execution features demonstrated two
key properties: they could partially substitute for complete
task vectors in steering experiments, and they often exhib-
ited clear task-related patterns in their maximum-activating
tokens. Through extensive testing across diverse tasks, we

1Task vectors Hendel et al. (2023) are also called “function
vectors” Todd et al. (2024), but we use “task vectors” throughout
this paper for consistency.

1

Scaling Sparse Feature Circuits For Studying In-Context Learning

validated that these features play a causal role in the model’s
ICL capabilities (Section 3.2).

To understand how these features operate within the broader
ICL mechanism, we extended the Sparse Feature Circuits
(SFC) discovery algorithm introduced by Marks et al. (2024)
(Section 4). Applying this algorithm to the Gemma 1 2B
model Team et al. (2024) revealed a network of SAE latents
crucial to ICL processing. This analysis uncovered a com-
plementary set of features we call task-detection features,
which identify the specific task being performed based on
earlier prompt information. Importantly, our experiments
demonstrated that disabling task-detection feature directions
also disabled task-execution directions, revealing their fun-
damental interdependence in the ICL circuit (Section 4.2).

Our findings not only advance our understanding of ICL
mechanisms but also demonstrate the potential of SAEs as a
powerful tool for interpretability research on larger language
models. By unifying the task vectors view with SAEs and
uncovering two of the most important causally implicated
feature families behind ICL, we pave the way for future
work to control and monitor ICL further, to improve either
the safety or capabilities of models.

Our main contributions are as follows:

1. We demonstrate that SAEs can be effectively used to
analyze a complex ICL mechanism in Gemma 1 2B,
which is one of the largest models studied at this depth
in comparable, end-to-end circuits-style mechanistic
interpretability research Wang et al. (2022); Marks et al.
(2024) (Section 4.1.3).

2. We identify two core components of the ICL circuit
in Gemma 1 2B: task-detection features that identify
required tasks from the prompt, and task-execution
features that implement those tasks during generation
(Sections 3 and 4.2).

3. We uncover how these components interact: atten-
tion heads and MLPs process information from task-
detection features to activate the appropriate task-
execution features, revealing how the model inte-
grates information across the prompt to perform
ICL tasks (Section 4.2).

4. We develop the Task Vector Cleaning (TVC) algorithm,
a novel transformer-specific sparse linear decom-
position method that enables precise analysis of ICL
mechanisms by decomposing task vectors into their
most relevant features (Section 3.1).

2. Background
2.1. Sparse Autoencoders (SAEs)

Sparse autoencoders (SAEs) are neural networks designed to
learn efficient representations of data by enforcing sparsity

Figure 1. A diagram of the in-context learning circuit, showing
task detection features (yellow) causing task execution features
(blue) which cause the model to output the antonym (left → right).
A more concrete circuit, along with texts these features activate on,
can be seen in Figure 12.

in the hidden layer activations Elad (2010). In the context
of language model interpretability, SAEs are used to decom-
pose the high-dimensional activations of language models
into more interpretable features (Cunningham et al., 2023;
Bricken et al., 2023). The basic idea behind SAEs is to train
a neural network to reconstruct its input while constraining
the hidden layer to have sparse activations. This process
typically involves an encoder that maps the input to a sparse
hidden representation, a decoder that reconstructs the input
from this sparse representation, and loss task that balances
reconstruction accuracy with sparsity.2 The encoding step
is as follows, with f denoting the pre-activation features and
Wenc and benc the encoder weights and biases respectively:

f(x) = σ(Wencx + benc) (1)

For JumpReLU SAEs Rajamanoharan et al. (2024b), the
activation function and decoder are (with H being the Heav-
iside step function, θ the threshold parameter and Wdec/bdec
the decoder affine parameters):

x̂(f) = Wdec(f ⊙H(f − θ)) + bdec (2)

In our work, we train SAEs on residual stream activations
and attention outputs, and also train transcoders3 on MLP
layers, all of which use the improved Gated SAE architec-
ture Rajamanoharan et al. (2024a).

2Typically, the L1 penalty on activations is used Bricken et al.
(2023) with some modifications Rajamanoharan et al. (2024a);
Conerly et al. (2024), although there are alternatives: Rajamanoha-
ran et al., 2024b; Farrell, 2024; Riggs & Brinkman, 2024.

3Transcoders (Dunefsky et al., 2024) are a modification of
SAEs that take MLP input and convert it into MLP output instead
of trying to reconstruct the residual stream.

2

Scaling Sparse Feature Circuits For Studying In-Context Learning

2.2. Sparse Feature Circuits

Sparse Feature Circuits (SFCs) are a methodology intro-
duced by Marks et al. (2024) to identify and analyze causal
subgraphs of sparse autoencoder features that explain spe-
cific model behaviors. This approach combines the inter-
pretability benefits of SAEs with causal analysis to uncover
the mechanisms underlying language model behavior. The
SFC methodology involves several key steps:

1. Decomposing model activations into sparse features
using SAEs

2. Calculating the Indirect Effect (IE, (Pearl, 2001) of
each feature on the target behavior

3. Identifying a set of causally relevant features based on
IE thresholds

4. Constructing a circuit by analyzing the connections
between these features

The IE of a model component is measured by intervening
on that component and observing the change in the model’s
output. For a component a and a metric m, the IE is defined
using do-calculus Pearl (2009) as in (Marks et al., 2024) as:

IE(m; a) = m(x|do(a = a′))−m(x) (3)

Where m(x|do(a = a′)) represents the value of the metric
when we intervene to set the value of component a to a′,
and m(x) is the original value of the metric. In practice,
attribution patching Syed et al. (2023) is used to approx-
imate IE, allowing for efficient computation across many
components simultaneously.

SFC is described in detail in Marks et al. (2024). We de-
scribe our modifications in Section 4 and Appendix E.

2.3. Task Vectors

Continuing from the high-level description in Section 1,
task vectors were independently discovered by Hendel et al.
(2023) and Todd et al. (2024). The key idea behind task
vectors is that they capture the essence of a task demon-
strated in a few-shot prompt, allowing the model to apply
this learned task to new inputs without explicit fine-tuning.
Task vectors have several important properties:

1. They can be extracted from the model’s hidden states
given ICL prompts as inputs.

2. When added to the model’s activations in a zero-shot
setting, they can induce task performance without ex-
plicit context.

3. They appear to encode abstract task information, inde-
pendent of specific input-output examples.

To illustrate the concept, consider the following simple
prompt for an antonym task in the Example 1, where boxes
represent distinct tokens:

BOS Follow the pattern : \n

hot → cold \n

big → small \n

fast → slow

Example 1. All token types in an example input: prompt ,

input , arrow , output , newline (target tokens for cal-
culating the loss on included).

In this case, the task vector would encode the abstract no-
tion of “finding the antonym” rather than specific word pairs.
Task vectors are typically collected by averaging the resid-
ual stream of “→” tokens at a specific layer across multiple
ICL prompts for a given task. This averaged representation
can then be used to study the model’s internal task represen-
tations and to manipulate its behavior in zero-shot settings.
We perform our analysis on the datasets derived from Todd
et al. (2024). Details can be found in Appendix A.

As noted in the task vector paper, the impact of task vectors
on loss varies across model layers (Figure 2). Middle layers
show the strongest effects, while earlier and later layers
demonstrate reduced effectiveness. For our experiments, we
selected a single optimal layer - termed the target layer -
from these high-performing middle layers. In the Gemma 1
2B experiments, layer 12 served as this target layer.

3. Discovering Task-Execution Features
3.1. Decomposing task vectors

To gain a deeper understanding of task vectors, we attempted
to decompose them using sparse autoencoders (SAEs). How-
ever, several of our initial naive approaches faced significant
challenges. Firstly, direct SAE reconstruction, i.e. passing
the task vector as input to the SAE, produced noisy results
with more than 10 non-zero SAE features on average on
target layers (in Gemma 1 2B), most of which were irrele-
vant to the task. Moreover, this reconstruction noticeably
reduced the vector’s effect on task loss. These issues arose
partly because task vectors are out-of-distribution inputs for
SAEs, as they aggregate information from different residual
streams rather than representing a single one.

We then explored inference-time optimization (ITO; Smith
(2024)) as an alternative. However, this method also failed
to reconstruct task vectors using a low number of SAE
features while maintaining high effect the loss.

3

Scaling Sparse Feature Circuits For Studying In-Context Learning

5 10 15

−0.4

−0.2

0 Reconstruction type
Cleaning

SAE reconstruction

ITO (20)

Original Task vector

ITO (5)

Layer

A
ve

ra
ge

 re
la

tiv
e

lo
ss

 c
ha

ng
e

Figure 2. The effect on the Gemma 1 2B’s task losses by steering
with different kinds of reconstructed task vectors, at each layer. We
see that cleaning performs similarly to the original task vector until
layer 14. Average relative loss change measured as a post-steering
relative loss change compared to 0-shot, averaged across all tasks.

0

0.2

0.4

0.6

0.8

10μ 2 5 100μ 2 5 0.001 2 5 0.01 2 5 0.1
0

0.2

0.4

0.6

L1 coefficient

R
el

at
iv

e
lo

ss
 d

ec
re

as
e

TV
 L

0
fr

ac
tio

n

Figure 3. Evaluation of task vectors after applying our TVC al-
gorithm across different L1 coefficient λ values. Top: relative
decrease in loss after steering (higher → better); bottom: fraction
of retained active features (lower → better). Transparent lines
represent different model and SAE combinations; solid lines show
means across all of them; the results are averaged across tasks;
(x-axis: L1 coefficient λ). Further details in Appendix D.1.

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall ->

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 4. Overview of the task vector cleaning algorithm; TV
stands for task vector.

Given these observations, we developed a novel method
called task vector cleaning (Figure 4). It produces opti-
mized SAE decomposition weights θ ∈ RdSAE for a task
vector vtv . At a high level, the method:

1. Initializes θ with weights from SAE decomposition of
vtv

2. Reconstructs a new task vector vθ from θ; steers the
model with vθ on a batch of zero-shot prompts and
computes negative log-likelihood loss LNLL(θ) on
them

3. Optimizes θ to minimize L = LNLL(θ) + λ∥θ∥1,
where λ is the sparsity coefficient

This approach allows us to maintain or even improve the
effect on the loss of task vectors while reducing the amount
of active SAE features to by 70% (Figure 3) for Gemma 1
2B and other models. The algorithm overview can be found
in Figure 4. More details are provided in Appendix D.

