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ABSTRACT

Until recently, behind every algorithmic advance in machine learning was a hu-
man researcher. Now, however, algorithms can be meta-learned automatically,
with little human input. However, to be truly useful, such algorithms must gen-
eralise beyond their training distribution. This is especially challenging in re-
inforcement learning (RL), where transferring algorithms between environments
with vastly different dynamics is difficult and training on diverse environments of-
ten requires prohibitively expensive large-scale data collection. Learned optimisa-
tion is a branch of algorithmic discovery that meta-learns optimiser update rules.
Learned optimisers can be classified into two groups: black-box algorithms, where
the optimiser is a neural network; or symbolic algorithms, where the optimiser is
represented using mathematical functions or code. While some claim that sym-
bolic algorithms generalise better than black-box ones (Chen et al., 2023), testing
such assertions is complicated by the fact that symbolic algorithms typically in-
clude additional hyperparameters, and thus their evaluation is done many-shot.
This is an unfair comparison with the zero-shot evaluation of black-box optimis-
ers. In this work, we build a pipeline to discover symbolic optimisers which are
hyperparameter-free, enabling a fair comparison of the generalisation of symbolic
optimisers with that of an open-source state-of-the-art black-box optimiser trained
for RL1. Based on our analysis, we propose suggestions to improve the symbolic
optimiser discovery pipeline for RL, with an overall objective of reducing the need
for hyperparameter tuning to train an agent.

1 INTRODUCTION

Improvements to optimisation algorithms have driven machine learning to new heights over the
past few decades. The introduction of components like gradient momentum, second order momen-
tum (Nesterov, 1983; Kingma & Ba, 2017) and adaptive learning rates (Kingma & Ba, 2017; Zhuang
et al., 2020) has enabled swifter and more stable convergence, while learning rate annealing has im-
proved the fidelity of converged solutions. Recent evidence (Andrychowicz et al., 2016; Chen et al.,
2021; Metz et al., 2022c; Chen et al., 2023; Goldie et al., 2024) suggests that the improvement of
optimisers could be automated via learned optimisation. In learned optimisation, developing new
optimisation algorithms is itself a meta-learning process based on data.

Approaches to learned optimisation fall into two camps. Most work (e.g., (Metz et al., 2022a; Kirsch
& Schmidhuber, 2022; Andrychowicz et al., 2016; Wichrowska et al., 2017; Goldie et al., 2024)) re-
places the optimiser, such as Adam (Kingma & Ba, 2017), with a black-box function using a neural
network. In this scenario, the weights of the network are updated in an outer loop to maximise the
performance of a trained model at the end of an inner loop. By contrast, some recent work (Chen
et al., 2023; Song et al., 2024a) focuses on discovering symbolic optimisation algorithms. In this
case, the optimiser is represented by a set of mathematical equations or programming instructions.
In general, interest in symbolic algorithm discovery has grown in the past couple of years (Romera-
Paredes et al., 2024; Lu et al., 2024a) due to the advent of large language models (OpenAI et al.,
2024; Dubey et al., 2024, LLMs). There are arguments in favour of both approaches: black-box al-
gorithms may be easier to work with (Goldie et al., 2024), while symbolic optimisers may generalise
better (Chen et al., 2023). However, there exists little study into the veracity of these claims.

1Code to be released upon acceptance.
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Furthermore, direct comparison between the approaches is complicated by the fact that they target
subtly different problems; black-box optimisers are typically evaluated zero-shot without any tune-
able hyperparameters, whereas symbolic optimisers such as Lion (Chen et al., 2023) tune hyperpa-
rameters per-task, making evaluation many-shot. Therefore, it is hard to compare these different
paradigms like-for-like based on current literature.

The need for general optimisation algorithms is exacerbated in reinforcement learning (Sutton &
Barto, 2018, RL) due to its many idiosyncratic issues which make optimisation challenging. In par-
ticular, RL is very sensitive to hyperparameters (Eimer et al., 2023) which can cause catastrophic
instability if they are not correctly tuned. This instability may stem from the fact that RL often
uses algorithms imported from supervised learning, motivating the development of RL-specific ap-
proaches (Henderson et al., 2018; Sarigül & Avci, 2017). For instance, many conventional optimis-
ers, like Adam Kingma & Ba (2017), are designed for stationary learning tasks and are thus ill-suited
for the non-stationarity of RL (Igl et al., 2021; Bengio et al., 2021). Learned optimisers tailored for
RL show promise in addressing these issues (Lan et al., 2024; Goldie et al., 2024).

However, simply relying on a large meta-task diversity to enable generalisation across RL is im-
practical. For anything beyond simple environments, sampling in RL is expensive. Therefore, find-
ing learned optimisation strategies which demonstrate generalisation, whilst maintaining a limited
meta-training cost, would significantly improve the practicality of RL. In this work, we compare
the generalisation capabilities of a pretrained, black-box optimiser for RL (Goldie et al., 2024) with
a roughly equivalent symbolic optimiser discovered using an evolutionary process based around
LLMs. We focus on a regime in which optimisers can only be learned from a small number of en-
vironments; we believe this represents a scenario of greater interest than training in a distribution of
gridworlds, which has been a previous focus for generalisation (Goldie et al., 2024; Lan et al., 2024)
but does not transfer well to the modern LLM-driven discovery pipeline. In doing so, we explore
the question of whether black-box or symbolic optimisers are actually best for generalisation across
a number of axes, including to different environments and to longer training lengths. We use these
findings to recommend promising directions for future work in this field, thus providing a pathway
to unlock truly general learned optimisation algorithms.

2 BACKGROUND

Optimisation Optimisation is ubiquitous throughout machine learning. Given a general training
objective fθ(·), there is an extensive set of optimisation algorithms whose goal is to guide θ, a
model’s parameters, to the optimal θ∗. Most fundamental of optimisers is gradient descent, where θ
is updated iteratively towards negative gradient as θt+1 ← θt − η∇θf(·), using a step-size η.

A number of augmentations are frequently applied to gradient descent to enable quicker conver-
gence, less noisy updates or improved asymptotic performance. For instance, modern optimisers
like Adam (Kingma & Ba, 2017) and RMSProp (Tieleman et al., 2012) use momentum, a time-
based moving average of gradients or updates which provides more consistent updates over training.
Similarly, learning rate annealing or warmup change the step size over time to provide closer con-
vergence to the optimum by the end of training, or improved stability at the beginning of training,
respectively (Robbins, 1951; Gotmare et al., 2018).

