
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DO SYMBOLIC OR BLACK-BOX REPRESENTATIONS
GENERALISE BETTER IN LEARNED OPTIMISATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Until recently, behind every algorithmic advance in machine learning was a hu-
man researcher. Now, however, algorithms can be meta-learned automatically,
with little human input. However, to be truly useful, such algorithms must gen-
eralise beyond their training distribution. This is especially challenging in re-
inforcement learning (RL), where transferring algorithms between environments
with vastly different dynamics is difficult and training on diverse environments of-
ten requires prohibitively expensive large-scale data collection. Learned optimisa-
tion is a branch of algorithmic discovery that meta-learns optimiser update rules.
Learned optimisers can be classified into two groups: black-box algorithms, where
the optimiser is a neural network; or symbolic algorithms, where the optimiser is
represented using mathematical functions or code. While some claim that sym-
bolic algorithms generalise better than black-box ones (Chen et al., 2023), testing
such assertions is complicated by the fact that symbolic algorithms typically in-
clude additional hyperparameters, and thus their evaluation is done many-shot.
This is an unfair comparison with the zero-shot evaluation of black-box optimis-
ers. In this work, we build a pipeline to discover symbolic optimisers which are
hyperparameter-free, enabling a fair comparison of the generalisation of symbolic
optimisers with that of an open-source state-of-the-art black-box optimiser trained
for RL1. Based on our analysis, we propose suggestions to improve the symbolic
optimiser discovery pipeline for RL, with an overall objective of reducing the need
for hyperparameter tuning to train an agent.

1 INTRODUCTION

Improvements to optimisation algorithms have driven machine learning to new heights over the
past few decades. The introduction of components like gradient momentum, second order momen-
tum (Nesterov, 1983; Kingma & Ba, 2017) and adaptive learning rates (Kingma & Ba, 2017; Zhuang
et al., 2020) has enabled swifter and more stable convergence, while learning rate annealing has im-
proved the fidelity of converged solutions. Recent evidence (Andrychowicz et al., 2016; Chen et al.,
2021; Metz et al., 2022c; Chen et al., 2023; Goldie et al., 2024) suggests that the improvement of
optimisers could be automated via learned optimisation. In learned optimisation, developing new
optimisation algorithms is itself a meta-learning process based on data.

Approaches to learned optimisation fall into two camps. Most work (e.g., (Metz et al., 2022a; Kirsch
& Schmidhuber, 2022; Andrychowicz et al., 2016; Wichrowska et al., 2017; Goldie et al., 2024)) re-
places the optimiser, such as Adam (Kingma & Ba, 2017), with a black-box function using a neural
network. In this scenario, the weights of the network are updated in an outer loop to maximise the
performance of a trained model at the end of an inner loop. By contrast, some recent work (Chen
et al., 2023; Song et al., 2024a) focuses on discovering symbolic optimisation algorithms. In this
case, the optimiser is represented by a set of mathematical equations or programming instructions.
In general, interest in symbolic algorithm discovery has grown in the past couple of years (Romera-
Paredes et al., 2024; Lu et al., 2024a) due to the advent of large language models (OpenAI et al.,
2024; Dubey et al., 2024, LLMs). There are arguments in favour of both approaches: black-box al-
gorithms may be easier to work with (Goldie et al., 2024), while symbolic optimisers may generalise
better (Chen et al., 2023). However, there exists little study into the veracity of these claims.

1Code to be released upon acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Furthermore, direct comparison between the approaches is complicated by the fact that they target
subtly different problems; black-box optimisers are typically evaluated zero-shot without any tune-
able hyperparameters, whereas symbolic optimisers such as Lion (Chen et al., 2023) tune hyperpa-
rameters per-task, making evaluation many-shot. Therefore, it is hard to compare these different
paradigms like-for-like based on current literature.

The need for general optimisation algorithms is exacerbated in reinforcement learning (Sutton &
Barto, 2018, RL) due to its many idiosyncratic issues which make optimisation challenging. In par-
ticular, RL is very sensitive to hyperparameters (Eimer et al., 2023) which can cause catastrophic
instability if they are not correctly tuned. This instability may stem from the fact that RL often
uses algorithms imported from supervised learning, motivating the development of RL-specific ap-
proaches (Henderson et al., 2018; Sarigül & Avci, 2017). For instance, many conventional optimis-
ers, like Adam Kingma & Ba (2017), are designed for stationary learning tasks and are thus ill-suited
for the non-stationarity of RL (Igl et al., 2021; Bengio et al., 2021). Learned optimisers tailored for
RL show promise in addressing these issues (Lan et al., 2024; Goldie et al., 2024).

However, simply relying on a large meta-task diversity to enable generalisation across RL is im-
practical. For anything beyond simple environments, sampling in RL is expensive. Therefore, find-
ing learned optimisation strategies which demonstrate generalisation, whilst maintaining a limited
meta-training cost, would significantly improve the practicality of RL. In this work, we compare
the generalisation capabilities of a pretrained, black-box optimiser for RL (Goldie et al., 2024) with
a roughly equivalent symbolic optimiser discovered using an evolutionary process based around
LLMs. We focus on a regime in which optimisers can only be learned from a small number of en-
vironments; we believe this represents a scenario of greater interest than training in a distribution of
gridworlds, which has been a previous focus for generalisation (Goldie et al., 2024; Lan et al., 2024)
but does not transfer well to the modern LLM-driven discovery pipeline. In doing so, we explore
the question of whether black-box or symbolic optimisers are actually best for generalisation across
a number of axes, including to different environments and to longer training lengths. We use these
findings to recommend promising directions for future work in this field, thus providing a pathway
to unlock truly general learned optimisation algorithms.

2 BACKGROUND

Optimisation Optimisation is ubiquitous throughout machine learning. Given a general training
objective fθ(·), there is an extensive set of optimisation algorithms whose goal is to guide θ, a
model’s parameters, to the optimal θ∗. Most fundamental of optimisers is gradient descent, where θ
is updated iteratively towards negative gradient as θt+1 ← θt − η∇θf(·), using a step-size η.

A number of augmentations are frequently applied to gradient descent to enable quicker conver-
gence, less noisy updates or improved asymptotic performance. For instance, modern optimisers
like Adam (Kingma & Ba, 2017) and RMSProp (Tieleman et al., 2012) use momentum, a time-
based moving average of gradients or updates which provides more consistent updates over training.
Similarly, learning rate annealing or warmup change the step size over time to provide closer con-
vergence to the optimum by the end of training, or improved stability at the beginning of training,
respectively (Robbins, 1951; Gotmare et al., 2018).

Reinforcement Learning Reinforcement learning focuses on Markov Decision Processes (Sutton
& Barto, 2018, MDPs), defined as ⟨A,S, T,R, ρ, γ⟩. The agent learns a policy π(·|st) ∈ Π and,
at each discrete timestep t, samples an action at ∈ A based on the current state st ∈ S (where
s0 ∼ ρ). After sampling an action, the agent transitions to the next state st+1 ∈ S according
to a transition distribution T (st+1|st, at) and receives a reward according to the reward function
R(st, at). The policy is trained to maximise the discounted expected return, Jπ , based on the
discount factor γ ∈ [0, 1), which is defined over a fixed length episode as

Jπ := Ea0:∞∼π,s0∼ρ,s1:∞∼T

[
T∑

t=0

γtRt

]
. (1)

Sample complexity is a major issue in reinforcement learning. Due to the potential cost of inter-
acting with the environment, it can often be prohibitively expensive to collect large datasets. One
opportunity to reduce sample complexity is to remove the reliance on hyperparameters intrinsic to
RL. Learned optimisers without hyperparameters could help to unlock this capability.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Optimisation Difficulties in RL Goldie et al. (2024) discuss three optimisation difficulties present
in RL: plasticity loss (Lyle et al., 2023; 2022), a phenomenon in which neural networks lose the
ability to learn when given new data; exploration, where the optimiser must escape local optima from
the agent being trapped in a localised state-action space; and non-stationarity (Igl et al., 2021), which
arises as the input and output distributions in RL are continuously changing. OPEN incorporates a
number of features to tackle each individual problem. To be specific:

• For plasticity, OPEN conditions on neuron dormancy (Sokar et al., 2023), a metric which
measures what proportion of a layer’s activation comes from a specific neuron. Near-zero
dormancy neurons are dormant and need to be reactivated. OPEN also learns separate
update rules for each layer by conditioning on layer proportion.

