
Trained Transformers Learn Linear Models
In-Context

Anonymous Author(s)
Affiliation
Address
email

Abstract

Attention-based neural network sequence models such as transformers have the1

capacity to act as supervised learning algorithms: They can take as input a sequence2

of labeled examples and output predictions for unlabeled test examples. Indeed,3

recent work by Garg et al. has shown that when training GPT2 architectures4

over random instances of linear regression problems, these models’ predictions5

mimic those of ordinary least squares. Towards understanding the mechanisms6

underlying this phenomenon, we investigate the dynamics of in-context learning of7

linear predictors for a transformer with a single linear self-attention layer trained8

by gradient flow. We show that despite the non-convexity of the underlying9

optimization problem, gradient flow with a random initialization finds a global10

minimum of the objective function. Moreover, when given a prompt of labeled11

examples from a new linear prediction task, the trained transformer achieves small12

prediction error on unlabeled test examples. We further characterize the behavior13

of the trained transformer under distribution shifts.14

1 Introduction15

Transformer-based neural networks have quickly become the default machine learning model for16

problems in natural language processing, forming the basis of ChatGPT [OpenAI, 2023], and are17

increasingly popular in computer vision [Dosovitskiy et al., 2021]. When trained on sufficiently large18

and diverse datasets, these models are often able to perform in-context learning (ICL): when given a19

short sequence of input-output pairs (called a prompt) from a particular task as input, the model can20

formulate predictions on test examples without having to make any updates to the parameters.21

Recently, Garg et al. [2022], von Oswald et al. [2022], Akyürek et al. [2022] initiated the investigation22

of ICL from the perspective of learning particular function classes. At a high-level, this refers to when23

the model has access to instances of prompts of the form (x1, h(x1), . . . , xN , h(xN), xquery) where24

xi, xquery are sampled i.i.d. from a distribution Dx and h is sampled independently from a distribution25

over functions in a function class H. The transformer succeeds at in-context learning if when given a26

new prompt (x′
1, h

′(x′
1), . . . , x

′
N , h′(x′

N), x′
query) corresponding to an independently sampled h′ it is27

able to formulate a prediction for x′
query that is close to h′(x′

query) given a sufficiently large number of28

examples N . However, this leaves open the question of how it is that gradient-based optimization29

algorithms over transformer architectures produce models which are capable of in-context learning.30

In this work, we investigate the learning dynamics of gradient flow in a simplified transformer31

architecture when the training prompts consists of random instances of linear regression datasets. We32

establish that for a class of transformers with a single layer and with a linear self-attention module33

(LSAs), gradient flow on the population loss with a suitable random initialization converges to a global34

minimum of the population objective, despite the non-convexity of the underlying objective function.35

Submitted to R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at
NeurIPS 2023. Do not distribute.

Next, we characterize the learning algorithm that is encoded by the transformer at convergence,36

as well as the prediction error achieved when the model is given a test prompt corresponding to37

a new (and possibly nonlinear) prediction task. Then, we use this to conclude that transformers38

trained by gradient flow indeed in-context learn the class of linear models. Moreover, we characterize39

the robustness of the trained transformer to a variety of distribution shifts. We show that although40

a number of shifts can be tolerated, shifts in the covariate distribution of the features xi can not.41

Motivated by this failure under covariate shift, we consider a generalized setting of in-context learning42

where the covariate distribution can vary across prompts. We provide global convergence guarantees43

for LSAs trained by gradient flow in this setting and show that even when trained on a variety of44

covariate distributions, LSAs still fail under covariate shift. We then empirically investigate the45

behavior of large, nonlinear transformers when trained on linear regression prompts. We find that46

these more complex models are able to generalize better under covariate shift, especially when trained47

on prompts with varying covariate distributions.48

2 Preliminaries49

In-context learning We begin by describing a framework for in-context learning of function classes,50

as initiated by Garg et al. [2022]. In-context learning refers to the behavior of models that operate on51

sequences, called prompts, of input-output pairs (x1, y1, . . . , xN , yN , xquery), where yi = h(xi) for52

some (unknown) function h and examples xi and query xquery. The goal for an in-context learner is53

to use the prompt to form a prediction ŷ(xquery) for the query such that ŷ(xquery) ≈ h(xquery).54

From this high-level description, one can see that at a surface level, the behavior of in-context learning55

is no different than that of a standard learning algorithm: the learner takes as input a training dataset56

and returns predictions on test examples. For instance, one can view ordinary least squares as an57

‘in-context learner’ for linear models. However, the rather unique feature of in-context learners is58

that these learning algorithms can be the solutions to stochastic optimization problems defined over a59

distribution of prompts. We formalize this notion in the following definition.60

Definition 2.1 (Trained on in-context examples). Let Dx be a distribution over an input space X ,61

H ⊂ YX a set of functions X → Y , and DH a distribution over functions in H. Let ℓ : Y × Y → R62

be a loss function. Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set of finite-63

length sequences of (x, y) pairs and let FΘ = {fθ : S × X → Y, θ ∈ Θ} be a class of functions64

parameterized by θ in some set Θ. For N > 0, we say that a model f : S × X → Y is trained on65

in-context examples of functions in H under loss ℓ w.r.t. (DH,Dx) if f = fθ∗ where θ∗ ∈ Θ satisfies66

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN),xquery) [ℓ (fθ(P), h(xquery))] , (1)

where xi, xquery
i.i.d.∼ Dx and h ∼ DH are independent. We call N the length of the prompts seen67

during training.68

As mentioned above, this definition naturally leads to a method for learning a learning algorithm69

from data: Sample independent prompts by sampling a random function h ∼ DH and feature vectors70

xi, xquery
i.i.d.∼ Dx, and then minimize the objective function appearing in (1) using stochastic gradient71

descent or other stochastic optimization algorithms. This procedure returns a model that is learned72

from in-context examples and can form predictions for test (query) examples given a sequence of73

training data. This leads to the following natural definition that quantifies how well such a model74

performs on in-context examples corresponding to a particular hypothesis class.75

Definition 2.2 (In-context learning of a hypothesis class). Let Dx be a distribution over an input76

space X , H ⊂ YX a class of functions X → Y , and DH a distribution over functions in H. Let77

ℓ : Y × Y → R be a loss function. Let S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set78

of finite-length sequences of (x, y) pairs. We say that a model f : S × X → Y defined on prompts of79

the form P = (x1, h(x1), . . . , xM , h(xM), xquery) in-context learns a hypothesis class H under loss80

ℓ with respect to (DH,Dx) if there exists a function MDH,Dx(ε) : (0, 1) → N such that for every81

ε ∈ (0, 1), and for every prompt P of length M ≥ MDH,Dx(ε),82

EP=(x1,h(x1),...,xM ,h(xM),xquery) [ℓ (f(P), h (xquery))] ≤ ε, (2)

where the expectation is over the randomness in xi, xquery
i.i.d.∼ Dx and h ∼ DH.83

2

Note that in order for a model to in-context learn a hypothesis class, it must be expressive enough84

to achieve arbitrarily small error when sampling a random prompt whose labels are governed by85

some hypothesis h. With these two definitions in hand, we can formulate the following questions:86

suppose a function class FΘ is given and DH corresponds to random instances of hypotheses in a87

hypothesis class H. Can a model from FΘ that is trained on in-context examples of functions in88

H w.r.t. (DH,Dx) in-context learn the hypothesis class H w.r.t. (DH,Dx)? How large must the89

training prompts be in order for this to occur? Do standard gradient-based optimization algorithms90

suffice for training the model from in-context examples? How many in-context examples MDH,Dx
(ε)91

are needed to achieve error ε? In the remaining sections, we shall answer these questions for the92

case of one-layer transformers with linear self-attention modules when the hypothesis class is linear93

models, the loss of interest is the squared loss, and the marginals are (possibly anisotropic) Gaussian94

marginals.95

Linear self-attention networks In this work, we consider a simplified version of the single-layer96

self-attention module [Vaswani et al., 2017]. Let xi ∈ Rd and yi ∈ R denote the feature vector97

and its label, and E ∈ R(d+1)×(N+1) be an embedding matrix that is formed using a prompt98

(x1, y1, . . . , xN , yN , xquery) of length N . The specific expression of token matrix and the linear99

self-attention(LSA) layer are defined as100

E =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0

)
, fLSA(E; θ) = E +WPV E · E

⊤WKQE

ρ
; (3)

Here, we have θ =
(
WKQ,WPV

)
, where WKQ is the merged key-query matrix and WPV the101

merged projection-value matrix. ρ is the normalizer which is the width of token matrix E minus102

one. Under the above token embedding, we take ρ = N. The prediction for the token xquery is the103

bottom-right entry of the output matrix, namely, ŷquery = ŷquery(E; θ) = [fLSA(E; θ)](d+1),(N+1).104

Training procedure We assume training prompts are sampled as follows. Let Λ be a posi-105

tive definite covariance matrix. Each training prompt, indexed by τ ∈ N, takes the form of106

Pτ = (xτ,1, hτ (xτ1), . . . , xτ,N , hτ (xτ,N), xτ,query), where task weights wτ
i.i.d.∼ N(0, Id), inputs107

xτ,i, xτ,query
i.i.d.∼ N(0,Λ), and labels hτ (x) = ⟨wτ , x⟩. Each prompt corresponds to an embedding108

matrix Eτ , formed using the transformation (3). We denote the prediction of the LSA model on the109

query label in the task τ as ŷτ,query. In this paper, we consider the gradient flow over the population110

loss, which captures the behavior of gradient descent with infinitesimal step size and has dynamics111

given by the following differential equation:112

d

dt
θ = −∇L(θ), L(θ) =

1

2
Ewτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query(E; θ)− ⟨wτ , xτ,query⟩)2

]
. (4)

For the initialization, we assume113

WPV (0) = σ

(
0d×d 0d
0⊤d 1

)
, WKQ(0) = σ

(
ΘΘ⊤ 0d
0⊤d 0

)
, (5)

where σ > 0 is a parameter, and let Θ ∈ Rd×d be any matrix satisfying ∥ΘΘ⊤∥F = 1 and114

ΘΛ ̸= 0d×d. This initialization is satisfied for a particular class of random initialization schemes: if115

M has i.i.d. entries from a continuous distribution, then by setting ΘΘ⊤ = MM⊤/∥MM⊤∥F , the116

assumption is satisfied almost surely. At a high-level, this initializations allow for the layers to be117

‘balanced’ throughout the gradient flow trajectory. Random initializations that induce this balanced-118

ness condition have been utilized in a number of theoretical works on deep linear networks [Du et al.,119

2018, Arora et al., 2018, 2019, Azulay et al., 2021]. We leave the question of convergence under120

alternative random initialization schemes for future work.121

3 Main results122

3.1 Global convergence and prediction error for new tasks123

In this section, we prove that under suitable initialization, gradient flow will converge to a global124

optimum. Due to the space limit, we leave the rigorous proof in the appendix.125

3

Theorem 3.1 (Convergence and limits). Consider gradient flow of the linear self-attention network126

fLSA over the population loss (4). Suppose in (5) the initialization scale σ > 0 satisfies σ2∥Γ∥op
√
d <127

2. Then, the gradient flow converges to a global minimum of the population loss in (4). Moreover,128

WPV and WKQ converge to WPV
∗ and WKQ

∗ respectively, where129

WKQ
∗ = c−1

(
Γ−1 0d

0⊤d 0

)
, WPV

∗ = c

(
0d×d 0d

0⊤d 1

)
, Γ :=

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id, (6)

where c =
[
tr
(
Γ−2

)]1/4
is a constant.130

We note that if we restrict our setting to Λ = Id, then the limiting solution described found by131

gradient flow is quite similar to the construction of von Oswald et al. [2022].132

Next, we would like to characterize the prediction error of the trained network described above133

when the network is given a new prompt. In fact, we can generalize to test prompts which could134

take a significantly different form than the training prompts. Consider prompts that are of the form135

(x1, y1, . . . , xM , yM , xquery) where, for some joint distribution D over (x, y) pairs with marginal136

distribution Dx ∼ N(0,Λ), we have (xi, yi)
i.i.d.∼ D and xquery ∼ N(0,Λ) independently. Note that137

this allows for a label yi to be a nonlinear function of the input xi. The prediction of the trained138

transformer for this prompt is then139

ŷquery = x⊤
queryΓ

−1

(
1

M

M∑
i=1

yixi

)
≈ x⊤

queryΛ
−1E[yx] = x⊤

query

(
argmin
w∈Rd

E[(y − ⟨w, x⟩)2]
)
. (7)

Here, when N and M are large, the approximation comes from Γ−1 ≈ Λ−1 and strong law of large140

numbers. The expectation above is over (x, y) ∼ D. This result suggests that trained transformers141

in-context learn the best linear predictor over a distribution when the test prompt consists of i.i.d.142

samples from a joint distribution over feature-response pairs. In the following theorem, we formalize143

the above and characterize the prediction error when prompts take this form.144

Theorem 3.2 (Generalization error). Let D be a distribution over (x, y) ∈ Rd × R, whose145

marginal distribution on x is Dx = N(0,Λ). Assume the test prompt is of the form P =146

(x1, y1, . . . , xM , yM , xquery), where (xi, yi), (xquery, yquery)
i.i.d.∼ D. Let f∗

LSA be the LSA model147

with parameters WPV
∗ and WKQ

∗ in (6), and ŷquery is the prediction for xquery given the prompt.148

Assume ED[y],ED[xy],ED[y
2xx⊤] exist and are finite. Then, we have149

E (ŷquery − yquery)
2
= min

w∈Rd
E (⟨w, xquery⟩ − yquery)

2
+ O

(
1

M
+

1

N2

)
, (8)

where the expectation is over (xi, yi), (xquery, yquery)
i.i.d.∼ D and O(·) hides problem-dependent150

quantities such as d and Λ.151

This theorem shows that, provided the length of prompts seen during training (N) and the length of152

the test prompt (M) is large enough, a transformer trained by gradient flow from in-context examples153

achieves prediction error competitive with the best linear model. Moreover, our bound shows that154

the length of prompts seen during training and the length of prompts seen at test-time have different155

effects on the expected prediction error: ignoring dimension and covariance-dependent factors, the156

prediction error is at most O(1/M + 1/N2), decreasing more rapidly as a function of the training157

prompt length N compared to the test prompt length M . When D corresponds to noiseless linear158

models, the error for the best linear predictor vanishes, and a simpler expression for the generalization159

risk is given in Appendix E.160

3.2 Behavior of trained transformer under distribution shifts161

Using the identity (7), it is straightforward to characterize the behavior of the trained transformer162

under a variety of distribution shifts. In this section, we shall examine a number of shifts that were first163

explored empirically for transformer architectures by Garg et al. [2022]. Although their experiments164

were for transformers trained by gradient descent, we find that (in the case of linear models) many of165

the behaviors of the trained transformers under distribution shift are identical to those predicted by166

4

our theoretical characterizations of the performance of transformers with a single linear self-attention167

layer trained by gradient flow on the population.168

Following Garg et al. [2022], for training prompts of the form (x1, h(x1), . . . , xN , h(xN), xquery),169

let us assume xi, xquery
i.i.d.∼ Dtrain

x and h ∼ Dtrain
H , while for test prompts let us assume xi

i.i.d.∼ Dtest
x ,170

xquery ∼ Dtest
query, and h ∼ Dtest

H . We will consider the following distinct categories of shifts:171

Task shifts: Dtrain
H ̸= Dtest

H ; Query shifts:Dtest
query ̸= Dtest

x ; Covariate shifts: Dtrain
x ̸= Dtest

x .

In the following, we shall fix Dtrain
x = N(0,Λ) and vary the other distributions. Recall from (7) that172

the prediction for a test prompt (x1, y1, . . . , xN , yN , xquery) is given by (for N large), it holds that173

ŷquery = x⊤
queryΓ

−1

(
1

M

M∑
i=1

yixi

)
≈ x⊤

queryΛ
−1

(
1

M

M∑
i=1

yixi

)
. (9)

Task shifts. These shifts are tolerated easily by the trained transformer. As Theorem E.1 shows,174

the trained transformer is competitive with the best linear model provided the prompt length during175

training and at test time is large enough. In particular, even if the prompt is such that the labels yi are176

not given by ⟨w, xi⟩ for some w ∼ N(0, Id), the trained transformer will compute a prediction which177

has error competitive with the best linear model that fits the test prompt.178

For example, consider a prompt corresponding to a noisy linear model, so that the prompt consists of a179

sequence of (xi, yi) pairs where yi = ⟨w, xi⟩+ εi for some arbitrary vector w ∈ Rd and independent180

sub-Gaussian noise εi. Then from (7), the prediction of the transformer on query examples is181

ŷquery ≈ x⊤
queryΛ

−1

(
1

M

M∑
i=1

yixi

)
= x⊤

queryΛ
−1

(
1

M

M∑
i=1

xix
⊤
i

)
w+x⊤

queryΛ
−1

(
1

M

M∑
i=1

εixi

)
.

