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Abstract—In this paper, we propose the OTSeg score,
a new quantitative metric that utilizes optimal transport
to measure the degree of segregation on graphs. We
characterize maximizers and minimizers for the metric and
consider its relationship to classical measures of segrega-
tion including those based on spectral graph theory. We
validate the effectiveness of OTSeg through experiments on
synthetic and real datasets derived from American political
geography, highlighting its potential for applications in
computational social science.

I. INTRODUCTION

Segregation refers to the uneven distribution of groups
or individuals across spatial regions, often along de-
mographic, economic, or cultural lines. Understanding
and quantifying the extent of segregation is a major
step in studying its causes and consequences. The ex-
amination often involves analyzing spatial networks that
model geographic units, which could be counties, Census
tracts, or households [1]. A range of methods have
been proposed to quantify segregation, ranging from
statistical indices to spatial metrics. Two of the most
widely used methods are the Gini index [2]—originally
developed to quantify income inequality—and Moran’s
I [3]—a measure of spatial autocorrelation that captures
the degree to which similar values (e.g., demographic
proportions) are clustered in a spatial network.

A. Summary of Contributions & Notation

In this paper, we propose a novel approach to mea-
suring segregation using optimal transport on graphs.
Our index, the OTSeg cost, uses optimal transport to
analyze segregation directly on graph-structured data.
We establish its mathematical properties, including a
characterization of maximizers and minimizers, and per-
form a comparison between OTSeg and Moran’s I.
Our analysis demonstrates that OTSeg captures patterns
and disparities in population distributions that are often
overlooked by Moran’s I. For instance, the values of
Moran’s I are heavily influenced by the underlying graph
topology and the spatial weight matrix. This dependency
complicates the interpretation of intermediate scores
(e.g., those lying near 0.5) and makes cross-locality
comparisons challenging without careful normalization
[4]. In contrast, OTSeg inherently incorporates transport

costs and spatial distances, allowing it to capture dispar-
ities of demographic distribution directly at a finer level.
Moreover, it is robust across different graph topologies as
it does not depend on arbitrary choices of spatial weight
matrices, making it more suitable for consistent cross-
locality comparisons.

II. BACKGROUND

A. Existing Segregation Metrics

One of the most commonly-used metrics to quantify
inequality is the Gini index [2].

Definition II.1. Let p ∈ [0,1] denote the cumulative
proportion of the population and let L(p) ∈ [0,1] be
the Lorenz curve, denoting the cumulative proportion
of the quantity held by the bottom p proportion of the
population. The Gini index is G ∶= 2 ∫

1
0 (p −L(p))dp.

One major limitation of the Gini index is that it can
produce the same value for very different income dis-
tributions [5]. Indeed, since the Gini index summarizes
the area between the Lorenz curve, p ↦ L(p), and the
equality line, p ↦ p, into a single number, it often fails
to capture detailed information about the specific shape
of inequality within a society.

Another common metric for measuring segregation is
Moran’s I, a spatial autocorrelation metric.

Definition II.2. Let W ∈ Rn×n be a nonzero spatial
weight matrix. Then Moran’s I with respect to W is
defined as I = n

w

∑
n
i=1∑

n
j=1 Wij(xi−x)(xj−x)

∑
n
i=1(xi−x)2

where w =
∑n

i=1∑
n
j=1 ∣Wij ∣ and x is the variable of interest.

A checkerboard distribution, where adjacent units
have alternating values for x, would yield a Moran’s I
value near −1, indicating dissimilarity between neigh-
boring units as defined by W . In contrast, a distri-
bution where neighboring units have the same value
(such as a region of all 0s next to a region of all
1s) would yield a Moran’s I value near 1, indicating
similarity between neighboring units. Moran’s I has dif-
ferent bounds on different graphs and can be arbitrarily
large or small [4]. Finding the true maximizer and
minimizer of Moran’s I can be achieved by solving the
generalized eigenvalue problem associated to (CWC,C)



where C = I − 1
n
11T . [4]. Using these extremal values,

we can normalize Morans’s I by simply dividing by
max{max(I), ∣min(I)∣}.
B. Transport Costs

Our new segregation score utilizes transport costs,
defined below.

Definition II.3. Let P and Q be distributions on a set of
elements X and Y , respectively, each with n elements.
Let Π(P,Q) be the set of couplings between P and Q,
namely matrices π ∈ Rn×n

≥0 such that:

π1 = Q, πT
1 = P,

where 1 denotes the n-dimensional column vector of
ones. Let D ∈ Rn×n denote a (symmetric) cost matrix
where each entry Dij represents the cost of transferring
mass from the i-th element in the support of P to the j-
th element in the support of Q. Then, the transport cost
between P and Q is

C(P,Q) ∶= min
π∈Π(P,Q)

n

∑
i=1

n

∑
j=1

Dijπij .