• For nonstationarity, OPEN conditions on two timescales: batch proportion, or progress
through epochs with the current batch of data; and training proportion (Jackson et al.,
2023a), meaning how far through the training horizon optimisation is.

• To boost exploration, OPEN introduces stochasticity of a learned variance to the update.
This enables similar exploration behaviour to parameter space noise (Plappert et al., 2018)
or noisy nets (Fortunato et al., 2019) while also incidentally helping with dormancy.

3 RELATED WORK

Meta-Learning Algorithms Meta-learning intends to replace handcrafted algorithms with ones
learned from data. Though some approaches use meta-gradients which are backpropagated through
training episodes (e.g., (Lan et al., 2024; Oh et al., 2020)), this is impractical in our setting. Firstly,
meta-learning in RL requires long horizon rollouts, where untruncated backpropagation experiences
exploding or vanishing gradients but truncating biases towards greedy algorithms (Wu et al., 2018;
Metz et al., 2022b; Lu et al., 2022b). Secondly, with a symbolic optimiser, it is not obvious how
to project gradients on to the non-numerical symbols of our algorithm, requiring more complex
techniques (e.g. (Kuang et al., 2024; Chen et al., 2024)).

Evolutionary methods (Rechenberg, 1973; De Jong, 2006) provide an alternative. These are
derivative-free optimisation methods which mutate and evaluate a populations of candidates. Com-
mon evolutionary methods include genetic algorithms (Such et al., 2018), covariance matrix adap-
tation (Hansen & Ostermeier, 2001), evolution strategies (Salimans et al., 2017) or, in the symbolic
case, genetic programming (Koza, 1992). Evolution involves sequentially sampling population
members, randomly changing their parameters and evaluating the final performance of the candi-
date. By optimising based on the final evaluation, rather than backpropagating through the rollout,
evolutionary methods avoid many of the issues with meta-gradients.

Since the advent of LLMs, a new form of symbolic evolution has emerged (Romera-Paredes et al.,
2024). Rather than applying random mutations, recent methods have replaced the evolutionary
system with LLMs that suggest edits and reason about performance to guide search (Lu et al.,
2024a; Meyerson et al., 2024; Lehman et al., 2022; Shojaee et al., 2024). This uses an LLM’s
prior knowledge to make ‘intelligent’ changes, in effect limiting the search to reasonable if not
limited edits. Despite its recent invention, this technique has led to impressive results in function
discovery (Romera-Paredes et al., 2024) or solving symbolic regression tasks (Shojaee et al., 2024).

Learned Optimisation Learning to optimise (Metz et al., 2020; 2022c;a; Chen et al., 2023; Goldie
et al., 2024, L2O) automates the discovery of better optimisers by meta-learning the algorithms.
Generally, L2O replaces the optimiser with a neural network which conditions on the gradient,
and potentially extra features, and outputs an update for each parameter in the training model.
This method has proven effective in supervised and unsupervised learning (Metz et al., 2022c), but
naı̈vely fails to transfer to RL. Due to the opportunity of learning specialised optimisation algo-
rithms, OPEN (Goldie et al., 2024) and Optim4RL (Lan et al., 2024) L2O directly for RL. This is
justified by many works suggesting RL-specific algorithms are warranted (Henderson et al., 2018;
Bengio et al., 2021; Sarigül & Avci, 2017). Whereas Optim4RL attempts to L2O in RL by con-
straining the structure of the update, OPEN targets a number of difficulties present only in RL. Un-
fortunately, while these works have demonstrated signs of life for generalisation, there is little work
exploring whether black-box optimisation is the best route to discover truly generalist optimisers.

An alternative approach is Lion (Chen et al., 2023), an optimiser discovered by symbolic evolution.
However, to enable comparison between black-box and symbolic optimisation, we make a number

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

of key design changes from Lion. Firstly, our method searches in a code, rather than mathematical,
parameterisation. This enables a richer space of functions by allowing conditional statements, like
(if, >,<). Secondly, by building on modern LLM-based methods, we diverge from Lion’s naı̈ve
mutation operation. Since we attempt to directly compare against OPEN, whose inputs expands
the algorithm design space drastically, the prior knowledge of an LLMs limits search to grounded
mutations, thus preventing an excessive computation budget. Finally, we direct our search towards
hyperparameter-free optimisers for RL to enable a fair comparison with OPEN.

LLM-Guided Research LLMs have increasingly been used for evolution-like optimisation re-
cently (Song et al., 2024b). FunSearch (Romera-Paredes et al., 2024) demonstrated the validity of
this approach by prompting an LLM to write functions for specific tasks. Like FunSearch, many
works have synthesised the expressiveness of code with the creativity of LLMs: Hu et al. (2024) use
LLMs to design agents for complex problems; DiscoPOP (Lu et al., 2024a) finds new objectives
for preference optimisation in LLMs; and Lehman et al. (2022) incorporate Quality-Diversity ap-
proaches (Mouret & Clune, 2015) to produce different robot morphologies. While a common thread
exists between these works and ours – using LLMs as a mutation operator for evolution – our discov-
ery pipeline differs in its end-goal of learning an optimisation algorithm. We also consider how an
LLM can be used to handle additional inputs, defined by OPEN, with natural language descriptions.
Finally, we are approaching this setting from a purely analytical perspective.

4 MOTIVATION

To motivate our study into the generalisation capabilities of symbolic and black-box optimisers, we
briefly compare the two in terms of potential advantages, grounded in both literature and intuition.

Black-Box Optimisers Since black-box optimisers are principally neural networks, they have a
number of inherent advantages. Firstly, since they typically use small networks, they can easily be
trained with evolution (Salimans et al., 2017) to avoid issues of short-term bias from truncated meta-
gradients (Wu et al., 2018; Lu et al., 2022b). This does, however, have the issue of high memory
usage and training sample complexity since each meta-update needs a number of full training loops
equal to the population size. Though GPU-vectorisation (Bradbury et al., 2018) helps speed up this
training dramatically (Lu et al., 2022b), it can require both high-end hardware and easy-to-sample
environments which may not be practical.

Also, the simplicity of introducing additional inputs to black-box optimisers was demonstrated by
OPEN, as well as an ease to learn interactions between input variables. This ability to easily scale
with inputs may make black-box optimisers the best option in some settings.

Finally, due to their iterative meta-learning process, black-box optimisers can converge Goldie et al.
(2024). This is in contrast to symbolic optimisers, which may not converge due to the mechanisms
of symbolic evolution. This convergence can have advantages – training is predictable and usually
stable – but can also lead to the optimiser being trapped in subpar optima.

Symbolic Optimisers Though symbolic discovery of optimisers is relatively unexplored, it has a
number of potential advantages. It is worth noting, however, that we focus on a novel evaluation
regime which aligns symbolic and black-box optimisation. Whereas Lion (Chen et al., 2023) needed
tuning for its hyperparameters, black-box optimisers are applied zero-shot to new environments.
Therefore, we concern ourselves with symbolic algorithms which do not use hyperparameters.