Since εi is mean zero and independent of xi, this is approximately x⊤
queryw when M is large. And182

note that this calculation holds for an arbitrary vector w, not just those which are sampled from an183

isotropic Gaussian or those with a particular norm. This behavior coincides with that of the trained184

transformers observed by Garg et al. [2022].185

Query shifts. Continuing from (9), it holds that ŷquery ≈ x⊤
queryΛ

−1
(

1
M

∑M
i=1 xix

⊤
i

)
w since186

yi = ⟨w, xi⟩. From this we see that whether query shifts can be tolerated hinges upon the distribution187

of the xi’s. Since Dtrain
x = Dtest

x , if M is large then188

ŷquery ≈ x⊤
queryΛ

−1Λw = x⊤
queryw. (10)

Thus, very general shifts in the query distribution can be tolerated. On the other hand, very different189

behavior can be expected if M is not large and the query example depends on the training data. For190

example, if the query example is orthogonal to the subspace spanned by the xi’s, the prediction will191

be zero, as was observed with transformer architectures by Garg et al. [2022].192

Covariate shifts. In contrast to task and query shifts, covariate shifts cannot be fully tolerated193

in the transformer. This can be easily seen due to the identity (9): when Dtrain
x ̸= Dtest

x , then the194

approximation in (10) does not hold as 1
M

∑M
i=1 xix

⊤
i will not cancel Γ−1 when M and N are large.195

For instance, if we consider test prompts where the covariates are scaled by a constant c ̸= 1, then196

ŷquery ≈ x⊤
queryΛ

−1

(
1

M

M∑
i=1

xix
⊤
i

)
≈ x⊤

queryΛ
−1c2Λw = c2x⊤

queryw ̸= x⊤
queryw.

This failure mode of the trained transformer with linear self-attention was also observed in the trained197

transformer architectures by Garg et al. [2022]. This suggests that although the predictions of the198

transformer may look similar to those of ordinary least squares in some settings, the algorithm199

implemented by the transformer is not the same since ordinary least squares is robust to scaling of200

the features by a constant.201

It may seem surprising that a transformer trained on linear regression tasks fails in settings where202

ordinary least squares performs well. However, both the linear self-attention transformer we consider203

5

and the transformers considered by Garg et al. [2022] were trained on instances of linear regression204

when the covariate distribution Dx over the features was fixed across instances. This leads to the205

natural question of what happens if the transformers instead are trained on prompts where the206

covariate distribution varies across instances, which we explore in the following section.207

3.3 Transformers trained on prompts with random covariate distributions208

The linear self-attention transformer we considered was trained on instances of linear regression209

when the covariate distribution Dx over the features was fixed across instances. This leads to210

the natural question of what happens if the transformers instead are trained on prompts where211

the covariate distribution varies across instances. Let us assume that the covariate distribution212

Dx for each task is sampled from a distribution ∆, and and training prompts for each task are213

(x1, h(x1), . . . , xN , h(xN), xquery) where xi, xquery
i.i.d.∼ Dx and h ∼ DH. In this paper, the covariate214

distributions are sampled by first sampling a diagonal matrix Λτ = diag (λτ,i : i ∈ [d]) where λτ,i215

are independent, strictly positive a.s. and have finite third moments. We then sample xi, xquery ∼216

N(0,Λτ) and w ∼ N(0, Id) with yτ,i = ⟨w, xτ,i⟩ and form the token embedding matrix and217

linear self-attention network (3) as before, and again consider gradient flow on the population loss.218

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 1.0

0 20 40 60 80 100
in-context examples

0

1

2

3

4

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 4.0

LSA Limit
fixedcov_N40

fixedcov_N70
fixedcov_N100

randomcov_N40
randomcov_N70

randomcov_N100
Least Squares

Figure 1: Normalized prediction error for GPT2 as a function of the number of in-context test
examples M when trained on in-context examples of linear models in d = 20 dimensions.
Colored lines correspond to different training context lengths (N ∈ {40, 70, 100}) and
different training procedures (either a fixed identity covariance matrix or random diagonal
covariance matrices with each diagonal element sampled i.i.d. from the standard exponential
distribution). The gray dashed line shows the prediction error of zero estimator and the black
dashed line that of LSA model when M,N → ∞. The GPT2 models achieve smaller error
when they are trained on random covariance matrices with larger contexts, but their prediction
error spikes when evaluated on contexts larger than those they were trained on.

219

We show that in this setting, gra-220

dient flow with a suitable ran-221

dom initialization converges to222

a global minimum of the popula-223

tion loss. However, at this global224

minimum, the transformer does225

not in-context learn the hypoth-226

esis class with varying covari-227

ate distributions, even when the228

prompt length in the training and229

test time go to infinity (See Theo-230

rem F.2 and the following discus-231

sion). We further examined this232

random covariance case empiri-233

cally on standard GPT2 architec-234

ture. We found that when trained235

on fixed covariance data, the236

GPT2 model will struggle with237

the random covariance prompt at238

test time if the variance is large.239

When trained on random covariance data however, the model performs better for test prompts from240

higher-variance random covariance matrices, but still fails to match the performance of least squares.241

More details about random covariance case and experiments on GPT2 are in Appendix F and G.242

4 Conclusion and future work243

In this work, we investigated the dynamics of in-context learning of transformers with a single linear244

self-attention layer under gradient flow on the population loss, when trained on prompts consisting245

of random instances of noiseless linear models over anisotropic Gaussian marginals. Despite non-246

convexity, suitable random initialization leads to convergence to a specific global minimum. We247

found that the trained transformer is robust to task and some query distribution shifts but brittle to248

distribution shifts between training and test covariates, aligning with empirical observations from Garg249

et al. [2022]. Future directions include exploring whether similar results apply to stochastic gradient250

descent with more general initializations and finite step sizes. There’s also interest in understanding251

in-context learning dynamics in deep, nonlinear transformers beyond the single linear self-attention252

layer studied. Another intriguing direction is to determine how those more complex models like GPT2253

provably show robustness against certain types of distribution shifts, especially over linguistic data.254

Additionally, while current in-context learning focuses on fixed covariate distributions, understanding255

its dynamics when these distributions vary across prompts, especially as larger transformers show256

promise but remain sub-optimal, is a compelling research avenue.257

6

References258

Jacob Abernethy, Alekh Agarwal, Teodor V. Marinov, and Manfred K. Warmuth. A mechanism for259

sample-efficient in-context learning for sparse retrieval tasks. Preprint, arXiv:2305.17040, 2023.260

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement261

preconditioned gradient descent for in-context learning. Preprint, arXiv:2306.00297, 2023.262

Kabir Ahuja, Madhur Panwar, and Navin Goyal. In-context learning through the bayesian prism.263

arXiv preprint arXiv:2306.04891, 2023.264

Kartik Ahuja and David Lopez-Paz. A closer look at in-context learning under distribution shifts.265

Preprint, arXiv:2305.16704, 2023.266

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-267

rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,268

2022.269

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh270

Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length271

generalization in large language models. In Advances in Neural Information Processing Systems272

(NeurIPS), 2022.273

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit274

acceleration by overparameterization. In International Conference on Machine Learning, pages275

244–253, 2018.276

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix277

factorization. Advances in Neural Information Processing Systems, 32, 2019.278

Shahar Azulay, Edward Moroshko, Mor Shpigel Nacson, Blake E Woodworth, Nathan Srebro, Amir279

Globerson, and Daniel Soudry. On the implicit bias of initialization shape: Beyond infinitesimal280

mirror descent. In International Conference on Machine Learning, pages 468–477, 2021.281

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:282

Provable in-context learning with in-context algorithm selection. Preprint, arXiv:2306.04637,283

2023.284

Mohamed Ali Belabbas. On implicit regularization: Morse functions and applications to matrix285

factorization. arXiv preprint arXiv:2001.04264, 2020.286

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers and287

its implications in sequence modeling. arXiv preprint arXiv:2006.09286, 2020.288

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization:289

An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269, 2019.290

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can gpt learn in-291

context? language models secretly perform gradient descent as meta optimizers. arXiv preprint292

arXiv:2212.10559, 2022.293

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.294

Transformer-xl: Attentive language models beyond a fixed-length context. In Association for295

Computational Linguistics (ACL), 2019.296

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Łukasz Kaiser. Universal297

transformers, 2019.298

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas299

Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,300

and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.301

In International Conference on Learning Representations (ICLR), 2021.302

7

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous303

models: Layers are automatically balanced. Advances in neural information processing systems,304

31, 2018.305

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable306

creation in self-attention mechanisms. In International Conference on Machine Learning, 2022.307

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn308

in-context? a case study of simple function classes. arXiv preprint arXiv:2208.01066, 2022.309

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.310

Implicit regularization in matrix factorization. Advances in Neural Information Processing Systems,311

30, 2017.312

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. In-context learning of large language models explained313

as kernel regression, 2023.314

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.315

Advances in Neural Information Processing Systems, 35:37822–37836, 2022.316

Jikai Jin, Zhiyuan Li, Kaifeng Lyu, Simon S Du, and Jason D Lee. Understanding incremental learning317

of gradient descent: A fine-grained analysis of matrix sensing. arXiv preprint arXiv:2301.11500,318

2023.319

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint320

arXiv:1412.6980, 2014.321

Shuai Li, Zhao Song, Yu Xia, Tong Yu, and Tianyi Zhou. The closeness of in-context learning and322

weight shifting for softmax regression. arXiv preprint arXiv:2304.13276, 2023a.323

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as324

algorithms: Generalization and stability in in-context learning. arXiv preprint arXiv:2301.07067,325

2023b.326

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized327

matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,328

pages 2–47, 2018.329

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a330

mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023c.331

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent332

for matrix factorization: Greedy low-rank learning. arXiv preprint arXiv:2012.09839, 2020.333

Valerii Likhosherstov, Krzysztof Choromanski, and Adrian Weller. On the expressive power of334

self-attention matrices. arXiv preprint arXiv:2106.03764, 2021.335

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers336

learn shortcuts to automata. In International Conference on Learning Representations (ICLR),337

2023.338

AR Meenakshi and C Rajian. On a product of positive semidefinite matrices. Linear algebra and its339

applications, 295(1-3):3–6, 1999.340

JV Michalowicz, JM Nichols, F Bucholtz, and CC Olson. An isserlis’ theorem for mixed gaussian341

variables: Application to the auto-bispectral density. Journal of Statistical Physics, 136:89–102,342

2009.343

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke344

Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv345

preprint arXiv:2202.12837, 2022.346

OpenAI. Gpt-4 technical report, 2023.347

8

Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural348

network architectures. arXiv preprint arXiv:1901.03429, 2019.349

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical University350

of Denmark, 7(15):510, 2008.351

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language352

understanding by generative pre-training. 2018.353

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language354

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.355

Mahdi Soltanolkotabi, Dominik Stöger, and Changzhi Xie. Implicit balancing and regularization:356

Generalization and convergence guarantees for overparameterized asymmetric matrix sensing.357

arXiv preprint arXiv:2303.14244, 2023.358

Asher Trockman and J Zico Kolter. Mimetic initialization of self-attention layers. arXiv preprint359

arXiv:2305.09828, 2023.360

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz361

Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing362

Systems, 30, 2017.363

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,364

Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent.365

arXiv preprint arXiv:2212.07677, 2022.366

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic367

models: Explaining and finding good demonstrations for in-context learning. arXiv preprint368

arXiv:2301.11916, 2023.369

Gian-Carlo Wick. The evaluation of the collision matrix. Physical review, 80(2):268, 1950.370

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,371

Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art372

natural language processing. In Proceedings of the 2020 conference on empirical methods in373

natural language processing: system demonstrations, pages 38–45, 2020.374

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context375

learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.376

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.377

Are transformers universal approximators of sequence-to-sequence functions? arXiv preprint378

arXiv:1912.10077, 2019.379

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv380

Kumar. O (n) connections are expressive enough: Universal approximability of sparse transformers.381

Advances in Neural Information Processing Systems, 33:13783–13794, 2020.382

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-383

context learning learn? bayesian model averaging, parameterization, and generalization. Preprint,384

arXiv:2305.19420, 2023.385

9

A Notations386

In this section, we briefly describe the notation we use in the paper. We write [n] = {1, 2, ..., n}. We387

use ⊗ to denote the Kronecker product, and Vec the vectorization operator in column-wise order.388

For example, Vec
(
1 2
3 4

)
= (1, 3, 2, 4)⊤. We write the inner product of two matrices A,B ∈ Rm×n389

as ⟨A,B⟩ = tr(AB⊤). We use 0n and 0m×n to denote the zero vector and zero matrix of size n390

and m× n, respectively. For a general matrix A, Ak: and A:k denote the k-th row and k-th column,391

respectively. We denote the matrix operator norm and Frobenius norm as ∥·∥op and ∥·∥F . We use Id392

to denote the d-dimensional identity matrix and sometimes we also use I when the dimension is clear393

from the context. For a positive semi-definite matrix A, we write ∥x∥2A := x⊤Ax. Unless otherwise394

defined, we use lower case letters for scalars and vectors, and use upper case letters for matrices.395

B Additional related works396

The literature on transformers and non-convex optimization in machine learning is vast. In this397

section, we will focus on those works most closely related to theoretical understanding of in-context398

learning of function classes.399

As mentioned previously, Garg et al. [2022] empirically investigated the ability for transformer400

architectures to in-context learn a variety of function classes. They showed that when trained on401

random instances of linear regression, the models’ predictions are very similar to those of ordinary402

least squares. Additionally, they showed that transformers can in-context learn two-layer ReLU403

networks and decision trees, showing that by training on differently-structured data, the transformers404

learn to implement distinct learning algorithms. A number of works further investigated the types405

of algorithms implemented by transformers trained on in-context examples of linear models [Ahuja406

et al., 2023, Ahuja and Lopez-Paz, 2023].407

Akyürek et al. [2022] and von Oswald et al. [2022] examined the behavior of transformers when408

trained on random instances of linear regression, as we do in this work. They considered the setting409

of isotropic Gaussian data with isotropic Gaussian weight vectors, and showed that the trained410

transformer’s predictions mimic those of a single step of gradient descent. They also provided a411

construction of transformers which implement this single step of gradient descent. By contrast, we412

explicitly show that gradient flow provably converges to transformers which learn linear models413

in-context. Moreover, our analysis holds when the covariates are anisotropic Gaussians, for which a414

single step of vanilla gradient descent is unable to achieve small prediction error.1415

Let us briefly mention a number of other works on understanding in-context learning in transformers416

and other sequence-based models. Han et al. [2023] suggests that Bayesian inference on prompts can417

be asymptotically interpreted as kernel regression. Dai et al. [2022] interprets ICL as implicit fine-418

tuning, viewing large language models as meta-optimizers performing gradient-based optimization.419

Xie et al. [2021] regards ICL as implicit Bayesian inference, with transformers learning a shared420

latent concept between prompts and test data, and they prove the ICL property when the training421

distribution is a mixture of HMMs. Similarly, Wang et al. [2023] perceives ICL as a Bayesian422

selection process, implicitly inferring information pertinent to the designated tasks. Li et al. [2023a]423

explores the functional resemblance between a single layer of self-attention and gradient descent on424

a softmax regression problem, offering upper bounds on their difference. Min et al. [2022] notes425

that the alteration of label parts in prompts does not drastically impair the ICL ability. They contend426

that ICL is invoked when prompts reveal information about the label space, input distribution, and427

sequence structure.428

Another collection of works have sought to understand transformers from an approximation theoretic429

perspective. Yun et al. [2019, 2020] established that transformers can universally approximate any430

sequence-to-sequence function under some assumptions. Investigations by Edelman et al. [2022],431

Likhosherstov et al. [2021] indicate that a single-layer self-attention can learn sparse functions of432

the input sequence, where sample complexity and hidden size are only logarithmic relative to the433

1To see this, suppose (xi, yi) are i.i.d. with x ∼ N(0,Λ) and y = ⟨w, x⟩. A single step of gradient
descent under the squared loss from a zero initialization yields the predictor x 7→ x⊤ (

1
n

∑n
i=1 yixi

)
=

x⊤ (
1
n

∑n
i=1 xix

⊤
i

)
w ≈ x⊤Λw. Clearly, this is not close to x⊤w when Λ ̸= Id.

