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ABSTRACT

Few-shot learning (FSL) aims to recognize novel query examples with a small
support set through leveraging prior knowledge learned from a large-scale training
set. In this paper, we extend this task to a more practical setting where the domain
shift exists between the support set and query examples, and additional unlabeled
data in the target domain can be adopted in the meta-training stage. Such new
setting, termed cross-domain cross-set FSL (CDSC-FSL), requires the learning
system not only to adapt to new classes with few examples but also to be con-
sistent between different domains. To address this paradigm, we propose a novel
approach, namely stabPA, to learn prototypical compact and cross-domain aligned
representations, so that domain shift and few-shot adaptation can be addressed si-
multaneously. We evaluate our approach on two new CDCS-FSL benchmarks
adapted from the DomainNet and Office-Home datasets, respectively. Remark-
ably, our approach outperforms multiple elaborated baselines by a large margin
and improves 5-shot accuracy by up to 4.7 points.

1 INTRODUCTION

Learning new concepts from a very limited number of images is easy for human beings, however, it
is quite difficult for most machine learning algorithms, as they usually need plenty of labeled data
to model large intra-class variance and complex inter-class relationships. To bridge the gap between
humans and machines, few-shot learning (FSL) has recently been proposed, which aims to learn
new classes with only a few examples.

A typical FSL paradigm is to first train a base model with a large labeled dataset (called the base
set), which is termed the meta-training stage. When deployed in the meta-testing stage, the base
model is adapted to new classes with only a few examples (named the support set), and then tested
with a query set covering these novel classes. Despite recent progress of FSL (Kim et al., 2020;
Tian et al., 2020), most studies follow a single domain assumption, where the base set, support set
and query set are all from the same domain. Cross-domain FSL (Tseng et al., 2020) breaks this as-
sumption and considers the domain shift problem between the meta-training stage and meta-testing
stage. However, it is still assumed that the support set and query set of novel classes are from the
same domain, which is unrealistic in some practical applications. For example, in smart healthcare
scenarios, someone may upload a skin picture captured by cell-phone for querying possible skin
diseases, while the support samples are usually a few high-quality medical images captured by pro-
fessional dermoscope devices. Thus, it is a very valuable problem to study the domain shift between
the query set and the support set (Gu et al., 2019). Such case can also be found in face recognition
and image retrieval areas (He et al., 2018; Liu et al., 2019).

In this work, we aim to deal with a more practical FSL setting termed cross-domain cross-set FSL
(CDCS-FSL). The difference between the CDCS-FSL and previous FSL settings is illustrated in
Figure 1 (a). Specifically, instead of assuming a consistent domain in the meta-testing stage,we
hope that the few-shot learner of new classes can be learned and tested in different domains, e.g.
the support set is from the same source domain of the base set while the query set is from a differ-
ent target domain, or vice versa. Compared with previous cross-domain FSL, this setting is more
challenging as it requires learning a well-aligned feature space shared by the source domain and the
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Figure 1: Problem setup and motivation. (a) Different from previous FSL settings, CDCS-FSL
assumes a domain gap exists between the support set and query set, and additional unlabeled target
data are provided in the meta-training stage. (b) To address CDCS-FSL, we propose a bi-directional
prototypical alignment strategy, which pushes feature vectors of one domain to be gathered around
the prototypes in the other domain, and separates feature vectors of different classes.

target domain. To facilitate feature alignment, we provide additional unlabeled target data in the
meta-training stage to allow the learning system to access target domain information beforehand.