Reinforcement Learning Reinforcement learning focuses on Markov Decision Processes (Sutton
& Barto, 2018, MDPs), defined as ⟨A,S, T,R, ρ, γ⟩. The agent learns a policy π(·|st) ∈ Π and,
at each discrete timestep t, samples an action at ∈ A based on the current state st ∈ S (where
s0 ∼ ρ). After sampling an action, the agent transitions to the next state st+1 ∈ S according
to a transition distribution T (st+1|st, at) and receives a reward according to the reward function
R(st, at). The policy is trained to maximise the discounted expected return, Jπ , based on the
discount factor γ ∈ [0, 1), which is defined over a fixed length episode as

Jπ := Ea0:∞∼π,s0∼ρ,s1:∞∼T

[
T∑

t=0

γtRt

]
. (1)

Sample complexity is a major issue in reinforcement learning. Due to the potential cost of inter-
acting with the environment, it can often be prohibitively expensive to collect large datasets. One
opportunity to reduce sample complexity is to remove the reliance on hyperparameters intrinsic to
RL. Learned optimisers without hyperparameters could help to unlock this capability.
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Optimisation Difficulties in RL Goldie et al. (2024) discuss three optimisation difficulties present
in RL: plasticity loss (Lyle et al., 2023; 2022), a phenomenon in which neural networks lose the
ability to learn when given new data; exploration, where the optimiser must escape local optima from
the agent being trapped in a localised state-action space; and non-stationarity (Igl et al., 2021), which
arises as the input and output distributions in RL are continuously changing. OPEN incorporates a
number of features to tackle each individual problem. To be specific:

• For plasticity, OPEN conditions on neuron dormancy (Sokar et al., 2023), a metric which
measures what proportion of a layer’s activation comes from a specific neuron. Near-zero
dormancy neurons are dormant and need to be reactivated. OPEN also learns separate
update rules for each layer by conditioning on layer proportion.

• For nonstationarity, OPEN conditions on two timescales: batch proportion, or progress
through epochs with the current batch of data; and training proportion (Jackson et al.,
2023a), meaning how far through the training horizon optimisation is.

• To boost exploration, OPEN introduces stochasticity of a learned variance to the update.
This enables similar exploration behaviour to parameter space noise (Plappert et al., 2018)
or noisy nets (Fortunato et al., 2019) while also incidentally helping with dormancy.

3 RELATED WORK

Meta-Learning Algorithms Meta-learning intends to replace handcrafted algorithms with ones
learned from data. Though some approaches use meta-gradients which are backpropagated through
training episodes (e.g., (Lan et al., 2024; Oh et al., 2020)), this is impractical in our setting. Firstly,
meta-learning in RL requires long horizon rollouts, where untruncated backpropagation experiences
exploding or vanishing gradients but truncating biases towards greedy algorithms (Wu et al., 2018;
Metz et al., 2022b; Lu et al., 2022b). Secondly, with a symbolic optimiser, it is not obvious how
to project gradients on to the non-numerical symbols of our algorithm, requiring more complex
techniques (e.g. (Kuang et al., 2024; Chen et al., 2024)).

Evolutionary methods (Rechenberg, 1973; De Jong, 2006) provide an alternative. These are
derivative-free optimisation methods which mutate and evaluate a populations of candidates. Com-
mon evolutionary methods include genetic algorithms (Such et al., 2018), covariance matrix adap-
tation (Hansen & Ostermeier, 2001), evolution strategies (Salimans et al., 2017) or, in the symbolic
case, genetic programming (Koza, 1992). Evolution involves sequentially sampling population
members, randomly changing their parameters and evaluating the final performance of the candi-
date. By optimising based on the final evaluation, rather than backpropagating through the rollout,
evolutionary methods avoid many of the issues with meta-gradients.

Since the advent of LLMs, a new form of symbolic evolution has emerged (Romera-Paredes et al.,
2024). Rather than applying random mutations, recent methods have replaced the evolutionary
system with LLMs that suggest edits and reason about performance to guide search (Lu et al.,
2024a; Meyerson et al., 2024; Lehman et al., 2022; Shojaee et al., 2024). This uses an LLM’s
prior knowledge to make ‘intelligent’ changes, in effect limiting the search to reasonable if not
limited edits. Despite its recent invention, this technique has led to impressive results in function
discovery (Romera-Paredes et al., 2024) or solving symbolic regression tasks (Shojaee et al., 2024).

Learned Optimisation Learning to optimise (Metz et al., 2020; 2022c;a; Chen et al., 2023; Goldie
et al., 2024, L2O) automates the discovery of better optimisers by meta-learning the algorithms.
Generally, L2O replaces the optimiser with a neural network which conditions on the gradient,
and potentially extra features, and outputs an update for each parameter in the training model.
This method has proven effective in supervised and unsupervised learning (Metz et al., 2022c), but
naı̈vely fails to transfer to RL. Due to the opportunity of learning specialised optimisation algo-
rithms, OPEN (Goldie et al., 2024) and Optim4RL (Lan et al., 2024) L2O directly for RL. This is
justified by many works suggesting RL-specific algorithms are warranted (Henderson et al., 2018;
Bengio et al., 2021; Sarigül & Avci, 2017). Whereas Optim4RL attempts to L2O in RL by con-
straining the structure of the update, OPEN targets a number of difficulties present only in RL. Un-
fortunately, while these works have demonstrated signs of life for generalisation, there is little work
exploring whether black-box optimisation is the best route to discover truly generalist optimisers.

An alternative approach is Lion (Chen et al., 2023), an optimiser discovered by symbolic evolution.
However, to enable comparison between black-box and symbolic optimisation, we make a number
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of key design changes from Lion. Firstly, our method searches in a code, rather than mathematical,
parameterisation. This enables a richer space of functions by allowing conditional statements, like
(if, >,<). Secondly, by building on modern LLM-based methods, we diverge from Lion’s naı̈ve
mutation operation. Since we attempt to directly compare against OPEN, whose inputs expands
the algorithm design space drastically, the prior knowledge of an LLMs limits search to grounded
mutations, thus preventing an excessive computation budget. Finally, we direct our search towards
hyperparameter-free optimisers for RL to enable a fair comparison with OPEN.