10

sequence length. Further studies by Pérez et al. [2019], Dehghani et al. [2019], Bhattamishra et al.434

[2020] indicate that the vanilla transformer and its variants exhibit Turing completeness. Liu et al.435

[2023] showed that transformers can approximate finite-state automata with few layers. Bai et al.436

[2023] showed that transformers can implement a variety of statistical machine learning algorithms437

as well as model selection procedures. Abernethy et al. [2023] showed that a pretrained transformer438

can be used to define a transformer that segments a prompt into examples and labels and learns to439

solve a sparse retrieval task. Zhang et al. [2023] interpreted in-context learning via a Bayesian model440

averaging process.441

A handful of recent works have developed provable guarantees for transformers trained with gradient-442

based optimization. Jelassi et al. [2022] analyzed the dynamics of gradient descent in vision trans-443

formers for data with spatial structure. Li et al. [2023c] demonstrated that a single-layer transformer444

trained by a gradient method could learn a topic model, treating learning semantic structure as445

detecting co-occurrence between words and theoretically analyzing the two-stage dynamics during446

the training process.447

Finally, we note a concurrent work by Ahn et al. [2023] on the optimization landscape of single layer448

transformers with linear self-attention layers as we do in this work. They show that there exist global449

minima of the population objective of the transformer that can achieve small prediction error with450

anisotropic Gaussian data, and they characterize some critical points of deep linear self-attention451

networks. In this work, we show that despite nonconvexity, gradient flow with a suitable random452

initialization converges to a global minimum that achieves small prediction error for anistropic453

Gaussian data. We also characterize the prediction error when test prompts come from a new454

(possibly nonlinear) task, when there is distribution shift, and when transformers are trained on455

prompts with possibly different covariate distributions across prompts.456

11

C Linear self-attention and training procedure457

C.1 Linear self-attention and the prediction458

Before describing the particular transformer models we analyze in this work, we first recall the459

definition of the softmax-based single-head self-attention module [Vaswani et al., 2017]. Let E ∈460

Rde×dN be an embedding matrix that is formed using a prompt (x1, y1, . . . , xN , yN , xquery) of461

length N . The user has the freedom to determine how this embedding matrix is formed from the462

prompt. One natural way to form E is to stack (xi, yi)
⊤ ∈ Rd+1 as the first N columns of E and463

to let the final column be (xquery, 0)
⊤; if xi ∈ Rd, yi ∈ R, we would then have de = d + 1 and464

dN = N + 1. Let WK ,WQ ∈ Rdk×de and WV ∈ Rdv×de be the key, query, and value weight465

matrices, WP ∈ Rde×dv the projection matrix, and ρ > 0 a normalization factor. The softmax466

self-attention module takes as input an embedding matrix E of width dN and outputs a matrix of the467

same size,468

fAttn(E;WK ,WQ,WV ,WP) = E +WPWV E · softmax

(
(WKE)⊤WQE

ρ

)
,

where softmax is applied column-wise and, given a vector input of v, the i-th entry of softmax(v) is469

given by exp(vi)/
∑

s exp(vs). The dN × dN matrix appearing inside the softmax is referred to as470

the self-attention matrix. Note that fAttn can take as its input a sequence of arbitrary length.471

In this work, we consider a simplified version of the single-layer self-attention module, which is472

more amenable to theoretical analysis and yet is still capable of in-context learning linear models.473

In particular, we consider a single-layer linear self-attention (LSA) model, which is a modified474

version of fAttn where we remove the softmax nonlinearity, merge the projection and value matrices475

into a single matrix WPV ∈ Rde×de , and merge the query and key matrices into a single matrix476

WKQ ∈ Rde×de . We concatenate these matrices into θ = (WKQ,WPV) and denote477

fLSA(E; θ) = E +WPV E · E
⊤WKQE

ρ
. (11)

We note that recent theoretical works on understanding transformers looked at identical models [von478

Oswald et al., 2022, Li et al., 2023b, Ahn et al., 2023]. It is noteworthy that recent empirical work has479

shown that state-of-the-art trained vision transformers with standard softmax-based attention modules480

are such that (WK)⊤WQ and WPWV are nearly multiples of the identity matrix [Trockman and481

Kolter, 2023], which can be represented under the parameterization we consider.482

The user has the flexibility to determine the method for constructing the embedding matrix from a483

prompt P = (x1, y1, . . . , xN , yN , xquery). In this work, for a prompt of length N, we shall use the484

following embedding, which stacks (xi, yi)
⊤ ∈ Rd+1 into the first N columns with (xquery, 0)

⊤ ∈485

Rd+1 as the last column:486

E = E(P) =

(
x1 x2 · · · xN xquery

y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (12)

We take the normalization factor ρ to be the width of embedding matrix E minus one, i.e., ρ = dN−1,487

since each element in E ·E⊤ is a inner product of two vectors of length dN . Under the above token488

embedding, we take ρ = N. We note that there are alternative ways to form the embedding matrix489

with this data, e.g. by padding all inputs and labels into vectors of equal length and arranging them490

into a matrix [Akyürek et al., 2022], or by stacking columns that are linear transformations of the491

concatenation (xi, yi) [Garg et al., 2022], although the dynamics of in-context learning will differ492

under alternative parameterizations.493

The network’s prediction for the token xquery will be the bottom-right entry of matrix output by fLSA,494

namely,495

ŷquery = ŷquery(E; θ) = [fLSA(E; θ)](d+1),(N+1).

Here and after, we may occasionally suppress dependence on θ and write ŷquery(E; θ) as ŷquery. Since496

the prediction takes only the right-bottom entry of the token matrix output by the LSA layer, actually497

only part of WPV and WKQ affect the prediction. To see how, let us denote498

WPV =

(
WPV

11 wPV
12

(wPV
21)⊤ wPV

22

)
∈ R(d+1)×(d+1), WKQ =

(
WKQ

11 wKQ
12

(wKQ
21)⊤ wKQ

22

)
∈ R(d+1)×(d+1),

(13)

12

where WPV
11 ∈ Rd×d;wPV

12 , wPV
21 ∈ Rd;wPV

22 ∈ R; and WKQ
11 ∈ Rd×d;wKQ

12 , wKQ
21 ∈ Rd;wKQ

22 ∈499

R. Then, the prediction ŷquery is500

ŷquery =
(
(wPV

21)⊤ wPV
22

)
·
(
EE⊤

N

)(
WKQ

11

(wKQ
21)⊤

)
xquery, (14)

since only the last row of WPV and the first d columns of WKQ affects the prediction, which means501

we can simply take all other entries zero in the following sections.502

C.2 Training procedure and the initialization503

In this work, we will consider the task of in-context learning linear predictors. We will assume504

training prompts are sampled as follows. Let Λ be a positive definite covariance matrix. Each training505

prompt, indexed by τ ∈ N, takes the form of Pτ = (xτ,1, hτ (xτ1), . . . , xτ,N , hτ (xτ,N), xτ,query),506

where task weights wτ
i.i.d.∼ N(0, Id), inputs xτ,i, xτ,query

i.i.d.∼ N(0,Λ), and labels hτ (x) = ⟨wτ , x⟩.507

Each prompt corresponds to an embedding matrix Eτ , formed using the transformation (3):508

Eτ :=

(
xτ,1 xτ,2 · · · xτ,N xτ,query

⟨wτ , xτ,1⟩ ⟨wτ , xτ,2⟩ · · · ⟨wτ , xτ,N ⟩ 0

)
∈ R(d+1)×(N+1).

We denote the prediction of the LSA model on the query label in the task τ as ŷτ,query, which is the509

bottom-right element of fLSA(Eτ), where fLSA is the linear self-attention model defined in (3). The510

empirical risk over B independent prompts is defined as511

L̂(θ) =
1

2B

B∑
τ=1

(
ŷτ,query − ⟨wτ , xτ,query⟩

)2

. (15)

We shall consider the behavior of gradient flow-trained networks over the population loss induced by512

the limit of infinite training tasks/prompts B → ∞:513

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query − ⟨wτ , xτ,query⟩)2

]
(16)

Above, the expectation is taken w.r.t. the covariates {xτ,i}Ni=1∪{xquery} in the prompt and the weight514

vector wτ , i.e. over xτ,i, xquery
i.i.d.∼ N(0,Λ) and wτ ∼ N(0, Id). Gradient flow captures the behavior515

of gradient descent with infinitesimal step size and has dynamics given by the following differential516

equation:517

d

dt
θ = −∇L(θ). (17)

We will consider gradient flow with an initialization that satisfies the following.518

Assumption C.1 (Initialization). Let σ > 0 be a parameter, and let Θ ∈ Rd×d be any matrix519

satisfying ∥ΘΘ⊤∥F = 1 and ΘΛ ̸= 0d×d. We assume520

WPV (0) = σ

(
0d×d 0d
0⊤d 1

)
, WKQ(0) = σ

(
ΘΘ⊤ 0d
0⊤d 0

)
. (18)

This initialization is satisfied for a particular class of random initialization schemes: if M has i.i.d.521

entries from a continuous distribution, then by setting ΘΘ⊤ = MM⊤/∥MM⊤∥F , the assumption522

is satisfied almost surely. The reason we use this particular initialization scheme will be made more523

clear when we describe the proof, but at a high-level this is due to the fact that the predictions (14) can524

be viewed as the output of a two-layer linear network, and initializations satisfying Assumption C.1525

allow for the layers to be ‘balanced’ throughout the gradient flow trajectory. Random initializations526

that induce this balancedness condition have been utilized in a number of theoretical works on deep527

linear networks [Du et al., 2018, Arora et al., 2018, 2019, Azulay et al., 2021]. We leave the question528

of convergence under alternative random initialization schemes for future work.529

13

D Theorem 3.1 and the proof530

We first formally describe the theorem on global convergence and the expression for the limits:531

Theorem D.1 (Convergence and limits). Consider gradient flow of the linear self-attention network532

fLSA defined in (3) over the population loss (16). Suppose the initialization satisfies Assumption C.1533

with initialization scale σ > 0 satisfying σ2∥Γ∥op
√
d < 2 where we have defined534

Γ :=

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id ∈ Rd×d.

Then gradient flow converges to a global minimum of the population loss (16). Moreover, WPV and535

WKQ converge to WPV
∗ and WKQ

∗ respectively, where536

WKQ
∗ =

[
tr
(
Γ−2

)]− 1
4

(
Γ−1 0d

0⊤d 0

)
, WPV

∗ =
[
tr
(
Γ−2

)] 1
4

(
0d×d 0d

0⊤d 1

)
. (19)

D.1 Proof of Theorem D.1537

In this section, we briefly outline the proof sketch of Theorem D.1.538

D.1.1 Equivalence to a quadratic optimization problem539

We recall each task τ corresponds to a weight vector wτ ∼ N(0, Id). The prompt inputs for this540

task are xτ,j
i.i.d.∼ N(0,Λ), which are also independent of wτ . The corresponding labels are yτ,j =541

⟨wτ , xτ,j⟩. For each task τ, we can form the prompt into a token matrix Eτ ∈ R(d+1)×(N+1) as in542

(3), with the right-bottom entry being zero.543

The first key step in our proof is to recognize that the prediction ŷquery(Eτ ; θ) in the linear self-544

attention model can be written as the output of a quadratic function u⊤Hτu for some matrix Hτ de-545

pending on the token embedding matrix Eτ and for some vector u depending on θ = (WKQ,WPV).546

This is shown in the following lemma, the proof of which is provided in Appendix D.2.1.547

Lemma D.2. Let Eτ ∈ R(d+1)×(N+1) be an embedding matrix corresponding to a prompt of length548

N and weight wτ . Then the prediction ŷquery(Eτ ; θ) for the query covariate can be written as the549

output of a quadratic function,550

ŷquery(Eτ ; θ) = u⊤Hτu,

where the matrix Hτ is defined as,551

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

(
0d×d xτ,query

(xτ,query)
⊤

0

)
∈ R(d+1)×(d+1)

(20)
and552

u = Vec(U) ∈ R(d+1)2 , U =

(
U11 u12

(u21)
⊤ u−1

)
∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d, u12 = wPV

21 ∈ Rd×1, u21 = wKQ
21 ∈ Rd×1, u−1 = wPV

22 ∈ R553

correspond to particular components of WPV and WKQ, defined in (13).554

555

This implies that we can write the original loss function (15) as556

L̂ =
1

2B

B∑
τ=1

(
u⊤Hτu− w⊤

τ xτ,query

)2
. (21)

Thus, our problem is reduced to understanding the dynamics of an optimization algorithm defined in557

terms of a quadratic function. We also note that this quadratic optimization problem is an instance of558

14

a rank-one matrix factorization problem, a problem well-studied in the deep learning theory literature559

[Gunasekar et al., 2017, Arora et al., 2019, Li et al., 2018, Chi et al., 2019, Belabbas, 2020, Li et al.,560

2020, Jin et al., 2023, Soltanolkotabi et al., 2023].561

Note, however, this quadratic function is non-convex. To see this, we will show that Hτ has562

negative eigenvalues. By standard properties of the Kronecker product, the eigenvalues of Hτ =563

1
2Xτ ⊗

(
EτE

⊤
τ

N

)
are the products of the eigenvalues of 1

2Xτ and the eigenvalues of EτE
⊤
τ

N . Since564

EτE
⊤
τ is symmetric and positive semi-definite, all of its eigenvalues are nonnegative. Since EτE

⊤
τ565

is nonzero almost surely, it thus has at least one strictly positive eigenvalue. Thus, if Xτ has any566

negative eigenvalues, Hτ does as well. The characteristic polynomial of Xτ is given by,567

det(µI −Xτ) = det

(
µId −xτ,query

−x⊤
τ,query µ

)
= µd−1

(
µ2 − ∥xτ,query∥22

)
.

Therefore, we know almost surely, Xτ has one negative eigenvalue. Thus Hτ has at least d + 1568

negative eigenvalues, and hence the quadratic form u⊤Hτu is non-convex.569

D.1.2 Dynamical system of gradient flow570

We now describe the dynamical system for the coordinates of u above. We prove the following lemma571

in Appendix D.2.2.572

Lemma D.3. Let u = Vec (U) := Vec

(
U11 u12

(u21)
⊤ u−1

)
as in Lemma D.2. Consider gradient flow573

over574

L :=
1

2
E
(
u⊤Hτu− w⊤

τ xτ,query

)2
(22)

with respect to u starting from an initial value satisfying Assumption C.1. Then the dynamics of U575

follows576

d

dt
U11(t) = −u2

−1ΓΛU11Λ + u−1Λ
2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤] , (23)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0, where Γ =
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ Rd×d.577

578

We see that the dynamics are governed by a complex system of d2 + 1 coupled differential equations.579

Moreover, basic calculus (for details, see Lemma D.6) shows that these dynamics are the same as580

those of gradient flow on the following objective function:581

ℓ̃ : Rd×d × R → R, ℓ̃ (U11, u−1) = tr

[
1

2
u2
−1ΓΛU11Λ(U11)

⊤ − u−1Λ
2(U11)

⊤
]
. (24)

Actually, the loss function ℓ̃ is simply the loss function L in (22) plus some constants that do not582

depend on the parameter u. Therefore our problem is reduced to studying the dynamics of gradient583

flow on the above objective function.584

Our next key observation is that the set of global minima for ℓ̃ satisfies the condition u−1U11 = Γ−1.585

Thus, if we can establish global convergence of gradient flow over the above objective function ℓ̃,586

then we have that u−1(t)U11(t) → Γ−1 ≈N→∞ Λ−1.587

Lemma D.4. For any global minimum of ℓ̃, we have588

u−1U11 = Γ−1. (25)

Putting this together with Lemma D.3, we see that at those global minima of the population objective589

satisfying U11 = (cΓ)−1, u−1 = c and u12 = u21 = 0d, the transformer’s predictions for a new590

linear regression task prompt are given by591

ŷquery(E; θ) =
1

M

M∑
i=1

yix
⊤
i Γ

−1xquery = w⊤

(
1

M

M∑
i=1

xix
⊤
i

)
Γ−1xquery ≈ w⊤xquery.

15

Thus, the only remaining task is to show global convergence when gradient flow has an initialization592

satisfying Assumption C.1.593

D.1.3 PL inequality and global convergence594

We now show that although the optimization problem is non-convex, a Polyak-Łojasiewicz (PL)595

inequality holds, which implies that gradient flow converges to a global minimum. Moreover, we can596

exactly calculate the limiting value of U11 and u−1.597

Lemma D.5. Suppose the initialization of gradient flow satisfies Assumption C.1 with initialization598

scale satisfying σ2 < 2√
d∥Γ∥op

for Γ = (1 + 1
N)Λ + tr(Λ)

N Id. If we define599

µ :=
σ2

√
d ∥Λ∥2op tr (Γ−1Λ−1) tr (Λ−1)

∥ΛΘ∥2F
[
2−

√
dσ2 ∥Γ∥op

]
> 0, (26)

then gradient flow on ℓ̃ with respect to U11 and u−1 satisfies, for any t ≥ 0,600 ∥∥∥∇ℓ̃(U11(t), u−1(t))
∥∥∥2
2
:=

∥∥∥∥∥ ∂ℓ̃

∂U11

∥∥∥∥∥
2

F

+

∣∣∣∣∣ ∂ℓ̃

∂u−1

∣∣∣∣∣
2

≥ µ

(
ℓ̃(U11(t), u−1(t))− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
.