III. OTSEG

We introduce a new measurement, the OTSeg score,
which uses the transport cost to quantify the extent of
segregation within a population. The idea is grounded in
comparing an arbitrary distribution P with a reference
that represents the absence of segregation—the uniform
distribution. In this framework, the farther P is from
the uniform distribution, the higher the OTSeg score,
signifying greater segregation.

Definition III.1. Let X be a set of n elements. Let
P,U ∈ Rn×1 be distributions on X with U the uniform
distribution. Then,

OTSeg(P ) ∶= C(P,U)
dmax

,

where
dmax ∶= max

1≤i≤n

n

∑
j=1

Dij

n
.

A. Extrema of OTSeg
It is useful to characterize the maximizers and min-

imizers of segregation metrics in order to make mean-
ingful comparisons and inferences.

The minimizer is trivial: if P is the uniform distribu-
tion on X , there is no need to move any mass from P
to U resulting in an OTSeg score of 0.

Intuitively, a maximizer corresponds to a distribution
P that concentrates all of its mass at a single element
of X that is on average farthest from all other nodes.
We formalize this intuition by first considering the
case where P is supported on a single element in the
following lemma.

Lemma III.2. Let X be a set of n elements. Let P,U ∈
Rn×1, where U is the uniform distribution on X and P
is a distribution on X that has support size 1. Then,
C(P,U) ≤ dmax.

Proof. Let P be a Dirac measure centered at xi. The
only coupling from U to P is π∗ ∈ Rn×n with:

π∗jk =
⎧⎪⎪⎨⎪⎪⎩

1
n
, if j = i,

0, if j ≠ i.

The transport cost is then:

C(P,U) = min
π∈Π(P,U)

n

∑
j=1

n

∑
k=1

πjkDjk.

=
n

∑
j=1

n

∑
k=1

π∗jkDjk

=
n

∑
k=1

π∗ikDik =
n

∑
k=1

Dik

n
.

So, C(P,U) is the average distance of xi to all other
elements in X . Since dmax is defined as

max
1≤i≤n

n

∑
k=1

Dik

n
,

it follows directly that C(P,U) ≤ dmax.

Theorem III.3. Let X be a set with n elements and let
U denote the uniform distribution on X . A distribution
Pmax which maximizes C(P,U) is given by:

(Pmax)i =
⎧⎪⎪⎨⎪⎪⎩

1, if i maximizes 1
n ∑

n
j=1Dij ,

0, otherwise,

where if there are multiple indices i that achieve the
maximum value, then any such index works. The cost
associated to a maximizer distribution is dmax.

Proof. Let P,U ∈ Rn×1, where U is the uniform dis-
tribution on X and P is a distribution on X . We
claim C(P,U) ≤ dmax. We proceed by induction over
k ∈ {1, . . . , n}, the support size of P .
Base case: When k = 1, the result follows from Lemma
III.2.
Inductive step: Assume that any distribution R ∈ Rn×1

on X with support size k ≥ 2 satisfies C(R,U) ≤ dmax.
Let P be an arbitrary distribution on X with support
size k + 1. Let xi be an element in the support of P ,
and let pi > 0 denote the probability mass assigned to xi

by P . Define the Dirac measure δxi centered at xi, and
let P ′ be the distribution obtained by removing xi from
the support of P and rescaling the remaining masses to
ensure ∥P ′∥1 = 1, i.e.,

P = piδxi + (1 − pi)P ′.



By convexity of the transport cost [6], we have:

C(P,U) = C(piδxi + (1 − pi)P ′, U)
≤ piC(δxi , U) + (1 − pi)C(P ′, U).

By Lemma III.2, we know that C(δxi , U) ≤ dmax. By
the inductive hypothesis, C(P ′, U) ≤ dmax. Therefore:

C(P,U) ≤ pidmax + (1 − pi)dmax = dmax.

Thus, any distribution P with support size k ∈ {1, . . . , n}
satisfies C(P,U) ≤ dmax. Selecting xi to be the node
which realizes dmax is such that δxi realizes this upper
bound.

IV. NUMERICAL EXPERIMENTS

A. Experiment Setup

To see and evaluate how OTSeg captures segregation
trends, we compare this score with Moran’s I using the
2010 National Census data [7]. Every state was separated
into four major demographic categories according to the
Census: Black, White, Asian, and Hispanic. Each Census
tract was treated as a node and a demographic proportion
was the distribution on that node. Every state was scaled
to fit within a 1×1 box around the origin. Moran’s I for
each demographic was calculated using Definition II.2,
and then scaled by max{max(I), ∣min(I)∣}. The spatial
weight matrix W was constructed to reflect adjacency
between Census tracts. Specifically, Wij = 1 if tracts i
and j share a boundary, and Wij = 0 otherwise. OTSeg
was calculated using Definition III.1 in a similar fashion,
using the Euclidean distance between Census tracts as
the distance function.

