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ABSTRACT

At the heart of network architectures lie the non-linear activation functions, the
choice of which affects the model optimization and task performance. In com-
puter vision and natural language processing, the Rectified Linear Unit is widely
adopted across different tasks. However, there is no such default choice of acti-
vation functions in the context of physics-informed neural networks (PINNs). It
is observed that PINNs exhibit high sensitivity to activation functions due to the
various characteristics of each physics system, which makes the choice of the suit-
able activation function for PINNs a critical issue. Existing works usually choose
activation functions in an inefficient trial-and-error manner. To address this prob-
lem, we propose to search automatically for the optimal activation function when
solving different PDEs. This is achieved by learning an adaptive activation func-
tion as linear combinations of a set of candidate functions, whose coefficients can
be directly optimized by gradient descent. In addition to its efficient optimization,
the proposed method enables the discovery of novel activation function and the in-
corporation with prior knowledge about the PDE system. We can further enhance
its search space with adaptive slope. While being surprisingly simple, the effec-
tiveness of the proposed adaptive activation function is demonstrated on a series
of benchmarks, including the Poisson’s equation, convection equation, Burgers’
equation, Allen-Cahn equation, Korteweg–de Vries equation, and Cahn-Hilliard
equation. The performance gain of the proposed method is further interpreted
from the neural tangent kernel perspective. Code will be released.

1 INTRODUCTION

Recent years have witnessed the remarkable progress of physics-informed neural networks (PINNs)
on simulating the dynamics of physical systems, in which the activation functions play a significant
role in the expressiveness and optimization of models. While the Rectified Linear Unit (Hahnloser
et al., 2000; Jarrett et al., 2009; Nair & Hinton, 2010) is widely adopted in most computer vision
and natural language processing tasks (Ramachandran et al., 2017), there is no such default choice
of activation functions in the context of PINNs. In fact, PINNs show great sensitivity to activation
functions when applied to different physical systems, since each system has its own characteristic.
On one hand, the utilization of unsuitable activation functions would cause over-parameterization
and overfitting. One the other hand, accurate simulations can be achieved with fast convergence
and high precision by choosing proper activation functions. For example, the hyperbolic tangent
function is shown to suffer from numerical instability when simulating vortex induced vibrations,
while a PINN with sinusoidal function can be optimized smoothly (Raissi et al., 2019b).

The various characteristics of different PDE systems make it critical to select proper activation func-
tions in PINNs. The common practice to find the optimal activation functions is by trial-and-error,
which requires extensive computational resources and human knowledge. This method is ineffi-
cient especially when solving complex problems, where searching for a set of activation functions
is necessary to make accurate predictions. For instance, a combination of the sinusoidal and the
exponential function is demonstrated effective to solve the heat transfer equation, whose solution is
periodic in space and exponentially decaying in time (Zobeiry & Humfeld, 2021). In this case, the
trial-and-error strategy leads to the combinatorial search problem, which becomes infeasible when
the candidate activation function set is large.

1



Under review as a conference paper at ICLR 2023

In this work, we propose a simple and effective physics-informed activation function (PIAC), aiming
at the automatic design of activation functions for solving PDE systems with various characteristics.
Sharing the same spirits with differentiable neural architecture search (Liu et al., 2018), we param-
eterize the categorical selection of one particular activation function into a continuous search space,
leading to an end-to-end differentiable problem which can be integrated into the training procedure
of PINNs. Specifically, we first define a set of candidate activation functions, which is conceptually
composed of simple elementary functions or commonly-used activation functions. Then, the pro-
posed PIAC is learned as the linear combination of candidate functions with adaptive coefficients.
Besides its efficient optimization, this continuous parameterization also enables the discovery of
novel activation functions, whose capacity can be further enhanced by cascading these learnable
functions in a layer-wise or neuron-wise manner.

Our method can be regraded as adaptive activation functions built on a predefined candidate function
set. Although adaptive activation functions have been explored for PINNs, previous works mainly
focus on accelerating the convergence of PINNs by introducing the adaptive slope (Jagtap et al.,
2020b;a), while leaving the inefficient selection of activation function for different PDE systems
unexplored. In fact, our method is orthogonal to these methods and can be extended by incorporating
the adaptive slope into our search space. Moreover, the introduction of candidate function set can be
leveraged to embed prior knowledge about the PDE system into the neural networks. For example,
the sinusoidal function can be added into this set to assist the modeling of periodicity.

We evaluate the proposed PIAC on a series of PDEs, including the Poisson’s equation, convection
equation, Burgers’ equation, Allen-Cahn equation, Korteweg–de Vries equation, and Cahn-Hilliard
equation. Extensive experiments show that the proposed PIAC can consistently outperform the
standard activation functions. We further explain the performance gain from the neural tangent
kernel (NTK) perspective (Jacot et al., 2018; Wang et al., 2022).

The main contribution of this paper can be summarized as:

• We investigate the influence of activation functions for PINNs to solve different problems
and reveal the high sensitivity of PINNs to the choice of activation functions, which can be
related to various characteristics of the underlying PDE system;

• We explore the automatic design of activation functions for PINNs. The proposed method
can be efficiently optimized and adapted to the PDE system, while enabling the utilization
of prior knowledge about the problem;

• While being simple, the effectiveness of the proposed PIAC is demonstrated on extensive
experiments and interpreted from the perspective of neural tangent kernel.