(27)
Moreover, gradient flow converges to the global minimum of ℓ̃, and U11 and u−1 converge to the601

following,602

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1
2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1. (28)

603

With these observations, proving Theorem D.1 becomes a direct application of Lemma D.2, D.3, D.4,604

and Lemma D.5. It then only requires translating U11 and u−1 back to the original parameterization605

using WPV and WKQ.606

D.2 Proof for supporting lemmas607

In this section, we prove Lemma D.2, Lemma D.3, Lemma D.4 and Lemma D.5. Theorem D.1 is a608

natural corollary of these four lemmas when we translate u−1 and U11 back to WPV and WKQ.609

D.2.1 Proof of Lemma D.2610

For the reader’s convenience, we restate the lemma below.611

Lemma D.2. Let Eτ ∈ R(d+1)×(N+1) be an embedding matrix corresponding to a prompt of length612

N and weight wτ . Then the prediction ŷquery(Eτ ; θ) for the query covariate can be written as the613

output of a quadratic function,614

ŷquery(Eτ ; θ) = u⊤Hτu,

where the matrix Hτ is defined as,615

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

(
0d×d xτ,query

(xτ,query)
⊤

0

)
∈ R(d+1)×(d+1)

(20)
and616

u = Vec(U) ∈ R(d+1)2 , U =

(
U11 u12

(u21)
⊤ u−1

)
∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d, u12 = wPV

21 ∈ Rd×1, u21 = wKQ
21 ∈ Rd×1, u−1 = wPV

22 ∈ R617

correspond to particular components of WPV and WKQ, defined in (13).618

Proof. First, we decompose WPV and WKQ in the way above. From the definition, we know ŷτ,query619

is the right-bottom entry of fLSA(Eτ), which is620

ŷτ,query =
(
(u12)

⊤ u−1

)(EτE
⊤
τ

N

)(
U11

(u21)
⊤

)
xτ,query.

16

We denote ui ∈ Rd+1 as the i-th column of
(

U11
(u21)

⊤

)
and xi

τ,query as the i-th entry of xτ,query for621

i ∈ [d]. Then, we have622

ŷτ,query

=

d∑
i=1

xi
τ,query

(
(u12)

⊤ u−1

)(EτE
⊤
τ

N

)
ui =

d∑
i=1

tr

[
ui

(
(u12)

⊤ u−1

)
· xi

τ,query

(
EτE

⊤
τ

N

)]

=tr

[
Vec

[(
U11

(u21)
⊤

)](
(u12)

⊤ u−1

)
· x⊤

τ,query ⊗
(
EτE

⊤
τ

N

)]

=
1

2
tr

Vec[(U11 u12

(u21)
⊤ u−1

)]
Vec⊤

[(
U11 u12

(u21)
⊤ u−1

)]
·

 0d(d+1)×d(d+1) xτ,query ⊗
(

EτE
⊤
τ

N

)
x⊤
τ,query ⊗

(
EτE

⊤
τ

N

)
0(d+1)×(d+1)


=
1

2
tr

[
uu⊤ ·Xτ ⊗

(
EτE

⊤
τ

N

)]
=
〈
Hτ , uu

⊤〉 .
Here, we use some algebraic facts about matrix vectorization, Kronecker product and trace. For623

reference, we refer to [Petersen et al., 2008].624

D.2.2 Proof of Lemma D.3625

For the reader’s convenience, we restate the lemma below.626

Lemma D.3. Let u = Vec (U) := Vec

(
U11 u12

(u21)
⊤ u−1

)
as in Lemma D.2. Consider gradient flow627

over628

L :=
1

2
E
(
u⊤Hτu− w⊤

τ xτ,query

)2
(22)

with respect to u starting from an initial value satisfying Assumption C.1. Then the dynamics of U629

follows630

d

dt
U11(t) = −u2

−1ΓΛU11Λ + u−1Λ
2

d

dt
u−1(t) = − tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤] , (23)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0, where Γ =
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id ∈ Rd×d.631

Proof. From the definition of L in (22) and the dynamics of gradient flow, we calculate the derivatives632

of u. Here, we use the chain rule and some facts about matrix derivatives. See Lemma H.1 for633

reference.634
du

dt
= −2E

(
⟨Hτ , uu

⊤⟩Hτ

)
u+ 2E

(
w⊤

τ xτ,queryHτ

)
u. (29)

Step One: Calculate the Second Term We first calculate the second term. From the definition of635

Hτ , we have636

E
[
w⊤

τ xτ,queryHτ

]
=

1

2

d∑
i=1

E
[(
xi
τ,queryXτ

)
⊗
(
wi

τ

EτE
⊤
τ

N

)]
.

For ease of notation, we denote637

Λ̂τ :=
1

N

N∑
i=1

xτ,ix
⊤
τ,i. (30)

Then, from the definition of EτE
⊤
τ

N , we know638

EτE
⊤
τ

N
=

(
Λ̂τ + 1

N xτ,query · x⊤
τ,query Λ̂τwτ

wτ Λ̂τ w⊤
τ Λ̂τwτ

)
.

17

Since wτ ∼ N(0, Id) is independent of all prompt inputs and query input, we have639

1

2

d∑
i=1

E
[(
xi
τ,queryXτ

)
⊗
(
wi

τ

N

(
xτ,query · x⊤

τ,query 0
0 0

))]

=
1

2

d∑
i=1

E
[
E
[(
xi
τ,queryXτ

)
⊗
(
wi

τ

N

(
xτ,query · x⊤

τ,query 0
0 0

))] ∣∣∣∣xτ,query

]

=
1

2

d∑
i=1

E

[(
xi
τ,queryXτ

)
⊗

(
E
[
wi

τ | xτ,query

]
N

(
xτ,query · x⊤

τ,query 0
0 0

))]
= 0.

Therefore, we have640

E
[
w⊤

τ xτ,queryHτ

]
=

1

2

d∑
i=1

E

[(
xi
τ,queryXτ

)
⊗

(
wi

τ

(
Λ̂τ Λ̂τwτ

w⊤
τ Λ̂τ w⊤

τ Λ̂τwτ .

))]
.

Since Xτ only depends on xτ,query by definition, and xτ,query is independent of wτ and xτ,i, i =641

1, 2, ..., N, we have642

E
[
w⊤

τ xτ,queryHτ

]
=

1

2

d∑
i=1

[
E
(
xi
τ,queryXτ

)
⊗ E

(
wi

τ

(
Λ̂τ Λ̂τwτ

w⊤
τ Λ̂τ w⊤

τ Λ̂τwτ .

))]

=
1

2

d∑
i=1

[(
0d×d Λi

Λ⊤
i 0

)
⊗

(
E(wi

τ)Λ ΛE(wi
τwτ)

E(wi
τw

⊤
τ)Λ E

(
wi

τw
⊤
τ Λwτ

))]

=
1

2

d∑
i=1

(
0d×d Λi

Λ⊤
i 0

)
⊗

(
0d×d Λi

Λ⊤
i 0

)
,

where Λi denotes Λ:i. Here, the second line comes from the fact that EΛ̂τ = Λ, and that wτ is643

independent of all prompt input and query input. The last line comes from the fact that wτ ∼ N(0, Id).644

Therefore, simple computation shows that645

E
[
w⊤

τ xτ,queryHτ

]
u =

1

2

(
0d(d+1)×d(d+1) A

A⊤ 0(d+1)×(d+1)

)
· u, (31)

where646

A =


V1 + V ⊤

1

V2 + V ⊤
2

...

Vd + V ⊤
d

 ∈ Rd(d+1)×(d+1), Vj =

(
0d×d

∑d
i=1 ΛijΛi

0 0

)
=

(
0d×d ΛΛj

0 0

)
∈ R(d+1)×(d+1).

(32)

Step Two: Calculate the First Term Next, we compute the first term in (29), namely

D := 2E
(
⟨Hτ , uu

⊤⟩Hτu
)
.

For simplicity, we denote Zτ := 1
NEτE

⊤
τ . Using the definition of Hτ in (20) and Lemma H.1, we647

have648

D = 2E
(
⟨Hτ , uu

⊤⟩Hτu
)

(definition)

=
1

2
E
[
tr
(
Xτ ⊗ Zτ Vec (U)Vec (U)

⊤
)
(Xτ ⊗ Zτ)Vec (U)

]
(definition of Hτ in (20) and u = Vec(U))

=
1

2
E
[
tr
(
Vec (ZτUXτ)Vec (U)

⊤
)
Vec (ZτUXτ)

]
(Vec(AXB) = (B⊤ ⊗A)Vec(X) in Lemma H.1)

18

=
1

2
E
[
Vec (U)

⊤ ·Vec (ZτUXτ) ·Vec (ZτUXτ)
]

(property of trace operator)

=
1

2
E

 d+1∑
i,j=1

(
(ZτUXτ)ij Uij

)
Vec (ZτUXτ)

 .

Step Three: u12 and u21 Vanish We first prove that if u12 = u21 = 0d, then d
dtu12 = 0d and649

d
dtu21 = 0d. If this is true, then these two blocks will be zero all the time since we assume they are650

zero at initial time in Assumption C.1. We denote Ak: and A:k as the k-th row and k-th column of651

matrix A, respectively.652

Under the assumption that u12 = u21 = 0d, we first compute653

(ZτUXτ) =

 Λ̂τwτu−1x
⊤
τ,query

(
Λ̂τ + 1

N xτ,query · x⊤
τ,query

)
U11xτ,query

w⊤
τ

(
Λ̂τ

)
wτu−1x

⊤
τ,query w⊤

τ

(
Λ̂τ

)
U11xτ,query

 .

Written in an entry-wise manner, it will be654

(ZτUXτ)kl =



(
Λ̂τ

)
k:
wτu−1x

l
τ,query k, l ∈ [d](

Λ̂τ + 1
N xτ,query · x⊤

τ,query

)
k:
U11xτ,query k ∈ [d], l = d+ 1

w⊤
τ

(
Λ̂τ

)
wτu−1x

l
τ,query l ∈ [d], k = d+ 1

w⊤
τ

(
Λ̂τ

)
U11xτ,query k = l = d+ 1

. (33)

We use Dij to denote the (i, j)-th entry of the (d+ 1)× (d+ 1) matrix D̄ such that Vec(D̄) = D.655

Now we fix a k ∈ [d], then656

Dk,d+1 =
1

2
E

 d+1∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)k,d+1


=
1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)k,d+1

+
1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)k,d+1

]
,

(34)

since Ui,d+1 = Ud+1,i = 0 for any i ∈ [d]. For the first term in the right hand side of last equation,657

we fix i, j ∈ [d] and have658

E
(
(ZτUXτ)ij Uij

)
(ZτUXτ)k,d+1

=E
(
Uij

(
Λ̂τ

)
i:
wτu−1x

j
τ,query ·

(
Λ̂τ +

1

N
xτ,query · x⊤

τ,query

)
k:

U11xτ,query

)
= 0,

since wτ is independent with all prompt input and query input, namely all xτ,i for i ∈ [query], and659

wτ is mean zero. Similarly, for the second term of (34), we have660

E
(
(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)k,d+1

=E
(
u−1w

⊤
τ

(
Λ̂τ

)
U11xτ,query ·

(
Λ̂τ +

1

N
xτ,query · xτ,query

)
k:

U11xτ,query

)
= 0

since E
(
w⊤

τ

)
= 0 and wτ is independent of all xτ,i for i ∈ [query]. Therefore, we have Dk,d+1 = 0661

for k ∈ [d]. Similar calculation shows that Dd+1,k = 0 for k ∈ [d].662

663

19

For k ∈ [d], to calculate the derivative of Uk,d+1, it suffices to further calculate the inner product of664

the d(d+ 1) + k th row of E
[
w⊤

τ xτ,queryHτ

]
and u. From (31), we know this is665

1

2

d∑
j=1

Λ⊤
k ΛjUd+1,j = 0

given that u12 = u21 = 0d. Therefore, we conclude that the derivative of Uk,d+1 will vanish given666

u12 = u21 = 0d. Similarly, we conclude the same result for Ud+1,k for k ∈ [d]. Therefore, we know667

u12 = 0d and u21 = 0d for all time t ≥ 0.668

Step Four: Dynamics of U11 Next, we calculate the derivatives of U11 given u12 = u21 = 0d. For669

a fixed pair of k, l ∈ [d], we have670

Dkl =
1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)kl

+
1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)kl

]
.

For fixed i, j ∈ [d], we have671

E
[(

(ZτUXτ)ij Uij

)
(ZτUXτ)kl

]
= Uiju

2
−1E

[(
Λ̂τ

)
i:
wτx

j
τ,queryx

l
τ,queryw

⊤
τ

(
Λ̂τ

)
:k

]
= Uiju

2
−1E

[
xj
τ,queryx

l
τ,query

]
· E
[(

Λ̂τ

)
i:

(
Λ̂τ

)
:k

]
= Uiju

2
−1Λτ,jlE

[(
Λ̂τ

)
i:

(
Λ̂τ

)
:k

]
.

Therefore, we sum over i, j ∈ [d] to get672

1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)kl

 =
1

2
u2
−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl

For the last term, we have673

1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)kl

]
=

1

2
u2
−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl.

So we have674

Dkl = u2
−1E

((
Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl.

Additionally, we have675

2
[
E
(
w⊤

τ xτ,queryHτ

)
u
]
(l−1)(d+1)+k

=

[(
0d(d+1)×d(d+1) A

A⊤ 0(d+1)×(d+1)

)
· u

]
(l−1)(d+1)+k

(definition)

=
(
0(d+1)×d(d+1) Vl + V ⊤

l

)
k:
· U

(definition of A in (32))

= Λ⊤
k Λlu−1. (definition of Vi in (32))

Therefore, we have that for k, l ∈ [d], the dynamics of Ukl is676

d

dt
Ukl = −u2

−1E
((

Λ̂τ

)
k:

(
Λ̂τ

))
U11Λl + u−1Λ

⊤
k Λl,

which implies677

d

dt
U11 = −u2

−1E
((

Λ̂τ

)2)
U11Λ + u−1Λ

2.

678

20

From the definition of Λ̂τ (equation (30)), the independence and Gaussianity of xτ,i and Lemma H.2,679

we compute680

E
((

Λ̂τ

)2)
= E

(1

N

N∑
i=1

xτ,ix
⊤
τ,i

)2
 (definition (30))

=
N − 1

N

[
E
(
xτ,1x

⊤
τ,1

)]2
+

1

N
E
(
xτ,1x

⊤
τ,1xτ,1x

⊤
τ,1

)
(independence between prompt input)

=
N + 1

N
Λ2 +

1

N
tr(Λ)Λ. (Lemma H.2)

We define681

Γ :=
N + 1

N
Λ +

1

N
tr(Λ)Id. (35)

Then, from (29), we know the dynamics of U11 is682

d

dt
U11 = −u2

−1ΓΛU11Λ + u−1Λ
2. (36)

Step Five: Dynamics of u−1 Finally, we compute the dynamics of u−1. We have683

Dd+1,d+1 =
1

2
E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)d+1,d+1


+

1

2
E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)d+1,d+1

]
. (37)

For the first term above, we have684

E

 d∑
i,j=1

(
(ZτUXτ)ij Uij

)
(ZτUXτ)d+1,d+1


=u−1

d∑
i,j=1

UijE
[(

Λ̂τ

)
i:
· wτw

⊤
τ ·
(
Λ̂τ

)
· U11xτ,queryx

j
τ,query

]
(from (33))

=u−1

d∑
i,j=1

UijE
[(

Λ̂τ

)
i:
·
(
Λ̂τ

)
· U11xτ,queryx

j
τ,query

]
(independence and distribution of wτ)

=u−1

d∑
i,j=1

UijE
[(

Λ̂τ

)
i:
·
(
Λ̂τ

)
· U11Λj

]
(independence between prompt covariates)

=u−1E tr

 d∑
i,j=1

ΛjUij

(
Λ̂τ

)
i:
·
(
Λ̂τ

)
U11

 = u−1E tr

[
Λ(U11)

⊤
(
Λ̂τ

)2
U11

]

=u−1 tr

[
E
(
Λ̂τ

)2
U11Λ(U11)

⊤
]
.