In this paper, we assess how black-box and symbolic optimisation algorithms generalise. Chen
et al. (2023) suggest, without justification, that symbolic algorithms should generalise better, which
seems intuitive. Symbolic optimisers are usually simpler; whereas Lion is 8 lines of code, OPEN
uses up to ∼ 4000 parameters, increasing the opportunity for overfitting. Also, symbolic optimisers
must start from something, meaning they can be initialised from pre-existing optimisers.

A key advantage of symbolic algorithm discovery is that LLMs can interface into the discovery
pipeline to improve the search efficiency, leaning on their vast knowledge-base to find new algo-
rithms Lu et al. (2024a); Romera-Paredes et al. (2024). This also gives a large amount of control to
the human-in-the-loop. As a researcher can describe design specifications in natural language, the
search can be biased towards algorithms based on design requirements. We find this can help with
including additional inputs to the algorithms, such as those from OPEN, even if the inputs are not
included in the LLM’s training data.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

def update(...):
 ...
 return

def update(...):
 ...
 return

def update(...):
 ...
 return

def update(...):
...

return

System Prompt: You are designing
an optimiser for RL. Propose a
change ...

Query0: The current optimiser
<FUNCTION FROM ARCHIVE> got ...

Query1: The current optimiser
<LAST FUNCTION> got ...

...

Figure 1: An overview of our discovery pipeline. An archive stores optimisers from previous gen-
erations. These are selected and used to initialise the LLM’s context. A ‘thinker’ LLM proposes an
idea which the ‘coder’ LLM interprets and implements, producing a new optimiser. The new opti-
miser is evaluated, added to the context for the thinker, and the process repeats for a finite number
of steps before all optimisers are added to the archive and the outer loop progresses.

5 THE SYMBOLIC OPTIMISER DISCOVERY PIPELINE

We design a symbolic discovery loop to enable like-for-like comparison with OPEN which incorpo-
rates all of the features proposed in OPEN and described in section 2. We focus our comparison on
the ‘Multi-Task Training’ setting from Goldie et al. (2024), where we meta-train on a small number
of environments from MinAtar (Young & Tian, 2019; Lange, 2022). We believe this scenario is par-
ticularly interesting due to its correspondence with learning from a small number of fast proxy-tasks
that approximate an ultimate objective.

We use an LLM in place of standard mutation in our system for the reasons mentioned in section
4. This lets us describe the inputs from OPEN in natural language to direct the search to ‘reason-
able’ suggestions, avoiding a potentially more expensive and sample-inefficient random search, like
Lion (Chen et al., 2023). However, LLMs can be notoriously fickle (Anagnostidis & Bulian, 2024;
Gu et al., 2022). Therefore, we introduce a number of design decisions, described in this section, to
improve the system’s robustness. While we use GPT-4o (OpenAI et al., 2024) in this work, we be-
lieve that our system should also maintain robustness for weaker, open-source models (e.g. (Dubey
et al., 2024; DeepSeek-AI et al., 2024)). We report discovery hyperparameters in Appendix A.

5.1 OVERVIEW

Figure 1 shows our discovery pipeline, which is similar to a number of ‘LLM-Discovery’ meth-
ods (Romera-Paredes et al., 2024; Lu et al., 2024a;b; Hu et al., 2024; Faldor et al., 2024), visually.
At the start of the process, an archive is initialised with a set of candidate optimiser functions. After
these are evaluated, one optimiser is selected for a generation of refinement, which involves itera-
tive mutation by an LLM, followed by evaluation and insertion to the archive, for N steps. After
refinement is complete, a new optimiser is sampled and the process repeats.

Below, we introduce high-level design decisions which are detailed in the remainder of section 5.

Initialising The Archive We follow DiscoPOP (Lu et al., 2024a) and Lion (Chen et al., 2023) by
initialising training from a small set of optimisers. However, whereas DiscoPOP use pre-established
loss functions, there is little precedent for hyperparameter-free optimisation. Therefore, we intro-
duce a small number of hyperparameter-less optimisers by hand. These are designed to be flexible,
while ensuring they don’t fail catastrophically in the training environments.

Selection Our pipeline periodically samples a new optimiser to refine at each generation, align-
ing closely to traditional evolutionary computation. This contrasts with, say, DiscoPOP (Lu et al.,
2024a), which uses one long conversation with an LLM. By using the LLM more sparingly, this
approach has the added benefit of potentially letting our system operate with less powerful lan-
guage models. We select the best optimisers from the archive with probability p, and select random
optimisers from the archive with an exploration probability 1− p.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Mutation We split mutation over two LLMs: a thinker, which proposes a new idea based on
the current optimiser’s performance; and a coder, which implements the proposed changes. This
separation ensures faithful interpretations of ideas in the implementation and provides additional
user control with the different prompts. Our thinker prompt also includes examples of performant
optimisers in each environment.

Evaluation We evaluate optimisers on full-length RL environments at every refinement step. We
track the final return and return area-under-the-curve of each optimiser for the thinker’s context
to enable in-context reasoning. To sidestep the problem of score aggregation over multiple envi-
ronments faced by OPEN, we simply give the LLM returns for all environments and prompt it to
maximise performance in all.

5.2 INITIALISATION

Similar to recent works (Lu et al., 2024a; Faldor et al., 2024; Hu et al., 2024; Chen et al., 2023),
we initialise the archive of optimisers to a set of reasonable functions. However, given the scarcity
of research on hyperparameter-free optimisation, the selection of initial optimisers is not straight-
forward. To address this, we create a few sensible optimisers to kickstart learning. In most cases,
we write simple functions which have scaled relative changes to weights, though we also include a
simple LLM-proposed function for diversity.

All optimisers follow the same design principles: they are simple, so that there are a large number
of possible directions to improve them; they are diverse, so that they can lead to very different opti-
misers after refinement; and they are hyperparameter-free, meaning that any values are fixed for all
environments. Notably, our initial optimisers only depend on the parameter value and the gradient,
allowing the LLM to discover creative ways to use the additional inputs from OPEN without undue
bias. We include all of the initial optimisers in appendix B.

5.3 EVOLUTION

For discovery, we blend LLM-based discovery algorithms with more conventional evolution
(e.g. (Koza, 1992)). In doing so, we exploit the reasoning capabilities of LLMs to propose intel-
ligent in-context changes while leveraging population-based evolution. The process runs as follows:

At the start of a new generation, we sample an ‘initial’ optimiser (section 5.3.1) and set of context
optimisers (section 5.3.3) and prompt the LLMs to make small optimiser edits for a fixed number
of refinement steps, N . At each refinement step, we evaluate the optimiser on all RL environments
after a full RL inner-loop. Like OPEN, we use PPO Schulman et al. (2017) as the RL algorithm.
After each generation, we add all evaluated optimisers to the archive and sample a new initialisation
and context. Therefore, like Faldor et al. (2024), our archive grows over meta-training.

5.3.1 SAMPLING NEW OPTIMISERS

We sample a new ‘base’ optimiser each generation. To balance exploration and exploitation in
our discovery process, we mostly sample good optimisers while occasionally selecting randomly to
promote diversity. However, the notion of good or bad is not black and white when considering
multiple environments of different reward scales. Naı̈vely averaging returns will prioritise environ-
ments which have a large reward scale, while normalising by, say, Adam’s (Kingma & Ba, 2017)
performance biases selection to environments where Adam underperforms (Goldie et al., 2024).

Instead, we use the average of per-environment rankings, based on return, over the population to
measure how successful an algorithm is. In addition to scale-invariance, this has the benefit of
weeding out optimisers which overfit to one environment, aiding robustness. After calculating the
average rankings for the population, we select high-ranking optimisers with a probability p and sam-
ple from the full population with probability (1− p). In this work, we set p = 0.8 to balance sample
efficiency (mostly starting from a performant optimiser) with diversity (occasionally sampling ran-
dom optimisers).