We evaluated TVC against four baseline approaches: (1)
original task vectors, (2) naive SAE reconstruction, (3) ITO
with target L0 norm of 5, and (4) ITO with target L0 norm of
20. The evaluation methodology involved steering zero-shot
prompts using reconstructed task vectors and measuring the
relative improvement in log-likelihood loss, averaged across
all tasks. The steering is done in the same manner as in the
TVC algorithm, further details can be found in Appendix D.
Figure Figure 2 presents the layer-wise comparison results.
To validate robustness, we conducted extensive parameter
sweeps of the L1 regularization coefficient λ across multiple
model scales, architectures and SAE configurations, includ-
ing various widths and target sparsities for both Gemma-2
2B and 9B models, with the aggregated results shown in
Figure 3. As detailed in Appendix D.1, these experiments
demonstrated that TVC consistently achieves a 50-80% re-
duction in active SAE features while maintaining the task
vectors’ effect on loss. The results further indicated en-
hanced performance when using SAEs with higher target
L0 values.

This decomposition approach revealed interpretable features
that clearly corresponded to their intended tasks. Most
notably, we identified a class of features we termed ”task-
execution features” (or ”executor features”), characterized
by three properties:

1. They activate upon encountering task-relevant exam-
ples in natural text.

2. Their activation peaks on the token immediately pre-
ceding task completion.

3. They have a high causal task-specific effect, which we
measure later.

4

Scaling Sparse Feature Circuits For Studying In-Context Learning

To illustrate, consider an antonym task feature processing
the phrase ” hot and cold .” The feature activates on
” and ,” indicating the model’s anticipation of an upcom-
ing antonym. This suggests the model recognizes antonym
relationships before observing the complete pair. Figure
5 provides additional examples of such features. Further
examples in Appendix I demonstrate these features’ maxi-
mum activations on SAE training data, consistently showing
task-specific activation patterns.

(a) Antonyms executor feature
11618.

(b) Translation to English execu-
tor feature 5579.

Figure 5. A subset of max activating examples for executor features
from Appendix I.

To analyze the activation patterns of executor features, we
split all ICL prompt tokens into several types (highlighted
in Example 1 and discussed later in Section 4.1.1). For
each executor feature, we calculate its token type activation
masses: the sum of all its activations on tokens of a particu-
lar type across a batch of ICL prompts. Table 1 shows the
percentages of total mass split among different token types
for executor features. We can see that executors activate
largely on arrow tokens.

3.2. Steering Experiments

To validate the causal relevance of our decomposed task
features, we conducted a series of steering experiments,
observing the features’ impact on task loss across different
contexts and model layers.

The experiments were performed on the dataset of diverse
tasks taken from Todd et al. (2024). We first extracted
relevant task features using our cleaning algorithm. Then
steered the zero-shot prompt using them and calculated
relative loss improvement, normalizing and clipping it after
that. In this section we present main results from the Gemma
1 2B model. Further details and additional experiments that
include other models can be found in Appendix F.

Figure 6 shows a heatmap of steering results for each pair
of tasks and task-relevant features. Higher values indicate
greater improvement in the loss after steering. It can be
seen that most features that have a high effect on some task
generally do not significantly affect unrelated tasks. Another
notable detail is that features from related tasks (like the
translation group) at least partially affect all tasks within the
group.

We have manually examined the features with the highest
effect and found that their maximum activating dataset ex-
amples tend to align with their hypothesized role in the
ICL circuit. Interestingly, we observed that tasks requir-
ing translation from English all share a generic English-
to-foreign language task execution feature. This shared
feature suggests a common mechanism for translation tasks,
with language-specific information encoded separately. Max
activating examples of the most interpretable features are
present in Appendix I.

We also observed that with high L0 constraints TVC may
drop this common translation feature in favor of a combi-
nation of other multi-language features, that have weaker
effect individually. This did not happen with English-to-
Spanish, so we attribute this to biases in SAE and Gemma
training data, since Spanish is usually much better repre-
sented than French or Italian. This is supported by to-French
and to-Italian translation tasks having much higher loss on
their ICL prompts than to-Spanish.

Token Type Mass (%)
arrow 89.80
output 6.46
input 3.2
newline 0.54
prompt 0.00

Table 1. Activation masses for executor features across different
token types, averaged across all tasks. We can notice they activate
largely on arrow tokens.

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

Feature

Ta
sk

Figure 6. Heatmap showing the effect of steering with individual
task-execution features for each task. Most features boost exactly
one task, with a few exceptions for similar tasks like translating to
English. Full and unfiltered versions of the heatmap are available
in Appendix F.

5

Scaling Sparse Feature Circuits For Studying In-Context Learning

4. Applying SFC to ICL
After identifying task-execution features through our task
vector analysis, we sought to expand our understanding of
the in-context learning (ICL) circuit. To this end, we apply
the Sparse Feature Circuits (SFC) methodology Marks et al.
(2024) to the Gemma 1 2B model. However, due to the
increased complexity of ICL tasks and the larger model size,
the original SFC approach did not work out of the box. We
had to implement several key modifications to address the
challenges we encountered.

4.1. Our Modifications

4.1.1. TOKEN POSITION CATEGORIZATION AND
FEATURE AGGREGATION

We modified the SFC approach to better handle the
structured nature of ICL prompts. Instead of treat-
ing each SAE feature as a separate node, we cat-
egorized token positions into the following groups:

• Prompt : The initial instruction tokens (e.g., “Follow
the pattern:”)

• Input : The last token before each arrow in an exam-
ple pair

• Arrow : The arrow token itself (“→”)

• Output : The last token before each newline in an
example pair

• Newline : The newline token

• Extra: Any tokens not covered by the above categories
(e.g., in multi-token inputs or outputs)

Each pair of an SAE feature and a token type was assigned
its own graph node. The effects of the feature were ag-
gregated across all tokens of the corresponding type. This
categorization allowed us to evaluate how features affect all
tokens within the same category, separating features based
on their role in the ICL circuit. It also enabled us to selec-
tively disable parts of the circuit for one task while testing
another, verifying the task specificity of the identified cir-
cuits.

4.1.2. LOSS FUNCTION MODIFICATION

An ICL prompt can be viewed as an (x, y) pair, where
x represents the entire prompt except for the last pair’s
output, and y represents this output. The original SFC paper
suggested using the log probabilities of y conditioned on
x for such datasets. However, this approach often resulted
in task-relevant features having high negative IEs on other
example pairs in the prompt. This was likely due to the

0 500 1000 1500
0

0.2

0.4

0.6

Number of nodes

Fa
ith

fu
ln

es
s

(a) Faithfulness of C

0 500 1000 1500

0.2

0.4

0.6

0.8

1

Number of nodes

Fa
ith

fu
ln

es
s

(b) Faithfulness of M \ C

Figure 7. Faithfulness for task circuits C (a) and their complements
M \ C (b). The ideal score for C is 1, and 0 for M \ C.

circuit’s effect on those pairs being lost to either diminishing
gradients in backpropagation or because copying circuits
were much more relevant to predicting the last pair. By
considering all pairs except the first one, we amplified the
effect of the task-solving circuit relative to the numerous
cloning circuits that activate due to the repetitive nature of
ICL prompts.

4.1.3. SFC EVALUATION

To evaluate our SFC modifications, we measured faithful-
ness through ablation studies on our ICL task dataset. Fol-
lowing Marks et al. (2024), we define faithfulness as:

Faithfulness(C) =
m(C)−m(∅)

m(M)−m(∅)
(4)

where m(C) is the metric with circuit C, m(∅) repre-
sents the empty circuit baseline, and m(M) is the complete
model’s performance. While Marks et al. (2024) uses mean
ablation, we opt for zero ablation since it better aligns with
the sparse nature of SAE features.

This metric quantifies how much of the model’s original
capabilities are preserved when isolating specific circuit
components.

To measure faithfulness, we first approximated node Indirect
Effects (IEs) using a batch of few-shot examples for a given
task. We then evaluated ablation effects on a held-out batch
from the same task to ensure our findings generalize beyond
the examples used for IE estimation. Our ablation studies
targeted both the discovered circuit C and its complement
M \ C, removing nodes according to their IE thresholds.
Figure 7 shows that circuits of 500 nodes were enough to
achieve an average faithfulness of 0.6 across tasks, matching
the performance seen in complex cases from the SFC paper.
While the original SFC paper required only tens of top
features disabled (Faithfulness of M \ C) to impact task
performance, our approach needed several hundred features
to achieve similar degradation. Should we focus ablation
just on layers 11-12, we need much less active nodes for
faithfulness 0.6 – around 10-60 on average.

6

Scaling Sparse Feature Circuits For Studying In-Context Learning

location_continent
football_player_position
location_religion
location_language
person_profession
location_country
country_capital
person_language
singular_plural
present_sim

ple_past_sim
ple

antonym
s

plural_singular
present_sim

ple_past_perfect
present_sim

ple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en
algo_last
algo_first
algo_second

location_continent
football_player_position

location_religion
location_language
person_profession

location_country
country_capital

person_language
singular_plural

present_simple_past_simple
antonyms

plural_singular
present_simple_past_perfect

present_simple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en

algo_last
algo_first

algo_second

−0.5

0

0.5

Faithfullness change

Tested task

A
bl

at
ed

 ta
sk

Figure 8. We study how useful the most important nodes on task
A are for performance on task B. Specifically, we ablate the most
important features for task A (the ablated task on the y-axis) so
that faithfulness reduces by 0.7, and measure how much faithful
reduces on another task B (the tested task on the x-axis).

We need to note that we constrained our circuit search to in-
termediate layers 10-17 of the 18 total layers. This stemmed
from two practical considerations. First, earlier layers pre-
dominantly process token-level information rather than the
task-specific, prompt-agnostic features we aimed to identify.
Second, our analysis revealed lower quality in IE approxi-
mations for these earlier layers, as detailed in Appendix E.2.
Marks et al. (2024) similarly excludes the first third of the
layers in their circuit analysis of Gemma 2 2B.

To evaluate the task specificity of discovered circuits, we
conducted pairwise ablation studies examining cross-task
faithfulness impacts. For each task circuit, we ablated the
nodes with highest IEs until the task’s faithfulness metric
dropped to 0.3 — representing a substantial degradation
of the model’s original performance. We then measured
how this ablation affected faithfulness scores across all
other tasks. The results, presented in Figure 8, demonstrate
that our extracted circuits exhibit strong task specificity,
with performance degradation largely confined to their tar-
get tasks. We observed expected exceptions only between
closely related task pairs, such as different translation tasks
or conceptually similar tasks like person language and loca-
tion language, where ablating one circuit naturally impacted
performance on its counterpart.