LLM-Guided Research LLMs have increasingly been used for evolution-like optimisation re-
cently (Song et al., 2024b). FunSearch (Romera-Paredes et al., 2024) demonstrated the validity of
this approach by prompting an LLM to write functions for specific tasks. Like FunSearch, many
works have synthesised the expressiveness of code with the creativity of LLMs: Hu et al. (2024) use
LLMs to design agents for complex problems; DiscoPOP (Lu et al., 2024a) finds new objectives
for preference optimisation in LLMs; and Lehman et al. (2022) incorporate Quality-Diversity ap-
proaches (Mouret & Clune, 2015) to produce different robot morphologies. While a common thread
exists between these works and ours – using LLMs as a mutation operator for evolution – our discov-
ery pipeline differs in its end-goal of learning an optimisation algorithm. We also consider how an
LLM can be used to handle additional inputs, defined by OPEN, with natural language descriptions.
Finally, we are approaching this setting from a purely analytical perspective.

4 MOTIVATION

To motivate our study into the generalisation capabilities of symbolic and black-box optimisers, we
briefly compare the two in terms of potential advantages, grounded in both literature and intuition.

Black-Box Optimisers Since black-box optimisers are principally neural networks, they have a
number of inherent advantages. Firstly, since they typically use small networks, they can easily be
trained with evolution (Salimans et al., 2017) to avoid issues of short-term bias from truncated meta-
gradients (Wu et al., 2018; Lu et al., 2022b). This does, however, have the issue of high memory
usage and training sample complexity since each meta-update needs a number of full training loops
equal to the population size. Though GPU-vectorisation (Bradbury et al., 2018) helps speed up this
training dramatically (Lu et al., 2022b), it can require both high-end hardware and easy-to-sample
environments which may not be practical.

Also, the simplicity of introducing additional inputs to black-box optimisers was demonstrated by
OPEN, as well as an ease to learn interactions between input variables. This ability to easily scale
with inputs may make black-box optimisers the best option in some settings.

Finally, due to their iterative meta-learning process, black-box optimisers can converge Goldie et al.
(2024). This is in contrast to symbolic optimisers, which may not converge due to the mechanisms
of symbolic evolution. This convergence can have advantages – training is predictable and usually
stable – but can also lead to the optimiser being trapped in subpar optima.

Symbolic Optimisers Though symbolic discovery of optimisers is relatively unexplored, it has a
number of potential advantages. It is worth noting, however, that we focus on a novel evaluation
regime which aligns symbolic and black-box optimisation. Whereas Lion (Chen et al., 2023) needed
tuning for its hyperparameters, black-box optimisers are applied zero-shot to new environments.
Therefore, we concern ourselves with symbolic algorithms which do not use hyperparameters.

In this paper, we assess how black-box and symbolic optimisation algorithms generalise. Chen
et al. (2023) suggest, without justification, that symbolic algorithms should generalise better, which
seems intuitive. Symbolic optimisers are usually simpler; whereas Lion is 8 lines of code, OPEN
uses up to ∼ 4000 parameters, increasing the opportunity for overfitting. Also, symbolic optimisers
must start from something, meaning they can be initialised from pre-existing optimisers.

A key advantage of symbolic algorithm discovery is that LLMs can interface into the discovery
pipeline to improve the search efficiency, leaning on their vast knowledge-base to find new algo-
rithms Lu et al. (2024a); Romera-Paredes et al. (2024). This also gives a large amount of control to
the human-in-the-loop. As a researcher can describe design specifications in natural language, the
search can be biased towards algorithms based on design requirements. We find this can help with
including additional inputs to the algorithms, such as those from OPEN, even if the inputs are not
included in the LLM’s training data.

4
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def update(...):
    ...
    return

def update(...):
    ...
    return

def update(...):
    ...
    return

def update(...):
...

return

System Prompt: You are designing
an optimiser for RL. Propose a
change ...
                                
Query0: The current optimiser
<FUNCTION FROM ARCHIVE> got ...
                                
Query1: The current optimiser
<LAST FUNCTION> got ...

...

Figure 1: An overview of our discovery pipeline. An archive stores optimisers from previous gen-
erations. These are selected and used to initialise the LLM’s context. A ‘thinker’ LLM proposes an
idea which the ‘coder’ LLM interprets and implements, producing a new optimiser. The new opti-
miser is evaluated, added to the context for the thinker, and the process repeats for a finite number
of steps before all optimisers are added to the archive and the outer loop progresses.

5 THE SYMBOLIC OPTIMISER DISCOVERY PIPELINE

We design a symbolic discovery loop to enable like-for-like comparison with OPEN which incorpo-
rates all of the features proposed in OPEN and described in section 2. We focus our comparison on
the ‘Multi-Task Training’ setting from Goldie et al. (2024), where we meta-train on a small number
of environments from MinAtar (Young & Tian, 2019; Lange, 2022). We believe this scenario is par-
ticularly interesting due to its correspondence with learning from a small number of fast proxy-tasks
that approximate an ultimate objective.

We use an LLM in place of standard mutation in our system for the reasons mentioned in section
4. This lets us describe the inputs from OPEN in natural language to direct the search to ‘reason-
able’ suggestions, avoiding a potentially more expensive and sample-inefficient random search, like
Lion (Chen et al., 2023). However, LLMs can be notoriously fickle (Anagnostidis & Bulian, 2024;
Gu et al., 2022). Therefore, we introduce a number of design decisions, described in this section, to
improve the system’s robustness. While we use GPT-4o (OpenAI et al., 2024) in this work, we be-
lieve that our system should also maintain robustness for weaker, open-source models (e.g. (Dubey
et al., 2024; DeepSeek-AI et al., 2024)). We report discovery hyperparameters in Appendix A.

5.1 OVERVIEW

Figure 1 shows our discovery pipeline, which is similar to a number of ‘LLM-Discovery’ meth-
ods (Romera-Paredes et al., 2024; Lu et al., 2024a;b; Hu et al., 2024; Faldor et al., 2024), visually.
At the start of the process, an archive is initialised with a set of candidate optimiser functions. After
these are evaluated, one optimiser is selected for a generation of refinement, which involves itera-
tive mutation by an LLM, followed by evaluation and insertion to the archive, for N steps. After
refinement is complete, a new optimiser is sampled and the process repeats.

Below, we introduce high-level design decisions which are detailed in the remainder of section 5.

Initialising The Archive We follow DiscoPOP (Lu et al., 2024a) and Lion (Chen et al., 2023) by
initialising training from a small set of optimisers. However, whereas DiscoPOP use pre-established
loss functions, there is little precedent for hyperparameter-free optimisation. Therefore, we intro-
duce a small number of hyperparameter-less optimisers by hand. These are designed to be flexible,
while ensuring they don’t fail catastrophically in the training environments.