5.3.2 MUTATION

We find that there is an occasional disparity between the proposal and implementation from LLMs
when prompted naı̈vely. This hurts interpretability; it is not possible to tell what changes the LLM
is making purely by observing the conversation. Therefore, we augment our system into a 2-LLM

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

setup by dividing out thinking and coding. The thinker has the responsibility of suggesting changes
to the currently sampled optimiser and explaining why this change might be helpful. The coder has
the task of converting the proposed idea into a code edit and implementing a syntactically correct,
faithful python function. As an additional benefit, this allows different prompting strategies for each
operation, giving the user additional control over the discovery trajectory.

5.3.3 PROMPTING

Different prompts can lead to vastly different results when using LLMs (Anagnostidis & Bulian,
2024; Gu et al., 2022). Here, we discuss the design decisions made in our prompting, and provide
examples of the actual prompts in Appendix C.

Difficulties in RL To enable intelligent suggestions based on the problems of RL from OPEN,
described in section 2, we provide a high level overview of each additional input variable and what
typical values might mean.

Previous Performance To leverage in-context suggestion making, we condition the thinker on
the returns of the current optimiser and randomly sampled ‘context optimisers’, which perform well
in individual environments. To avoid issues highlighted in Goldie et al. (2024), where aggregating
scores between different environments proved difficult, we include final return values for all envi-
ronments into the prompt directly without averaging. This encourages the LLM itself to balance
improvements between environments. To boost in-context reasoning further, we also provide values
for the area-under-the-curve.

Separating Prompts To ensure fulfilment of their separate roles, we prompt the thinker and coder
LLMs differently. The thinker is prompted to produce a new idea based on previous performance
while the coder converts the idea into a code update. Whereas the thinker is prompted with a history
of optimisers for reasoning, the coder receives only the current optimiser and proposed change to
avoid obfuscating its task. Separating thinking and code has been shown to improve performance in
other work (Ye et al., 2024; Liu et al., 2024).

Design Suggestions For both the coder and thinker, we propose a number of considerations to aid
discovery. For instance, in the thinker we emphasise coming up with creative solutions, a need for
generalisation and the necessity of not introducing new hyperparameters. For the coder, we focus
on faithfulness and correctness, in addition to requesting commented code for interpretability.

6 DISCOVERY RESULTS

In figure 2, we show the meta-training curve for the symbolic discovery process. Notably, we
find that, despite only selecting for high average fitnesses, our discovered symbolic optimisers

0 100 200 300 400 500 600
Number of Steps

25

50

75

100

125

150

175

200

225

B
es

t A
ve

ra
ge

 R
an

k

Cumulative Best
Adam (Avg Rank: 164.00)
OPEN (Avg Rank: 110.00)

Figure 2: Meta-training curve, showing the max cumulative
average rank of discovered optimisers. We also show where
Adam and OPEN would rank in the population.

have consistently high rankings
across the four training environ-
ments. We also compute rankings for
OPEN and Adam, with a standard
untuned learning rate of 1e-3. Based
on their ranking compared to the
population, neither Adam nor OPEN
has robust performance across all
environments. Below, we show the
three highest average rank discovered
optimisers which form the basis of
our analysis.

The discovered optimisers below ex-
hibit some similar behaviours. For in-
stance, all optimisers incorporate dor-
mancy into their updates, have an-
nealing over training and use momen-
tum. However, despite having sufficient inputs, none of the best optimisers manage to incorporate
stochasticity (Goldie et al., 2024) into their expressions. This is likely due to the difficulty of finding
a scale for the randomness which works for all environments in such a discrete search.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Discovered Optimiser 1
def update:

m = 0.9

v1 = m * v1 + (1-m) * g

v2 = m * v2 + (1-m) * g**2

v2 = clip(v2, 1e-8, 1.0)

lr = sqrt((1-t_p)(1+b_p))

lr = lr * (1+l_p)

d_scale = 1 + log(1+d)

lr2 = 1 / (1+v2)

update = v1*lr*d_scale*lr2

return update, v1, v2

Discovered Optimiser 2
def update:

m = 0.9

norm = g/(1+||g||)

v1 = m*v1 + (1-m)*norm

v2 = m*v2+(1-m)*(g-v1)

lr = 1/(1+|v2|)

boost=1+log(1+d)

lr2 = (1-t_p)*(1+l_p)

update = v1*lr*boost*lr2*(1+b_p)

return update, v1, v2

Discovered Optimiser 3
def update:

m = 0.9

v1 = m * v1 + (1-m) * g

v2 = m*v2 + (1-m)*(g-v1)**2

lr = 1 / (1+sqrt(v2+1e-8))

lr2 = (1-t_p)*(1+l_p)

d_scale = 1+log(1+d)*(1-t_p)

d_scale *= (1+0.1*t_p)

boost = where(d<1.0,2.0,1.0)

d_scale *= boost

update = v1*lr*d_scale*lr2

return update, v1, v2

7 ASSESSING GENERALISATION

Our analysis centres on comparing symbolic discovered optimisers with OPEN to explore the dif-
ference between in- and out-of-distribution behaviour of the two approaches. We focus on meta-
training with a small number of environments, referred to as Multi-Task Training in Goldie et al.
(2024). This differs to the scenario where one samples from a distribution of simple environments,
such as gridworlds (e.g. (Oh et al., 2020; Jackson et al., 2023b; Goldie et al., 2024). We compare
against a pre-trained OPEN model which is available online, and Adam using a fixed standard learn-
ing rate of 1e-3. Following standard procedure in learned optimisation (Goldie et al., 2024; Metz
et al., 2022c; Lan et al., 2024; Metz et al., 2019) arising from the cost of meta-learning, we discover
optimisers from only one seed but run each experiment for multiple seeds. For all results, we report
the interquartile mean (IQM) with 95% stratified bootstrap confidence intervals calculated using rli-
able, a standard evaluation library (Agarwal et al., 2021). Hyperparameters for all experiments are
included in Appendix A. We consider a number of axes for generalisation, described and justified
below, which are inspired by the comparison of OPEN and Adam in Goldie et al. (2024).

Different Training Lengths Due to the cost of learned optimisation, one way to speed up meta-
training could be to learn from shortened inner-loops and generalise to longer runs. However, due
to the nonstationarity of the optimisers from their time-conditioning, their dynamic behaviour may
not transfer between inner-training lengths.

Different Architectures Prior work (Yang et al., 2022) suggests that hyperparameters often do not
transfer between models with different architectures. As such, we explore the ability of the different
optimisers to transfer between agents with different hidden dimensions and activation functions.

Different Environments To ensure an optimiser is truly general purpose, it is important to test its
performance in unseen environments. This axis of generalisation explores how strongly an optimiser
overfits to the dynamics of its training environments.

8 GENERALISATION RESULTS

Scaling to Different Lengths Figure 3 explores how the final return of an agent trained with each
of the optimisers differs as the length of the training horizon increases. Here, 1e7 transitions is
in-distribution for each optimiser.

0.1 0.2 0.5 1.0
Training Length 1e8

20

40

60

R
et

ur
n

freeway

OPEN
discopt1
discopt2
discopt3
adam

0.1 0.2 0.5 1.0
Training Length 1e8

0

25

50

75
breakout

0.1 0.2 0.5 1.0
Training Length 1e8

0

20

40

asterix

0.1 0.2 0.5 1.0
Training Length 1e8

50

100

150

200
spaceinvaders

Figure 3: An exploration of how each optimizer’s performance changes as the training length in-
creases further out of distribution. We plot IQM for each length over 16 seeds with 95% confidence
intervals. The in-distribution length is marked with a dashed red line.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Despite OPEN outperforming the other optimisers in-distribution for some environments, only the
symbolic optimisers are able to take advantage of more samples; as the training length increases,
the performance improves. OPEN, on the other hand, consistently struggles in longer training. This
suggests the black-box optimiser overfits strongly to its in-distribution training length. Notably,
Adam also scales positively in each environment and is the best performing optimiser in breakout.