2 PRELIMINARIES AND RELATED WORK

2.1 PHYSICS-INFORMED NEURAL NETWORKS

Physics-informed neural networks have emerged as a promising method for solving forward and
inverse problems of PDEs (Raissi et al., 2019a; Chen et al., 2020; Lu et al., 2021b; Karniadakis
et al., 2021), fractional PDEs (Pang et al., 2019), and stochastic PDEs (Zhang et al., 2019). In this
work, we focus on solving the forward problems of PDEs as described in (Raissi et al., 2019a).
Specifically, we consider PDEs of the general form

ut +N [u(t,x);λ] = 0, x ∈ Ω ⊂ Rd, t ∈ [0, T ], (1)

subject to the initial and boundary conditions

u(0,x) = u0(x), x ∈ Ω, (2)

B[u] = 0, x ∈ ∂Ω, t ∈ [0, T ], (3)
where u(t,x) denotes the solution, N [·;λ] is a differential operator parameterized by λ, B[·] is a
boundary operator, and subscripts denote the partial differentiation.

A physics-informed neural network (PINN) u′(t,x;θ) is optimized to approximate the solution
u(t,x) by minimizing the following objective function

L(θ) = Lic(θ) + Lbc(θ) + Lr(θ), (4)
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where
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Here θ denotes the parameters of neural networks. The Lic and Lbc measure the prediction error
on initial training data {xi

ic}
Nic
i and boundary training data {tibc,xi

bc}
Nbc
i . The residual loss Lr

is imposed to make the neural network satisfy the PDE constraint on a set of collocation points
{tir,xi

r}
Nr
i . To compute the residual loss Lr, partial derivatives of the neural network output with

respect to t and x can be obtained via automatic differentiation techniques (Baydin et al., 2018).

Despite the effectiveness, the introduction of physics-based loss function makes the optimization
more ill-conditioned (Wang et al., 2021; Krishnapriyan et al., 2021). Efforts have been made to
alleviate this problem from the aspects of loss weight balancing (Wang et al., 2021; 2022), loss
function design (Psaros et al., 2022; Yu et al., 2022), adaptive collocation point sampling (Wight &
Zhao, 2020; McClenny & Braga-Neto, 2020; Lu et al., 2021a; Wu et al., 2022), domain decompo-
sition (Jagtap et al., 2020c; Jagtap & Karniadakis, 2020), and curriculum learning (Krishnapriyan
et al., 2021). Different from previous works, we shed light on the relationship between the opti-
mization difficulty of PDE constraint and activation functions. Our work reveals the high sensitivity
of PINNs to the choice of activation function and proposes to reduce the optimization difficulty
of PINNs by learning specialized activation functions for different PDEs. We hope our work could
inspire further study on the convergence issue of PINNs from the perspective of activation functions.

2.2 ACTIVATION FUNCTIONS

Fixed-shape activation function. Activation functions are crucial for the optimization and perfor-
mance of deep neural networks (Glorot & Bengio, 2010). The Rectified Linear Units (ReLU) (Hahn-
loser et al., 2000; Jarrett et al., 2009; Nair & Hinton, 2010) outperform the logistic and hyperbolic
tangent activation functions and have become the default choice for most neural networks. Since
then, designing activation functions has been an active research direction. Variants with improved
learning characteristics are proposed, such as Softplus (Dugas et al., 2000; Glorot et al., 2011),
Leaky ReLU (Maas et al., 2013), ELU (Clevert et al., 2015) and GELU (Hendrycks & Gimpel,
2016). Besides these hand-designed activation functions, Ramachandran et al. (2017) leverages
neural architecture search techniques to discover the novel Swish function. In this work, we focus
on the selection of activation functions for PINNs when solving different problems. While the com-
mon practice to find the optimal activation function is by trial-and-error, we formulate this manual
selection as a learning problem, which can be optimized efficiently.

Adaptive activation functions are explored to find specialized activation functions for different
architectures and tasks. The major difference of existing methods lies in the search space. The
piece-wise linear function is adopted as the universal function approximator in some methods, such
as APL (Agostinelli et al., 2014), RePLU (Li et al., 2016) and PWLU (Zhou et al., 2021). The
formulation of SLAF (Goyal et al., 2019) is based on Taylor approximation with polynomial basis.
PAU (Molina et al., 2019) leverages Padé approximation to form its search space. Motivated by the
connection between Swish and ReLU, ACON (Ma et al., 2021) is proposed as a smooth approxima-
tor to the general Maxout family activation functions (Goodfellow et al., 2013). Our work proposes
to learn an adaptive activation function as a weighted sum of candidate functions, whose weights
can be adapted to the underlying physics laws when modelling different PDE systems. While sim-
ilar ideas have been studied for convolutional neural networks in image classification (Dushkoff &
Ptucha, 2016; Qian et al., 2018; Manessi & Rozza, 2018; Sütfeld et al., 2020), some technical chal-
lenges remain unexplored in the context of PINNs, which have a higher demand for the smoothness
and diversity of the candidate functions. First, the optimization of PDE-based constraints needs
the activation function to provide higher-order derivatives, which causes the failure of widely-used
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ReLUs in PINNs. Second, unlike the image classification tasks, different PDE systems could have
various characteristics, such as periodicity and rapid decay. This leads to a higher requirement for
the diversity of the candidate functions. To overcome these challenges, we propose to build the
candidate function set with simple elementary functions to embed the prior knowledge of physics
systems, as well as commonly-used activation functions to ensure the diversity.

3 METHOD

In this section, we first investigate the influence of activation functions in PINNs for solving simple
ODE systems with analytical solutions. The results show that the choice of activation functions is
crucial for PINNs and depends on the problem. Motivated by this observation, we propose to learn
specialized activation functions for different PDE systems.