Selection Our pipeline periodically samples a new optimiser to refine at each generation, align-
ing closely to traditional evolutionary computation. This contrasts with, say, DiscoPOP (Lu et al.,
2024a), which uses one long conversation with an LLM. By using the LLM more sparingly, this
approach has the added benefit of potentially letting our system operate with less powerful lan-
guage models. We select the best optimisers from the archive with probability p, and select random
optimisers from the archive with an exploration probability 1− p.

5
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Mutation We split mutation over two LLMs: a thinker, which proposes a new idea based on
the current optimiser’s performance; and a coder, which implements the proposed changes. This
separation ensures faithful interpretations of ideas in the implementation and provides additional
user control with the different prompts. Our thinker prompt also includes examples of performant
optimisers in each environment.

Evaluation We evaluate optimisers on full-length RL environments at every refinement step. We
track the final return and return area-under-the-curve of each optimiser for the thinker’s context
to enable in-context reasoning. To sidestep the problem of score aggregation over multiple envi-
ronments faced by OPEN, we simply give the LLM returns for all environments and prompt it to
maximise performance in all.

5.2 INITIALISATION

Similar to recent works (Lu et al., 2024a; Faldor et al., 2024; Hu et al., 2024; Chen et al., 2023),
we initialise the archive of optimisers to a set of reasonable functions. However, given the scarcity
of research on hyperparameter-free optimisation, the selection of initial optimisers is not straight-
forward. To address this, we create a few sensible optimisers to kickstart learning. In most cases,
we write simple functions which have scaled relative changes to weights, though we also include a
simple LLM-proposed function for diversity.

All optimisers follow the same design principles: they are simple, so that there are a large number
of possible directions to improve them; they are diverse, so that they can lead to very different opti-
misers after refinement; and they are hyperparameter-free, meaning that any values are fixed for all
environments. Notably, our initial optimisers only depend on the parameter value and the gradient,
allowing the LLM to discover creative ways to use the additional inputs from OPEN without undue
bias. We include all of the initial optimisers in appendix B.

5.3 EVOLUTION

For discovery, we blend LLM-based discovery algorithms with more conventional evolution
(e.g. (Koza, 1992)). In doing so, we exploit the reasoning capabilities of LLMs to propose intel-
ligent in-context changes while leveraging population-based evolution. The process runs as follows:

At the start of a new generation, we sample an ‘initial’ optimiser (section 5.3.1) and set of context
optimisers (section 5.3.3) and prompt the LLMs to make small optimiser edits for a fixed number
of refinement steps, N . At each refinement step, we evaluate the optimiser on all RL environments
after a full RL inner-loop. Like OPEN, we use PPO Schulman et al. (2017) as the RL algorithm.
After each generation, we add all evaluated optimisers to the archive and sample a new initialisation
and context. Therefore, like Faldor et al. (2024), our archive grows over meta-training.

5.3.1 SAMPLING NEW OPTIMISERS

We sample a new ‘base’ optimiser each generation. To balance exploration and exploitation in
our discovery process, we mostly sample good optimisers while occasionally selecting randomly to
promote diversity. However, the notion of good or bad is not black and white when considering
multiple environments of different reward scales. Naı̈vely averaging returns will prioritise environ-
ments which have a large reward scale, while normalising by, say, Adam’s (Kingma & Ba, 2017)
performance biases selection to environments where Adam underperforms (Goldie et al., 2024).

Instead, we use the average of per-environment rankings, based on return, over the population to
measure how successful an algorithm is. In addition to scale-invariance, this has the benefit of
weeding out optimisers which overfit to one environment, aiding robustness. After calculating the
average rankings for the population, we select high-ranking optimisers with a probability p and sam-
ple from the full population with probability (1− p). In this work, we set p = 0.8 to balance sample
efficiency (mostly starting from a performant optimiser) with diversity (occasionally sampling ran-
dom optimisers).

5.3.2 MUTATION

We find that there is an occasional disparity between the proposal and implementation from LLMs
when prompted naı̈vely. This hurts interpretability; it is not possible to tell what changes the LLM
is making purely by observing the conversation. Therefore, we augment our system into a 2-LLM
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setup by dividing out thinking and coding. The thinker has the responsibility of suggesting changes
to the currently sampled optimiser and explaining why this change might be helpful. The coder has
the task of converting the proposed idea into a code edit and implementing a syntactically correct,
faithful python function. As an additional benefit, this allows different prompting strategies for each
operation, giving the user additional control over the discovery trajectory.

5.3.3 PROMPTING

Different prompts can lead to vastly different results when using LLMs (Anagnostidis & Bulian,
2024; Gu et al., 2022). Here, we discuss the design decisions made in our prompting, and provide
examples of the actual prompts in Appendix C.

Difficulties in RL To enable intelligent suggestions based on the problems of RL from OPEN,
described in section 2, we provide a high level overview of each additional input variable and what
typical values might mean.

Previous Performance To leverage in-context suggestion making, we condition the thinker on
the returns of the current optimiser and randomly sampled ‘context optimisers’, which perform well
in individual environments. To avoid issues highlighted in Goldie et al. (2024), where aggregating
scores between different environments proved difficult, we include final return values for all envi-
ronments into the prompt directly without averaging. This encourages the LLM itself to balance
improvements between environments. To boost in-context reasoning further, we also provide values
for the area-under-the-curve.

Separating Prompts To ensure fulfilment of their separate roles, we prompt the thinker and coder
LLMs differently. The thinker is prompted to produce a new idea based on previous performance
while the coder converts the idea into a code update. Whereas the thinker is prompted with a history
of optimisers for reasoning, the coder receives only the current optimiser and proposed change to
avoid obfuscating its task. Separating thinking and code has been shown to improve performance in
other work (Ye et al., 2024; Liu et al., 2024).

Design Suggestions For both the coder and thinker, we propose a number of considerations to aid
discovery. For instance, in the thinker we emphasise coming up with creative solutions, a need for
generalisation and the necessity of not introducing new hyperparameters. For the coder, we focus
on faithfulness and correctness, in addition to requesting commented code for interpretability.