Scaling To Different Sizes Figure 4 probes the ability of each optimiser to scale to larger agents.
This setting is motivated e.g. by the need for memory or time savings at meta-training time, or as an
attempt of finding a generalist optimiser.

32 64 128 256 512
Hidden Size

20

40

60

R
et

ur
n

freeway

OPEN
discopt1
discopt2
discopt3
adam

32 64 128 256 512
Hidden Size

0

20

40

60

breakout

32 64 128 256 512
Hidden Size

0

10

20

30
asterix

32 64 128 256 512
Hidden Size

0

50

100

150

spaceinvaders

Figure 4: A comparison of return achieved by each optimiser against the hidden size of the agent.
In each case we plot IQM over 16 seeds with 95% confidence intervals. In-distribution sizes are
marked with a dashed red line.

Much like with training lengths, we find that the symbolic optimisers are able to consistenly improve
with the hidden size of the agent. This is in direct contrast with OPEN, which again overfits to its
training size (64) and sees a catastrophic collapse for the largest hidden sizes.

Generalisation To Different Activations Figure 5 explores how each optimiser transfers to a
different activation. In addition to affecting dormancy, this impacts the input distribution of gradients
for each optimiser and thus forces them far out of their training distribution.

58 60 62 64
Return

adam_tanh
adam_relu

discopt3_tanh
discopt3_relu
discopt2_tanh
discopt2_relu
discopt1_tanh
discopt1_relu

OPEN_tanh
OPEN_relu

freeway

15 30 45 60
Return

breakout

6 12 18 24 30
Return

asterix

120 135 150 165
Return

spaceinvaders

Figure 5: A comparison of the final return of each optimiser for agents with ReLU activations (in-
distribution) and tanh activations (out-of-distribution). We show IQM over 16 seeds with 95%
confidence intervals.

For all optimisers, including Adam, we see a performance drop when changing the ac-
tivation from ReLU to tanh. In Freeway and SpaceInvaders, where all optimisers per-
form similarly with ReLU activations, changing to tanh causes OPEN to collapse. In As-
terix, OPEN goes from being the best optimiser with ReLU to the worst, within confi-
dence, with tanh. Finally, in Breakout, OPEN keeps the highest return but falls much
closer to the symbolic optimisers. Since all optimisers are brittle to this change in activa-
tion, it is difficult to determine whether black-box or symbolic optimisers are more robust
to changes of activations. Seemingly, all optimisers are overfit to their training activation.

240 300 360 420 480
Return

adam
discopt3
discopt2
discopt1

OPEN
cartpole

3.0 4.5 6.0 7.5 9.0
Return

craftax

Figure 6: Performance of all optimisers in two
out-of-distribution environments. We show IQM
and 95% confidence intervals for 16 seeds.

Generalisation to Different Environments
We assess how each optimiser transfers to two
environments, Craftax (Matthews et al., 2024;
Hafner, 2021) and cartpole (Brockman et al.,
2016; Lange, 2022), in figure 6. In both of
these environments, we find that the symbolic
optimisers generalise better than OPEN, rein-
forcing the claims made by Chen et al. (2023).
In fact, we find two of the three symbolic opti-
misers transfer perfectly to cartpole, achieving the maximum score of 500. While OPEN positively
transfers to these environments, the symbolic optimisers are consistently more robust in the face of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the new dynamics. However, Adam drastically outperforms all optimisers in Craftax. While this
may be down to the fact that the Craftax hyperparameters in Matthews et al. (2024) were found with
Adam, it suggests there is still a gap between meta-learned optimisation and preexisting optimisation
algorithms, even without tuning, when limited to a small number of meta-tasks.

9 A ROADMAP FOR THE FUTURE

As demonstrated in Section 7, despite being occasionally outperformed in-distribution, the sym-
bolic optimisers were consistently better at generalising out of distribution, echoing the sentiments
of Chen et al. (2023). Empirically speaking, symbolic optimisers do not overfit as strongly to their
training distribution. Despite this, the drastic outperformance of Adam over the other optimisers
in Craftax suggests there is still significant room for improvement in discovering better optimisers.
As such, we believe exploring symbolic optimisation discovery is an important future direction for
research. In particular, we believe emphasis should be placed on discovering hyperparameter-free
optimisers, and evaluation should focus on generalisation to all of the axes discussed in section 7.

However, this begs the question: in a field increasingly dominated by LLM-driven discov-
ery (Romera-Paredes et al., 2024; Lu et al., 2024b), how can we best capitalise on these advance-
ments while incorporating components from preexisting black-box literature, such as the analysis
and inputs from OPEN. Our discovered optimisers exemplified this issue by failing to take advan-
tage of randomness which was beneficial in Goldie et al. (2024). Finding better ways to synthesise
these two lines of research may prove a very fruitful direction. We provide some possible directions
which may make this possible below.

An obvious future direction is to find ways to give additional feedback to the LLM and better cap-
italise on their capabilities for more intelligent decision making. For instance, while final return
may be the key metric, it offers little in diagnosing any problems with the current optimisation algo-
rithm. Instead, prompting with the trajectory of return over training may help an LLM reason about
what the shortfalls are with the current optimiser. To this end, more capable language models, like
o1-preview (OpenAI, 2024), could help take advantage and reason over these additional sources of
data. Finally, finding better ways to include LLMs into evolutionary systems as intelligent muta-
tion operators, rather than the LLM being the full algorithm, could ground discovery algorithms in
evolutionary theory and produce more robust discovery algorithms.

10 LIMITATIONS

Due to limited resources, we are only able to experiment with a single discovery run and a sin-
gle learned black-box optimiser. Therefore, increasing the number of meta-seeds could robustify
findings. Similarly, we are able to use only a single closed-source language model, GPT-4o (Ope-
nAI et al., 2024), and thus exploring the effectiveness of different language models for discovery
is still an open problem. Finally, we only consider the domain in which an optimiser is discovered
for a small set of environments rather than training from a distribution of gridworlds, which may
improve black-box generalisation (Goldie et al., 2024) but is impractical for symbolic discovery.
Meta-training on more environments, with varied training lengths and architectures, may aid gener-
alisation for both paradigms and overcome some issues of the black-box optimiser, in particular.

11 CONCLUSION

In this work, we set out to contrast the generalisability of automatically discovered black-box and
symbolic optimisers. In doing so, we compare OPEN with symbolic optimisers given identical
inputs. We find that, while OPEN is able to outperform symbolic optimisers in-distribution, the
symbolic optimisers demonstrate significantly better scaling to larger networks or longer training
horizons, as well as performing better in a number of out-of-support environments. Based on these
findings, we make wide ranging recommendations for the future of learned optimisation to take
advantage of ever-more capable LLMs without dismissing years of prior literature.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 2021.

Sotiris Anagnostidis and Jannis Bulian. How susceptible are llms to influence in prompts? 2024.

Marcin Andrychowicz, Misha Denil, Sergio Gómez Colmenarejo, Matthew W. Hoffman, David
Pfau, Tom Schaul, Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient
descent by gradient descent. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, NIPS’16, pp. 3988–3996, Red Hook, NY, USA, 2016. Curran
Associates Inc. ISBN 978-1-5108-3881-9.