4.2. Task-Detection Features

Our modified SFC analysis revealed a second crucial compo-
nent of the ICL mechanism: task-detection features. Unlike
executor features that activate before task completion, these
features specifically activate when a task is completed in
the training data - precisely on the output tokens from the
Example 1. Figure 9 contains two examples of such features.
Both task-detection and task-execution features showed high
Indirect Effects (IEs) in the extracted sparse feature circuits,

with task-detection features connected to task execution fea-
tures through attention output and transcoder nodes. We
applied our task vector cleaning algorithm to extract task-
detection features, identifying layer 11 as optimal for steer-
ing, preceding the layer 12 task-execution features. The
details can be found in Appendix G. As with executor fea-
tures, we present the steering heatmap in Figure 10 and the
activation mass percentages in Table 2. We again see the
task and token-type specificity of these features.

(a) Country detector feature
11459.

(b) Gerund form detector fea-
ture 8446.

Figure 9. A subset of max activating examples for detector features
from Appendix I.

Token Type Mass (%)
output 96.76
input 3.22
newline 0.01
arrow 0.0
prompt 0.0

Table 2. Activation masses for task-detection features across dif-
ferent token types, averaged across all tasks. We can notice that
they activate almost exclusively on output tokens.

8446
19628
29228
11459
26436
19916
21327
31123
13529
11050
1322
1132
32115
3466
7928
10884
99 25337
10685
25334
27001
15764

present_simple_gerund
present_simple_past_perfect

plural_singular
algo_last

location_country
location_continent
person_profession

football_player_position
present_simple_past_simple

es_en
fr_en
it_en

country_capital
antonyms

singular_plural
person_language

algo_second
algo_first

location_religion
en_fr
en_it

location_language
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

Feature

Ta
sk

Figure 10. Heatmap showing the effect of steering with the task-
detection feature most relevant to each task, on every task. We see
that task detection features are typically specific to the task, with
exceptions for similar tasks.

To evaluate the causal connection between task-detection
features and task-execution features, we matched the
strongest detection and execution features for each task
based on their steering effects. We then ablated detection di-
rections while fixing attention patterns and measured the de-

7

Scaling Sparse Feature Circuits For Studying In-Context Learning

crease in execution features activations. Figure 11 presents
the results.

location_continent
football_player_position
location_religion
location_language
person_profession
location_country
country_capital
person_language
singular_plural
present_sim

ple_past_sim
ple

antonym
s

plural_singular
present_sim

ple_past_perfect
present_sim

ple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en
algo_last
algo_first
algo_second

location_continent
football_player_position

location_religion
location_language
person_profession

location_country
country_capital

person_language
singular_plural

present_simple_past_simple
antonyms

plural_singular
present_simple_past_perfect

present_simple_gerund
en_it
it_en
en_fr
en_es
fr_en
es_en

algo_last
algo_first

algo_second

0

0.5

1
Effect strength

Executor

D
et

ec
to

r

Figure 11. Heatmap showing the fraction of the executor activation
lost of the top task-detection features of each task, after the detec-
tors were ablated. Averaged across all initial non-zero activations
in all tasks.

Our causal analysis demonstrated that ablating task-
detection features substantially reduced the activation of
their corresponding task-execution features, validating
their hypothesized roles in the ICL circuit. Translation
tasks exhibited particularly high interconnectivity, point-
ing to shared circuitry across this task family. Two
tasks diverged from this pattern: person profession and
present simple gerund showed unusually weak detection-
execution connections, suggesting a need for deeper investi-
gation.

5. Related work
Mechanistic Interpretability Olah et al. (2020) defines a
framing for mechanistic interpretability in terms of features
and circuits. It claims that neural network latent spaces
have directions in them called features that correspond to
meaningful variables. These features interact through model
components sparsely to form circuits: interpretable compu-
tation subgraphs relevant to particular tasks. These circuits
can be found through manual inspection in vision models
Cammarata et al. (2020). In language models, they can be
found through manual patching (Wang et al., 2022; Hanna
et al., 2023; Lieberum et al., 2023; Chan et al., 2022) or
automated circuit discovery (Conmy et al. (2023); Syed
et al. (2023); Bhaskar et al. (2024), though see Miller et al.
(2024)). Marks et al. (2024) extends this research area to
use Sparse Autoencoders, as discussed below.

In-Context Learning (ICL) ICL was first introduced in
Brown et al. (2020) and refers to models learning to perform
tasks from prompt information at test time. There is a large

area of research studying its applications Dong et al. (2024),
high-level mechanisms Min et al. (2022) and limitations
Peng et al. (2023). Elhage et al. (2021) and Olsson et al.
(2022) find induction heads partly responsible for in-context
learning. However, since these attention heads do more
than just induction Goldowsky-Dill et al. (2023), and are
not sufficient for complex task-following, induction heads
alone cannot explain ICL. Anil et al. (2024, Appendix G)
proposes a mechanistic hypothesis for an aspect of simple
in-context task behavior. (Hendel et al., 2023) and (Todd
et al., 2024) find that simple in-context learning tasks create
strong directions in the residual stream adding which makes
it possible for a network to perform tasks zero-shot, but does
not explain how task vectors form nor what interpretable
components the task vectors are composed of. A more de-
tailed discussion can be found in Appendix H. Of particular
interest is (Wang et al.), which investigates a simple ICL
classification task and finds similar results with different
terminology (information flow instead of circuits, “label
words” instead of task-detection features). Recent work
by (Park et al., 2024) demonstrates that language models
reorganize existing representations of objects to adapt them
to new tasks from the current context. This finding suggests
that for the tasks they study, our task executing features may
become more detached from their maximum activating ex-
amples, presenting an interesting class of tasks for applying
our methods.

Sparse Autoencoders Superposition, where interpretable
neural network units don’t align with basis directions, re-
mains a key challenge in mechanistic interpretability El-
hage et al. (2022). Sparse autoencoders (SAEs) Ng (2011);
Bricken et al. (2023) address this, with recent works improv-
ing their training Rajamanoharan et al. (2024b); Bussmann
et al. (2024); Braun et al. (2024). Building on this, Cun-
ningham et al. (2023) applies automated circuit discovery
to small language models, while Marks et al. (2024) adapts
attribution methods in the SAE basis. Dunefsky et al. (2024)
introduces transcoders to simplify MLP circuit analysis,
which we incorporate into our Gemma 1 SAE suite.

6. Conclusion
We use sparse autoencoders (SAEs) to explain in-context
learning with unprecedented mechanistic detail. Our work
demonstrates that SAEs serve as valuable circuit analysis
tools, with our key innovations including TVC (Section 3.1)
and SFC adaption for ICL (Section 2.2). We will also plan
to share SAE training codebase in JAX with a full suite of
SAEs for Gemma 1 2B after the paper publication. These
advances lay the groundwork for analyzing more complex
tasks and larger models.

8

Scaling Sparse Feature Circuits For Studying In-Context Learning

Limitations Our analysis focused on the simple task vec-
tor setting to study in-context learning (Section 2.3), which
represents only a subset of ICL applications in practice.
While our SFC analysis centered on Gemma 1 2B, we suc-
cessfully identified task execution features across multiple
model architectures and scales, supporting the broader appli-
cability of our findings. This aligns with prior work showing
that task vectors exist across models Todd et al. (2024).

In our analysis, we often saw multiple competing execu-
tion and detection features, though these features remained
highly task-specific in nature — a pattern that appears com-
mon in LLM interpretability due to their regenerative capa-
bilities.

Acknowledgements
This work was conducted during the ML Alignment & The-
ory Scholars (MATS) Program, which is sponsored by Open-
Philanthropy. We are grateful to MATS for providing a
collaborative and supportive research environment. We also
thank the TPU Research Cloud (TRC) for providing com-
putational resources. Special thanks to Matthew Wearden
and McKenna Fitzgerald for their invaluable guidance and
management throughout the project. We also extend our
gratitude to the MATS and Lighthaven staff, as well as all
contributors who provided insightful feedback and discus-
sions that shaped this work.

Impact Statement
This paper presents work whose goal is to advance the field
of mechanistic interpretability, rather than machine learning
in general. Whilst there are potential societal consequences
to the advancement of the ML field, we feel that research
that improves understanding of ML models is unlikely to
additionally contribute to these consequences, rather giving
the field more tools to avert them.

References
Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan,

A. A., Bach, N., Bahree, A., Bakhtiari, A., Bao, J., Behl,
H., Benhaim, A., Bilenko, M., Bjorck, J., Bubeck, S., Cai,
M., Cai, Q., Chaudhary, V., Chen, D., Chen, D., Chen, W.,
Chen, Y.-C., Chen, Y.-L., Cheng, H., Chopra, P., Dai, X.,
Dixon, M., Eldan, R., Fragoso, V., Gao, J., Gao, M., Gao,
M., Garg, A., Giorno, A. D., Goswami, A., Gunasekar, S.,
Haider, E., Hao, J., Hewett, R. J., Hu, W., Huynh, J., Iter,
D., Jacobs, S. A., Javaheripi, M., Jin, X., Karampatziakis,
N., Kauffmann, P., Khademi, M., Kim, D., Kim, Y. J.,
Kurilenko, L., Lee, J. R., Lee, Y. T., Li, Y., Li, Y., Liang,
C., Liden, L., Lin, X., Lin, Z., Liu, C., Liu, L., Liu, M.,
Liu, W., Liu, X., Luo, C., Madan, P., Mahmoudzadeh,

A., Majercak, D., Mazzola, M., Mendes, C. C. T., Mitra,
A., Modi, H., Nguyen, A., Norick, B., Patra, B., Perez-
Becker, D., Portet, T., Pryzant, R., Qin, H., Radmilac, M.,
Ren, L., de Rosa, G., Rosset, C., Roy, S., Ruwase, O.,
Saarikivi, O., Saied, A., Salim, A., Santacroce, M., Shah,
S., Shang, N., Sharma, H., Shen, Y., Shukla, S., Song, X.,
Tanaka, M., Tupini, A., Vaddamanu, P., Wang, C., Wang,
G., Wang, L., Wang, S., Wang, X., Wang, Y., Ward, R.,
Wen, W., Witte, P., Wu, H., Wu, X., Wyatt, M., Xiao,
B., Xu, C., Xu, J., Xu, W., Xue, J., Yadav, S., Yang, F.,
Yang, J., Yang, Y., Yang, Z., Yu, D., Yuan, L., Zhang, C.,
Zhang, C., Zhang, J., Zhang, L. L., Zhang, Y., Zhang, Y.,
Zhang, Y., and Zhou, X. Phi-3 technical report: A highly
capable language model locally on your phone, 2024.
URL https://arxiv.org/abs/2404.14219.

Anil, C., Durmus, E., Sharma, M., Benton, J., Kundu, S.,
Batson, J., Rimsky, N., Tong, M., Mu, J., Ford, D., et al.
Many-shot jailbreaking. 2024.