3.1 ACTIVATION FUNCTIONS IN PINNS

Across the deep learning community, the ReLU enjoys widespread adoption and becomes the default
activation function. However, there is no such default choice of activation functions for PINNs,
regardless of the importance of activation functions in the optimization and expressivity of neural
networks. One of the reasons lies in the failure of ReLUs in PINNs, whose second-order derivative
is zero everywhere. More importantly, PINNs show great sensitivity to activation functions due to
the various characteristics of the underlying PDE system. To give a further illustration, we compare
the performance of PINNs with different activation functions on the following toy examples.

Problem formulation. Here we consider the one-dimensional Poisson’s equation as

∆u(x) = f(x), x ∈ [0, π], (8)

with boundary condition u(0) = 0 and u(π) = π, where ∆ is the Laplace operator and f(x)
denotes the source term. As shown in Table 1, we use different source terms to construct analytical
solutions with various characteristics. For the problem P1, the solution is composed of trigonometric
functions with different periods; for the problem P2, its solution is dominant by the exponential
function. Following the setting described in Yu et al. (2022), we impose the boundary conditions as
hard-constraints by choosing the surrogate of solution as

û(x) = x(x− π)u′(x; θ) + x, (9)

where u′(x; θ) is the output of PINN. Hence, the training objective is reduced to the residual loss Lr.
Note that we consider an extreme case of insufficient collocation points to highlight the difference
between activation functions. The details of activation functions and experiment setups can refer to
Appendix A and Appendix C, respectively.

Table 1: The source terms and analytical solutions for the 1D Poisson’s equation.

Problems f(x) u(x)

P1 −(
∑20

i=1 isin(ix)) x+
∑20

i=1 sin(ix)/i

P2 (x3 − 2πx2 + (π2 + 3)x− 2π)e
(x−π)2

2 xe
(x−π)2

2

PINNs exhibit high sensitivity to the choice of activation functions. Table 2 shows the results
of different activation functions on P1 and P2. As we can see, the choice of activation functions
makes a big difference on the prediction accuracy. For example, there exists a large performance
gap between the exp and tanh functions on P2 (0.73 ± 2.08 vs. 75.77 ± 7.93). Moreover, the
performance of the same activation function can vary significantly across different problems. One
can find that while sin achieves the lowest error on P1, it produces poor results on P2. A similar
phenomenon is observed on the exp function. Note that none of these activation functions can
achieve the best performance simultaneously on these two problems.

We argue that this sensitivity arises from the various characteristics of each problem. In
Figure 1, we visualize the second-order derivative of PINNs to analyse the influence of activation
functions on the optimization of residual loss Lr. We find that the commonly-used tanh function
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fails to model the periodic nature of P1 and the rapid decay of P2, exhibiting severe overfitting with
insufficient collocation points. In contrast, accurate approximation can be achieved under the same
conditions by using activation functions with suitable properties, such as the sin function for P1 and
the exp function for P2. However, there dose not exist a generic activation function which could
model different characteristics simultaneously. This finding demonstrates the necessity of careful
selection of activation functions when solving different problems.

Table 2: Comparisons between different activation functions. L2 relative error (%) is reported.

Problems sin exp tanh sigmoid Softplus ELU GELU Swish

P1 0.91± 0.30 39.11± 31.32 34.27± 45.21 23.51± 17.82 86.03± 64.79 36.68± 20.61 19.48± 18.50 33.16± 36.81
P2 49.42± 4.75 0.73± 2.08 75.77± 7.93 56.36± 10.81 0.65± 0.23 40.96± 97.75 2.70± 3.41 1.05± 0.42
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(a) The second-order derivative of PINNs for P1.
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(b) The second-order derivative of PINNs for P2.
Figure 1: Visualization of the residual loss Lr. In the case of 1D Poisson’s equation, the residual loss
Lr penalizes the deviation of the second-order derivative of PINNs to the exact values on sampled
collocation points (black dots in figures). We plot the results of sin, exp and tanh.

3.2 LEARNING SPECIALIZED ACTIVATION FUNCTIONS FOR SOLVING PDES

In light of the diversity and complexity of PDEs, it is critical to select proper activation functions
in PINNs. Existing works usually make the choice though trial-and-error. However, this strategy is
inefficient and leads to the impractical combinatorial search problem in some cases where choosing
a set of suitable activation functions is necessary for solving complex problems. To address this
problem, we propose a simple and effective method to search for the optimal activation functions
for different problems automatically.

To be specific, we formulate the manual selection of activation functions as a learning problem, fol-
lowing the spirits of neural architecture search. Our basic idea is to construct the search space with
a set of candidate activation functions and learn to predict the optimal activation function for differ-
ent PDEs. Instead of categorically selecting one particular activation function, we relax the search
space to be a linear combination of all candidate activation functions with learnable coefficients.
This continuous search space allows efficient optimization through backpropagation and enables the
discovery of novel activation functions.

Formally, we define the physics-informed activation function (PIAC) as

PIAC(x) =

N∑
i=1

G(αi)σi(x), G(αi) =
exp(αi)∑N
j=1 exp(αj)