Emmanuel Bengio, Joelle Pineau, and Doina Precup. Correcting Momentum in Temporal Difference
Learning, June 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable transformations of Python+NumPy programs, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym, 2016.

Jiacheng Chen, Zeyuan Ma, Hongshu Guo, Yining Ma, Jie Zhang, and Yue-Jiao Gong. Symbol:
Generating Flexible Black-Box Optimizers through Symbolic Equation Learning, February 2024.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to Optimize: A Primer and A Benchmark, July 2021.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic Discovery of
Optimization Algorithms, May 2023.

Kenneth A. De Jong. Evolutionary Computation: A Unified Approach. MIT Press, Cambridge,
Mass, 2006. ISBN 978-0-262-04194-2.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
Ziwei Xie. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language
Model, June 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van
der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples,
Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco,
Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman,
Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto
De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Sheng Feng,
Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Sat-
terfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian,
Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas
Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Von-
timitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,
Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,
Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang,
Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao,
Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
and Zhiwei Zhao. The Llama 3 Herd of Models. https://arxiv.org/abs/2407.21783v2, July 2024.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in Reinforcement Learn-
ing and How To Tune Them, June 2023.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. OMNI-EPIC: Open-endedness via
Models of human Notions of Interestingness with Environments Programmed in Code, May 2024.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy Networks for Exploration, July 2019.

Alexander David Goldie, Chris Lu, Matthew Thomas Jackson, Shimon Whiteson, and Jakob Nico-
laus Foerster. Can Learned Optimization Make Reinforcement Learning Less Difficult?, July
2024.

Akhilesh Deepak Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A
closer look at deep learning heuristics: Learning rate restarts, warmup and distillation. ArXiv,
abs/1810.13243, 2018.

Jiasheng Gu, Hanzi Xu, Liang Nie, and Wenpeng Yin. Robustness of learning from task instructions.
In Annual Meeting of the Association for Computational Linguistics, 2022.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-Adaptation in Evolution
Strategies. Evolutionary Computation, 9(2):159–195, June 2001. ISSN 1063-6560, 1530-9304.
doi: 10.1162/106365601750190398.

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where Did My Optimum Go?: An Empirical
Analysis of Gradient Descent Optimization in Policy Gradient Methods, October 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shengran Hu, Cong Lu, and Jeff Clune. Automated Design of Agentic Systems, August 2024.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2021.

Matthew Jackson, Chris Lu, Louis Kirsch, Robert Lange, Shimon Whiteson, and Jakob Foerster.
Discovering temporally-aware reinforcement learning algorithms. In Second Agent Learning in
Open-Endedness Workshop, 2023a.

Matthew Thomas Jackson, Minqi Jiang, Jack Parker-Holder, Risto Vuorio, Chris Lu, Gregory Far-
quhar, Shimon Whiteson, and Jakob Nicolaus Foerster. Discovering General Reinforcement
Learning Algorithms with Adversarial Environment Design, October 2023b.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January 2017.

Louis Kirsch and Jürgen Schmidhuber. Meta Learning Backpropagation And Improving It, March
2022.

John R. Koza. Genetic programming: On the programming of computers by means of natural
selection. 1992.

Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye Hao, Bin Li, and
Feng Wu. RETHINKING BRANCHING ON EXACT COMBINATO- RIAL OPTIMIZATION
SOLVER: THE FIRST DEEP SYM- BOLIC DISCOVERY FRAMEWORK. 2024.

Qingfeng Lan, A. Rupam Mahmood, Shuicheng Yan, and Zhongwen Xu. Learning to Optimize for
Reinforcement Learning, June 2024.

Robert Tjarko Lange. gymnax: A JAX-based reinforcement learning environment library, 2022.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O. Stanley.
Evolution through Large Models, June 2022.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large
Language Model, June 2024.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022a.

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, and Jakob Foerster.
Discovered policy optimisation. Advances in Neural Information Processing Systems, 35:16455–
16468, 2022b.

Chris Lu, Samuel Holt, Claudio Fanconi, Alex J. Chan, Jakob Foerster, Mihaela van der Schaar,
and Robert Tjarko Lange. Discovering Preference Optimization Algorithms with and for Large
Language Models, September 2024a.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The AI Scien-
tist: Towards Fully Automated Open-Ended Scientific Discovery, August 2024b.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and Preventing Capacity Loss in
Reinforcement Learning, May 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks, August 2023.

Michael Matthews, Michael Beukman, Benjamin Ellis, Mikayel Samvelyan, Matthew Jackson,
Samuel Coward, and Jakob Foerster. Craftax: A lightning-fast benchmark for open-ended re-
inforcement learning. In International Conference on Machine Learning (ICML), 2024.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-Learning Up-
date Rules for Unsupervised Representation Learning, February 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Luke Metz, Niru Maheswaranathan, C. Daniel Freeman, Ben Poole, and Jascha Sohl-Dickstein.
Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using
them to train themselves, September 2020.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Practical tradeoffs between memory, compute, and performance in learned optimizers. In Con-
ference on Lifelong Learning Agents, pp. 142–164. PMLR, 2022a.

Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, and Tal Kachman. Gradients are Not All
You Need, January 2022b.

Luke Metz, James Harrison, C. Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, and Jascha Sohl-Dickstein. VeLO:
Training Versatile Learned Optimizers by Scaling Up, November 2022c.

Elliot Meyerson, Mark J. Nelson, Herbie Bradley, Adam Gaier, Arash Moradi, Amy K. Hoover, and
Joel Lehman. Language Model Crossover: Variation through Few-Shot Prompting, May 2024.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites, April 2015.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering reinforcement learning algorithms. Advances in Neural
Information Processing Systems, 33:1060–1070, 2020.

OpenAI. Introducing OpenAI o1, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan,
Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. GPT-4 Technical Report, March 2024.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter Space Noise for Explo-
ration, January 2018.

Ingo Rechenberg. Evolutionsstrategie : Optimierung technischer systeme nach prinzipien der biol-
ogischen evolution. 1973.

Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:
400–407, 1951.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S. Ellenberg, Pengming Wang,
Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi. Mathematical discoveries from program
search with large language models. Nature, 625(7995):468–475, January 2024. ISSN 1476-4687.
doi: 10.1038/s41586-023-06924-6.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution Strategies as a
Scalable Alternative to Reinforcement Learning, September 2017.

Mehmet Sarigül and Mutlu Avci. Performance comparision of different momentum techniques
on deep reinforcement learning. In 2017 IEEE International Conference on INnovations in In-
telligent SysTems and Applications (INISTA), pp. 302–306, 2017. doi: 10.1109/INISTA.2017.
8001175.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms, August 2017.

Parshin Shojaee, Kazem Meidani, Shashank Gupta, Amir Barati Farimani, and Chandan K. Reddy.
LLM-SR: Scientific Equation Discovery via Programming with Large Language Models, June
2024.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The Dormant Neuron Phe-
nomenon in Deep Reinforcement Learning, June 2023.

Xiaotian Song, Peng Zeng, Yanan Sun, and Andy Song. Generalizable Symbolic Optimizer Learn-
ing. 2024a.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position: Leverage Foundational Models for Black-Box Optimization, May 2024b.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, and
Jeff Clune. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training
Deep Neural Networks for Reinforcement Learning, April 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0-262-03924-9.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gómez Colmenarejo,
Misha Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and
generalize. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pp. 3751–3760, Sydney, NSW, Australia, 2017. JMLR.org.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding Short-Horizon Bias in
Stochastic Meta-Optimization, March 2018.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor Programs V: Tuning Large Neural
Networks via Zero-Shot Hyperparameter Transfer, March 2022.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution,
October 2024.