Bai, Y., Chen, F., Wang, H., Xiong, C., and Mei, S. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection.

Bansal, H., Gopalakrishnan, K., Dingliwal, S., Bodapati,
S., Kirchhoff, K., and Roth, D. Rethinking the role of
scale for in-context learning: An interpretability-based
case study at 66 billion scale. URL http://arxiv.
org/abs/2212.09095.

Bhaskar, A., Wettig, A., Friedman, D., and Chen, D. Find-
ing transformer circuits with edge pruning, 2024. URL
https://arxiv.org/abs/2406.16778.

Bloom, J. Open source sparse autoencoders for all
residual stream layers of gpt2-small, 2024. URL
https://www.alignmentforum.org/posts/
f9EgfLSurAiqRJySD.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Braun, D., Taylor, J., Goldowsky-Dill, N., and Sharkey,
L. Identifying functionally important features with end-
to-end sparse dictionary learning, 2024. URL https:
//arxiv.org/abs/2405.12241.

Bricken, T., Templeton, A., Batson, J., Chen, B., Jermyn,
A., Conerly, T., Turner, N., Anil, C., Denison, C.,
Askell, A., Lasenby, R., Wu, Y., Kravec, S., Schiefer,
N., Maxwell, T., Joseph, N., Hatfield-Dodds, Z.,
Tamkin, A., Nguyen, K., McLean, B., Burke, J. E.,
Hume, T., Carter, S., Henighan, T., and Olah, C.
Towards monosemanticity: Decomposing language

9

https://arxiv.org/abs/2404.14219
http://arxiv.org/abs/2212.09095
http://arxiv.org/abs/2212.09095
https://arxiv.org/abs/2406.16778
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD
https://www.alignmentforum.org/posts/f9EgfLSurAiqRJySD
http://github.com/jax-ml/jax
https://arxiv.org/abs/2405.12241
https://arxiv.org/abs/2405.12241

Scaling Sparse Feature Circuits For Studying In-Context Learning

models with dictionary learning. Transformer Cir-
cuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-
features/index.html.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems, volume 33, pp. 1877–
1901, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-
Abstract.html.

Bussmann, B., Leask, P., and Nanda, N. Batchtopk:
A simple improvement for topk-saes, 2024. URL
https://www.alignmentforum.org/posts/
Nkx6yWZNbAsfvic98/batchtopk-a-simple-
improvement-for-topk-saes.

Cammarata, N., Carter, S., Goh, G., Olah, C., et al. Thread:
Circuits. Distill, 2020. doi: 10.23915/distill.00024.
https://distill.pub/2020/circuits.

Chan, L., Garriga-Alonso, A., Goldowsky-Dill, N., Green-
blatt, R., Nitishinskaya, J., Radhakrishnan, A., Shlegeris,
B., and Thomas, N. Causal scrubbing: A method for
rigorously testing interpretability hypotheses, 2022. URL
https://www.alignmentforum.org/posts/
JvZhhzycHu2Yd57RN/causal-scrubbing-a-
method-for-rigorously-testing.

Chen, S., Sheen, H., Wang, T., and Yang, Z. Unveiling
induction heads: Provable training dynamics and feature
learning in transformers. URL http://arxiv.org/
abs/2409.10559.

Conerly, T., Templeton, A., Bricken, T., Marcus,
J., and Henighan, T. Update on how we train
saes, 2024. URL https://transformer-
circuits.pub/2024/april-update/index.
html#training-saes.

Conmy, A., Mavor-Parker, A. N., Lynch, A., et al. Towards
automated circuit discovery for mechanistic interpretabil-
ity. In Proceedings of NeurIPS, 2023.

Cunningham, H., Ewart, A., Riggs, L., et al. Sparse autoen-
coders find highly interpretable features in language mod-
els, 2023. URL https://arxiv.org/abs/2309.
08600.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and
Wei, F. Why can GPT learn in-context? language models
implicitly perform gradient descent as meta-optimizers.
URL http://arxiv.org/abs/2212.10559.

Dong, Q., Li, L., Dai, D., Zheng, C., Ma, J., Li, R., Xia,
H., Xu, J., Wu, Z., Liu, T., Chang, B., Sun, X., Li, L.,
and Sui, Z. A survey on in-context learning, 2024. URL
https://arxiv.org/abs/2301.00234.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., et al. The
llama 3 herd of models, 2024. URL https://arxiv.
org/abs/2407.21783.

Dunefsky, J., Chlenski, P., and Nanda, N. Transcoders find
interpretable llm feature circuits, 2024. URL https:
//arxiv.org/abs/2406.11944.

Elad, M. Sparse and Redundant Representations: From
Theory to Applications in Signal and Image Processing.
Springer, New York, 2010. ISBN 978-1-4419-7010-7.
doi: 10.1007/978-1-4419-7011-4.

Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph,
N., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
DasSarma, N., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Jones, A., Kernion, J., Lovitt, L.,
Ndousse, K., Amodei, D., Brown, T., Clark, J., Kaplan, J.,
McCandlish, S., and Olah, C. A mathematical framework
for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.
pub/2021/framework/index.html.

Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan,
T., Kravec, S., Hatfield-Dodds, Z., Lasenby, R., Drain,
D., Chen, C., et al. Toy Models of Superposition. arXiv
preprint arXiv:2209.10652, 2022.

Farrell, E. Experiments with an alternative method
to promote sparsity in sparse autoencoders, 2024.
URL https://www.lesswrong.com/posts/
cYA3ePxy8JQ8ajo8B/experiments-with-
an-alternative-method-to-promote-
sparsity.

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What can
transformers learn in-context? a case study of simple
function classes.

Goldowsky-Dill, N., MacLeod, C., Sato, L., and Arora,
A. Localizing model behavior with path patching, 2023.
URL https://arxiv.org/abs/2304.05969.

Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Taj-
dini, A., Steiner, B., Li, D., Durmus, E., Perez, E., Hub-
inger, E., Lukošiūtė, K., Nguyen, K., Joseph, N., Mc-
Candlish, S., Kaplan, J., and Bowman, S. R. Study-
ing large language model generalization with influence

10

https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://www.alignmentforum.org/posts/Nkx6yWZNbAsfvic98/batchtopk-a-simple-improvement-for-topk-saes
https://distill.pub/2020/circuits
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
http://arxiv.org/abs/2409.10559
http://arxiv.org/abs/2409.10559
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://transformer-circuits.pub/2024/april-update/index.html#training-saes
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
http://arxiv.org/abs/2212.10559
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944
https://arxiv.org/abs/2406.11944
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://www.lesswrong.com/posts/cYA3ePxy8JQ8ajo8B/experiments-with-an-alternative-method-to-promote-sparsity
https://arxiv.org/abs/2304.05969

Scaling Sparse Feature Circuits For Studying In-Context Learning

functions, 2023. URL https://arxiv.org/abs/
2308.03296.

Han, X., Simig, D., Mihaylov, T., Tsvetkov, Y., Celiky-
ilmaz, A., and Wang, T. Understanding in-context
learning via supportive pretraining data. URL http:
//arxiv.org/abs/2306.15091.

Hanna, M., Liu, O., and Variengien, A. How does gpt-2
compute greater-than?: Interpreting mathematical abili-
ties in a pre-trained language model, 2023. URL https:
//arxiv.org/abs/2305.00586.

Hendel, R., Geva, M., and Globerson, A. In-context learn-
ing creates task vectors, 2023. URL https://arxiv.
org/abs/2310.15916.

Johnson, D. D. Penzai + treescope: A toolkit for interpret-
ing, visualizing, and editing models as data, 2024. URL
https://arxiv.org/abs/2408.00211.

Kidger, P. and Garcia, C. Equinox: neural networks in jax
via callable pytrees and filtered transformations, 2021.
URL https://arxiv.org/abs/2111.00254.

Kissane, C., Krzyzanowski, R., Conmy, A., and Nanda,
N. Attention output saes improve circuit analysis, 2024.
URL https://www.alignmentforum.org/
posts/EGvtgB7ctifzxZg6v/attention-
output-saes-improve-circuit-analysis.

Lieberum, T., Rahtz, M., Kramár, J., et al. Does circuit
analysis interpretability scale? evidence from multiple
choice capabilities in chinchilla, 2023. URL https:
//arxiv.org/abs/2307.09458.

Lieberum, T., Rajamanoharan, S., Conmy, A., Smith, L.,
Sonnerat, N., Varma, V., Kramár, J., Dragan, A., Shah, R.,
and Nanda, N. Gemma scope: Open sparse autoencoders
everywhere all at once on gemma 2, 2024. URL https:
//arxiv.org/abs/2408.05147.

Lin, J. Neuronpedia: Interactive reference and tooling
for analyzing neural networks, 2023. URL https:
//www.neuronpedia.org. Software available from
neuronpedia.org.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. URL http://
arxiv.org/abs/2307.03576.

Marks, S., Rager, C., Michaud, E. J., et al. Sparse fea-
ture circuits: Discovering and editing interpretable causal
graphs in language models. Computing Research Reposi-
tory, arXiv:2403.19647, 2024. URL https://arxiv.
org/abs/2403.19647.

Miller, J., Chughtai, B., and Saunders, W. Transformer
circuit faithfulness metrics are not robust, 2024. URL
https://arxiv.org/abs/2407.08734.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837, 2022. URL https:
//arxiv.org/abs/2202.12837.

Ng, A. Sparse autoencoder. CS294A Lecture Notes, 2011.
Unpublished lecture notes.

Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov,
M., and Carter, S. Zoom in: An introduction to circuits.
Distill, 2020. doi: 10.23915/distill.00024.001. https:
//distill.pub/2020/circuits/zoom-in.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads, 2022. URL https://
arxiv.org/abs/2209.11895.

Oswald, J. v., Niklasson, E., Randazzo, E., Sacramento, J.,
Mordvintsev, A., Zhmoginov, A., and Vladymyrov, M.
Transformers learn in-context by gradient descent. URL
http://arxiv.org/abs/2212.07677.

Pan, J., Gao, T., Chen, H., and Chen, D. What in-
context learning “learns” in-context: Disentangling
task recognition and task learning. In Rogers,
A., Boyd-Graber, J., and Okazaki, N. (eds.), Find-
ings of the Association for Computational Linguistics:
ACL 2023, pp. 8298–8319. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
527. URL https://aclanthology.org/2023.
findings-acl.527.

Park, C. F., Lee, A., Lubana, E. S., Yang, Y., Okawa, M.,
Nishi, K., Wattenberg, M., and Tanaka, H. Iclr: In-
context learning of representations, 2024. URL https:
//arxiv.org/abs/2501.00070.