For the second term in (37), we have685

E
[(

(ZτUXτ)d+1,d+1 u−1

)
(ZτUXτ)d+1,d+1

]
= u−1E

[
w⊤

τ

(
Λ̂τ

)
U11xτ,queryx

⊤
τ,query(U11)

⊤
(
Λ̂τ

)
wτ

]
(from (33))

= u−1E tr
[
wτw

⊤
τ

(
Λ̂τ

)
U11xτ,queryx

⊤
τ,query(U11)

⊤
(
Λ̂τ

)]
= u−1E tr

[(
Λ̂τ

)
U11Λ(U11)

⊤
(
Λ̂τ

)]
= u−1 tr

[
E
(
Λ̂τ

)2
U11Λ(U11)

⊤
]
.

21

Therefore, we know686

Dd+1,d+1 = u−1 tr

[
E
(
Λ̂τ

)2
U11Λ(U11)

⊤
]
.

Additionally, we have687

2
[
E
(
w⊤

τ xτ,queryHτ

)
u
]
(d+1)2

=

[(
0d(d+1)×d(d+1) A

A⊤ 0(d+1)×(d+1)

)
· u

]
(d+1)2

(from (31))

=
(
V1 + V ⊤

1 ... Vd + V ⊤
d 0(d+1)×(d+1)

)
d+1:

· U
(definition of A in (32))

=

d∑
i,j=1

Λ⊤
i ΛjUji = tr

(
Λ(U11)

⊤Λ
)
.

Then, from (29), we have the dynamics of u−1 is688

d

dt
u−1 = − tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤] . (38)

689

D.2.3 Proof of Lemma D.4690

Lemma D.4 gives the form of global minima of an equivalent loss function. First, we prove that691

gradient flow on L defined in (16) from the initial values satisfying Assumption C.1 is equivalent to692

gradient flow on another loss function ℓ̃ defined below. Then, we derive an expression for the global693

minima of this loss function.694

First, from the dynamics of gradient flow, we can actually recover the loss function up to a constant.695

We have the following lemma.696

Lemma D.6 (Loss Function). Consider gradient flow over L in (22) with respect to u starting from697

an initial value satisfying Assumption C.1. This is equivalent to doing gradient flow with respect to698

U11 and u−1 on the loss function699

ℓ̃ (U11, u−1) = tr

[
1

2
u2
−1ΓΛU11Λ(U11)

⊤ − u−1Λ
2(U11)

⊤
]
. (39)

Proof. The proof is simply by taking gradient of the loss function in (39). For techniques in matrix700

derivatives, see Lemma H.1. We take the gradient of ℓ̃ on U11 to obtain701

∂ℓ̃

∂U11
=

1

2
u2
−1Λ

⊤Γ⊤U11Λ
⊤ +

1

2
u2
−1ΓΛU11Λ− u−1Λ

2 = u2
−1ΓΛU11Λ− u−1Λ

2,

since Γ and Λ are commutable. We take derivatives w.r.t. u−1 to get702

∂ℓ̃

∂u−1
= tr

[
u−1ΓΛU11Λ(U11)

⊤ − Λ2(U11)
⊤] .

Combining this with Lemma D.3, we have703

d

dt
U11(t) = − ∂ℓ̃

∂U11
,

d

dt
u−1(t) = − ∂ℓ̃

∂u−1
.

704

705

We remark that actually this is the loss function L up to some constant. This loss function ℓ̃ can be706

negative. But we can still compute its global minima as follows.707

22

Corollary D.7 (Minimum of Loss Function). The loss function ℓ̃ in Lemma D.6 satisfies708

min
U11∈Rd×d,u−1∈R

ℓ̃ (U11, u−1) = −1

2
tr
[
Λ2Γ−1

]
and709

ℓ̃ (U11, u−1)− min
U11∈Rd×d,u−1∈R

ℓ̃ (U11, u−1) =
1

2

∥∥∥Γ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2
F
.

Proof. First, we claim that710

ℓ̃ (U11, u−1) =
1

2
tr

[
Γ ·
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)⊤]
− 1

2
tr
[
Λ2Γ−1

]
.

To calculate this, we just need to expand the terms in the brackets and notice that Γ and Λ are711

commutable:712

tr

[
Γ ·
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)⊤]
− tr

[
Λ2Γ−1

]
(i)
= tr

[
Γ ·
(
u2
−1Λ

1
2U11Λ(U11)

⊤Λ1/2 − u−1ΛΓ
−1Λ

1
2U11Λ

1
2 − u−1Λ

1
2U11Λ

3
2Γ−1 + Γ−2Λ2

)]
− tr[Λ2Γ−1]

= tr
[
Γ ·
(
u2
−1Λ

1
2U11Λ(U11)

⊤Λ1/2 − u−1ΛΓ
−1Λ

1
2U11Λ

1
2 − u−1Λ

1
2U11Λ

3
2Γ−1

)]
= u2

−1 tr
[
ΓΛ

1
2U11Λ(U11)

⊤Λ
1
2

]
− u−1 tr

[
ΓΛΓ−1Λ

1
2U11Λ

1
2 − ΓΛ

1
2U11Λ

3
2Γ−1

]
(ii)
= u2

−1 tr
[
ΓΛU11Λ(U11)

⊤]− 2u−1 tr
[
Λ2U11Λ

1
2

]
= 2ℓ̃ (U11, u−1) .

Equations (i) and (ii) use that Γ and Λ commute.713

Since Γ ⪰ 0 and
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)⊤
⪰ 0, we know from

Lemma H.4 that

1

2
tr

[
Γ ·
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)⊤]
≥ 0,

which implies714

ℓ̃ (U11, u−1) ≥ −1

2
tr
[
Λ2Γ−1

]
.

Equality holds when715

U11 = Γ−1, u−1 = 1,

so the minimum of ℓ̃ must be − 1
2 tr

[
Λ2Γ−1

]
. The expression for ℓ̃ (U11, u−1)−min ℓ̃ (U11, u−1)716

comes from the fact that tr(A⊤A) = ∥A∥2F for any matrix A.717

Lemma D.4 is an immediate consequence of CorollaryD.7, since the loss will keep the same when718

we replace (U11, u−1) by (cU11, c
−1u−1) for any non-zero constant c.719

D.2.4 Proof of Lemma D.5720

In this section, we prove that the dynamical system in Lemma D.3 satisfies a PL inequality. Then, the721

PL inequality naturally leads to the global convergence of this dynamical system. First, we prove722

a simple lemma, which says the parameters in the LSA model will keep ’balanced’ in the whole723

trajectory. From the proof of this lemma, we can understand why we assume a balanced parameter at724

the initial time.725

Lemma D.8 (Balanced Parameters). Consider gradient flow over L in (22) with respect to u starting726

from an initial value satisfying Assumption C.1. For any t ≥ 0, it holds that727

u2
−1 = tr

[
U11(U11)

⊤] . (40)

23

Proof. From Lemma D.3, we multiply the first equation in (23) by (U11)
⊤ from the right to get728 (

d

dt
U11(t)

)
(U11(t))

⊤ = −u2
−1ΓΛU11Λ(U11)

⊤ + u−1Λ
2(U11)

⊤.

Also we multiply the second equation in Lemma D.3 by u−1 to obtain729 (
d

dt
u−1(t)

)
u−1(t) = tr

[
−u2

−1ΓΛU11Λ(U11)
⊤ + u−1Λ

2(U11)
⊤] .

Therefore, we have730

tr

[(
d

dt
U11(t)

)
(U11(t))

⊤
]
=

(
d

dt
u−1(t)

)
u−1(t).

Taking the transpose of the equation above and adding to itself gives731

d

dt
tr
[
U11(t)(U11(t))

⊤] = d

dt

(
u−1(t)

2
)
.

Notice that from Assumption C.1, we know that at t = 0,732

u−1(0)
2 = σ2 = σ2 tr

[
ΘΘ⊤ΘΘ⊤] = tr

[
U11(0)(U11(0))

⊤] .
So for any time t ≥ 0, the equation holds.733

734

In order to prove the PL inequality, we first prove an important property which says the trajectories of735

u−1(t) stay away from saddle point at origin. First, we prove that u−1(t) will stay positive along the736

whole trajectory.737

Lemma D.9. Consider gradient flow over L in (22) with respect to u starting from an initial value738

satisfying Assumption C.1. If the initial scale satisfies739

0 < σ <

√
2√

d ∥Γ∥op
, (41)

then, for any t ≥ 0, it holds that740

u−1 > 0.

Proof. From Lemma D.6, we are actually doing gradient flow on the loss ℓ̃. The loss function is741

non-increasing, because742

dℓ̃

dt
=

〈
dU11

dt
,

∂ℓ̃

∂U11

〉
+

〈
du−1

dt
,

∂ℓ̃

∂u−1

〉
= −

∥∥∥∥dU11

dt

∥∥∥∥2
F

−
∥∥∥∥du−1

dt

∥∥∥∥2
F

≤ 0.

We notice that when u−1 = 0, the loss function ℓ̃ = 0. Therefore, as long as ℓ̃(U11(0), u−1(0)) < 0,743

then for any time, u−1 will be non-zero. Further, since u−1(0) > 0 and the trajectory of u−1(t) must744

be continuous, we know u−1(t) > 0 for any t ≥ 0.745

Then, it suffices to prove when 0 < σ <
√

2√
d∥Γ∥op

, it holds that ℓ̃(U11(0), u−1(0)) < 0. From746

Assumption C.1, we can calculate the loss function at the initial time:747

ℓ̃(U11(0), u−1(0)) =
σ4

2
tr
[
ΓΛΘΘ⊤ΛΘΘ⊤]− σ2 tr

[
Λ2ΘΘ⊤] .

From the property of trace, we know748

tr
[
Λ2ΘΘ⊤] = tr

[
ΛΘΘ⊤Λ⊤] = ∥ΛΘ∥2F .

From Von-Neumann’s trace inequality (Lemma H.3) and the fact that
∥∥ΘΘ⊤

∥∥
F
= 1, we know749

tr
[
ΓΛΘΘ⊤ΛΘΘ⊤] ≤ √

d
∥∥ΛΘΘ⊤ΛΘΘ⊤∥∥

F
·∥Γ∥op ≤

√
d ∥ΛΘ∥2F

∥∥ΘΘ⊤∥∥
F
∥Γ∥op =

√
d ∥ΛΘ∥2F ∥Γ∥op .

24

Therefore, we have750

ℓ̃(U11(0), u−1(0)) ≤
√
dσ4

2
∥ΛΘ∥2F ∥Γ∥op − σ2 ∥ΛΘ∥2F

=
σ2

2
∥ΛΘ∥2F

[√
dσ2 ∥Γ∥op − 2

]
.

From Assumption C.1, we know ∥ΛΘ∥F ̸= 0. From (35), we know ∥Γ∥op > 0. Therefore, when751

0 < σ <

√
2√

d ∥Γ∥op
,

we have752

ℓ̃(U11(0), u−1(0)) < 0.

753

754

From the lemma above, we can actually further prove that the u−1(t) can be lower bounded by a755

positive constant for any t ≥ 0. This will be a critical property to prove the PL inequality. We have756

the following lemma.757

Lemma D.10. Consider gradient flow over L in (22) with respect to u starting from an initial value758

satisfying Assumption C.1 with initial scale 0 < σ <
√

2√
d∥Γ∥op

. For any t ≥ 0, it holds that759

u−1 ≥
√

σ2

2
√
d ∥Λ∥2op

∥ΛΘ∥2F
[
2−

√
dσ2 ∥Γ∥op

]
> 0. (42)

Proof. We prove by contradiction. Suppose the claim does not hold. From Lemma D.8, we know760

u2
−1 = tr

[
U11(U11)

⊤] = ∥U11∥2F . From Lemma D.9, we know u−1 = ∥U11∥F . Recall the761

definition of loss function:762

ℓ̃(U11, u−1) = tr

[
1

2
u2
−1ΓΛU11Λ(U11)

⊤ − u−1Λ
2(U11)

⊤
]
.

Since Γ ⪰ 0,Λ ⪰ 0, and they commute, we know from Lemma H.4 that ΓΛ ⪰ 0. Again, since763

U11Λ(U11)
⊤ =

(
U11Λ

1
2

)(
U11Λ

1
2

)⊤
⪰ 0, from Lemma H.4 we have tr

[
1
2u

2
−1ΓΛU11Λ(U11)

⊤] ≥764

0. So765

ℓ̃(U11, u−1) ≥ − tr
[
u−1Λ

2(U11)
⊤] .

From Von-Neumann’s trace inequality, we know for any t ≥ 0,766

− tr
[
u−1Λ

2(U11)
⊤] ≥ −

√
du−1

∥∥Λ2
∥∥
op

∥U11∥F = −
√
du2

−1 ∥Λ∥
2
op .

Therefore, under our assumption that the claim does not hold, we have767

ℓ̃(U11, u−1) ≥ −
√
du2

−1 ∥Λ∥
2
op > −σ2

2
∥ΛΘ∥2F

[
2−

√
dσ2 ∥Γ∥op

]
≥ ℓ̃(U11(0), u−1(0)).

Here, the last inequality comes from the proof of Lemma D.9. This contradicts the non-increasing768

property of the loss function in gradient flow.769

770

Finally, let’s prove the PL inequality and further, the global convergence of gradent flow on the loss771

function ℓ̃. We recall the stated lemma from the main text.772

Lemma D.5. Suppose the initialization of gradient flow satisfies Assumption C.1 with initialization773

scale satisfying σ2 < 2√
d∥Γ∥op

for Γ = (1 + 1
N)Λ + tr(Λ)

N Id. If we define774

µ :=
σ2

√
d ∥Λ∥2op tr (Γ−1Λ−1) tr (Λ−1)

∥ΛΘ∥2F
[
2−

√
dσ2 ∥Γ∥op

]
> 0, (26)

25

then gradient flow on ℓ̃ with respect to U11 and u−1 satisfies, for any t ≥ 0,775 ∥∥∥∇ℓ̃(U11(t), u−1(t))
∥∥∥2
2
:=

∥∥∥∥∥ ∂ℓ̃

∂U11

∥∥∥∥∥
2

F

+

∣∣∣∣∣ ∂ℓ̃

∂u−1

∣∣∣∣∣
2

≥ µ

(
ℓ̃(U11(t), u−1(t))− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
.

(27)
Moreover, gradient flow converges to the global minimum of ℓ̃, and U11 and u−1 converge to the776

following,777

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1
2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1. (28)

Proof. From the definition and Lemma D.10, we have778

∥∇ℓ(U11, u−1)∥22 ≥
∥∥∥∥ ∂ℓ

∂U11

∥∥∥∥2
F

=
∥∥u2

−1ΓΛU11Λ− u−1Λ
2
∥∥2
F

= u2
−1

∥∥∥ΓΛ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2
F

≥ σ2

2
√
d ∥Λ∥2op

∥ΛΘ∥2F
[
2−

√
dσ2 ∥Γ∥op

] ∥∥∥ΓΛ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2
F
.

(43)

To see why the second line is true, recall that u−1 ∈ R and Γ and Λ commute. The last line comes779

from the lower bound of u−1 in Lemma D.10. From Corollary D.7, we know780

ℓ− min
U11∈Rd×d,u−1∈R

ℓ(U11, u−1) =
1

2
tr

[
Γ
(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)⊤]
=

1

2

∥∥∥Γ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2
F
.

Therefore, we know that781

ℓ− min
U11∈Rd×d,u−1∈R

ℓ(U11, u−1) ≤
1

2

∥∥∥ΓΛ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2
F
·
∥∥∥Γ− 1

2Λ− 1
2

∥∥∥2
F

∥∥∥Λ− 1
2

∥∥∥2
F

=
1

2

∥∥∥ΓΛ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)
Λ

1
2

∥∥∥2
F
· tr
(
Γ−1Λ−1

)
tr
(
Λ−1

)
(44)

We compare (43) and (44) to obtain that in order to make the PL condition hold, one needs to let782

µ :=
σ2

√
d ∥Λ∥2op tr (Γ−1Λ−1) tr (Λ−1)

∥ΛΘ∥2F
[
2−

√
dσ2 ∥Γ∥op

]
> 0.

Once we set this µ, we get the PL inequality. The µ is positive due to the assumption for σ in the783

lemma.784

From the dynamics of gradient flow and the PL condition, we know785

d

dt

(
ℓ̃− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
=

〈
dU11

dt
,

∂ℓ̃

∂U11

〉
+

〈
du−1

dt
,

∂ℓ̃

∂u−1

〉
= −

∥∥∥∥dU11

dt

∥∥∥∥2
F

−
∣∣∣∣du−1

dt

∣∣∣∣2
≤ −µ

(
ℓ̃− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

)
.