6 DISCOVERY RESULTS

In figure 2, we show the meta-training curve for the symbolic discovery process. Notably, we
find that, despite only selecting for high average fitnesses, our discovered symbolic optimisers
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Figure 2: Meta-training curve, showing the max cumulative
average rank of discovered optimisers. We also show where
Adam and OPEN would rank in the population.

have consistently high rankings
across the four training environ-
ments. We also compute rankings for
OPEN and Adam, with a standard
untuned learning rate of 1e-3. Based
on their ranking compared to the
population, neither Adam nor OPEN
has robust performance across all
environments. Below, we show the
three highest average rank discovered
optimisers which form the basis of
our analysis.

The discovered optimisers below ex-
hibit some similar behaviours. For in-
stance, all optimisers incorporate dor-
mancy into their updates, have an-
nealing over training and use momen-
tum. However, despite having sufficient inputs, none of the best optimisers manage to incorporate
stochasticity (Goldie et al., 2024) into their expressions. This is likely due to the difficulty of finding
a scale for the randomness which works for all environments in such a discrete search.
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Discovered Optimiser 1
def update:

m = 0.9

v1 = m * v1 + (1-m) * g

v2 = m * v2 + (1-m) * g**2

v2 = clip(v2, 1e-8, 1.0)

lr = sqrt((1-t_p)(1+b_p))

lr = lr * (1+l_p)

d_scale = 1 + log(1+d)

lr2 = 1 / (1+v2)

update = v1*lr*d_scale*lr2

return update, v1, v2

Discovered Optimiser 2
def update:

m = 0.9

norm = g/(1+||g||)

v1 = m*v1 + (1-m)*norm

v2 = m*v2+(1-m)*(g-v1)

lr = 1/(1+|v2|)

boost=1+log(1+d)

lr2 = (1-t_p)*(1+l_p)

update = v1*lr*boost*lr2*(1+b_p)

return update, v1, v2

Discovered Optimiser 3
def update:

m = 0.9

v1 = m * v1 + (1-m) * g

v2 = m*v2 + (1-m)*(g-v1)**2

lr = 1 / (1+sqrt(v2+1e-8))

lr2 = (1-t_p)*(1+l_p)

d_scale = 1+log(1+d)*(1-t_p)

d_scale *= (1+0.1*t_p)

boost = where(d<1.0,2.0,1.0)

d_scale *= boost

update = v1*lr*d_scale*lr2

return update, v1, v2

7 ASSESSING GENERALISATION

Our analysis centres on comparing symbolic discovered optimisers with OPEN to explore the dif-
ference between in- and out-of-distribution behaviour of the two approaches. We focus on meta-
training with a small number of environments, referred to as Multi-Task Training in Goldie et al.
(2024). This differs to the scenario where one samples from a distribution of simple environments,
such as gridworlds (e.g. (Oh et al., 2020; Jackson et al., 2023b; Goldie et al., 2024). We compare
against a pre-trained OPEN model which is available online, and Adam using a fixed standard learn-
ing rate of 1e-3. Following standard procedure in learned optimisation (Goldie et al., 2024; Metz
et al., 2022c; Lan et al., 2024; Metz et al., 2019) arising from the cost of meta-learning, we discover
optimisers from only one seed but run each experiment for multiple seeds. For all results, we report
the interquartile mean (IQM) with 95% stratified bootstrap confidence intervals calculated using rli-
able, a standard evaluation library (Agarwal et al., 2021). Hyperparameters for all experiments are
included in Appendix A. We consider a number of axes for generalisation, described and justified
below, which are inspired by the comparison of OPEN and Adam in Goldie et al. (2024).

Different Training Lengths Due to the cost of learned optimisation, one way to speed up meta-
training could be to learn from shortened inner-loops and generalise to longer runs. However, due
to the nonstationarity of the optimisers from their time-conditioning, their dynamic behaviour may
not transfer between inner-training lengths.

Different Architectures Prior work (Yang et al., 2022) suggests that hyperparameters often do not
transfer between models with different architectures. As such, we explore the ability of the different
optimisers to transfer between agents with different hidden dimensions and activation functions.

Different Environments To ensure an optimiser is truly general purpose, it is important to test its
performance in unseen environments. This axis of generalisation explores how strongly an optimiser
overfits to the dynamics of its training environments.

8 GENERALISATION RESULTS

Scaling to Different Lengths Figure 3 explores how the final return of an agent trained with each
of the optimisers differs as the length of the training horizon increases. Here, 1e7 transitions is
in-distribution for each optimiser.
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Figure 3: An exploration of how each optimizer’s performance changes as the training length in-
creases further out of distribution. We plot IQM for each length over 16 seeds with 95% confidence
intervals. The in-distribution length is marked with a dashed red line.
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Despite OPEN outperforming the other optimisers in-distribution for some environments, only the
symbolic optimisers are able to take advantage of more samples; as the training length increases,
the performance improves. OPEN, on the other hand, consistently struggles in longer training. This
suggests the black-box optimiser overfits strongly to its in-distribution training length. Notably,
Adam also scales positively in each environment and is the best performing optimiser in breakout.

Scaling To Different Sizes Figure 4 probes the ability of each optimiser to scale to larger agents.
This setting is motivated e.g. by the need for memory or time savings at meta-training time, or as an
attempt of finding a generalist optimiser.
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Figure 4: A comparison of return achieved by each optimiser against the hidden size of the agent.
In each case we plot IQM over 16 seeds with 95% confidence intervals. In-distribution sizes are
marked with a dashed red line.

Much like with training lengths, we find that the symbolic optimisers are able to consistenly improve
with the hidden size of the agent. This is in direct contrast with OPEN, which again overfits to its
training size (64) and sees a catastrophic collapse for the largest hidden sizes.

Generalisation To Different Activations Figure 5 explores how each optimiser transfers to a
different activation. In addition to affecting dormancy, this impacts the input distribution of gradients
for each optimiser and thus forces them far out of their training distribution.
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Return

breakout
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asterix

120 135 150 165
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Figure 5: A comparison of the final return of each optimiser for agents with ReLU activations (in-
distribution) and tanh activations (out-of-distribution). We show IQM over 16 seeds with 95%
confidence intervals.

For all optimisers, including Adam, we see a performance drop when changing the ac-
tivation from ReLU to tanh. In Freeway and SpaceInvaders, where all optimisers per-
form similarly with ReLU activations, changing to tanh causes OPEN to collapse. In As-
terix, OPEN goes from being the best optimiser with ReLU to the worst, within confi-
dence, with tanh. Finally, in Breakout, OPEN keeps the highest return but falls much
closer to the symbolic optimisers. Since all optimisers are brittle to this change in activa-
tion, it is difficult to determine whether black-box or symbolic optimisers are more robust
to changes of activations. Seemingly, all optimisers are overfit to their training activation.