Pearl, J. Direct and indirect effects. In Proceedings of
the Seventeenth Conference on Uncertainty in Artificial
Intelligence, UAI’01, pp. 411–420, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc. ISBN
1558608001.

Pearl, J. Causality: Models, Reasoning and Inference. Cam-
bridge University Press, USA, 2nd edition, 2009. ISBN
052189560X.

11

https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296
http://arxiv.org/abs/2306.15091
http://arxiv.org/abs/2306.15091
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2310.15916
https://arxiv.org/abs/2408.00211
https://arxiv.org/abs/2111.00254
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://www.alignmentforum.org/posts/EGvtgB7ctifzxZg6v/attention-output-saes-improve-circuit-analysis
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://www.neuronpedia.org
https://www.neuronpedia.org
http://arxiv.org/abs/2307.03576
http://arxiv.org/abs/2307.03576
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2407.08734
https://arxiv.org/abs/2202.12837
https://arxiv.org/abs/2202.12837
https://distill.pub/2020/circuits/zoom-in
https://distill.pub/2020/circuits/zoom-in
https://arxiv.org/abs/2209.11895
https://arxiv.org/abs/2209.11895
http://arxiv.org/abs/2212.07677
https://aclanthology.org/2023.findings-acl.527
https://aclanthology.org/2023.findings-acl.527
https://arxiv.org/abs/2501.00070
https://arxiv.org/abs/2501.00070

Scaling Sparse Feature Circuits For Studying In-Context Learning

Penedo, G., Kydlı́ček, H., allal, L. B., Lozhkov, A., Mitchell,
M., Raffel, C., Werra, L. V., and Wolf, T. The fineweb
datasets: Decanting the web for the finest text data
at scale, 2024. URL https://arxiv.org/abs/
2406.17557.

Peng, H., Wang, X., Chen, J., Li, W., Qi, Y., Wang, Z.,
Wu, Z., Zeng, K., Xu, B., Hou, L., and Li, J. When
does in-context learning fall short and why? a study
on specification-heavy tasks, 2023. URL https://
arxiv.org/abs/2311.08993.

Rajamanoharan, S. Improving ghost grads, 2024. URL
https://www.alignmentforum.org/posts/
C5KAZQib3bzzpeyrg/progress-update-1-
from-the-gdm-mech-interp-team-full-
update#Improving_ghost_grads.

Rajamanoharan, S., Conmy, A., Smith, L., Lieberum, T.,
Varma, V., Kramár, J., Shah, R., and Nanda, N. Im-
proving dictionary learning with gated sparse autoen-
coders, 2024a. URL https://arxiv.org/abs/
2404.16014.

Rajamanoharan, S., Lieberum, T., Sonnerat, N., Conmy, A.,
Varma, V., Kramár, J., and Nanda, N. Jumping ahead:
Improving reconstruction fidelity with jumprelu sparse
autoencoders, 2024b. URL https://arxiv.org/
abs/2407.14435.

Raventós, A., Paul, M., Chen, F., and Ganguli, S. Pretrain-
ing task diversity and the emergence of non-bayesian in-
context learning for regression. URL http://arxiv.
org/abs/2306.15063.

Riggs, L. and Brinkman, J. Improving sae’s by sqrt()-ing
l1 and removing lowest activating features, 2024.
URL https://www.lesswrong.com/posts/
YiGs8qJ8aNBgwt2YN/improving-sae-s-by-
sqrt-ing-l1-and-removing-lowest.

Shen, L., Mishra, A., and Khashabi, D. Do pretrained
transformers learn in-context by gradient descent? URL
http://arxiv.org/abs/2310.08540.

Si, C., Friedman, D., Joshi, N., Feng, S., Chen, D., and
He, H. Measuring inductive biases of in-context learn-
ing with underspecified demonstrations. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
11289–11310. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.632. URL https:
//aclanthology.org/2023.acl-long.632.

Smith, L. Replacing sae encoders with inference-
time optimisation, 2024. URL https:
//www.alignmentforum.org/posts/

C5KAZQib3bzzpeyrg/full-post-progress-
update-1-from-the-gdm-mech-interp-
team#Replacing_SAE_Encoders_with_
Inference_Time_Optimisation.

Syed, A., Rager, C., and Conmy, A. Attribution patching
outperforms automated circuit discovery, 2023. URL
https://arxiv.org/abs/2310.10348.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., Tafti, P., et al. Gemma: Open models based on gemini
research and technology, 2024. URL https://arxiv.
org/abs/2403.08295.

Templeton, A., Conerly, T., Marcus, J., Lindsey, J., Bricken,
T., Chen, B., Pearce, A., Citro, C., Ameisen, E., Jones,
A., Cunningham, H., Turner, N. L., McDougall, C.,
MacDiarmid, M., Freeman, C. D., Sumers, T. R.,
Rees, E., Batson, J., Jermyn, A., Carter, S., Olah,
C., and Henighan, T. Scaling monosemanticity: Ex-
tracting interpretable features from claude 3 sonnet.
Transformer Circuits Thread, 2024. URL https:
//transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Todd, E., Li, M. L., Sen Sharma, A., et al. Function vectors
in large language models. In Proceedings of the 2024
International Conference on Learning Representations,
2024.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: A circuit for
indirect object identification in GPT-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Wang, L., Li, L., Dai, D., Chen, D., Zhou, H., Meng,
F., Zhou, J., and Sun, X. Label words are anchors:
An information flow perspective for understanding in-
context learning. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 9840–
9855. Association for Computational Linguistics. doi:
10.18653/v1/2023.emnlp-main.609. URL https://
aclanthology.org/2023.emnlp-main.609.

Wang, X., Zhu, W., Saxon, M., Steyvers, M., and Wang,
W. Y. Large language models are latent variable mod-
els: Explaining and finding good demonstrations for in-
context learning, 2024. URL https://arxiv.org/
abs/2301.11916.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit bayesian
inference. URL http://arxiv.org/abs/2111.
02080.

12

https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2311.08993
https://arxiv.org/abs/2311.08993
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/progress-update-1-from-the-gdm-mech-interp-team-full-update#Improving_ghost_grads
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2404.16014
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
http://arxiv.org/abs/2306.15063
http://arxiv.org/abs/2306.15063
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
https://www.lesswrong.com/posts/YiGs8qJ8aNBgwt2YN/improving-sae-s-by-sqrt-ing-l1-and-removing-lowest
http://arxiv.org/abs/2310.08540
https://aclanthology.org/2023.acl-long.632
https://aclanthology.org/2023.acl-long.632
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://www.alignmentforum.org/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Replacing_SAE_Encoders_with_Inference_Time_Optimisation
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://arxiv.org/abs/2211.00593
https://aclanthology.org/2023.emnlp-main.609
https://aclanthology.org/2023.emnlp-main.609
https://arxiv.org/abs/2301.11916
https://arxiv.org/abs/2301.11916
http://arxiv.org/abs/2111.02080
http://arxiv.org/abs/2111.02080

Scaling Sparse Feature Circuits For Studying In-Context Learning

Xu, Z., Jiang, F., Niu, L., Deng, Y., Poovendran, R., Choi,
Y., and Lin, B. Y. Magpie: Alignment data synthesis from
scratch by prompting aligned llms with nothing, 2024.
URL https://arxiv.org/abs/2406.08464.

Yadlowsky, S., Doshi, L., and Tripuraneni, N. Pretraining
data mixtures enable narrow model selection capabilities
in transformer models. URL http://arxiv.org/
abs/2311.00871.

13

https://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2311.00871
http://arxiv.org/abs/2311.00871

Scaling Sparse Feature Circuits For Studying In-Context Learning

A. Model and dataset details
For our experiments, we utilized the Gemma 1 2B model, a member of the Gemma family of open models based on Google’s
Gemini models Team et al. (2024). The model’s architecture is largely the same as that of Llama Dubey et al. (2024) except
for tied input and output embeddings and a different activation function for MLP layers, so we could reuse our infrastructure
for loading Llama models. We train residual and attention output SAEs as well as transcoders for layers 1-18 of the model
on FineWeb Penedo et al. (2024).

Our dataset for circuit finding is primarily derived from the function vectors paper Todd et al. (2024), which provides a
diverse set of tasks for evaluating the existence and properties of function vectors in language models. We supplemented
this dataset with three additional algorithmic tasks to broaden the scope of our analysis:

• Extract the first element from an array of length 4

• Extract the second element from an array of length 4

• Extract the last element from an array of length 4

The complete list of tasks used in our experiments with task descriptions is as follows:

Task ID Description
location continent Name the continent where the given landmark is located.
football player position Identify the position of a given football player.
location religion Name the predominant religion in a given location.
location language State the primary language spoken in a given location.
person profession Identify the profession of a given person.
location country Name the country where a given location is situated.
country capital Provide the capital city of a given country.
person language Identify the primary language spoken by a given person.
singular plural Convert a singular noun to its plural form.
present simple past simple Change a verb from present simple to past simple tense.
antonyms Provide the antonym of a given word.
plural singular Convert a plural noun to its singular form.
present simple past perfect Change a verb from present simple to past perfect tense.
present simple gerund Convert a verb from present simple to gerund form.
en it Translate a word from English to Italian.
it en Translate a word from Italian to English.
en fr Translate a word from English to French.
en es Translate a word from English to Spanish.
fr en Translate a word from French to English.
es en Translate a word from Spanish to English.
algo last Extract the last element from an array of length 4.
algo first Extract the first element from an array of length 4.
algo second Extract the second element from an array of length 4.

This diverse set of tasks covers a wide range of linguistic and cognitive abilities, including geographic knowledge, language
translation, grammatical transformations, and simple algorithmic operations. By using this comprehensive task set, we
aimed to thoroughly investigate the in-context learning capabilities of the Gemma 1 2B model across various domains.

B. SAE Training
Our Gemma 1 2B SAEs are trained with a learning rate of 1e-3 and Adam betas of 0.0 and 0.99 for 150M (±100) tokens
of FineWeb Penedo et al. (2024). The methodology is overall similar to Bloom (2024). We initialize encoder weights
orthogonally and set decoder weights to their transpose. We initialize decoder biases to 0. We use (Rajamanoharan, 2024)’s
ghost gradients variant (ghost gradients applied to dead features only, loss multiplied by the proportion of death features)
with the additional modification of using softplus instead of exp for numerical stability. A feature is considered dead when

14

Scaling Sparse Feature Circuits For Studying In-Context Learning

its density (according to a 1000-batch buffer) is below 5e-6 or when it has not fired in 2000 steps. We use Anthropic’s
input normalization and sparsity loss for Gemma 1 2B Conerly et al. (2024). We found it to improve Gated SAE training
stability. We modified it to work with transcoders by keeping track of input and output norms separately and predicting
normed outputs.