(10)

where σi(·) and αi denote a candidate activation function and a learnable parameter, respectively.
Together with a gate function G(·), the parameter αi determines the weight (or coefficient) of its
corresponding candidate activation function. We use the softmax as the gate function by default.
In this case, the search space is the convex hull of the set of candidate activation functions. When
the weights are fixed as one-hot vectors, the proposed PIAC is reduced to its candidate function.
When the weights are learnable, a specialized novel activation function can be efficiently searched
for different PDE systems thanks to the continuous parameterization. We employ the PIAC by
replacing all the activation functions in PINNs. It can be applied in a neuron-wise manner where
learnable parameters are allowed to be vary across neurons, or in a layer-wise manner where the
parameters are shared for all neurons in one layer.
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The search space of PIAC is built upon the set of candidate functions F = {σ1, σ2, ..., σN}. Con-
ceptually, we build this candidate function set with simple elementary functions and commonly-used
activation functions. First, we can embed prior knowledge about the PDE system into the networks
by including appropriate elementary functions. For example, the periodicity and exponential decay
are commonly seen in physics equations but rarely observed in image data. As shown in Section 3.1,
they are difficult to model by neural networks with normal activation functions such as tanh. We
can alleviate the modeling difficulty by taking advantage of sinusoidal and exponential functions
in our search space. We can also add those elementary functions observed in the initial condition
(see the convection equation) or the force term (see Poisson’s equation) to help the optimization of
corresponding loss function. Second, we add most of commonly-used activation functions into this
function set. By doing this, we ensure the diversity of our search space while avoiding the repetitive
evaluations of each candidate activation function for different problems. Moreover, the search space
can be further enhanced with the adaptive slope, which is proposed to improve the convergence rate
of standard activation functions for PINNs (Jagtap et al., 2020b;a). This can be achieved by simply
introducing a learnable scaling factor βi for each candidate function σi, which can be represented as

PIAC(x) =

N∑
i=1

G(αi)σi(βix). (11)

4 EXPERIMENTS

In this section, We evaluate the performance of our method on several benchmarks of time-dependent
PDEs. Then, we provide detailed ablation results to analyse the proposed PIAC. Finally, we present
an intuitive interpretation of the performance gain of our method from the neural tangent kernel
perspective. More results on the 1D Poisson’s equation can be found in Appendix C.

4.1 EXPERIMENTS ON TIME-DEPENDENT PDES

We demonstrate the generalization ability of PIAC to solve various time-dependent PDEs, ranging
from first-order linear PDE to fourth-order nonlinear PDE, including the convection equation, the
Burgers’ equation, the Allen-Cahn equation, the Korteweg–de Vries equation, and the Cahn-Hilliard
equation. Note that for the linear convection problem, we consider the case of a high convection
coefficient (β=64), which is shown as a difficult problem for vanilla PINNs (Krishnapriyan et al.,
2021). The details of PDEs and experimental configurations can refer to Appendix D.

Baselines and PIAC setups. We compare PIAC with several commonly-used activation functions,
including the sinusoidal functions (sin), the hyperbolic tangent function (tanh), the logistic function
(sigmoid), the Softplus function (Softplus), the Exponential Linear Unit (ELU), the Gaussian Error
Linear Unit (GELU) and the Swish function (Swish). We compare PIAC to other adaptive activa-
tion functions which could provide higher-order derivatives, including SLAF Goyal et al. (2019),
PAU Molina et al. (2019) and ACON Ma et al. (2021). The details of each activation function can
refer to Appendix A and Appendix B. We also compare PIAC with standard activation functions
with the layer-wise adaptive slopes (Jagtap et al., 2020a). We employ the PIAC in a layer-wise man-
ner by default. We set the candidate function set F as {sin, tanh,GELU,Swish,Softplus}. The
learnable parameters {αi}Ni=1 are initialized as zeros and optimized jointly with the weights and
biases of PINNs. The scaling factors {βi}Ni=1 are initialized as ones and can be fixed or learnable.

4.1.1 MAIN RESULTS

Comparisons with fixed activation functions. Table 3 presents the L2 relative error of PIAC
and seven standard activation functions on five time-dependent PDEs. One can observe that PIAC
outperforms standard activation functions on all PDEs. For example, PIAC reduces the error rate
by 83% on the convetion equation (0.06± 0.03% vs. 0.36± 0.15%), by 46% on the KdV equation
(0.34 ± 0.05% vs. 0.64 ± 0.34%), and by 56% on the Cahn-Hilliard equation (0.50 ± 0.15%
vs. 1.01 ± 1.27%), compared with optimal standard activation function of each problem. More
importantly, PIAC performs consistently over all these problems, while standard activation functions
suffer from high variance in the performance of different PDEs.
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Table 3: Comparisons of standard activation functions,PIAC and their counterparts with adaptive
slopes (AS) on time-dependent PDEs. L2 relative error (%) is reported. We also report the average
error rate over all problems. The better results are bold-faced.

Convection Burgers’ Allen-Cahn KdV Cahn-Hilliard Average
Method equation equation equation equation equation error

sin 0.36± 0.15 5.18± 3.73 3.57± 0.64 0.63± 0.17 1.72± 0.61 2.29
tanh 6.83± 4.79 0.26± 0.13 1.34± 0.54 1.32± 1.12 4.02± 4.56 2.75

sigmoid 70.38± 2.98 1.24± 1.05 1.63± 0.13 2.34± 0.53 3.12± 2.72 15.74
GELU 39.29± 35.51 4.43± 2.87 3.93± 0.78 1.21± 0.41 1.01± 1.27 9.97
Swish 5.59± 2.18 8.27± 4.35 5.56± 1.28 1.73± 0.10 2.22± 2.60 4.67

Softplus 55.39± 2.46 17.75± 8.11 17.72± 6.04 6.23± 0.44 9.67± 2.57 21.35
ELU 6.67± 0.96 46.34± 2.36 52.55± 2.95 78.95± 2.57 90.77± 2.07 55.66

SLAF 0.36± 0.18 43.93± 0.66 33.93± 9.97 25.23± 1.28 52.57± 27.93 31.20
PAU 45.78± 35.47 48.31± 8.21 43.83± 15.18 68.11± 13.49 115.59± 3.79 64.32

ACON 3.55± 1.66 1.18± 1.55 3.88± 1.82 1.52± 0.35 2.46± 1.96 2.52
PIAC 0.06± 0.03 0.21± 0.11 0.76± 0.26 0.34± 0.05 0.50± 0.15 0.37