Kenny Young and Tian Tian. MinAtar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James S. Duncan. AdaBelief Optimizer: Adapting Stepsizes by the Belief in
Observed Gradients, December 2020.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

Below we include our PPO hyperparameters. For in-distribution environments, one value (e.g., total
timesteps or layer width) is swept to measure generalisation. As in OPEN, hyperparameters for PPO
for MinAtar and Brax are taken from Jackson et al. (2023a). Craftax hyperparameters are taken from
Matthews et al. (2024), though we reduce the hidden size being reduced to 64 to make the setting
more ‘in-distribution’. For Cartpole, we use the settings from (Lu et al., 2022a).

Table 1: Hyperparameters used for PPO in each of the experiments in section 7.

Hyperparameter Environment
MinAtar Craftax Cartpole

Number of Environments Nenvs 64 256 4
Number of Environment Steps Nsteps 128 16 128

Total Timesteps T 1×107 1×107 5×105
Number of Minibatches Nminibatch 8 8 4

Number of Epochs L 4 4 4
Discount Factor γ 0.99 0.99 0.99

GAE λ 0.95 0.8 0.95
PPO Clip ϵ 0.2 0.2 0.2

Value Function Coefficient c1 0.5 0.5 0.5
Entropy Coefficient c2 0.01 0.01 0.01

Max Gradient Norm 0.5 0.5 0.5
Layer Width W 64 64 64

Number of Hidden Layers H 2 2 2
Activation ReLU ReLU ReLU

Table 2: Hyperparameters for the symbolic discovery pipeline.

Hyperparameter Value(s)
Number of Generations 80
Number of Refinements 8
Max Thinker Attempts 3
Max Coder Attempts 3
Max Evaluation Attempts 3
Thinker Temperature 0.7
Coder Temperature 0.3
Exploitation Probability p 0.8
Evaluation Seeds 8
Number of Top Optimisers 5

We use the gpt-4o-2024-05-13 snapshot (OpenAI et al., 2024) for our discovery experiments. The
full discovery process requires approximately 4 GPU days with Nvidia L40S GPUs and costs around
$40 in API charges.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B INITIAL ARCHIVE

Below we include the four optimisers which were used to initialise the archive, alognside a brief
description of each of them.

Sign Update: Applies momentum to the
sign of the gradient, with the momentum fac-
tor varying based on training progress. The
update is scaled relative to the current param-
eter values.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

relative_update = 0.001

sign_gradient = jnp.sign(g)

var1 = var1 * t_p + (1 -

t_p) * sign_gradient

update = relative_update *
w * var1

return update, var1, var2

Relative Update: Scales the gradient update
by the L2 norm of the weights, making up-
dates proportional to parameter magnitudes.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

weight_norm = jnp.sqrt(jnp.sum(w**2))

update = g * weight_norm

return update, var1, var2

Gradient Step: A simple gradient descent
update with no modifications, directly apply-
ing the gradient as the update.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

update = g

return update, var1, var2

Clipped Update: Clips the gradient norm
based on a threshold that is proportional
to the weight magnitude, preventing exces-
sively large updates.
def update_fn(w, g, var1, var2,

t, d, t_p, b_p, key):

weight_threshold = 0.01

weight_magnitude = jnp.sqrt(

jnp.sum(w**2)

)

clip_threshold = weight_threshold * \

weight_magnitude

grad_norm = jnp.sqrt(jnp.sum(g**2))

update = jax.lax.cond(

grad_norm > clip_threshold,

lambda: g * \

(clip_threshold / grad_norm),

lambda: g)

return update, var1, var2

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C PROMPTS

In this section, we include examples of the prompts fed into the both the thinker and coder LLMs.
Firstly, we show the prompt used to guide thought creation in the thinker LLM.

Thinker System Prompt
You are an AI researcher specializing in reinforcement learning (RL) and

neural network optimization algorithms. Your role is to propose
iterative refinements and improvements to update rules for RL
agents. The goal is to find an optimiser which doesn’t require any
hyperparameter tuning whenever it is applied to an RL environment.
Your update rule should generalize across different environments,
different RL algorithms, and should not rely on hyperparameters. You
should attempt to not introduce any new numerical values if
possible, though you can change any numerical values already
included in the code; the optimiser should not require any
hyperparameter tuning when transferred to new environments. Your
proposed changes should be small and iterative, and not require
large changes to the code.

The optimizer has a number of inputs:
1. w: the current parameter value.
2. g: the gradient.
3. var1: the first recurrent variable (zero-initialized).
4. var2: the second recurrent variable (zero-initialized).
5. t: the current iteration count.
6. d: the neuron dormancy.
7: t_p: how far through training you are.
8. b_p: how far through the epochs with the current batch you are.
9. l_p: the layer proportion, indicating the relative position of the

parameter’s layer in the network.
10: key: a JAX random key.

Important: The optimizer update function is applied independently to
each neuron of the neural network. There are a number of different
inputs for each optimisation algorithm. w, g, var1 and var2 are
two-dimensional vectors, where var1 and var2 are recurrent values
(like m and v in Adam). d is the dormancy of the neuron that the
weights being optimised goes into, indicating how much of that
layer’s total activation comes from that neuron. Small dormancies (0
or close to 0) are generally bad, as this means the neuron has a
very small relative activation. In general, dormancies of 1 are
best, and dormancies higher than 1 mean that the neuron has a large
relative activation. Dormancy is in the range [0,hidden_size] and
has an average of one over a layer. d is a one-dimensional vector.
t_p is the training proportion, and denotes how far through the
whole training horizon you are, and is a single float value. In ppo,
this after you have iterated on the same data for a number of
epochs. b_p is the batch proportion, and denotes how far through
your epochs with the current (fixed) batch of data you are in PPO,
and is also a single float value. key is a JAX random key, and is
different everytime the update is called - this can enable random
behaviour if desired. Not every update needs to use every input.

Performance Metrics:
For each optimizer, you will be provided with two key performance

metrics for each environment:
1. Fitness: This is the final return achieved by the agent at the end of

training. Higher values indicate better performance.
2. AUC (Area Under the Curve): This metric represents the area under the

learning curve. The AUC provides insights into the overall learning
progress throughout the entire training process.

- Higher AUC values indicate faster learning and/or more consistent
performance over time.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

- AUC can help distinguish between optimizers that reach similar final
performance but have different learning trajectories.

When analyzing optimizer performance, consider both the Fitness and AUC
values:

- An optimizer with high Fitness but low AUC might achieve good final
performance but learn slowly or inconsistently.

- An optimizer with moderate Fitness but high AUC might learn quickly
and consistently, even if it doesn’t reach the absolute best final
performance.

- The ideal optimizer would have both high Fitness and high AUC across
multiple environments, indicating fast, consistent learning and good
final performance.

Your task is to analyze the current optimizer code and suggest
incremental changes or refinements that could potentially improve
its performance when used to train RL agents. Your suggestions
should be focused, specific, implementable, and potentially
unconventional, keeping in mind the per-weight update nature of the
optimizer. Note that the optimizer you are improving may not
currently use all the inputs, may have redundant statements and may
not need to incorporate all inputs.

When you respond, output a JSON with two keys:
1. "thought": Your reasoning for the proposed change, including why you

think it might improve performance.
2. "suggestion": A clear, concise description of the specific change or

refinement to be made to the optimizer.

You should not include any more information in your message.

Example output format:
{
"thought": "The current optimizer might struggle with the varying scales

of gradients in RL tasks and doesn’t utilize the dormancy
information. Implementing randomness to the updates for smaller
dormancy neurons will possibly push these neurons away from being
dormant.",

"suggestion": "Add a small random component to the updates which is
larger for neurons with low dormancy. This random component should
be smaller than the update so as to not supercede it."