We convert our Gated SAEs into JumpReLU SAEs after training, implementing algorithms like TVC and SFC in a unified
manner for all SAEs in this format (including simple SAEs). The conversion procedure involves setting thresholds to
replicate the effect of the gating branch. For further details, see (Rajamanoharan et al., 2024b).

We use 4 v4 TPU chips running Jax Bradbury et al. (2018) (Equinox Kidger & Garcia (2021)) to train our SAEs. We found
that training with Huggingface’s Flax LM implementations was very slow. We reimplemented LLaMA Dubey et al. (2024)
and Gemma Team et al. (2024) in Penzai Johnson (2024) with a custom layer-scan transformation and quantized inference
kernels as well as support for loading from GGUF compressed model files. We process an average of around 4400 tokens
per second, which makes training SAEs and not caching LM activations the main bottleneck. For this and other reasons, we
don’t do SAE sparsity coefficient sweeps to increase TPU utilization.

For caching, we use a distributed ring buffer which contains separate pointers on each device to allow for processing masked
data. The (in-place) buffer update is in a separate JIT context. Batches are sampled randomly from the buffer for each
training step.

We train our SAEs in bfloat16 precision. We found that keeping weights and scales in bfloat16 and biases in float32
performed best in terms of the number of dead features and led to a Pareto improvement over float32 SAEs.

For training Phi 3 Abdin et al. (2024) SAEs, we use data generated by the model unconditionally, similarly to Xu et al.
(2024)4. The resulting dataset we train the model on contains many math problems and is formatted as a natural-seeming
interaction between the user and the model.

Each SAE training run takes us about 3 hours. We trained 3 models (a residual SAE, an attention output SAE, and a
transcoder) for each of the 18 layers of the model. This is about 1 week of v4-8 TPU time.

Our SAEs and training code will be made public after paper publication.

C. Example circuits
An example output of our circuit cleaning algorithm can be found in Figure 12. We can see the flow of information through
a single high-IE attention feature from a task-detection feature (activating on output tokens) to transcoder and residual
execution features (activating on arrow tokens). The feature activates on antonyms on the detection feature #11050: one can
assume the first sequence began as “Short Term Target”, making the second half an antonym.

We will release a web interface for viewing maximum activating examples and task feature circuits.

D. Task Vector Cleaning Algorithm
The task vector cleaning algorithm is a novel approach we developed to isolate task-relevant features from task vectors.
Figure 13 provides an overview of this algorithm.

Our process begins with collecting residuals for task vectors using a batch of 16 and 16-shot prompts. We then calculate the
SAE features for these task vectors. We explored two methods: (1) calculating feature activation and then averaging across
tokens, and (2) averaging across tokens first and then calculating the task vector. They had similar performances.

The cleaning process is performed on a training batch of 24 pairs, with evaluation conducted on an additional 24 pairs. All
prompts are zero-shot. An example prompt is as follows:

4Phi-3 is trained primarily with instruction following data, making it an aligned chat model.

15

Scaling Sparse Feature Circuits For Studying In-Context Learning

Figure 12. An example of a circuit found using our SFC variant. We focused on a subcircuit with high indirect effects. Maximum
activating examples from the SAE training distribution are included.

BOS Follow the pattern : \n

tall → short \n

· · ·

old → young \n

hot → cold

Example 2. The steered token is highlighted in red. Loss is calculated on the yellow token.

The algorithm is initialized with the SAE reconstruction as a starting point. It then iteratively steers the model on the
reconstruction layer and calculates the loss on the training pairs. To promote sparsity, we add the L1 norm of weights with
coefficient λ to the loss function. The algorithm implements early stopping when the L0 norm remains unchanged for n
iterations.

1 def tvc_algorithm(task_vector, model, sae):
2 initial_weights = sae.encode(task_vector)
3 def tvc_loss(weights, tokens):
4 task_vector = sae.decode(weights)
5 mask = tokens == self.separator
6 model.residual_stream[layer, mask] += task_vector
7 # loss only on the ``output" tokens,
8 # ignoring input and prompt tokens
9 loss = logprobs(model.logits, tokens, ...)

10 return loss + l1_coeff * l1_norm(weights)
11 weights = initial_weights.copy()

16

Scaling Sparse Feature Circuits For Studying In-Context Learning

n-shot ICL
prompts Task vectors SAE

features

Training
weights

Cleaned
weights

Reconstruct
TV

L1 normTask loss

Loss
Optimize

0-shot ICL
prompts

...hot -> cold...

...tall ->

on layer L

10-20 features
noisy

2-4 features
interpretable

Figure 13. An overview of our Task Vector Cleaning algorithm. TV stands for Task Vector.

12 optimizer = adam(weights, lr=0.15)
13 last_l0, without_change = 0, 0 # early stopping
14 for _ in range(1000):
15 grad = jax.grad(tvc_loss)(weights, tokens)
16 weights = optimizer.step(grad)
17 if l0_norm(weights) != last_l0:
18 last_l0, without_change = l0_norm(weights), 0
19 elif without_change >= 50:
20 break
21 return weights

Algorithm 1. Pseudocode for Task Vector Cleaning.

The hyperparameters λ, n, and learning rate α can be fixed for a single model. We experimented with larger batch sizes
but found that they did not significantly improve the quality of extracted features while substantially slowing down the
algorithm due to gradient accumulation.

The algorithm takes varying amounts of time to complete for different tasks and models. For Gemma 1, it stops at 100-200
iterations, which is close to 40 seconds at 5 iterations per second.

It’s worth noting that we successfully applied this method to the recently released Gemma 2 2B and 9B models using the
Gemma Scope SAE suite Lieberum et al. (2024). It was also successful with the Phi-3 3B model Abdin et al. (2024) and
with our SAEs, which were trained similarly to the Gemma 1 2B SAEs.

D.1. L1 Sweeps

To provide more details about the method’s effectiveness across various models and SAE widths, we conducted L1 coefficient
sweeps with our Phi-3 and Gemma 1 2B SAEs, as well as Gemma Scope Gemma 2 SAEs. We chose two SAE widths
for Gemma 2 2B and 9B: 16k and 65k. For Gemma 2 2B we also sweeped across several different target SAE L0 norms.
We studied only the optimal task vector layer for each model: 12 for Gemma 1, 16 for Gemma 2, 18 for Phi-3, and 20 for

17

Scaling Sparse Feature Circuits For Studying In-Context Learning

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

Method
ITO
TVC

Gemma 1

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 14. Performance of ITO and TVC across different tasks and optimization parameters compared to task vectors for Gemma 1 2B.
The Y-axis shows relative improvement over task vector loss, while the X-axis shows the fraction of active TV features used. Metric
calculation details are available in D.1

Gemma 2 9B. We used a learning rate of 0.15 with the Gemma 1 2B, Phi-3, and Gemma 2 2B 65k models, 0.3 with Gemma
2 2B 16k, and 0.05 with 200 early stopping steps for Gemma 2 9B.

Figures 14, 15, 16 compare TVC and ITO against original task vectors. The X-axis displays the fraction of active task vector
SAE features used. The Y-axis displays the TV loss delta, calculated as (LTV − LMethod)/LZero, where LTV is the loss
from steering with the task vector, LMethod is the loss after it has been cleaned using the corresponding method, and LZero

is the uninformed (no-steering) model loss. This metric shows improvement over the task vector relative to the loss of the
uninformed model. Points were collected from all tasks using 5 different L1 coefficient values.

We observe that our method often improves task vector loss and can reduce the number of active features to one-third of
those in the original task vector while maintaining relatively intact performance. In contrast, ITO rarely improves the task
vector loss and is almost always outperformed by TVC.

Figures 17, 18 and 19 show task-mean loss decrease (relative to no steering loss) and remaining TV features fraction plotted
against L1 sweep coefficients. We see that L1 coefficients between 0.001 and 0.025 result in relatively intact performance,
while significantly reducing the amount of active SAE features. From Figure 18 we can notice that the method performs
better with higher target l0 SAEs, being able to affect the loss with just a fraction of active SAE features.

E. Details of our SFC implementation
E.1. Implementation details

Our implementation of circuit finding attribution patching is specialized for Jax and Penzai.

We first perform a forward-backward pass on the set of prompts, collecting residuals and gradients from the metric to
residuals. We collect gradients with jax.grad by introducing “dummy” zero-valued inputs to the metric computation
function that are added to the residuals of each layer. Note that we do not use SAEs during this stage.

We then perform an SAE encoding step and find the nodes (residual, attention output, and transcoder SAE features and error
nodes) with the highest indirect effects using manually computed gradients from the metric. After that, we find the features
with the top K indirect effects for each layer and position mask and treat them as candidates for circuit edge targets. We
compute gradients with respect to the metric to the values of those nodes, propagate them to “source features” up to one
layer above, and multiply by the values of the source features. This way, we can compute indirect effects for circuit edges
and prune the initially fully connected circuit. However, like (Marks et al., 2024), we do not perform full ablation of circuit
edges.

18

Scaling Sparse Feature Circuits For Studying In-Context Learning

0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4
Method

ITO
TVC

Phi-3

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 15. Performance of ITO and TVC across different tasks and optimization parameters compared to task vectors for Phi-3. The
Y-axis shows relative improvement over task vector loss, while the X-axis shows the fraction of active TV features used. Metric calculation
details are available in D.1

We include a simplified implementation of node-only SFC in Algorithm 2.