With AS

sin 0.28± 0.08 1.82± 1.58 3.57± 0.46 0.57± 0.19 1.73± 0.73 1.59
tanh 3.06± 1.65 0.16± 0.09 0.81± 0.21 1.71± 1.53 2.11± 0.49 1.57
GELU 38.00± 39.53 0.71± 0.38 1.99± 0.63 0.79± 0.17 0.96± 0.57 8.49
PIAC 0.05± 0.02 0.15± 0.10 0.58± 0.15 0.34± 0.08 0.35± 0.07 0.29

Comparisons with other adaptive activation functions. The results of different adaptive activa-
tion functions are shown in Table 3. SLAF achieves performance comparable to the best standard
activation function on the first-order convection equation, but does not produce accurate predictions
for other higher-order PDEs. Although SLAF shares a similar formulation with PIAC, its polyno-
mial bases can cause vanishing or exploding gradients due to the high order powers in its derivatives.
This problem might hinder the optimization of higher-order PDE-based constraints. PAU suffers
from instability of training (see Appendix Figure 2) and performs poorly on all PDEs. We attribute
the training instability of PAU to its discontinuous derivatives, which arise from the absolute value
in the denominator of its formulation. ACON achieves stable performance but does not surpass the
best standard activation function in each problem due to the limited flexibility of its formulation. The
proposed PIAC outperforms these methods thanks to the diverse and smooth candidate functions,
which can be used to incorporate the prior knowledge of different physics systems.

Comparisons with activation functions with adaptive slopes. We also compare PIAC with three
standard activation function enhanced with adaptive slopes (AS). We find PIAC without AS achieves
competitive or even better results. For example, PIAC without AS outperforms the tanh with AS
on the Allen-Cahn equation and outperforms the sin with AS on the convection equation. The
performance of PIAC can be further improved by incorporating adaptive slopes into the search space.
As a showcase, PIAC with AS obtains a performance gain by 64% compared to the GELU with AS
on the Cahn-Hilliard equation and by 82% compared to the sin with AS on the convection equation.
Furthermore, our method has a better generalization ability and achieves the lowest average error
rate over all problems (0.29% with AS and 0.37% without AS), while the adaptive slope technique
cannot alleviate the need of the manual selection of activation functions.

Visualization of the learned PIAC. We show the learned PIAC in Appendix Figure 3. One can
observe the learned activation functions are different from candidate functions. We also find differ-
ences in learned functions of different layers. For example, a deeper layer tends to has a larger weight
of sin function in the cases of convection equation. Moreover, the learned activation functions vary
across problems, which conforms to our motivation to learn specialized activation functions for dif-
ferent PDE systems. The prediction results of PIAC for all problems can refer to Appendix Figure 4.

4.2 ABLATION STUDY

We ablate different design choices to provide a better understanding of the proposed method. For
all ablation experiments, we deploy layer-wise PIAC to solve the convection equation. The adaptive
slope is deactivated for a clear comparison.
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Table 4: PIAC ablation experiments on the convection equation. We repeat each experiments 5 times
and report the average L2 relative error (%). Default settings are marked in gray .

(a) Comprisons of different candidate function set.

Function set F #params error (%)

{sin, tanh, GELU, Swish, Softplus} 16922 0.06± 0.03
{sin, tanh, GELU, Swish} 16917 0.06± 0.03
{sin, tanh, GELU} 16912 0.10± 0.12
{sin, tanh} 16907 0.33± 0.04

sin 16897 0.36± 0.15
tanh 16897 6.83± 4.79
GELU 16897 39.29± 35.51

(b) Comprisons of different search spaces.

G(·) Init Learnable error (%)

identity 1/N ✓ 0.22± 0.22
L1-norm 1/N ✓ 1.18± 0.93
sigmoid Zero ✓ 0.89± 0.83

softmax Zero ✓ 0.06± 0.03

softmax Zero % 1.60± 1.12

softmax Random % 0.32± 0.23
softmax Random ✓ 0.09± 0.05

Comparing different candidate function set. Here we study the influence of candidate function
set by gradually increasing its size as shown in Table 4a. We begin with the two most commonly-
used activation functions, the sin and tanh functions. In this case, PIAC is shown to achieve com-
petitive result compared with its two candidate functions. Based on that, we observe that adding new
activation functions could lead to a better performance. Surprisingly, the introduction of GELU can
still improve the performance despite its poor results on this problem. We argue that this perfor-
mance gain arises from the enlarged search space. We notice that the performance tends to saturate
as the number of candidate functions increases. This indicates that PIAC has a good robustness to
the choice of candidate function set if this set contains activation functions with sufficient diversity.
Notably, the additional parameters of PIAC is negligible compared with total number of weights.

Comparing different gate functions. We also compare the softmax function with other gate func-
tions in Table 4b. The identity function G(αi) = αi includes all linear combinations of candidate
activation functions into the search space; while the sigmoid function G(αi) = 1/(1 + exp(−αi))
restricts the coefficients to be between 0 and 1. We also consider the L1-normalization G(αi) =

αi/
∑N

j=1 |αj |, which allows for negative coefficients and keeps the competition between candidate
functions. The trainable {αi}Ni=1 are initialized as zeros for sigmoid and softmax functions and as
1/N for identity and L1-normalization functions, where N denotes the number of candidate func-
tions. One can observe that the results of softmax function are more stable and more accurate. This
implies proper restrictions of the search space can work as a regularization to the learning of PIAC.