Therefore, we have when t → ∞,786

0 ≤ ℓ̃− min
U11∈Rd×d,u−1∈R

ℓ̃(U11, u−1) ≤ exp (−µt)

[
ℓ̃(U11(0), u−1(0))− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

]
→ 0,

which implies787

lim
t→∞

[
ℓ̃− min

U11∈Rd×d,u−1∈R
ℓ̃(U11, u−1)

]
= 0.

26

From Corollary D.7, we know this is788 ∥∥∥Γ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2
F
→ 0.

Since Γ and Λ are non-singular and positive definite, and they commute, we know789 ∥∥u−1U11 − Γ−1
∥∥2
F
≤
∥∥∥Γ− 1

2Λ− 1
2

∥∥∥2
F

∥∥∥Γ 1
2

(
u−1Λ

1
2U11Λ

1
2 − ΛΓ−1

)∥∥∥2
F

∥∥∥Λ− 1
2

∥∥∥2
F
→ 0.

This implies u−1U11 − Γ−1 → 0d×d entry-wise. Since u−1 = ∥U11∥F , we know790

u2
−1 = ∥u−1U11∥F →

∥∥Γ−1
∥∥
F
.

Therefore, we know791

lim
t→∞

u−1(t) =
∥∥Γ−1

∥∥ 1
2

F
and lim

t→∞
U11(t) =

∥∥Γ−1
∥∥− 1

2

F
Γ−1.

792

27

E Theorem 3.2 and the proof793

E.1 Formal statement and discussion794

First, we formally state the Theorem 3.2 and provide some discussion about the convergence rate of795

generalization risk.796

Theorem E.1. Let D be a distribution over (x, y) ∈ Rd × R, whose marginal distribution on x is797

Dx = N(0,Λ). Assume ED[y],ED[xy],ED[y
2xx⊤] exist and are finite. Assume the test prompt is of798

the form P = (x1, y1, . . . , xM , yM , xquery), where (xi, yi), (xquery, yquery)
i.i.d.∼ D. Let f∗

LSA be the799

LSA model with parameters WPV
∗ and WKQ

∗ in (19), and ŷquery is the prediction for xquery given the800

prompt. If we define801

a := Λ−1E(x,y)∼D [xy] , Σ := E(x,y)∼D

[(
xy − E (xy)

)(
xy − E (xy)

)⊤]
, (45)

then, for Γ = Λ + 1
NΛ + 1

N tr(Λ)Id. we have,802

E (ŷquery − yquery)
2
= min

w∈Rd
E (⟨w, xquery⟩ − yquery)

2︸ ︷︷ ︸
Error of best linear predictor

+
1

M
tr
[
ΣΓ−2Λ

]
+

1

N2

[
∥a∥2Γ−2Λ3 + 2 tr(Λ) ∥a∥2Γ−2Λ2 + tr(Λ)2 ∥a∥2Γ−2Λ

]
,

(46)

where the expectation is over (xi, yi), (xquery, yquery)
i.i.d.∼ D.803

Now we make a few remarks on the above theorem before considering particular instances of D804

where we may provide more explicit bounds on the prediction error.805

First, this theorem shows that, provided the length of prompts seen during training (N) and the806

length of the test prompt (M) is large enough, a transformer trained by gradient flow from in-context807

examples achieves prediction error competitive with the best linear model. Next, our bound shows808

that the length of prompts seen during training and the length of prompts seen at test-time have809

different effects on the expected prediction error: ignoring dimension and covariance-dependent810

factors, the prediction error is at most O(1/M + 1/N2), decreasing more rapidly as a function of the811

training prompt length N compared to the test prompt length M .812

Let us now consider when D corresponds to noiseless linear models, so that for some w ∈ Rd,813

we have (x, y) = (x, ⟨w, x⟩), in which case the prediction of the trained transformer is given814

by (7). Moreover, a simple calculation shows that the Σ from Theorem E.1 takes the form815

Σ = ∥w∥2ΛΛ + Λww⊤Λ. Hence Theorem E.1 implies the prediction error for the prompt816

P = (x1, ⟨w, x1⟩, . . . , xM , ⟨w, xM ⟩, xquery) is817

Ex1,...,xM ,xquery (ŷquery − ⟨w, xquery⟩)2

=
1

M

{
∥w∥2Γ−2Λ3 + tr(Γ−2Λ2) ∥w∥2Λ

}
+

1

N2

{
∥w∥2Γ−2Λ3 + 2 ∥w∥2Γ−2Λ2 tr(Λ) + ∥w∥2Γ−2Λ tr(Λ)2

}
≤ d+ 1

M
∥w∥2Λ +

1

N2

[
∥w∥2Λ + 2 ∥w∥22 tr(Λ) + ∥w∥2Λ−1 tr(Λ)

2
]
,

The inequality above uses that Γ ≻ Λ. Finally, if we assume that w ∼ N(0, Id) and denote κ as the818

condition number of Λ, then by taking expectations over w we get the following:819

Ex1,...,xM ,xquery,w (ŷquery − ⟨w, xquery⟩)2 ≤ (d+ 1) tr(Λ)

M
+

1

N2

[
tr(Λ) + 2d tr(Λ) + tr(Λ−1) tr(Λ)2

]
≤ (d+ 1) tr(Λ)

M
+

(1 + 2d+ d2κ) tr(Λ)

N2
,

From the upper bound above, we can see the rate w.r.t M and N are still at most O(1/M) and820

O(1/N2) respectively. Moreover, the generalization risk also scales with dimension d, tr(Λ) and821

the condition number κ. This suggests that for in-context examples involving covariates of greater822

variance, or a more ill-conditioned covariance matrix, the generalization risk will be higher for823

the same lengths of training and testing prompts. Putting the above together with Theorem E.1,824

Definition 2.1 and Definition 2.2, we get the following corollary.825

28

Corollary E.2. A transformer with a single linear self-attention layer trained on in-context ex-826

amples of functions in {x 7→ ⟨w, x⟩} w.r.t. w ∼ N(0, Id) and Dx = N(0,Λ) with gradient flow827

on the population loss (16) for initializations satisfying Assumption C.1 converges to the model828

fLSA(· ;WKQ
∗ ,WPV

∗). This model takes a prompt P = (x1, y1, . . . , xM , yM , xquery) and returns a829

prediction ŷquery for xquery given by830

ŷquery = [fLSA(P ;WKQ
∗ ,WPV

∗)]d+1,M+1 = x⊤
query

(
Λ +

1

N
Λ +

tr(Λ)

N
Id

)−1
(

1

M

M∑
i=1

yixi

)
.

Moreover, the model fLSA(· ;WKQ
∗ ,WPV

∗) in-context learns the class of linear models {x 7→ ⟨w, x⟩}831

with respect to w ∼ N(0, Id) and Dx = N(0,Λ), provided M ≥ 2(d+ 1) tr(Λ)ε−1 and the prompts832

seem during training were of length at least N ≥
√
2(1 + 2d+ d2κ) tr(Λ)ε−1/2, where κ is the833

condition number of Λ.834

E.2 Proof of Theorem E.1835

Proof. Unless otherwise specified, we denote E as the expectation over (xi, yi), (xquery, yquery)
i.i.d.∼836

D. Since when (x, y) ∼ D, we assume E[x],E[y],E[xy],E[xx⊤],E[y2xx⊤] exist, we know that837

E (⟨w, xquery⟩ − yquery)
2 exists for each w ∈ Rd. We denote838

a := argmin
w∈Rd

E (⟨w, xquery⟩ − yquery)
2

as the weight of the best linear approximator. Actually, if we denote the function inside the minimum839

above as R(w), we can write it as840

R(w) = w⊤Λw − 2E
(
yquery · x⊤

query

)
w + Ey2query.

Since the Hessian matrix ∂2

∂w∂w⊤R(w) is Λ, which is positive definitive, we know that this function841

is strictly convex and hence, the global minimum can be achieved at the unique first-order stationary842

point. This is843

a = Λ−1E (yquery · xquery) . (47)
We also define a similar vector for ease of computation:844

b = Γ−1E (yquery · xquery) . (48)

Therefore, we can decompose the risk as845

E (ŷquery − yquery)
2
= E (⟨a, xquery⟩ − yquery)

2︸ ︷︷ ︸
I

+E (ŷquery − ⟨b, xquery⟩)2︸ ︷︷ ︸
II

+ E (⟨b, xquery⟩ − ⟨a, xquery⟩)2︸ ︷︷ ︸
III

+2E (ŷquery − ⟨b, xquery⟩) (⟨a, xquery⟩ − yquery)︸ ︷︷ ︸
IV

+ 2E (ŷquery − ⟨b, xquery⟩) (⟨b, xquery⟩ − ⟨a, xquery⟩)︸ ︷︷ ︸
V

+ 2E (⟨b, xquery⟩ − ⟨a, xquery⟩) (⟨a, xquery⟩ − yquery)︸ ︷︷ ︸
VI

The term I is the first term on the right hand side of (46). So it suffices to calculate II to VI.846

847

First, from the tower property of conditional expectation, we have848

V = 2E
[
E
(
(ŷquery − ⟨b, xquery⟩) (⟨b, xquery⟩ − ⟨a, xquery⟩)

∣∣∣∣xquery

)]
= 2E

[
E
(
ŷquery − ⟨b, xquery⟩

∣∣∣∣xquery

)
(⟨b, xquery⟩ − ⟨a, xquery⟩)

]
= 0,

since849

E
(
ŷquery − ⟨b, xquery⟩

∣∣∣∣xquery

)
=

(
E

1

M

M∑
i=1

yiΓ
−1xi − b

)⊤

xquery = 0.

29

850

Similarly, for IV, we have851

IV = 2E (ŷquery − ⟨b, xquery⟩) (⟨a, xquery⟩ − yquery)

= 2E
[
E
(
(ŷquery − ⟨b, xquery⟩) (⟨a, xquery⟩ − yquery)

∣∣∣∣xquery, yquery

)]
= 2E

[
E
(
ŷquery − ⟨b, xquery⟩

∣∣∣∣xquery, yquery

)
(⟨a, xquery⟩ − yquery)

]
= 0.

852

For VI, we have853

VI = 2E tr
[
(b− a) (⟨a, xquery⟩ − yquery)x

⊤
query

]
= 2 tr

[
(b− a)a⊤Λ

]
− 2 tr

[
(b− a)E

(
yqueryx

⊤
query

)]
= 0,

where the last line comes from the definition of a. Therefore, all cross terms vanish and it suffices to854

consider II and III.855

856

For II, from the definition we have857

II

=E

(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)⊤

Γ−1xqueryx
⊤
queryΓ

−1

(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)

=E tr

(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)(
1

M

M∑
i=1

yixi − E (yquery · xquery)

)⊤

Γ−2Λ

(property of trace and the fact that Γ and Λ commute)

=
1

M2

M∑
i,j=1

E tr
{
(yixi − E (yquery · xquery)) (yjxj − E (yquery · xquery))

⊤
Γ−2Λ

}
=

1

M
E tr

{
(y1x1 − E (yquery · xquery)) (y1x1 − E (yquery · xquery))

⊤
Γ−2Λ

}
(all cross terms vanish due to the independence of xi)

=
1

M
tr
[
ΣΓ−2Λ

]
.

The last line comes from the definition of Σ.858

859

For III, we have860

III = E(b− a)⊤xqueryx
⊤
query(b− a) = a⊤Λ(Γ−1 − Λ−1)Λ(Γ−1 − Λ−1)Λa

= tr
[(
I − ΓΛ−1

)2
Γ−2Λ3aa⊤

]
(property of trace and the fact that Γ and Λ commute)

=
1

N2
tr
[(
Id + tr(Λ)Λ−1

)2
Γ−2Λ3aa⊤

]
=

1

N2

[
tr(Γ−2Λ3aa⊤) + 2 tr(Λ) tr(Γ−2Λ2aa⊤) + tr(Λ)2 tr(Γ−2Λaa⊤)

]
.

Combining all terms above, we conclude.861

30

F Transformers trained on prompts with random covariate distributions862

F.1 Main theorem for the random covariance case863

In this section, we will consider a variant of training on in-context examples (in the sense of864

Definition 2.1) where the distibution Dx is itself sampled randomly from a distribution, and training865

prompts are of the form (x1, h(x1), . . . , xN , h(xN), xquery) where xi, xquery
i.i.d.∼ Dx and h ∼ DH.866

More formally, we can generalize Definition 2.1 as follows.867

Definition F.1 (Trained on in-context examples with random covariate distributions). Let ∆ be868

a distribution over distributions Dx defined on an input space X , H ⊂ YX a set of functions869

X → Y , and DH a distribution over functions in H. Let ℓ : Y × Y → R be a loss function. Let870

S = ∪n∈N{(x1, y1, . . . , xn, yn) : xi ∈ X , yi ∈ Y} be the set of finite-length sequences of (x, y)871

pairs and let872

FΘ = {fθ : S × X → Y, θ ∈ Θ}
be a class of functions parameterized by some set Θ. We say that a model f : S × X → Y is trained873

on in-context examples of functions in H under loss ℓ w.r.t. DH and distribution over covariate874

distributions ∆ if f = fθ∗ where θ∗ ∈ Θ satisfies875

θ∗ ∈ argminθ∈ΘEP=(x1,h(x1),...,xN ,h(xN),xquery) [ℓ (fθ(P), h(xquery))] , (49)

where Dx ∼ ∆, xi, xquery
i.i.d.∼ Dx and h ∼ DH.876

We recover the previous definition of training on in-context examples by taking ∆ to be concentrated877

on a singleton, supp(∆) = {Dx}. The natural question is then, if a model f is trained on in-context878

examples from a function class H w.r.t. DH and a distribution ∆ over covariate distributions, and if879

one then samples some covariate distribution Dx ∼ ∆, does f in-context learn H w.r.t. (DH,Dx) for880

that Dx (cf. Definition 2.2)? Since Dx is random, we can hope that this may hold in expectation or881

with high probability over the sampling of the covariate distribution. In the remainder of this section,882

we will explore this question for transformers with a linear self-attention layer trained by gradient883

flow on the population loss.884

We shall again consider the case where the covariates have Gaussian marginals, xi ∼ N(0,Λ), but885

we shall now assume that within each prompt we first sample a random covariance matrix Λ. For886

simplicity, we will restrict our attention to the case where Λ is diagonal. More formally, we shall887

assume training prompts are sampled as follows. For each independent task indexed by τ ∈ [B],888

we first sample wτ ∼ N(0, Id). Then, for each task τ and coordinate i ∈ [d], we sample λτ,i889

independently such that the distribution of each λτ,i is fixed and has finite third moments and is890

strictly positive almost surely. We then form a diagonal matrix891

Λτ = diag(λτ,1, . . . , λτ,d).