1 # resids_pre: L x N x D - the pre-residual stream at layer L
2 # resids_mid: L x N x D - the middle of the residual stream
3 # (between attention and MLP) at layer L
4 # grads_pre: L x N x D - gradients from the metric to resids_pre
5 # grads_mid: L x N x D - gradients from the metric to resids_mid
6 # all of the above are computed with a forward and backward
7 # pass without SAEs
8

9 # saes_resid: L - residual stream SAEs
10 # saes_attn: L - attention output SAEs
11 # transcoders_attn: L - transcoders predicting resids_pre[l+1]
12 # from resids_mid[l]
13

14 def indirect_effect_for_residual_node(layer):
15 sae_encoding = saes_resid[layer].encode(
16 resids_pre[layer])
17 grad_to_sae_latents = jax.vjp(
18 saes_resid[layer].decode,
19 sae_encoding
20)(grads_pre[l])
21 return (grad_to_sae_latents * sae_encoding).sum(-1)
22

23 def indirect_effect_for_attention_node(layer):
24 sae_encoding = saes_attn[layer].encode(
25 resids_mid[layer] - resids_pre[layer])
26 grad_to_sae_latents = jax.vjp(
27 saes_attn[layer].decode,
28 sae_encoding
29)(grads_mid[l])
30 return (grad_to_sae_latents * sae_encoding).sum(-1)
31

19

Scaling Sparse Feature Circuits For Studying In-Context Learning

0 0.5 1 1.5 2

−0.5

0

0.5

Method
ITO
TVC

Gemma 2 65k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.5

0

0.5

Method
ITO
TVC

Gemma 2 16k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

Method
ITO
TVC

Gemma 2 2B 16k (23 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6 Method
ITO
TVC

Gemma 2 2B 16k (335 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2
Method

ITO
TVC

Gemma 2 2B 65k (21 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.6

−0.4

−0.2

0

0.2

0.4

Method
ITO
TVC

Gemma 2 2B 65k (244 l0)

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Method

ITO
TVC

Gemma 2 9B 65k

TV L0 fraction

TV
 lo

ss
 d

el
ta

0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

Method
ITO
TVC

Gemma 2 9B 16k

TV L0 fraction

TV
 lo

ss
 d

el
ta

Figure 16. Performance of ITO and TVC across different tasks and optimization parameters compared to task vectors for Gemma 2
Gemma Scope SAEs. The Y-axis shows the relative improvement over the loss from steering with a task vector, while the X-axis shows
the fraction of active TV features used. Metric calculation details are available in Appendix D.1.

32 def indirect_effect_for_transcoder_node(layer):
33 sae_encoding = transcoders[layer].encode(
34 resids_mid[layer])
35 grad_to_sae_latents = jax.vjp(
36 transcoders[layer].decode,

20

Scaling Sparse Feature Circuits For Studying In-Context Learning

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0.2

0.4

0.6

Gemma 1

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Phi-3

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Gemma 2 2B 65k (128 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

0.8

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 16k (78 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 17. L1 coefficient sweeps across different models and SAEs. All metrics are averaged across all tasks. Error bars show the standard
deviation of the average for each case. Metric calculation details are available in D.1.

21

Scaling Sparse Feature Circuits For Studying In-Context Learning

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

Gemma 2 2B 16k (23 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.5

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 16k (335 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

0.6

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.2

0.4

Gemma 2 2B 65k (21 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

0

0.5

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 2B 65k (244 l0)

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 18. L1 coefficient sweeps across different target SAE sparsities and widths for Gemma 2 2B. All metrics are averaged across all
tasks. Error bars show the standard deviation of the average for each case. Metric calculation details are available in Appendix D.1.

22

Scaling Sparse Feature Circuits For Studying In-Context Learning

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

−0.2

0

0.2

0.4

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

0.6

Gemma 2 9B 65k

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1

−0.2

0

0.2

0.4

1e-05 0.0001 0.001 0.01 0.025 0.05 0.1
0

0.2

0.4

Gemma 2 9B 16k

L1 Coefficient

L1 Coefficient

M
ea

n
re

la
tiv

e
lo

ss
 d

ec
re

as
e

M
ea

n
TV

 L
0

Fr
ac

tio
n

Figure 19. L1 coefficient sweeps across two SAE widths for Gemma 2 9B. All metrics are averaged across all tasks. Error bars show the
standard deviation of the average for each case. Metric calculation details are available in D.1.

23

Scaling Sparse Feature Circuits For Studying In-Context Learning

37 sae_encoding
38)(grads_pre[l+1])
39 return (grad_to_sae_latents * sae_encoding).sum(-1)

Algorithm 2. Pseudocode for Sparse Feature Circuits indirect effect calculation.

E.2. IE approximation quality

Our IE calculation approach, which aggregates effects across all tokens of the same type, resulted in each layer having a
limited number of non-zero nodes. This allowed us to directly examine the impact of disabling each of these nodes. We
assessed the quality of the IE approximation by calculating correlation coefficients between the actual effects and their
approximations. To further reduce computation time, we focused exclusively on nodes from the “input,” “output,” and
“arrow” groups. Figure 20 displays the correlations averaged across all tasks for all SAE types combined, while Figure 21
presents the metric for each SAE type separately.

5 10 15

0.4

0.5

0.6

0.7

Layer

C
or
re
la
tio

n

Figure 20. Average correlation of predicted and actual IEs across tasks for “input”, “output” and “arrow” non-zero nodes.

Overall, we observe that the approximation quality remains relatively low before layer 6, which is much deeper in the model
than layer 2, as reported by the original SFC paper. Non-residual stream SAEs begin to show adequate performance only in
the last third of the model. This may be due to the quality of our trained SAEs, the increased task complexity, or token
type-wise aggregation, and warrants further investigation. This is the primary reason our analysis focuses mainly on layers
10-15.

5 10 15

0.2

0.4

0.6

0.8 SAE Type
Attention Out
Residual
Transcoder

Layer

C
or

re
la

tio
n

Figure 21. Average correlation of predicted and actual IEs across tasks for “input”, “output” and “arrow” non-zero nodes for different
SAE types.

F. Steering with task-execution features
To evaluate the causal relevance of our identified ICL features, we conducted a series of steering experiments. Our
methodology employed zero-shot prompts for task-execution features, measuring effects across a batch of 32 random pairs.

24

Scaling Sparse Feature Circuits For Studying In-Context Learning

We set the target layer as 12 using Figure 2 and extracted all task-relevant features on it using our cleaning algorithm.
To determine the optimal steering scale, we conducted preliminary experiments using manually identified task-execution
features across all tasks. Through this process, we established an optimal steering scale of 15, which we then applied
consistently across all subsequent experiments.

For each pair of tasks and features, we steered with the feature and measured the relative loss improvement compared to the
model’s task performance on a prompt without steering. This relative improvement metric allowed us to quantify the impact
of each feature on task performance. Let M(t, f) = Lsteered/Lzero, be the effect of steering on task t with feature f .

To normalize our results and highlight the most significant effects, we applied several post-processing steps:

• M(t, f) = min(M(t, f), 1)

• M(t, f) =

(
M(t, f)−min

f ′
M(t, f ′)

)
/

(
max
f ′

M(t, f ′)−min
f ′

M(t, f ′)

)
• M(t, f) = 0 if M(t, f) < 0.2

• Finally, we removed features with low maximum effect across all tasks to reduce the size of the resulting diagram. The
full version of this diagram is present in Figure 22.

Prompt example with the steered token highlighted in red. Loss is calculated on the yellow token:

BOS Follow the pattern : \n

hot → cold

Example 3. Task-execution steering setup. The steered token is highlighted in red and the loss is calculated on the yellow token.

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
22906
10720
19097
19112
24925
7106
27401
25576
7739
211
18803
2539
20832
7578
5991
6413
6780
23906
9600
17636

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

1
Effect strength

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●

Figure 22. Full version of the heatmap in Figure 6 showing the effect of steering with individual task-execution features for each task. The
features present in the task vector of the corresponding task are marked with dots (i.e. from the naive SAE reconstruction baseline in
Section 3.1). Green dots show the features that were extracted by cleaning. Red dots are features present in the original task vector. Not
all original features from the task vectors are present.

We also share the version of Figure 22 without normalization and value clipping. It is present in Figure 24. We see that task
vectors generally contain just a few task-execution features that can boost the task themselves. The remaining features have
much weaker and less specific effects.

25

Scaling Sparse Feature Circuits For Studying In-Context Learning

F.1. Negative steering

To further explore the effects of the executor feature, we also conducted negative steering experiments. The setup involved a
batch of 16 ICL prompts, each containing 32 examples for each task. We collected all features from the cleaned task vectors
for every task. Similar to positive steering, we steered with features on arrow tokens, but this time multiplying the direction
by -1. Prompts this time contained several arrow tokens, and we steered on all of them simultaneously.

An important distinction from positive steering is that performance degradation in negative steering may occur due to two
factors: (1) our causal intervention on the ICL circuit and (2) the steering scale being too high. To address this, we measured
accuracy across all pairs in the batch instead of loss, as accuracy does not decrease indefinitely. We also observed that
features no longer share a common optimal scale. Consequently, for each task pair, we iterated over several scales between 1
and 30. For each feature, we then selected a scale that reduced accuracy by at least 0.1 for at least one task. Steering results
at this scale were used for this feature across all tasks.

Figure 23 displays the resulting heatmap. While we observe some degree of task specificity — and even note that some
executing features from Figure 22 have their expected effects — we also find that negative steering exhibits significantly
lower task specificity. Additionally, we observe that non-task-specific features have a substantial impact in this experiment.
This suggests that steering experiments alone may not suffice for a comprehensive analysis of the ICL mechanism, thus
reinforcing the importance of methods such as our modification of SFC.

19112

23682

25576

22136

18803

12943

15554

19097

14612

6780

20832

2539

7491

15356

16490

6413

26594

16996

27401

32643

9600

26987

11173

9662

17636

850

11618

6594

13458

26924

7739

18840

16340

5991

24925

27268

9790

11172

5579

10720

7578

2930

8633

algo_second
algo_last

antonyms
location_country

location_language
present_simple_gerund

location_continent
football_player_position

person_profession
present_simple_past_perfect

location_religion
singular_plural

en_it
en_fr
en_es

algo_first
present_simple_past_simple

country_capital
plural_singular

person_language
es_en
it_en
fr_en

0

0.05

0.1

Accuracy decrease

 ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

Figure 23. Negative steering heatmap. Displays accuracy decrease after optimal scale negative steering on full ICL prompts. Green circles
show which features were present in the cleaned task vector of the corresponding task. More details in Appendix F.1.

F.2. Gemma 2 2B positive steering

Additionally, we conducted zero-shot steering experiments with Gemma 2 2B 16k and 65k SAEs. Contrary to Gemma 1 2B,
task executors from Gemma 2 2B did not have a single common optimal steering scale. Thus, we added an extra step to the
experiment: for each feature and task pair, we performed steering with several scales from 30 to 300, and then selected
the scale that had maximal loss decrease on any of the tasks. We then used this scale for this feature in application to all
other tasks. Figure 25a and Figure 25b contain steering heatmaps for Gemma 2 2B 16k SAEs and Gemma 2 2B 65k SAEs
respectively.

We observe a relatively similar level of executor task-specificity compared to Gemma 1. One notable difference between
16k and 65k SAEs is that 65k cleaned task vectors appear to contain more features with a strong effect on the task. However,
this may be due to the l1 regularization coefficient being too low.