Effectiveness of learnable coefficients of PIAC. To demonstrate that the learnable coefficients of
PIAC is effective and necessary, we compare PIAC to two variants with fixed coefficients. The first
one initializes its parameters as zeros and the second one initializes its parameters from a standard
normal distribution. As shown in Table 4b, the automatically learned coefficients outperforms evenly
distributed coefficients and random sampled coefficients by a large margin. Furthermore, one can
observe that the performance gap between the random and constant initialization is eliminated if
these parameters are trainable, which also demonstrates the effectiveness of PIAC’s optimization.

4.3 UNDERSTANDING PIAC THROUGH THE LENS OF NEURAL TANGENT KERNEL

The neural tangent kernel is proposed to describe the evolution of neural networks (Jacot et al.,
2018). Its eigenvalues can be leveraged to analyse the rate of convergence as shown in previous
works (Jacot et al., 2018; Tancik et al., 2020; Wang et al., 2022). We show that the introduction
of PIAC makes the NTK learnable. Empirically, we observe the optimization of PIAC adapts the
NTK’s eigenvalue spectrum to the underlying PDE system and leads to an improvement on the
average eigenvalue, which partially explains the stable and fast convergence of PIAC.

Brief introduction of NTK. Specially, the neural tangent kernel of a L-layer fully-connected
network u(L) with parameters θ is defined as

Θ(L)(x,x′) = ⟨∂u
(L)(x|θ)
∂θ

,
∂u(L)(x′|θ)

∂θ
⟩ =

∑
θi

∂u(L)(x|θ)
∂θi

∂u(L)(x|θ)
∂θi

(12)
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where x and x′ are two inputs. As demonstrated in Jacot et al. (2018), in the infinite-width limit and
under suitable conditions, the NTK Θ(L) converges to a deterministic kernel Θ(L)

∞ at initialization
and stays constant during the training. This limiting kernel can be represented as

Θ(L)
∞ =

L∑
l=1

(
Σ(l)(x,x′)

L∏
l′=l+1

Σ̇(l′)(x,x′)

)
,

Σ(l+1)(x,x′) = Ef∼N (0,Σ(l))[σ(f(x))σ(f(x
′))] + β2,

Σ̇(l+1)(x,x′) = Ef∼N (0,Σ(l))[σ̇(f(x))σ̇(f(x
′))] + β2.

(13)

Note Σ(1)(x,x′) = 1
n0

xTx′ + β2. The expectation in Eq.(13)is taken with respect to a centered
Gaussian process f with covariance Σ(l); n0 is the dimension of input x and β is a scaling factor;
σ and σ̇ denote the activation function and its derivative, respectively. Note that the covariance Σ(l)

depends on the choice of activation functions and so dose the NTK Θ
(L)
∞ .

PIAC and the learnable NTK. For simplicity, we derive the NTK of standard neural networks
with PIAC. The NTK of PINNs with PIAC can be derived in a similar way. Firstly, we assume that
the optimization of neural networks with PIAC can be decomposed into two phases, where we learn
the coefficients of PIAC in the first phase and then train the parameters of neural network in the
second phase. This assumption is reasonable as the number of parameters of PIAC is far less than
those of networks and they quickly converge at the early stage of training. Empirically, we observe
that a short warmup (2.5% of the whole schedule) is sufficient for PIAC to learn suitable activation
functions and to achieve competitive performance compared with the counterpart whose coefficients
are updated during the whole schedule (0.58% vs. 0.60% on the Allen-Cahn equation). By decou-
pling the updates of PIAC and networks, we find the second optimization phase is equivalent to the
training of a standard network with a learned activation function, whose NTK is derived as

Θ̄(L)
∞ =

L∑
l=1

(
(

N∑
i=1

N∑
j=1

G(αi)G(αj)Σ
(l)
σiσj

(x,x′))

L∏
l′=l+1

(

N∑
i=1

N∑
j=1

G(αi)G(αj)Σ̇
(l′)
σiσj

(x,x′))

)
,

Σ(l+1)
σiσj

(x,x′) = Ef∼N (0,Σ(l))[σi(f(x))σj(f(x
′))],

Σ̇(l+1)
σiσj

(x,x′) = Ef∼N (0,Σ(l))[σ̇i(f(x))σ̇j(f(x
′))].

(14)

We omit the factor β for convenience. One can observe that the covariance Σ(l) in Eq(13) is re-
placed with a weighted sum of Σ(l)

σiσj , which is calculated with different combinations of candidate
activation functions. Note that the weights are learned in the first training phase. To conclude, the
introduction of PIAC leads to a learnable NTK which could be adapted to the underlying PDE.

The eigenvalue spectrum of NTK with PIAC. Through the optimization of PIAC, we can mod-
ify the limiting NTK Θ̄

(L)
∞ , which corresponds to a change in the convergence behavior of the neural

network. We show empirically that the optimization of PIAC has an effect on the NTK’s eigenvalue
spectrum. As shown in Appendix Figure 3d, PIAC leads to a larger average eigenvalue compared
with the best standard activation function on the Allen-Cahn equation (5859 vs. 2407), which im-
plies a larger convergence rate (Wang et al., 2022).

5 CONCLUSION

In this paper, we reveal the high sensitivity of PINNs to the choice of activation functions and
relate it to various characteristics of the underlying PDE system. We sought to learn specialized
activation functions automatically for PINNs to avoid the inefficient manual selection of activation
functions and to alleviate the optimization difficulty of PINNs. The proposed physics-informed
activation function is presented as learnable combinations of a set of candidate functions, whose
coefficients can be adapted to the governing PDEs. Intuitively, we show that PIAC makes the neural
tangent kernel of PINNs learnable, which partially explains the performance improvement of PIAC.
Extensive experiments on a series of challenging benchmarks demonstrate the effectiveness and
generalization ability of PIAC.
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A STANDARD ACTIVATION FUNCTIONS

We compare the proposed PIAC with several standard activation functions for solving a series of
PDEs. The details are shown as follows.