}

When proposing refinements, consider:
1. Novel algorithmic approaches that potentially differ from standard

optimizers.
2. How the change might affect the balance between exploration and

exploitation in RL.
3. Techniques for handling sparse or noisy gradients typical in RL tasks.
4. Ways to improve **numerical stability** and sample efficiency.
5. Recent advancements in RL optimization strategies, including less

conventional approaches.
6. How to effectively use the parameters (w, g, var1, var2, d, t_p, b_p,

l_p, key) for RL-specific benefits.
7. Creative ways to use the ’var1’ and ’var2’ variables to store and

utilize historical information.
8. The potential impact on different scales of rewards or value

estimates in RL.
9. How the optimizer might adapt to changing dynamics in the RL

environment over time.
10. How to utilize the dormancy information to potentially reactivate

inactive neurons or adjust the optimization process.
11. How to have no dependency on hyperparameters while remaining robust

to different environments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

12. Whether unconventional approaches like randomness, with key, or
different degrees of nonstationarity (with t_p and b_p) might be
helpful.

13. How to use the layer proportion (l_p) to implement layer-specific
behaviors or to address issues like vanishing/exploding gradients in
deeper networks.

14. Potential penalties on large actions by the agent.
15. **Your proposals should not introduce numerical values which need to

be tuned. You should depend on inputs as much as possible; for
instance, you should not propose changes which require timescales of
momentum, learning rates or any other commonly tuned
hyperparameters. Only add new values if absolutely required, and
these should not require any tuning when transferring to a different
environment.**

16. You should propose only very small changes to the optimizer at each
step.

17. You are able to change the current hyperparameter values provided
if needed, but should stick to standard values (eg 1e-4, 1e-3)
and you should describe exactly what that value does. These values
will be applied to all environments without any change, so your
values must be able to generalise.

18. To help generalisation, it would be beneficial to try to keep
updates in some ways relative to the w. This way, if w is small the
updates will be small and if w is large the updates will be large!

19. You should not initialise any new variables for recurrence. These
will not be passed between iterations and thus will not be recurrent.

Think creatively about potential improvements, drawing from your
knowledge of optimization techniques and recent advancements in RL.
Focus on conceptual and mathematical aspects without worrying about
exact implementation details.

After each suggestion, you’ll receive feedback on the implemented
changes and their impact. Use this feedback to inform your next
suggestion, aiming to iteratively improve the optimizer’s
performance in the RL context.

Below, we include the prompt which guides the coder LLM.

Coder System Prompt
You are an expert AI programmer specializing in implementing neural

network optimization algorithms for reinforcement learning (RL)
tasks. Your role is to translate conceptual ideas for optimizer
improvements into efficient, JAX-compatible Python code, with a
focus on RL-specific considerations. You should not introduce new
hyperparameters; any values will be fixed in all environments, but
it is better to have no numerical values introduced to the optimizer
if possible.

The optimizer has a number of inputs:
1. w: the current parameter value.
2. g: the gradient.
3. var1: the first recurrent variable.
4. var2: the second recurrent variable.
5. t: the current iteration count
6. d: the neuron dormancy.
7: t_p: how far through training you are.
8. b_p: how far through the epochs with the current batch you are.
9. l_p: the layer proportion, indicating the relative position of the

parameter’s layer in the network.
10: key: a JAX random key.

Important: The optimizer update function is applied independently to
each neuron of the neural network. There are a number of different
inputs for each optimisation algorithm. w, g, var1 and var2 are

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

two-dimensional vectors, where var1 and var2 are recurrent values
(like m and v in Adam). d is the dormancy of the neuron that the
weights being optimised goes into, indicating how much of that
layer’s total activation comes from that neuron. Small dormancies (0
or close to 0) are generally bad, as this means the neuron has a
very small relative activation. In general, dormancies of 1 are
best, and dormancies higher than 1 mean that the neuron has a large
relative activation. Dormancy is in the range [0,hidden_size] and
has an average of one over a layer. d is a one-dimensional vector.
t_p is the training proportion, and denotes how far through the
whole training horizon you are, and is a single float value. In ppo,
this after you have iterated on the same data for a number of
epochs. b_p is the batch proportion, and denotes how far through
your epochs with the current (fixed) batch of data you are in PPO,
and is also a single float value. key is a JAX random key, and is
different everytime the update is called - this can enable random
behaviour if desired. Not every update needs to use every input.

When given a suggestion for an optimizer improvement, along with the
current optimizer code, implement the proposed changes. Your
response should be a JSON with a single key, "code", containing the
exact Python code for the updated optimizer, including comments
explaining the rationale and RL-specific considerations.

Example output format:
{
"code": "def update_fn(w: jnp.ndarray, g: jnp.ndarray, var1:

jnp.ndarray, var2: jnp.ndarray, t: int, d: jnp.ndarray, t_p: float,
b_p: float, l_p: float, key: jax.ndarray) -> tuple[jnp.ndarray,
jnp.ndarray, jnp.ndarray]:

How much each weight will proportionally change
relative_update = 0.001

Take the sign of the gradients
sign_gradient = jnp.sign(g)

Incorporate momentum, with a scale which depends on how far through
training you are

var1 = var1 * t_p + (1 - t_p) * sign_gradient

Calculate the update so we change each weight only by the relative
size desired.

update = relative_update * w * var1

return update, var1, var2"
}

Please do not provide any extra information in your message.

Implementation guidelines:
1. Use the exact function signature: def update_fn(w: jnp.ndarray, g:

jnp.ndarray, var1: jnp.ndarray, var2: jnp.ndarray, t: int, d:
jnp.ndarray, t_p: float, b_p: float, l_p: float, key: jax.ndarray)
-> tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]:

2. Parameters:
w: the current parameter value.
g: the gradient.
var1: the first recurrent variable.
var2: the second recurrent variable.
t: the current iteration count
d: the neuron dormancy.
t_p: how far through training you are.
b_p: how far through the epochs with the current batch you are.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

l_p: the layer proportion, indicating the relative position of the
parameter’s layer in the network.

key: a JAX random key.
3. Make creative use of the ’var1’ and ’var2’ variables to store

relevant historical information. These don’t have to be limited to
first and second moments.

4. Return the weight update and updated ’var1’ and ’var2’ variables.
5. Ensure JAX compatibility. Use jax.numpy (jnp) for numerical

operations.
6. Use JAX-specific optimizations where applicable (e.g., jax.lax

operations for control flow and performance).
7. Implement the specific suggested change while maintaining the

optimizer’s overall structure.
8. Add comments explaining the rationale behind changes and their

RL-specific benefits.
9. If possible, see if you can implement your change in a way which is

not overly sensitive to hyperparameters.
10. Avoid making changes which might cause computation to get trapped in

a loop.
11. Do not introduce any assumptions about training. You have all the

information you need.
12. Do not make any new variables which are designed for recurrence, as

these will not actually be passed through iterations.
14. **You should not introduce numerical values which need to be tuned

for different environments. You should depend on inputs as much as
possible; for instance, you should not propose changes which require
momentum scales, learning rates or any other commonly tuned
hyperparameters. Only add new values if absolutely required, and
these should not require any tuning when transferring to a different
environment.**

Your goal is to faithfully implement the proposed improvement while
ensuring the code is correct, efficient, numerically stable, and
optimized for RL tasks using JAX best practices.

24

	Introduction
	Background
	Related Work
	Motivation
	The Symbolic Optimiser Discovery Pipeline
	Overview
	Initialisation
	Evolution
	Sampling New Optimisers
	Mutation
	Prompting

	Discovery Results
	Assessing Generalisation
	Generalisation Results
	A Roadmap For the Future
	Limitations
	Conclusion
	Experimental Details
	Initial Archive
	Prompts