Thus the diagonal entries of Λτ are independent but could have different distributions, and Λτ is892

identically distributed for τ = 1, . . . , B. Then, conditional on Λτ , we sample independent and893

identically distributed xτ,1, . . . , xτ,N , xτ,query ∼ N(0,Λτ). A training prompt is then given by894

Pτ = (xτ,1, ⟨wτ , xτ,1⟩, . . . , xτ,N , ⟨wτ , xτ,N ⟩, xτ,query) Notice that here, xτ,i, xτ,query are condition-895

ally independent given the covariance matrix Λτ , but not independent in general. We consider the896

same token embedding matrix as (3) and linear self-attention network, which forms the prediction897

ŷquery,τ as in (14). The empirical risk is the same as before (see (15)), and as in (16), we then take898

B → ∞ and consider the gradient flow on the population loss. The population loss now includes an899

expectation over the distribution of the covariance matrices in addition to the task weight wτ and900

covariate distributions, and is given by901

L(θ) =
1

2
Ewτ ,Λτ ,xτ,1,··· ,xτ,N ,xτ,query

[
(ŷτ,query − ⟨wτ , xτ,query⟩)2

]
. (50)

902

In the main result for this section, we show that gradient flow with a suitable initialization converges to903

a global minimum, and we characterize the limiting solution. The proof will be deferred to Appendix904

F.2.905

31

Theorem F.2 (Global convergence in random covariance case). Consider gradient flow of the linear906

self-attention network fLSA defined in (3) over the population loss (50), where Λτ are diagonal with907

independent diagonal entries which are strictly positive a.s. and have finite third moments. Suppose908

the initialization satisfies Assumption C.1, ∥EΛτΘ∥F ̸= 0, with initialization scale σ > 0 satisfying909

σ2 <
2 ∥EΛτΘ∥2F√

d
[
E ∥Γτ∥op ∥Λτ∥2F

] . (51)

Then gradient flow converges to a global minimum of the population loss (50). Moreover, WPV and910

WKQ converge to WPV
∗ and WKQ

∗ respectively, where911

WKQ
∗ =

∥∥∥[EΓτΛ
2
τ

]−1 E
[
Λ2
τ

]∥∥∥− 1
2

F
·

([
EΓτΛ

2
τ

]−1 [EΛ2
τ

]
0d

0⊤d 0

)
,

WPV
∗ =

∥∥∥[EΓτΛ
2
τ

]−1 E
[
Λ2
τ

]∥∥∥ 1
2

F
·

(
0d×d 0d

0⊤d 1

)
,

(52)

where Γτ = N+1
N Λτ + 1

N tr(Λτ)Id ∈ Rd×d and the expectations above are over the distribution of912

Λτ .913

From this result, we can see why the trained transformer fails in the random covariance case.914

Suppose we have a new prompt corresponding to a weight matrix w ∈ Rd and covariance matrix915

Λnew, sampled from the same distribution as the covariance matrices for training prompts, so that916

conditionally on Λnew we have xi, xquery
i.i.d.∼ N(0,Λnew). The ground-truth labels are given by917

yi = ⟨w, xi⟩, i ∈ [M] and yquery = ⟨w, xquery⟩. At convergence, the prediction by the trained918

transformer on the new task will be919

ŷquery (53)

=
(
0⊤d 1

)(1
M

∑M
i=1 xix

⊤
i + 1

M xqueryx
⊤
query

1
M

∑M
i=1 xiyi

1
M

∑M
i=1 x

⊤
i yi

1
M

∑M
i=1 y

2
i

)([
EΓτΛ

2
τ

]−1 [EΛ2
τ

]
0d

0⊤d 0

)(
xquery

0

)

=x⊤
query ·

[
EΛ2

τ

] [
EΓτΛ

2
τ

]−1 ·

[
1

M

M∑
i=1

xix
⊤
i

]
w

→x⊤
query ·

[
EΛ2

τ

] [
EΓτΛ

2
τ

]−1 · Λneww almost surely when M → ∞. (54)

The last line comes from the strong law of large numbers. Thus, in order for the prediction on the920

query example to be close to the ground-truth x⊤
queryw, we need

[
EΛ2

τ

] [
EΓτΛ

2
τ

]−1 · Λnew to be921

close to the identity. When Λτ ≡ Λnew is deterministic, this indeed is the case as we know from922

Theorem E.1. However, this clearly does not hold in general when Λτ is random.923

To make things concrete, let us assume for simplicity that M,N → ∞ so that Γτ → Λτ and the924

identity (54) holds (conditionally on Λnew). Then, taking expectation over Λnew in (54), we obtain925

E [ŷquery|xquery, w] → x⊤
query ·

[
EΛ2

τ

] [
EΛ3

τ

]−1 · [EΛτ]w.

If we consider the case λτ,i
i.i.d.∼ Exponential(1), so that E[Λτ] = Id, E[Λ2

τ] = 2Id, and E[Λ3
τ] = 6Id,926

we get927

Eŷquery →
1

3
⟨w, xquery⟩.

This shows that for transformers with a single linear self-attention layer, training on in-context928

examples with random covariate distributions does not allow for in-context learning of a hypothesis929

class with varying covariate distributions.930

F.2 Proof of Theorem F.2931

The proof of Theorem F.2 is very similar to that of Theorem D.1. The first step is to explicitly write932

out the dynamical system. In order to do so, we notice that the Lemma D.2 does not depend on933

32

the training data and data-generaing distribution and hence, it still holds in the case of a random934

covariance matrix. Therefore, we know when we input the embedding matrix Eτ to the linear935

self-attention layer with parameter θ = (WKQ,WPV), the prediction will be936

ŷquery(Eτ ; θ) = u⊤Hτu,

where the matrix Hτ is defined as,937

Hτ =
1

2
Xτ ⊗

(
EτE

⊤
τ

N

)
∈ R(d+1)2×(d+1)2 , Xτ =

(
0d×d xτ,query

(xτ,query)
⊤

0

)
∈ R(d+1)×(d+1)

and938

u = Vec(U) ∈ R(d+1)2 , U =

(
U11 u12

(u21)
⊤ u−1

)
∈ R(d+1)×(d+1),

where U11 = WKQ
11 ∈ Rd×d, u12 = wPV

21 ∈ Rd×1, u21 = wKQ
21 ∈ Rd×1, u−1 = wPV

22 ∈ R939

correspond to particular components of WPV and WKQ, defined in (13).940

941

F.2.1 Dynamical system942

The next lemma gives the dynamical system when the covariance matrices in the prompts are i.i.d.943

sampled from some distribution. Notice that in the lemma below, we do not assume Λτ are almost944

surely diagonal. The case when the covariance matrices are diagonal can be viewed as a special case945

of the following lemma.946

Lemma F.3. Consider gradient flow on (50) with respect to u starting from an initial value that947

satisfies Assumption C.1. We assume the covariance matrices Λτ are sampled from some distribution948

with finite third moment and Λτ are positive definite almost surely. We denote u = Vec (U) :=949

Vec

(
U11 u12

(u21)
⊤ u−1

)
and define950

Γτ =

(
1 +

1

N

)
Λτ +

1

N
tr(Λτ)Id ∈ Rd×d.

Then the dynamics of U follows951

d

dt
U11(t) = −u2

−1E [ΓτΛτU11Λτ] + u−1E
[
Λ2
τ

]
d

dt
u−1(t) = −u−1 trE

[
ΓτΛτU11Λτ (U11)

⊤]+ tr
(
E
[
Λ2
τ

]
(U11)

⊤) , (55)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0.952

Proof. This lemma is a natural corollary of Lemma D.3. Notice that Lemma D.3 holds for any fixed953

positive definite Λτ . So when Λτ is random, if we condition on Λτ , the dynamical system will be954

d

dt
U11(t) = −u2

−1 [ΓτΛτU11Λτ] + u−1

[
Λ2
τ

]
d

dt
u−1(t) = −u−1 tr

[
ΓτΛτU11Λτ (U11)

⊤]+ tr
([
Λ2
τ

]
(U11)

⊤) , (56)

and u12(t) = 0d, u21(t) = 0d for all t ≥ 0. Then, we conclude by simply taking expectation over955

Λτ .956

957

The lemma above gives the dynamical system with general random covariance matrix. When Λτ are958

diagonal almost surely, we can actually simplify the dynamical system above. In this case, we have959

the following corollary.960

33

Corollary F.4. Under the assumptions of Lemma F.3, we further assume the covariance matrix Λτ to961

be diagonal almost surely. We denote uij(t) ∈ R as the (i, j)-th entry of U11(t), and further denote962

γi = E

N + 1

N
λ3
τ,i +

1

N
λ2
τ,i ·

d∑
j=1

λτ,j

 ,

ξi = E
[
λ2
τ,i

]
,

ζij = E

[
N + 1

N
λ2
τ,iλτ,j +

1

N
λτ,iλτ,j ·

d∑
k=1

λτ,k

] (57)

for i, j ∈ [d], where the expectation is over the distribution of Λτ . Then, the dynamical system (55) is963

equivalent to964

d

dt
uii(t) = −γiu

2
−1uii + ξiu−1 ∀i ∈ [d],

d

dt
uij(t) = −ζiju

2
−1uij ∀i ̸= j ∈ [d],

d

dt
u−1(t) = −

d∑
i=1

[
γiu−1u

2
ii

]
−
∑
i ̸=j

ζiju−1u
2
ij +

d∑
i=1

[ξiuii] .

(58)

Proof. This is directly obtained by rewriting the equation for each entry of U11 and recalling the965

assumption that Λτ (and hence Γτ) is diagonal almost surely.966

F.2.2 Loss function and global minima967

As in the proof of Theorem D.1, we can actually recover the loss function in the random covariance968

case, up to a constant.969

Lemma F.5. The differential equations in (58) are equivalent to gradient flow on the loss function970

ℓrdm(U11, u−1) = E tr

[
1

2
u2
−1ΓτΛτU11Λτ (U11)

⊤ − u−1Λ
2
τ (U11)

⊤
]

=
1

2

d∑
i=1

[
γiu

2
−1u

2
ii

]
+

1

2

∑
i̸=j

ζiju
2
−1u

2
ij −

d∑
i=1

[ξiuiiu−1]

(59)

with respect to uij∀i, j ∈ [d] and u−1, from an initial value that satisfies Assumption C.1.971

Proof. This can be verified by simply taking gradient of ℓrdm to show that972

d

dt
uii = −∂ℓrdm

∂uii
∀i ∈ [d],

d

dt
uij = −∂ℓrdm

∂uij
∀i ̸= j ∈ [d],

d

dt
u−1 = −∂ℓrdm

∂u−1
.

973

974

Next, we solve for the minimum of ℓrdm and give the expression for all global minima.975

Lemma F.6. Let ℓrdm be the loss function in (59). We denote976

min ℓrdm := min
U11∈Rd×d,u−1∈R

ℓrdm (U11, u−1) .

Then, we have977

min ℓrdm = −1

2

d∑
i=1

ξ2i
γi

(60)

and978

ℓrdm(U11, u−1)−min ℓrdm =
1

2

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑
i ̸=j

ζiju
2
−1u

2
ij . (61)

34

Moreover, denoting uij as the (i, j)-entry of U11, all global minima of ℓrdm satisfy979

u−1 · uij = I(i = j) · ξi
γi
. (62)

Proof. From the definition of ℓrdm, we have980

ℓrdm =
1

2

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑
i̸=j

ζiju
2
−1u

2
ij −

1

2

d∑
i=1

ξ2i
γi

≥ −1

2

d∑
i=1

ξ2i
γi

.

The equation holds when uij = 0 for i ̸= j ∈ [d] and u−1uii =
ξi
γi

for each i ∈ [d]. This can be981

achieved by simply letting u−1 = 1 and uii =
ξi
γi

for i ∈ [d]. Of course, when we replace (u−1, uii)982

with (cu−1, c
−1uii) for any constant c ̸= 0, we can also achieve this global minimum.983

F.2.3 PL Inequality and global convergence984

Finally, to end the proof, we prove a Polyak-Łojasiewicz Inequality on the loss function ℓrdm, and985

then prove global convergence. Before that, let’s first prove the balanced condition of parameters will986

hold during the whole trajectory.987

Lemma F.7 (Balanced condition). Under the assumptions of Lemma F.3, for any t ≥ 0, it holds that988

u2
−1 = tr

[
U11(U11)

⊤] . (63)

Proof. The proof is similar to the proof of Lemma D.8. From Lemma D.3, we multiply the first989

equation in (55) by (U11)
⊤ from the right to get990 [

d

dt
U11(t)

]
(U11)

⊤ = −u2
−1E

[
ΓτΛτU11Λτ (U11)

⊤]+ u−1E
[
Λ2
τ (U11)

⊤] .
Also we multiply the second equation in Lemma 55 by u−1 to obtain991 (

d

dt
u−1(t)

)
u−1(t) = −u2

−1 trE
[
ΓτΛτU11Λτ (U11)

⊤]+ u−1 tr
(
E
[
Λ2
τ

]
(U11)

⊤) ,
Therefore, we have992

tr

[(
d

dt
U11(t)

)
(U11(t))

⊤
]
=

(
d

dt
u−1(t)

)
u−1(t).

Taking the transpose of the equation above and adding to itself gives993

d

dt
tr
[
U11(t)(U11(t))

⊤] = d

dt

(
u−1(t)

2
)
.

Notice that from Assumption C.1, we know that994

u−1(0)
2 = σ2 = σ2 tr

[
ΘΘ⊤ΘΘ⊤] = tr

[
U11(0)(U11(0))

⊤] .
So for any time t ≥ 0, the equation holds.995

996

Next, similar to the proof of Theorem D.1, we prove that, as long as the initial scale is small enough,997

u−1 will be positive along the whole trajectory and can be lower bounded by a positive constant,998

which implies that the trajectories will be away from the saddle point at the origin.999

Lemma F.8. We do gradient flow on ℓrdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose the1000

initialization satisfies Assumption C.1 with initial scale1001

0 < σ <

√√√√ 2 ∥EΛτΘ∥2F√
d
[
E ∥Γτ∥op ∥Λτ∥2F

] , (64)

then for any t ≥ 0, it holds that1002

u−1(t) > 0. (65)

35

Proof. From the dynamics of gradient flow, we know the loss function ℓrdm is non-increasing:1003

dℓrdm
dt

=

d∑
i,j=1

∂ℓrdm
∂uij

· duij

dt
+

∂ℓrdm
∂u−1

· du−1

dt
= −

d∑
i,j=1

[
∂ℓrdm
∂uij

]2
−
[
∂ℓrdm
∂u−1

]2
≤ 0.

Since we assume U11(0) = ΘΘ⊤, we know the loss function at t = 0 is1004

ℓrdm(U11(0), u−1(0)) = E tr

[
σ4

2
ΓτΛτΘΘ⊤ΛτΘΘ⊤ − σ2Λ2

τΘΘ⊤
]
.

From the property of trace, we know1005

E tr
[
σ2Λ2

τΘΘ⊤] = σ2 ∥EΛτΘ∥2F .

From Von-Neumann’s trace inequality and the assumption that
∥∥ΘΘ⊤

∥∥
F
= 1, we know1006

E tr

[
σ4

2
ΓτΛτΘΘ⊤ΛτΘΘ⊤

]
≤ σ4

√
d

2
E ∥Γτ∥op

∥∥ΛτΘΘ⊤ΛτΘΘ⊤∥∥
F

≤
σ4

√
d
∥∥ΘΘ⊤

∥∥2
F

2

[
E ∥Γτ∥op ∥Λτ∥2F

]
=

σ4
√
d

2

[
E ∥Γτ∥op ∥Λτ∥2F

]
.

From the assumptions on Θ and Λτ we know EΛτΘ ̸= 0d×d and E ∥Γτ∥op ∥Λτ∥2F > 0. Therefore,1007

comparing the two displays above, we know when (64) holds, we must have ℓrdm(0) < 0. So from1008

the non-increasing property of the loss function, we know ℓrdm(t) < 0 for any time t ≥ 0. Notice that1009

when u−1 = 0, the loss function is also zero, which suggests that u−1(t) ̸= 0 for any time t ≥ 0.1010

Since u−1(0) > 0 and the trajectory of u−1 must be continuous, we know that it stays positive at all1011

times.1012

1013

Lemma F.9. We do gradient flow on ℓrdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose the1014

initialization satisfies Assumption C.1 and the initial scale satisfies (64). Then, for any t ≥ 0, it holds1015

that1016

u−1(t) ≥
√

σ2

2
√
d ∥EΛ2

τ∥op

[
2 ∥EΛτΘ∥2F −

√
dσ2

[
E ∥Γτ∥op ∥Λτ∥2F

]]
> 0. (66)

Proof. From the dynamics of gradient flow, we know ℓrdm is non-increasing (see the proof of Lemma1017

F.8). Recall the definition of the loss function:1018

ℓrdm(U11, u−1) = E tr

[
1

2
u2
−1ΓτΛτU11Λτ (U11)

⊤ − u−1Λ
2
τ (U11)

⊤
]
.

Since Λτ commutes with Γτ and they are both positive definite almost surely, we know that ΓτΛτ ⪰1019

0d×d almost surely from Lemma H.1. Again, since U11Λτ (U11)
⊤ ⪰ 0d×d almost surely, from1020

Lemma H.1 we have tr
[
1
2u

2
−1ΓτΛτU11Λτ (U11)

⊤] ≥ 0 almost surely. Therefore, we have1021

ℓrdm(U11, u−1) ≥ −E tr
[
u−1Λ

2
τ (U11)

⊤] = − tr
[
u−1

(
EΛ2

τ

)
(U11)

⊤] .
From Von Neumann’s trace inequality (Lemma H.3) and the fact that u−1(t) > 0 for any t ≥ 01022

(Lemma F.8), we know ℓrdm(U11(t), u−1(t)) ≥ −
√
du−1

∥∥EΛ2
τ

∥∥
op

∥U11∥F . From Lemma F.7,1023

we know u2
−1 = tr(U11(U11)

⊤) = ∥U11∥2F . Since u−1(t) > 0 for any time, we know actually1024

u−1(t) = ∥U11(t)∥F . So we have1025

ℓrdm(U11(t), u−1(t)) ≥ −
√
du−1(t)

2
∥∥EΛ2

τ

∥∥
op

.

From the proof of Lemma F.8, we know1026

ℓrdm(U11(t), u−1(t)) ≤ ℓrdm(U11(0), u−1(0)) ≤
σ4

√
d

2

[
E ∥Γτ∥op ∥Λτ∥2F

]
− σ2 ∥EΛτΘ∥2F .