• sin:
f(x) = sin(β ∗ x), (15)

where scaling factor β is set to 1 as default.
• exp:

f(x) = e(β∗x) − 1, (16)
where β is set to 1 as default. For the P1 setting of 1D Poisson’s equation, β is set to 0.25
for better performance.

• tanh:

f(x) =
ex − e−x

ex + e−x
. (17)

• sigmoid:

f(x) =
1

1 + e−x
. (18)

• Softplus (Dugas et al., 2000; Glorot et al., 2011):

f(x) =
1

β
log(1 + eβ∗x), (19)

where β = 1. Softplus can be regard as a smooth version of ReLU.
• the Exponential Linear Unit (ELU) (Clevert et al., 2015):

f(x) =

{
x, if x ≥ 0,

ex − 1, if x < 0.
(20)

• the Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016):
f(x) = x ∗ Φ(x), (21)

where Φ(x) is the cumulative distribution function of the standard Gaussian distribution.
• Swish (Hendrycks & Gimpel, 2016; Ramachandran et al., 2017; Elfwing et al., 2018):

f(x) =
x

1 + e−x
. (22)

B ADAPTIVE ACTIVATION FUNCTIONS

We further compare the proposed PIAC with other adaptive activation functions which could provide
higher-order derivatives. The details are shown as follows.

• The SLAF Goyal et al. (2019) proposes to learn activation functions with Taylor polynomial
bases, which is presented as:

f(x) =

m∑
i=0

aix
i, (23)

where m is set to 5 in our experiments. The learnable parameters {ai}mi=0 are initialized
from a normal distribution.

• The PAU Molina et al. (2019) is presented as the rational functions of the form

f(x) =

∑m
i=0 aix

i

1 + |
∑n

i=1 bix
i|
, (24)

where m is set to 5 and n is set to 4 following the default setting in Molina et al. (2019). The
absolute value is to avoid a zero-valued denominator. The learnable parameters {ai}mi=0 and
{bi}ni=1 are initialized from a normal distribution.

• The ACON Ma et al. (2021) is a smooth approximator to the general Maxout family acti-
vation functions, which is presented as

f(x) = (p1 − p2)x ∗ sigmoid(β(p1 − p2)x) + p2x, (25)
where p1, p2 and β are learnable parameters and initialized from a normal distribution.
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C EXPERIMENTS ON 1D POISSON’S EQUATION

Experiment setups. For each problem, we use a 4-layer multilayer perceptron (MLP) with the
hidden dimension set to 16. The model is initialized by the Xavier initialization (Glorot & Bengio,
2010) and trained for 20000 iterations using the Adam optimizer (Kingma & Ba, 2014). We initialize
the learning rate as 1e-3 and adapt it with a half-cycle cosine decay schedule. We use 32 collocation
points for both P1 and P2. For each problem, we experiment with 8 standard activation functions
as described in Appendix A. We repeat each experiment 10 times and report the mean and standard
deviation of the L2 relative error.

Comparisons between PIAC and standard activation functions. To demonstrate the effective-
ness of PIAC, we use it to learn combinations of the sin and exp functions for solving the 1D
Poisson’s equation as described in Section 3.1. As shown in Table 2, although the sin and exp func-
tions can achieve the lowest L2 relative error on P1 and P2 respectively, they perform poorly on the
other problem. We expect the PIAC could adapt its attention over these two candidate functions ac-
cording to the problem. We define F = {sin, exp}. The trainable parameters {αi}Ni=1 are initialized
as zeros, which implies equal attention over all candidate functions.

The results of PIAC and its two candidate functions are presented in Table 5a. It can be observed that
PIAC can achieve comparable accuracy with the sin on P1 and outperform the exp on P2, despite
the large performance gap between its two candidate functions. We also report the values of learned
coefficients in Table 5b. For P1, PIAC pays more attention on the sin function as expected. For P2,
we observe that the learned activation functions are different across layers. The exp is preferred only
on the third layer, which still leads a performance gain compared with standard activation functions.
Overall, the results indicate that the proposed method can learn useful combination coefficients by
considering the effectiveness of candidate functions for different problems.

Table 5: Comparisons of standard activation and PIAC on the 1D Poisson’s equation. L2 relative
error (%) is reported. We also report the learned coefficients of sin, αsin. Note that the coefficients
of exp can be obtained by αexp = 1− αsin, since the softmax gate function is used.

(a) The L2 relative error (%).

Problem P1 P2
sin 0.91± 0.30 49.42± 4.75
exp 39.11± 32.32 0.73± 2.08

PIAC 0.88± 0.42 0.01± 0.006

(b) The learned coefficients αsin of different layers.

Layers P1 P2
1 0.81± 0.02 0.58± 0.08
2 0.75± 0.06 0.53± 0.05
3 0.84± 0.04 0.45± 0.06

D EXPERIMENTS ON TIME-DEPENDENT PDES

D.1 PROBLEM FORMULATIONS

Convection equation. Consider a one-dimensional linear convection problem as

ut + βux = 0, x ∈ [0, 2π], t ∈ [0, 1],

u(0, x) = sin(x), u(t, 0) = u(t, 2π).
(26)

The solution of this problem is periodic over time, whose period is inversely proportional to the con-
vection coefficient β. Previous work (Krishnapriyan et al., 2021) finds it difficult for vanilla PINNs
to learn the solution with a large β and proposes to train the PINNs with curriculum learning. To be
specific, the β is initialized as a small value and gradually increases during the training. Despite its
effectiveness, the training cost is increased significantly. We show that accurate prediction can be
achieved with a normal training strategy by simply using a suitable activation function. Moreover,
the performance can be further improved by our method. Here we set the convection coefficient β
to 64. We use Nic = 512 training points for the initial condition and Nbc = 200 for the boundary
condition. The residual loss Lr is computed on Nr = 6400 randomly sampled collocation points.
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Burgers’ equation. We consider the one-dimensional Burgers’ equation:

ut + uux = νuxx, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = −sin(πx), u(t,−1) = u(t, 1) = 0,
(27)

where ν = 0.01/π. Following (Lu et al., 2021a), we uniformly sample Nic = 256 and Nbc = 100
points for initial and boundary training data, respectively. We compute the residual loss Lr on
Nr = 4800 collocation points, which are randomly selected from the spatial-temporal domain.