240 300 360 420 480
Return
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discopt3
discopt2
discopt1

OPEN
cartpole

3.0 4.5 6.0 7.5 9.0
Return

craftax

Figure 6: Performance of all optimisers in two
out-of-distribution environments. We show IQM
and 95% confidence intervals for 16 seeds.

Generalisation to Different Environments
We assess how each optimiser transfers to two
environments, Craftax (Matthews et al., 2024;
Hafner, 2021) and cartpole (Brockman et al.,
2016; Lange, 2022), in figure 6. In both of
these environments, we find that the symbolic
optimisers generalise better than OPEN, rein-
forcing the claims made by Chen et al. (2023).
In fact, we find two of the three symbolic opti-
misers transfer perfectly to cartpole, achieving the maximum score of 500. While OPEN positively
transfers to these environments, the symbolic optimisers are consistently more robust in the face of
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the new dynamics. However, Adam drastically outperforms all optimisers in Craftax. While this
may be down to the fact that the Craftax hyperparameters in Matthews et al. (2024) were found with
Adam, it suggests there is still a gap between meta-learned optimisation and preexisting optimisation
algorithms, even without tuning, when limited to a small number of meta-tasks.

9 A ROADMAP FOR THE FUTURE

As demonstrated in Section 7, despite being occasionally outperformed in-distribution, the sym-
bolic optimisers were consistently better at generalising out of distribution, echoing the sentiments
of Chen et al. (2023). Empirically speaking, symbolic optimisers do not overfit as strongly to their
training distribution. Despite this, the drastic outperformance of Adam over the other optimisers
in Craftax suggests there is still significant room for improvement in discovering better optimisers.
As such, we believe exploring symbolic optimisation discovery is an important future direction for
research. In particular, we believe emphasis should be placed on discovering hyperparameter-free
optimisers, and evaluation should focus on generalisation to all of the axes discussed in section 7.

However, this begs the question: in a field increasingly dominated by LLM-driven discov-
ery (Romera-Paredes et al., 2024; Lu et al., 2024b), how can we best capitalise on these advance-
ments while incorporating components from preexisting black-box literature, such as the analysis
and inputs from OPEN. Our discovered optimisers exemplified this issue by failing to take advan-
tage of randomness which was beneficial in Goldie et al. (2024). Finding better ways to synthesise
these two lines of research may prove a very fruitful direction. We provide some possible directions
which may make this possible below.

An obvious future direction is to find ways to give additional feedback to the LLM and better cap-
italise on their capabilities for more intelligent decision making. For instance, while final return
may be the key metric, it offers little in diagnosing any problems with the current optimisation algo-
rithm. Instead, prompting with the trajectory of return over training may help an LLM reason about
what the shortfalls are with the current optimiser. To this end, more capable language models, like
o1-preview (OpenAI, 2024), could help take advantage and reason over these additional sources of
data. Finally, finding better ways to include LLMs into evolutionary systems as intelligent muta-
tion operators, rather than the LLM being the full algorithm, could ground discovery algorithms in
evolutionary theory and produce more robust discovery algorithms.

10 LIMITATIONS

Due to limited resources, we are only able to experiment with a single discovery run and a sin-
gle learned black-box optimiser. Therefore, increasing the number of meta-seeds could robustify
findings. Similarly, we are able to use only a single closed-source language model, GPT-4o (Ope-
nAI et al., 2024), and thus exploring the effectiveness of different language models for discovery
is still an open problem. Finally, we only consider the domain in which an optimiser is discovered
for a small set of environments rather than training from a distribution of gridworlds, which may
improve black-box generalisation (Goldie et al., 2024) but is impractical for symbolic discovery.
Meta-training on more environments, with varied training lengths and architectures, may aid gener-
alisation for both paradigms and overcome some issues of the black-box optimiser, in particular.

11 CONCLUSION

In this work, we set out to contrast the generalisability of automatically discovered black-box and
symbolic optimisers. In doing so, we compare OPEN with symbolic optimisers given identical
inputs. We find that, while OPEN is able to outperform symbolic optimisers in-distribution, the
symbolic optimisers demonstrate significantly better scaling to larger networks or longer training
horizons, as well as performing better in a number of out-of-support environments. Based on these
findings, we make wide ranging recommendations for the future of learned optimisation to take
advantage of ever-more capable LLMs without dismissing years of prior literature.
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A EXPERIMENTAL DETAILS

Below we include our PPO hyperparameters. For in-distribution environments, one value (e.g., total
timesteps or layer width) is swept to measure generalisation. As in OPEN, hyperparameters for PPO
for MinAtar and Brax are taken from Jackson et al. (2023a). Craftax hyperparameters are taken from
Matthews et al. (2024), though we reduce the hidden size being reduced to 64 to make the setting
more ‘in-distribution’. For Cartpole, we use the settings from (Lu et al., 2022a).

Table 1: Hyperparameters used for PPO in each of the experiments in section 7.

Hyperparameter Environment
MinAtar Craftax Cartpole

Number of Environments Nenvs 64 256 4
Number of Environment Steps Nsteps 128 16 128

Total Timesteps T 1×107 1×107 5×105
Number of Minibatches Nminibatch 8 8 4

Number of Epochs L 4 4 4
Discount Factor γ 0.99 0.99 0.99

GAE λ 0.95 0.8 0.95
PPO Clip ϵ 0.2 0.2 0.2

Value Function Coefficient c1 0.5 0.5 0.5
Entropy Coefficient c2 0.01 0.01 0.01

Max Gradient Norm 0.5 0.5 0.5
Layer Width W 64 64 64

Number of Hidden Layers H 2 2 2
Activation ReLU ReLU ReLU

Table 2: Hyperparameters for the symbolic discovery pipeline.

Hyperparameter Value(s)
Number of Generations 80
Number of Refinements 8
Max Thinker Attempts 3
Max Coder Attempts 3
Max Evaluation Attempts 3
Thinker Temperature 0.7
Coder Temperature 0.3
Exploitation Probability p 0.8
Evaluation Seeds 8
Number of Top Optimisers 5

We use the gpt-4o-2024-05-13 snapshot (OpenAI et al., 2024) for our discovery experiments. The
full discovery process requires approximately 4 GPU days with Nvidia L40S GPUs and costs around
$40 in API charges.
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B INITIAL ARCHIVE

Below we include the four optimisers which were used to initialise the archive, alognside a brief
description of each of them.