Combine the two preceding displays above, we have1027

u−1(t) ≥
√

σ2

2
√
d ∥EΛ2

τ∥op

[
2 ∥EΛτΘ∥2F −

√
dσ2

[
E ∥Γτ∥op ∥Λτ∥2F

]]
> 0.

The last inequality comes from Lemma F.8.1028

36

1029

Finally, we prove the PL Inequality, which naturally leads to the global convergence.1030

Lemma F.10. We do gradient flow on ℓrdm with respect to ui,j (∀i, j ∈ [d]) and u−1. Suppose the1031

initialization satisfies Assumption C.1 and the initial scale satisfies (64). If we denote1032

η = min {γi, i ∈ [d]; ζij , i ̸= j ∈ [d]}

and1033

ν :=
η · σ2

2
√
d ∥EΛ2

τ∥op

[
2 ∥EΛτΘ∥2F −

√
dσ2

[
E ∥Γτ∥op ∥Λτ∥2F

]]
> 0, (67)

then for any t ≥ 0, it holds that1034

∥∇ℓrdm(U11, u−1)∥22 :=

d∑
i,j=1

∣∣∣∣∂ℓrdm∂uij

∣∣∣∣2 + ∣∣∣∣∂ℓrdm∂u−1

∣∣∣∣2 ≥ ν (ℓrdm −min ℓrdm) . (68)

Additionally, ℓrdm converges to the global minimal value, uij and u−1 converge to the following1035

limits,1036

lim
t→∞

uij(t) = I(i = j) ·

[
d∑

i=1

ξ2i
γ2
i

]− 1
4

· ξi
γi

∀i ∈ [d], lim
t→∞

u−1(t) =

[
d∑

i=1

ξi
γi

] 1
4

. (69)

Translating back to the original parameterization, we have this is equivalent to1037

lim
t→∞

WKQ(t) =

∥∥∥[EΓτΛ
2
τ

]−1 E
[
Λ2
τ

]∥∥∥− 1
2

F
·
[
EΓτΛ

2
τ

]−1 E
[
Λ2
τ

]
0d

0⊤d 0

 ,

lim
t→∞

WPV (t) =

0d×d 0d

0⊤d

∥∥∥[EΓτΛ
2
τ

]−1 E
[
Λ2
τ

]∥∥∥ 1
2

F

 ,

where Γτ = N+1
N Λτ + 1

N tr(Λτ)Id ∈ Rd×d and E is over Λτ .1038

Proof. First, we prove the PL Inequality. From Lemma F.6, we know1039

ℓrdm(U11, u−1)−min ℓrdm =
1

2

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
1

2

∑
i ̸=j

ζiju
2
−1u

2
ij ,

where ξi, ζij , γi are defined in (57). Meanwhile, we calculate the square norm of the gradient of ℓrdm:1040

∥∇ℓrdm(U11, u−1)∥22 :=

d∑
i,j=1

∣∣∣∣∂ℓrdm∂uij

∣∣∣∣2 + ∣∣∣∣∂ℓrdm∂u−1

∣∣∣∣2 ≥
d∑

i,j=1

∣∣∣∣∂ℓrdm∂uij

∣∣∣∣2

=

d∑
i=1

γ2
i u

2
−1

(
uiiu−1 −

ξi
γi

)2

+
∑
i ̸=j

ζ2iju
4
−1u

2
ij .

Comparing the two displays above, we know in order to achieve ∥∇ℓrdm∥22 ≥ ν (ℓrdm −min ℓrdm) ,1041

it suffices to make1042

γiu−1(t)
2 ≥ ν

2
∀i ∈ [d],

ζiju−1(t)
2 ≥ ν

2
∀i ̸= j ∈ [d].

We define η := min {γi, ζij , i ̸= j ∈ [d]} , then it is sufficient to make1043

ηu−1(t)
2 ≥ ν

2
.

37

From Lemma F.9, we know that we can actually lower bound u−1 from below by a positive constant.1044

Then, the inequality holds if we take1045

ν :=
η · σ2

2
√
d ∥EΛ2

τ∥op

[
2 ∥EΛτΘ∥2F −

√
dσ2

[
E ∥Γτ∥op ∥Λτ∥2F

]]
> 0.

Therefore, as long as we take ν as above, a PL inequality holds for ℓrdm.1046

With an abuse of notation, let us write ℓrdm(t) = ℓrdm(U11(t), u−1(t)). Then, from the dynamics of1047

gradient flow and the PL Inequality ((68)), we know1048

d

dt
[ℓrdm(t)−min ℓrdm] = −∥∇ℓrdm(t)∥22 ≤ −ν (ℓrdm(t)−min ℓrdm) ,

which by Grönwall’s inequality implies1049

0 ≤ ℓrdm(t)−min ℓrdm ≤ exp(−νt) [ℓrdm(0)−min ℓrdm] → 0

when t → ∞. From Lemma F.6, we know1050

d∑
i=1

γi

(
uiiu−1 −

ξi
γi

)2

+
∑
i ̸=j

ζiju
2
−1u

2
ij → 0 when t → ∞.

This implies1051

uiiu−1 → ξi
γi

∀i ∈ [d],

uiju−1 → 0 ∀i ̸= j ∈ [d].

(70)

We take square of uii(t)u−1(t) and uij(t)u−1(t), then sum over all i, j ∈ [d]. Then, we1052

get u2
−1

∑d
i,j=1 u

2
ij →

∑d
i=1

ξ2i
γ2
i
. From Lemma F.7, we know for any t ≥ 0, u−1(t)

2 =1053

tr
(
U11(U11)

⊤) =∑d
i,j=1 u

2
ij . So we have1054

u−1(t)
4 = u2

−1

d∑
i,j=1

u2
ij →

d∑
i=1

ξ2i
γ2
i

,

which implies1055

u−1(t) →

[
d∑

i=1

ξ2i
γ2
i

] 1
4

(71)

when t → ∞. Combining (70) and (71), we conclude1056

uij(t) → 0 ∀i ̸= j ∈ [d], uii(t) →

[
d∑

i=1

ξ2i
γ2
i

]− 1
4

· ξi
γi

∀i ∈ [d].

1057

38

G Experiments with large, nonlinear transformers1058

We have shown that even when trained on prompts with random covariance matrices, transformers1059

with a single linear self-attention layer fail to in-context learn linear models with random covariance1060

matrices. We now investigate the behavior of more complex transformer architectures that are1061

trained on in-context examples of linear models, both in the fixed-covariance case and in the random-1062

covariance case.1063

We examine the performance of transformers with a GPT2 architecture [Radford et al., 2019] that are1064

trained on linear regression tasks with mean-zero Gaussian features with either a fixed covariance1065

matrix or random covariance matrices. For the fixed covariance case, the covariance matrix is fixed1066

to the identity matrix across prompts. For the random covariance case, covariates are drawn from1067

x ∼ N(0, cΛ) where Λ is diagonal with λi
i.i.d.∼ Exponential(1) and c > 0 is a scaling factor. We1068

set c = 1 during training and vary this value at test time. The transformer is trained using the1069

procedure of Garg et al. [2022] (see Appendix G for more details). We consider linear models in1070

d = 20 dimensions and we train on prompt lengths of N = 40, 70, 100 with either fixed or random1071

covariance matrices. The performance of these trained models, when tested on new data with fixed1072

covariance or random covariance matrices (c = 1, 4, 9), is represented in six curves in Figure 2.1073

Using the calculation (54), we can compare the prediction error for the linear self-attention networks1074

in the M → ∞, N → ∞ limit (the black dash line) to those of GPT2 architectures. We additionally1075

compare these models to the ordinary least-squares solution which is optimal for this task.1076

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
d

er
ro

r

Test on Fixed Covariance

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 1.0

0 20 40 60 80 100
in-context examples

0

1

2

3

4

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 4.0

0 20 40 60 80 100
in-context examples

0

2

4

6

8

sq
ua

re
d

er
ro

r

Test on Random Covariance, Scale = 9.0

Zero Estimator
LSA Limit
fixedcov_N40
fixedcov_N70
fixedcov_N100
randomcov_N40
randomcov_N70
randomcov_N100
Least Squares

Figure 2: Normalized prediction error for transformers with GPT2 architectures as a function of the number of in-context test examples M
when trained on in-context examples of linear models in d = 20 dimensions. Colored lines correspond to different training context lengths
(N ∈ {40, 70, 100}) and different training procedures (either a fixed identity covariance matrix or random diagonal covariance matrices
with each diagonal element sampled i.i.d. from the standard exponential distribution). The four figures correspond to evaluating on either fixed
covariance or random covariance matrices of different scales. The gray dashed line shows the prediction error of zero estimator and the black
dashed line the prediction error of LSA model when M,N → ∞. The GPT2 models achieve smaller error when they are trained on random
covariance matrices with larger contexts, but their prediction error spikes when evaluated on contexts larger than those they were trained on.

G.1 Experiment details1077

Here we provide more details for the experiment in Figure 2. Our experimental setup is based on1078

the codebase provided by Garg et al. [2022], with a modification that allows for the possibility that1079

the covariate distribution changes across prompts. We use the standard GPT2 architecture with 2561080

embedding size, 12 layers and 8 heads [Radford et al., 2018] as implemented by HuggingFace [Wolf1081

et al., 2020]. For the GPT2 models, we use the embedding method proposed by Garg et al. [2022],1082

where instead of concatenating x and y into a single token, they are treated as separate tokens. It1083

39

is also worth noting that the training objective function for the GPT2 model is different than those1084

we consider for the linear self-attention network: for the GPT2 model, the objective function is the1085

average over the full length of the context sequence (predictions for each xi using (xk, yk)k<i), while1086

in our setting the objective function is only for the final query point. However, in the figure, for both1087

GPT2 and the linear self-attention model the error plotted corresponds to the error for predicting the1088

final query point.1089

In all experiments, covariates are sampled from a mean-zero Gaussian in d = 20 dimensions with1090

either fixed or random covariance matrix. For the fixed covariance case, we fix the covariance matrix1091

to be identity; for the random case, the covariance matrices are restricted to be diagonal and all1092

diagonal entries are i.i.d. sampled from the standard exponential distribution. The linear weights1093

in all tasks are i.i.d. sampled from standard Gaussian distribution and also independently from all1094

covariates. We trained the model for 500000 steps using Adam [Kingma and Ba, 2014] with a batch1095

size of 64 and learning rate of 0.0001. We use the same curriculum strategy of Garg et al. [2022] for1096

acceleration.1097

For testing the trained model, we used ordinary least squares as a baseline which is optimal for1098

noiseless linear regression tasks. For prompts at test time, covariates are sampled i.i.d. from a mean-1099

zero Gaussian distribution. For the fixed-covariance evaluation, the covariance is the identity matrix.1100

In the random-covariance evaluation, the covariance is a random diagonal matrix with diagonal entries1101

sampled from the standard exponential distribution, multiplied by a scaling coefficient c ∈ {1, 4, 9},1102

i.e. for each task τ, the covariance matrix in the random case is1103

Λτ = c · diag (λτ,1, ..., λτ,d)

where λτ,i
i.i.d.∼ Exponential(1) for any τ and i ∈ [d]. The plots in Figure 2 show the error averaged1104

over 642 prompts, where we sample 64 covariance matrices for each curve and 64 prompts for each1105

covariance matrix. We compute 90% confidence interval over 1000 bootstrap trials for each teat.1106

From the figure, we can see that the GPT2 model trained on fixed covariance succeeds in the random1107

covariance setting if the variance is not too large, which shows that the larger nonlinear model is1108

able to generalize better than the model with a single linear self-attention layer. However, when the1109

variance is large (c = 4, 9 for the bottom two figures), the GPT2 model trained with fixed covariance1110

is unsuccessful. When trained on random covariance, the model performs better for test prompts from1111

higher-variance random covariance matrices, but still fails to match least squares when the scaling is1112

largest (c = 9).1113

Furthermore, we notice some surprising behaviors when the test prompt length exceeds the training1114

prompt length (i.e., M > N): there is an evident spike in prediction error, regardless of whether1115

training and testing were performed on fixed or random covariance, and the spike appears to decrease1116

when evaluated on prompts with higher variance. Although we are unsure of why the spike should1117

decrease with higher-variance prompts, the failure of large language models to generalize to larger1118

contexts than they were trained on is a well-known problem [Dai et al., 2019, Anil et al., 2022]. In1119

our setting, we conjecture that this spike in error comes from the absolute positional encodings in the1120

GPT2 architecture. The positional encodings are randomly-initialized and are learnable parameters1121

but the encoding for position i is only updated if the transformer encounters a prompt which has a1122

context of length i. Thus, when evaluating on prompts of length M > N , the model is relying upon1123

random positional encodings for M − N samples. We note that a concurrent work has explored1124

the performance of transformers with GPT2 architectures for in-context learning of linear models1125

and found that removing positional encoders improves performance when evaluating on larger1126

contexts [Ahuja et al., 2023]. We leave further investigation of this behavior for future work.1127

40

H Technical lemmas1128

Lemma H.1 (Matrix Derivatives, Kronecker Product and Vectorization, [Petersen et al., 2008]). We1129

denote A,B,X as matrices and x as vectors. Then, we have1130

• ∂x⊤Bx
∂x =

(
B+B⊤)x.1131

• Vec(AXB) =
(
B⊤ ⊗A

)
Vec(X).1132

• tr
(
A⊤B

)
= Vec(A)⊤ Vec(B).1133

• ∂
∂X tr

(
XBX⊤

)
= XB⊤ +XB.1134

• ∂
∂X tr

(
AX⊤) = A.1135

• ∂
∂X tr

(
AXBX⊤C

)
= A⊤C⊤XB⊤ +CAXB.1136

1137

Lemma H.2. If X is Gaussian random vector of d dimension, mean zero and covariance matrix Λ,1138

and A ∈ Rd×d is a fixed matrix. Then1139

E
[
XX⊤AXX⊤] = Λ

(
A+A⊤)Λ + tr(AΛ)Λ.

Proof. We denote X = (X1, ..., Xd)
⊤. Then,1140

XX⊤AXX⊤ = X(X⊤AX)X⊤ =

 d∑
i,j=1

AijXiXj

XX⊤.

So we know (XX⊤AXX⊤)k,l =
(∑d

i,j=1 AijXiXj

)
XkXl. From Isserlis’ Theorem in probability1141

theory (Theorem 1.1 in Michalowicz et al. [2009], originally proposed in Wick [1950]), we know for1142

any i, j, k, l ∈ [d], it holds that1143

E
[
XiXjXkXl

]
= ΛijΛkl + ΛikΛjl + ΛilΛjk.

Then, we have for any fixed k, l ∈ [d],1144

E(XX⊤AXX⊤)k,l =

d∑
i,j=1

AijΛijΛkl +AijΛikΛjl +AijΛilΛjk

= tr(AΛ)Λkl + Λ⊤
k (A+A⊤)Λl.

Therefore, we know1145

E(XX⊤AXX⊤) = Λ
(
A+A⊤)Λ + tr(AΛ)Λ.

1146

1147

Lemma H.3 (Von-Neumann’s Trace Inequality). Let U, V ∈ Rd×n with d ≤ n. We have

tr
(
U⊤V

)
≤

d∑
i=1

σi(U)σi(V) ≤ ∥U∥op ×
d∑

i=1

σi(V) ≤
√
d · ∥U∥op∥V ∥F

where σ1(X) ≥ σ2(X) ≥ · · · ≥ σd(X) are the ordered singular values of X ∈ Rd×n.1148

1149

Lemma H.4 ([Meenakshi and Rajian, 1999]). For any two positive semi-definitive matrices A,B ∈1150

Rd×d, we have1151

• tr[AB] ≥ 0.1152

• AB ⪰ 0 if and only if A and B commute.1153

41

	Introduction
	Preliminaries
	Main results
	Global convergence and prediction error for new tasks
	Behavior of trained transformer under distribution shifts
	Transformers trained on prompts with random covariate distributions

	Conclusion and future work
	Notations
	Additional related works
	Linear self-attention and training procedure
	Linear self-attention and the prediction
	Training procedure and the initialization

	Theorem 3.1 and the proof
	Proof of Theorem D.1
	Equivalence to a quadratic optimization problem
	Dynamical system of gradient flow
	PL inequality and global convergence

	Proof for supporting lemmas
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.4
	Proof of Lemma D.5

	Theorem 3.2 and the proof
	Formal statement and discussion
	Proof of Theorem E.1

	Transformers trained on prompts with random covariate distributions
	Main theorem for the random covariance case
	Proof of Theorem F.2
	Dynamical system
	Loss function and global minima
	PL Inequality and global convergence

	Experiments with large, nonlinear transformers
	Experiment details

	Technical lemmas