Fig. 1: Moran’s I vs. OTSeg Scores by Demographic
(Euclidean Distance)

These results are shown in Figure 1, which shows a
relatively positive correlation between these two segrega-
tion metrics, with an r-squared value of around 0.2 for
the four demographics. Varying the cost matrix to use
the squared Euclidean distance instead gives a similar

result, as shown in Figure 2, with an even higher r-
squared value for the White demographic across all fifty
States. Figure 3 shows the correlation between Moran’s
I and OTSeg for the Hispanic population within the U.S.
An R-squared value of 0.16 indicates that both Moran’s
I and OTSeg capture some overlapping trends in the
distribution of the Hispanic population. What is more
interesting is the discrepancy between these two metrics.

Fig. 2: Moran’s I vs. OTSeg Scores by Demographic
(Squared Euclidean Distance)

Fig. 3: Scatterplot of Moran’s I vs. OTSeg Value of
Hispanic Population in U.S. States

B. Discrepancies Between Moran’s I and OTSeg

Figure 3 shows a clear outlier in Mississippi, whose
Moran’s I value is much lower with respect to its OT-
Seg score. This discrepancy might indicate that OTSeg
captures different information regarding the geographical
shape and spatial distribution of the graph as opposed to
Moran’s I. As shown in Figure 4, there are many high
density nodes surrounded by nodes with lower Hispanic
population proportion. It would make sense for Moran’s



I to return a relatively low value for this distribution.
Indeed, Moran’s I is a measure of spatial autocorrelation,
which evaluates the similarity of values at neighboring
nodes. A distribution where nodes with a high Hispanic
population proportion are surrounded by nodes with a
low Hispanic population proportion indicates a pattern
of negative spatial autocorrelation—since high and low
values are clustered in opposing proximity, Moran’s I
will return a low or negative value. Figure 4 shows
OTSeg’s score on the same graph of the Mississippi
Hispanic population. Notably, we can see large amounts
of mass being moved from high-density clusters to low-
density nodes across the state, resulting in the relatively
high OTSeg score in Figure 3.

Fig. 4: OTSeg Mapping For the Hispanic Population in
Mississippi

Fig. 5: 9-Node Graph With High-proportion Nodes Sur-
rounded by Low-proportion Nodes

C. Benefits of OTSeg over Moran’s I
Some further exploration into this discrepancy gives us

Figure 5. Similar to the Figure 4, this 9-node graph has

four nodes of high distribution surrounded by five nodes
of low distribution. The normalized Moran’s I value of
this graph is −0.944. The OTSeg value, on the other
hand, is 0.294, which is relatively large compared to
the low Moran’s I value. From a spatial autocorrelation
view, it may seem that this distribution is relatively
‘anti-segregated’, which agrees with the large negative
Moran’s I value. However, from a geographical stand-
point, this graph could also be seen as highly segregated,
where a specific demographic is highly concentrated
within specific nodes and nearly nonexistent elsewhere
— this point of view is echoed by OTSeg’s large value of
0.294. These nuances illustrate the complexity of spatial
analysis, where these different metrics capture and offer
contrasting perspectives on the same data set.

D. Computational Complexity

It is worth noting that finding the transport cost is
computationally expensive, even when approximating
with Sinkhorn’s algorithm [8], which has essentially
quadratic complexity in n. In practice, this becomes a se-
rious concern as the granularity of the data is increasing.
Although calculating OTSeg on every state at the Census
tract level (approximately 84,414 tracts) is relatively
quick, moving to the Census block level (over 8 million
blocks) significantly increases computational burden. To
address this, it may be worthwhile to explore accelerated
methods such as meta optimal transport, as we are
repeatedly solving very similar transport problems within
each U.S. state [9].

V. CONCLUSION AND FUTURE RESEARCH

In this work, we introduced OTSeg, a novel metric
for quantifying segregation, leveraging optimal transport
to evaluate population distributions directly on graph-
structured data. We demonstrated the theoretical proper-
ties of OTSeg, including its ability to define maximizers
and minimizers that correspond to extreme configura-
tions of segregation. Furthermore, our experiments vali-
dated the utility of OTSeg in capturing subtle segregation
trends that may go undetected by classical methods.
These results highlight its potential to provide insights
ranging from social science to urban planning and net-
work analysis.

Future work could explore extending OTSeg to dy-
namic settings, where population distributions evolve
over time, or to multiscale analyses that examine seg-
regation patterns across varying spatial resolutions. Ad-
ditionally, normalizing the population vector nodewise
rather than globally may allow for a different perspective
on measuring segregation with OTSeg.
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