26

Scaling Sparse Feature Circuits For Studying In-Context Learning

5579
16490
2930
26594
11618
29144
1878
850
15356
7491
6594
8633
15554
1830
13458
11172
11173
26987
27268
14612
32320
12943
9662
22906
10720
19097
19112
24925
7106
27401
25576
7739
211
18803
2539
20832
7578
5991
6413
6780
23906
9600
17636

es_en
it_en
fr_en

plural_singular
antonyms
algo_first

algo_second
location_country

location_continent
present_simple_past_simple

person_profession
present_simple_past_perfect

algo_last
present_simple_gerund

singular_plural
football_player_position

person_language
location_language
location_religion

country_capital
en_it
en_fr
en_es

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ● ● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ●

● ● ●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●

●
● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ● ● ●

Figure 24. Unfiltered version of the heatmap in Figure 10 showing the effect of steering with individual task-execution features for each
task. The features present in the task vector of the corresponding task are marked with dots. Green dots show the features that were
extracted by cleaning. Red dots are the features present in the original task vector. Since the chart only contains features from cleaned task
vectors, not all features from the original task vectors are present.

G. Task-Detection Features
For our investigation of task-detection features, we employed a methodology similar to that used for task execution features,
with a key modification. We introduced a fake pair to the prompt and focused our steering on its output. This approach
allowed us to simulate the effect of the detection features the way it happens on real prompts.

Our analysis revealed that layers 10 and 11 were optimal for task detection, with performance notably declining in subsequent
layers. We selected layer 11 for our primary analysis due to its proximity to layer 12, where we had previously identified the
task execution features. This choice potentially facilitates a more direct examination of the interaction between detection
and execution mechanisms.

The steering process for detection features followed the general methodology outlined in Appendix F, including the use of a
batch of 32 random pairs, extraction of task-relevant features, and application of post-processing steps to normalize and
highlight significant effects. The primary distinction lies in the application of the steering to the prompt.

This approach allowed us to create a comprehensive representation of the causal relationships between task-detection
features and the model’s ability to recognize specific tasks, as visualized in Figure 10.

BOS Follow the pattern : \n

X → Y \n

hot → cold

Example 4. Task-detection steering setup. The steered token is highlighted in red and the loss is calculated on the yellow token.

H. ICL interpretability literature review
This section will cover work on understanding ICL not mentioned in Section 5.

(Raventós et al.) provides evidence for two different Bayesian algorithms being learned for linear regression ICL: one for
limited task distributions and one that is similar to ridge regression. It also intriguingly shows that the two solutions lie in

27

Scaling Sparse Feature Circuits For Studying In-Context Learning

14671
12646
15511
13692
10140
7464
13623
16315
10300
12540
15966
5640
13804
4592
493
12777
12966
4285
16176
6574
725
8646
7107
15358
5211
7355
11720
2683
4012
817
14059
4766
10466
3157
12647
16222
6112
8941
12131
12721
12944
4820
3442
5774
16370
5496
2707
13976
6628

en_fr
algo_last

en_it
antonyms
algo_first

location_continent
present_simple_gerund

country_capital
football_player_position

person_profession
location_country

algo_second
en_es

person_language
location_language
location_religion

it_en
fr_en
es_en

present_simple_past_perfect
singular_plural

present_simple_past_simple
plural_singular

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ●
● ● ● ●
● ●
●

● ●
●
● ●

●
● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ●
● ● ●

●
● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ●

(a) Gemma 2 2B 16k

62633
34706
36382
58571
43597
59184
59579
13705
46729
21497
17288
3681
43234
18981
4579
34279
61107
33770
43713
57004
19054
37576
1782
7595
47139
21438
2950
2702
10180
46288
62501
14000
7454
5460
31307
45242
58958
29733
11226
28700
65211
710
55907
9407
38942
5503
24372
38998
25490
27393
15110
56016
21586
38724
32682
4520
60430
54547
27146
39700
3304
25795

es_en
fr_en
it_en

en_es
algo_first

location_language
plural_singular

antonyms
location_continent

location_country
person_profession

location_religion
person_language

en_it
en_fr

algo_last
football_player_position

present_simple_gerund
present_simple_past_simple
present_simple_past_perfect

singular_plural
algo_second

country_capital

0

0.2

0.4

0.6

0.8

Relative loss decrease

 ● Feature is in task vector | ● Feature is present after cleaning
Feature

Ta
sk

● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ●
● ● ● ● ●
● ● ●

● ● ● ● ●
● ●

● ● ● ●
● ● ● ●

● ●
● ● ●
● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ●
● ● ● ●

● ● ● ● ● ●
● ●

●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

(b) Gemma 2 2B 65k

Figure 25. Unfiltered positive steering heatmap for Gemma 2 2B SAEs showing the effect of steering with individual task-execution
features for each task. Steering scales were optimized for each feature. The features present in the task vector of the corresponding task
are marked with dots. Green dots show the features that were extracted by cleaning. Red dots are the features present in the original task
vector. Since the chart only contains features from cleaned task vectors, not all features from the original task vectors are present.

different basins of the loss landscape, a phase transition necessary to go from one to the other. While interesting, it is not
clear if the results apply to real-world tasks.

The existence of discrete task detection and execution features hinges on the assumption that in-context learning works
by classifying the task to perform and not by learning a task. (Pan et al.) aims to disentangle the two with a black-box
approach that mixes up outputs to force the model to learn the task from scratch. (Si et al.) look at biases in task recognition
in ambiguous examples through a black-box lens. We find more clear task features for some tasks than others but do not
consider whether this is linked to how common a task is in pretraining data.

(Xie et al.) proposes that in-context learning happens because language models aim to model a latent topic variable to
predict text with long-range coherence. (Wang et al., 2024) show following the two proposed steps rigorously improves
results in real-world models. However, they do not endeavor to explain the behavior of non-finetuned models by looking at
internal representations; instead, they aim to improve ICL performance.

(Han et al.) use a weight-space method to find examples in training data that promote in-context learning using a method
akin to (Grosse et al., 2023), producing results similar to per-token loss analyses in (Olsson et al., 2022), and, similarly to
the studies mentioned above, finds that those examples involve long-range coherence. Our method is also capable of finding

28

Scaling Sparse Feature Circuits For Studying In-Context Learning

examples in data that are similar to ICL, and we find crisp examples for many tasks being performed Appendix I.

(Bansal et al.) offers a deeper look into induction heads, scaling up (Olsson et al., 2022) the way we scale up (Marks
et al., 2024). Crucially, it finds that MLPs in later layers cannot be removed while preserving ICL performance, indirectly
corroborating our findings from Section 4.2. (Chen et al.) come up with a proof that states that gradient flow converges to a
generalized version of the algorithm suggested by (Olsson et al., 2022) when trained on n-gram Markov chain data.

(Garg et al.) studies the performance of toy models trained on in-context regression various function classes. (Yadlowsky
et al.) find that Transformers trained on regression with multiple function classes have trouble combining solutions for
learning those functions. (Oswald et al.) construct a set of weights for linear attention Transformers that reproduce updates
from gradient descent and find evidence for the algorithm being represented on real models trained on toy tasks. (Mahankali
et al.) proves that this algorithm is optimal for single-layer transformers on noisy linear regression data. (Shen et al.)
questions the applicability of this model to real-world transformers. (Bai et al.) finds that transformers can switch between
multiple different learning algorithms for ICL. (Dai et al.) find multiple similarities between changes made to model
predictions from in-context learning and weight finetuning.

While important, we do not consider this direction of interpreting transformers trained on regression for concrete function
classes through primarily white-box techniques. Instead, we aim to focus on clear discrete tasks which are likely to have
individual features.

The results of (Wang et al.) are perhaps the most similar to our findings. The study finds “anchor tokens” responsible
for aggregating semantic information, analogous to our “output tokens” (Section 2.3) and task-detection features. They
tackle the full circuit responsible for ICL bottom-up and intervene on models using their understanding, improving accuracy.
Like this paper, they do not deeply investigate later attention and MLP layers. Our study uses SAE features to find strong
linear directions on output and arrow tokens corresponding to task detection and execution respectively, offering a different
perspective. Additionally, we consider over 20 diverse token-to-token tasks, as opposed to the 4 text classification datasets
considered in (Wang et al.).

I. Max Activating Examples
This section contains max activating examples for some executor and detector features for Gemma 1 2B, as described in
Bricken et al. (2023). They are computed by iterating over the training data distribution (FineWeb) and sampling activations
of SAE features that fall within disjoint buckets for the activation value of span 0.5. We can observe that the degree of
intuitive interpretability depends on the amount of task-similar contexts in the training data and SAE width.

We also provide max activating examples for Gemma 2 2B executor features from Figures 25b and 25a. These max activating
examples are taken from the Neuronpedia Lin (2023) and are available in Figures 29 and 28.

Here we can notice the main difference between executors and detectors: executors mainly activate before the task
completion, while detectors activate on the token that completes the task. We also found that in Gemma 1 2B detector
features for some tasks were split between several token-level features (like the journalism feature in Figure 27f), and they
did not create a single feature before the task executing features activated. We attribute this to the limited expressivity of the
SAEs that we used.

29

Scaling Sparse Feature Circuits For Studying In-Context Learning

(a) Max activating examples for the antonyms executor feature 11618.
(b) Max activating examples for the English to foreign lan-
guage translation executor feature 26987.

(c) Max activating examples for the translation to English executor
feature 5579.

(d) Max activating examples for the “next comes gerund form”
executor feature 15554.

(e) Max activating examples for the prediction of city/country feature
850.

(f) Max activating examples for the person’s occupation ex-
ecutor feature 13458.

Figure 26. Max activating examples for executor features from Figure 6.

30

Scaling Sparse Feature Circuits For Studying In-Context Learning

(a) Max activating examples for the antonyms detector feature
11050.

(b) Max activating examples for the English to foreign language
switch detector feature 7928.

(c) Max activating examples for the gerund form detector
feature 8446.

(d) Max activating examples for the translation to English detector
feature 31123.

(e) Max activating examples for the country detector feature
11459.

(f) Max activating examples for the journalist feature 26436. (The
strongest detector for the person profession task).

Figure 27. Max activating examples for detector features from Figure 10.

31

Scaling Sparse Feature Circuits For Studying In-Context Learning

(a) Max activating examples for the language prediction ex-
ecutor feature 13804.

(b) Max activating examples for the repetition executor feature 12646.
Extracted from the algo last TV.

(c) Max activating examples for the capital pre-
diction executor feature 16315. (d) Max activating examples for the translation feature 493.

Figure 28. Max activating examples for Gemma 2 2B 16k executor features from Figure 25a.

32

Scaling Sparse Feature Circuits For Studying In-Context Learning

(a) Max activating examples for the antonyms executor
feature 45288.

(b) Max activating examples for the football player position executor
feature 18981.

(c) Max activating examples for the per-
son profession executor feature 46729. (d) Max activating examples for translation to English executor feature 62633.

Figure 29. Max activating examples for Gemma 2 2B 65k executor features from Figure Figure 25b.

33