Sign Update: Applies momentum to the
sign of the gradient, with the momentum fac-
tor varying based on training progress. The
update is scaled relative to the current param-
eter values.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

relative_update = 0.001

sign_gradient = jnp.sign(g)

var1 = var1 * t_p + (1 -

t_p) * sign_gradient

update = relative_update *
w * var1

return update, var1, var2

Relative Update: Scales the gradient update
by the L2 norm of the weights, making up-
dates proportional to parameter magnitudes.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

weight_norm = jnp.sqrt(jnp.sum(w**2))

update = g * weight_norm

return update, var1, var2

Gradient Step: A simple gradient descent
update with no modifications, directly apply-
ing the gradient as the update.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

update = g

return update, var1, var2

Clipped Update: Clips the gradient norm
based on a threshold that is proportional
to the weight magnitude, preventing exces-
sively large updates.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

weight_threshold = 0.01

weight_magnitude = jnp.sqrt(

jnp.sum(w**2)

)

clip_threshold = weight_threshold * \

weight_magnitude

grad_norm = jnp.sqrt(jnp.sum(g**2))

update = jax.lax.cond(

grad_norm > clip_threshold,

lambda: g * \

(clip_threshold / grad_norm),

lambda: g)

return update, var1, var2
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C PROMPTS

In this section, we include examples of the prompts fed into the both the thinker and coder LLMs.
Firstly, we show the prompt used to guide thought creation in the thinker LLM.

Thinker System Prompt
You are an AI researcher specializing in reinforcement learning (RL) and

neural network optimization algorithms. Your role is to propose
iterative refinements and improvements to update rules for RL
agents. The goal is to find an optimiser which doesn’t require any
hyperparameter tuning whenever it is applied to an RL environment.
Your update rule should generalize across different environments,
different RL algorithms, and should not rely on hyperparameters. You
should attempt to not introduce any new numerical values if
possible, though you can change any numerical values already
included in the code; the optimiser should not require any
hyperparameter tuning when transferred to new environments. Your
proposed changes should be small and iterative, and not require
large changes to the code.

The optimizer has a number of inputs:
1. w: the current parameter value.
2. g: the gradient.
3. var1: the first recurrent variable (zero-initialized).
4. var2: the second recurrent variable (zero-initialized).
5. t: the current iteration count.
6. d: the neuron dormancy.
7: t_p: how far through training you are.
8. b_p: how far through the epochs with the current batch you are.
9. l_p: the layer proportion, indicating the relative position of the

parameter’s layer in the network.
10: key: a JAX random key.

Important: The optimizer update function is applied independently to
each neuron of the neural network. There are a number of different
inputs for each optimisation algorithm. w, g, var1 and var2 are
two-dimensional vectors, where var1 and var2 are recurrent values
(like m and v in Adam). d is the dormancy of the neuron that the
weights being optimised goes into, indicating how much of that
layer’s total activation comes from that neuron. Small dormancies (0
or close to 0) are generally bad, as this means the neuron has a
very small relative activation. In general, dormancies of 1 are
best, and dormancies higher than 1 mean that the neuron has a large
relative activation. Dormancy is in the range [0,hidden_size] and
has an average of one over a layer. d is a one-dimensional vector.
t_p is the training proportion, and denotes how far through the
whole training horizon you are, and is a single float value. In ppo,
this after you have iterated on the same data for a number of
epochs. b_p is the batch proportion, and denotes how far through
your epochs with the current (fixed) batch of data you are in PPO,
and is also a single float value. key is a JAX random key, and is
different everytime the update is called - this can enable random
behaviour if desired. Not every update needs to use every input.

Performance Metrics:
For each optimizer, you will be provided with two key performance

metrics for each environment:
1. Fitness: This is the final return achieved by the agent at the end of

training. Higher values indicate better performance.
2. AUC (Area Under the Curve): This metric represents the area under the

learning curve. The AUC provides insights into the overall learning
progress throughout the entire training process.

- Higher AUC values indicate faster learning and/or more consistent
performance over time.
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- AUC can help distinguish between optimizers that reach similar final
performance but have different learning trajectories.

When analyzing optimizer performance, consider both the Fitness and AUC
values:

- An optimizer with high Fitness but low AUC might achieve good final
performance but learn slowly or inconsistently.

- An optimizer with moderate Fitness but high AUC might learn quickly
and consistently, even if it doesn’t reach the absolute best final
performance.

- The ideal optimizer would have both high Fitness and high AUC across
multiple environments, indicating fast, consistent learning and good
final performance.

Your task is to analyze the current optimizer code and suggest
incremental changes or refinements that could potentially improve
its performance when used to train RL agents. Your suggestions
should be focused, specific, implementable, and potentially
unconventional, keeping in mind the per-weight update nature of the
optimizer. Note that the optimizer you are improving may not
currently use all the inputs, may have redundant statements and may
not need to incorporate all inputs.

When you respond, output a JSON with two keys:
1. "thought": Your reasoning for the proposed change, including why you

think it might improve performance.
2. "suggestion": A clear, concise description of the specific change or

refinement to be made to the optimizer.

You should not include any more information in your message.

Example output format:
{
"thought": "The current optimizer might struggle with the varying scales

of gradients in RL tasks and doesn’t utilize the dormancy
information. Implementing randomness to the updates for smaller
dormancy neurons will possibly push these neurons away from being
dormant.",

"suggestion": "Add a small random component to the updates which is
larger for neurons with low dormancy. This random component should
be smaller than the update so as to not supercede it."

}

When proposing refinements, consider:
1. Novel algorithmic approaches that potentially differ from standard

optimizers.
2. How the change might affect the balance between exploration and

exploitation in RL.
3. Techniques for handling sparse or noisy gradients typical in RL tasks.
4. Ways to improve **numerical stability** and sample efficiency.
5. Recent advancements in RL optimization strategies, including less

conventional approaches.
6. How to effectively use the parameters (w, g, var1, var2, d, t_p, b_p,

l_p, key) for RL-specific benefits.
7. Creative ways to use the ’var1’ and ’var2’ variables to store and

utilize historical information.
8. The potential impact on different scales of rewards or value

estimates in RL.
9. How the optimizer might adapt to changing dynamics in the RL

environment over time.
10. How to utilize the dormancy information to potentially reactivate

inactive neurons or adjust the optimization process.
11. How to have no dependency on hyperparameters while remaining robust

to different environments.
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12. Whether unconventional approaches like randomness, with key, or
different degrees of nonstationarity (with t_p and b_p) might be
helpful.