Allen-Cahn equation. We next consider the Allen-Cahn equation as

ut = Duxx + 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = x2cos(πx), u(t,−1) = u(t, 1) = −1,
(28)

where D = 0.001 following the setting in (Yu et al., 2022). We choose the following surrogate of
solution to enforce the initial and boundary conditions:

û(t, x) = x2cos(πx) + t(1− x2)u′(t, x; θ), (29)

where u′(t, x; θ) is the output of neural networks. We use Nr = 8000 collocation points.

Korteweg–de Vries equation. We consider the Korteweg–de Vries (KdV) equation as

ut + λ1uux + λ2uxxx = 0, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = cos(πx), u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1),
(30)

where λ1 = 1 and λ2 = 0.0025 following the setting in (Raissi et al., 2019a). We choose the
following surrogate of solution to enforce the initial conditions:

û(t, x) = cos(πx) + tu′(t, x; θ), (31)

where u′(t, x; θ) is the output of neural networks. We use Nbc = 200 training points for the bound-
ary condition and Nr = 8000 collocation points for the residual loss Lr.

Cahn-Hilliard equation. We consider the phase space representation of Cahn-Hilliard equation
as

ut −∇2(−λ1λ2h+ λ2(u
3 − u)) = 0, h = ∇2u, x ∈ [−1, 1], t ∈ [0, 1],

u(0, x) = cos(πx)− exp(−4(πx)2), u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1),

h(t,−1) = h(t, 1), hx(t,−1) = hx(t, 1),

(32)

where λ1 = 0.02 and λ2 = 1 following the setting in (Mattey & Ghosh, 2022). Previous work
proposes a novel sequential training method to solve this strongly non-linear and high-order prob-
lem (Mattey & Ghosh, 2022). We find that a normal training strategy can lead to a comparable result
if we add more collocation points around t = 0. To be specific, we sample 4000 collocation points
from time interval [0, 0.05) and 8000 points from [0.05, 1]. We set Nic = 256 and Nbc = 100.
We show that PINNs under this training setting can work as a strong baseline and can be further
improved by PIAC.

D.2 EXPERIMENTAL CONFIGURATIONS

Experiment setups. We train the PINNs by a two-stage optimization except the convection equa-
tion. At the first stage, the model is trained for a certain number of iterations by Adam (Kingma &
Ba, 2014). Then, the L-BFGS (Byrd et al., 1995) is used to train the network until convergence. The
first stage is to provide a good initialization for the L-BFGS optimizer. In the case of convection
equation, only the Adam optimizer is used. The detailed experimental configurations can be found
in Table 6. The model is initialized by the Xavier initialization. The learning rate is adapted with a
half-cycle cosine decay schedule in the first stage with Adam optimizer. We repeat each experiment
5 times and report the mean and standard deviation of the L2 relative error. We run all experiments
on one NVIDIA GeForce RTX 2080Ti GPU.
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Table 6: The experimental configurations for all problems.

Network Adam L-BFGS Data
Problems Depth Hidden dims Iters lr Max Iters Nic Nbc Nr

Convection equation 6 64 100k 2e-3 - 512 200 6400
Burgers’ equation 4 32 15k 1e-3 15k 256 100 5300

Allen-Cahn equation 4 32 40k 1e-3 15k - - 8000
KdV equation 4 32 40k 1e-3 15k - 200 8000

Cahn-Hilliard equation 4 32 100k 1e-3 15k 256 100 15000

D.3 VISUALIZATION

We show the training losses of different activation functions in Figure 2. One can observe SLAF
seems to get stuck in local minima when solving the Burgers’ equation and the Allen-Cahn equation.
We find PAU suffers from instability of training as its loss oscillates severely. ACON achieves better
performance than SLAF and PAU, but does not surpass tanh on both PDEs. Compared to these
learnable activation functions, the training loss of PIAC is more stable and converges faster.

We present the learned activation functions of PIAC in Figure 3 and the prediction results of PIAC in
Figure 4. We also visualize the eigenvalue spectrum of NTK with PIAC in Figure 3d, which shows
a larger average eigenvalue compared with the best standard activation function on the Allen-Cahn
equation.
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Figure 2: The training loss of different activation functions.
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(b) Convection equation
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Figure 3: Visualization of the learned activation functions and the eigenvalue spectrum. (a) Candi-
date functions of PIAC. (bc) The learned activation functions for the convection equation and the
KdV equation. The curves of PIAC with and without the adaptive slope are presented. (d) The
eigenvalue spectrum of NTK matrix on the training data of the Allen-Cahn equation.
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(a) The convection equation
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(b) The burgers’ equation
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(c) The Allen-Cahn equation
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(d) The KdV equation
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(e) The Cahn-Hilliard equation

Figure 4: Visualizations of the predictions of PIAC. For each problem, we show the exact solution
(left), the prediction (middle) and the absolute error between them (right).
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