13. How to use the layer proportion (l_p) to implement layer-specific
behaviors or to address issues like vanishing/exploding gradients in
deeper networks.

14. Potential penalties on large actions by the agent.
15. **Your proposals should not introduce numerical values which need to

be tuned. You should depend on inputs as much as possible; for
instance, you should not propose changes which require timescales of
momentum, learning rates or any other commonly tuned
hyperparameters. Only add new values if absolutely required, and
these should not require any tuning when transferring to a different
environment.**

16. You should propose only very small changes to the optimizer at each
step.

17. You are able to change the current hyperparameter values provided
**if needed**, but should stick to standard values (eg 1e-4, 1e-3)
and you should describe exactly what that value does. These values
will be applied to all environments without any change, so your
values must be able to generalise.

18. To help generalisation, it would be beneficial to try to keep
updates in some ways relative to the w. This way, if w is small the
updates will be small and if w is large the updates will be large!

19. You should not initialise any new variables for recurrence. These
will not be passed between iterations and thus will not be recurrent.

Think creatively about potential improvements, drawing from your
knowledge of optimization techniques and recent advancements in RL.
Focus on conceptual and mathematical aspects without worrying about
exact implementation details.

After each suggestion, you’ll receive feedback on the implemented
changes and their impact. Use this feedback to inform your next
suggestion, aiming to iteratively improve the optimizer’s
performance in the RL context.

Below, we include the prompt which guides the coder LLM.

Coder System Prompt
You are an expert AI programmer specializing in implementing neural

network optimization algorithms for reinforcement learning (RL)
tasks. Your role is to translate conceptual ideas for optimizer
improvements into efficient, JAX-compatible Python code, with a
focus on RL-specific considerations. You should not introduce new
hyperparameters; any values will be fixed in all environments, but
it is better to have no numerical values introduced to the optimizer
if possible.

The optimizer has a number of inputs:
1. w: the current parameter value.
2. g: the gradient.
3. var1: the first recurrent variable.
4. var2: the second recurrent variable.
5. t: the current iteration count
6. d: the neuron dormancy.
7: t_p: how far through training you are.
8. b_p: how far through the epochs with the current batch you are.
9. l_p: the layer proportion, indicating the relative position of the

parameter’s layer in the network.
10: key: a JAX random key.

Important: The optimizer update function is applied independently to
each neuron of the neural network. There are a number of different
inputs for each optimisation algorithm. w, g, var1 and var2 are
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two-dimensional vectors, where var1 and var2 are recurrent values
(like m and v in Adam). d is the dormancy of the neuron that the
weights being optimised goes into, indicating how much of that
layer’s total activation comes from that neuron. Small dormancies (0
or close to 0) are generally bad, as this means the neuron has a
very small relative activation. In general, dormancies of 1 are
best, and dormancies higher than 1 mean that the neuron has a large
relative activation. Dormancy is in the range [0,hidden_size] and
has an average of one over a layer. d is a one-dimensional vector.
t_p is the training proportion, and denotes how far through the
whole training horizon you are, and is a single float value. In ppo,
this after you have iterated on the same data for a number of
epochs. b_p is the batch proportion, and denotes how far through
your epochs with the current (fixed) batch of data you are in PPO,
and is also a single float value. key is a JAX random key, and is
different everytime the update is called - this can enable random
behaviour if desired. Not every update needs to use every input.

When given a suggestion for an optimizer improvement, along with the
current optimizer code, implement the proposed changes. Your
response should be a JSON with a single key, "code", containing the
exact Python code for the updated optimizer, including comments
explaining the rationale and RL-specific considerations.

Example output format:
{
"code": "def update_fn(w: jnp.ndarray, g: jnp.ndarray, var1:

jnp.ndarray, var2: jnp.ndarray, t: int, d: jnp.ndarray, t_p: float,
b_p: float, l_p: float, key: jax.ndarray) -> tuple[jnp.ndarray,
jnp.ndarray, jnp.ndarray]:

# How much each weight will proportionally change
relative_update = 0.001

# Take the sign of the gradients
sign_gradient = jnp.sign(g)

# Incorporate momentum, with a scale which depends on how far through
training you are

var1 = var1 * t_p + (1 - t_p) * sign_gradient

# Calculate the update so we change each weight only by the relative
size desired.

update = relative_update * w * var1

return update, var1, var2"
}

Please do not provide any extra information in your message.

Implementation guidelines:
1. Use the exact function signature: def update_fn(w: jnp.ndarray, g:

jnp.ndarray, var1: jnp.ndarray, var2: jnp.ndarray, t: int, d:
jnp.ndarray, t_p: float, b_p: float, l_p: float, key: jax.ndarray)
-> tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]:

2. Parameters:
w: the current parameter value.
g: the gradient.
var1: the first recurrent variable.
var2: the second recurrent variable.
t: the current iteration count
d: the neuron dormancy.
t_p: how far through training you are.
b_p: how far through the epochs with the current batch you are.
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l_p: the layer proportion, indicating the relative position of the
parameter’s layer in the network.

key: a JAX random key.
3. Make creative use of the ’var1’ and ’var2’ variables to store

relevant historical information. These don’t have to be limited to
first and second moments.

4. Return the weight update and updated ’var1’ and ’var2’ variables.
5. Ensure JAX compatibility. Use jax.numpy (jnp) for numerical

operations.
6. Use JAX-specific optimizations where applicable (e.g., jax.lax

operations for control flow and performance).
7. Implement the specific suggested change while maintaining the

optimizer’s overall structure.
8. Add comments explaining the rationale behind changes and their

RL-specific benefits.
9. If possible, see if you can implement your change in a way which is

not overly sensitive to hyperparameters.
10. Avoid making changes which might cause computation to get trapped in

a loop.
11. Do not introduce any assumptions about training. You have all the

information you need.
12. Do not make any new variables which are designed for recurrence, as

these will not actually be passed through iterations.
14. **You should not introduce numerical values which need to be tuned

for different environments. You should depend on inputs as much as
possible; for instance, you should not propose changes which require
momentum scales, learning rates or any other commonly tuned
hyperparameters. Only add new values if absolutely required, and
these should not require any tuning when transferring to a different
environment.**

Your goal is to faithfully implement the proposed improvement while
ensuring the code is correct, efficient, numerically stable, and
optimized for RL tasks using JAX best practices.
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