To deal with the CDCS-FSL problem, we propose a novel bi-directional prototypical alignment
strategy illustrated in Figure 1 (b). The insight of our approach is two-fold: 1) we need aligned
representations to alleviate the domain shift problem, and 2) compact representations are desirable
to reduce intra-class variance and enlarge inter-class distance so that a small support set can better
represent a new class. Specifically, different from previous prototypical alignment methods (Pan
et al., 2019; Xie et al., 2018) that directly minimize the point-to-point distances between class centers
(prototypes), we propose to minimize the point-to-set distances between the prototypes and feature
vectors, and constrain these distances in two directions: 1) from source features to target prototype
and 2) from target features to source prototype. As a result, the feature vectors of the source (or
target) domain will be gathered around the prototypes in the other domain, so that the domain gap
and the intra-class variance can be reduced simultaneously. Meanwhile, we maximize the inter-class
distance between samples from different classes to get a more separable feature space. Inspired by
the fact that data augmentation even with strong image transformations generally does not change
the sample semantics, we suppose that the augmented samples from different domains should also be
aligned, and thus apply the bi-directional prototypical alignment to the augmented samples. Due to
significant differences in appearance, these samples may have a more dispersive feature distribution,
which can further encourage to learn the underlying invariance and strengthen feature alignment.

We refer to our approach as “Strongly Augmented Bi-directional Prototypical Alignment”, or
stabPA. We evaluate its effectiveness on two new CDCS-FSL benchmarks adapted from the Do-
mainNet and Office-Home datasets. Remarkably, our approach achieves the best performance over
all benchmarks and outperforms baselines with a large margin, e.g. up to 5.6 points gain compared
to the state-of-the-art (SOTA) method STARTUP (Phoo & Hariharan, 2021). Our contributions are
three-fold. 1) We propose CDCS-FSL, a more practical FSL setting where the support set and the
query set are from different domains. 2) We propose a new approach, namely stabPA, to address
the CDCS-FSL problem, the key of which is to learn prototypical compact and domain aligned
representations. 3) Extensive experiments demonstrate that stabPA can learn discriminative and
generalizable representations and outperforms all baselines by a large margin.

2 RELATED WORK

2.1 FEW-SHOT LEARNING

FSL aims to learn new classes with very few labeled examples. Most studies follow a meta-learning
paradigm (Vilalta & Drissi, 2002), where a meta-learner is trained on a series of training tasks
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(episodes) to learn meta-knowledge across tasks so as to enable fast adaptation to new tasks. The
meta-learner can take various forms, such as an LSTM network (Ravi & Larochelle, 2017), a set of
initial parameters (Finn et al., 2017), or closed-form solvers (Rusu et al., 2019). Recent advances in
pre-training techniques spawn another FSL paradigm: a model is first pre-trained on a large base set
to obtain meta-knowledge; then only a few samples are required for model fine-tuning to complete
downstream tasks. For example, Chen et al. (2019) propose a standard pre-training and fine-tuning
procedure for few-shot classification, where the simple baselines achieve competitive performance
to the SOTA meta-learning models. Tian et al. (2020); Chen et al. (2021) show that self-supervised
pre-training techniques are useful to learn effective representations for few-shot learning.

As a realistic setting, the cross-domain FSL assumes that the base set in the meta-training (pre-
training) stage is from the source domain and the support set and query set in the meta-testing (fine-
tuning) stage are both from the target domain. With such domain gap, Chen et al. (2019) show that
meta-learning approaches may fail to adapt to novel classes. To alleviate this problem, Tseng et al.
(2020) propose a feature-wise transformation layer to learn rich representations that can generalize
better to other domains. However, they need to access multiple base datasets from different domains
with extra data collection costs. Another work (Ngiam et al., 2018) studies the choice of base
datasets and shows that a judicious choice can improve the generalization ability of the learned
representations. However, all the above works only consider the domain gap occurring between the
meta-training (pre-training) stage and meta-testing (fine-tuning) stage. In this paper, we consider
a more challenging setting that the support set and the query set are from different domains. To
facilitate the representation adaptation to the target domain, we allow the use of additional unlabeled
target images in the meta-training (pre-training) stage.

2.2 UNSUPERVISED DOMAIN ADAPTATION

Using unlabeled images to alleviate the domain shift problem has been widely investigated in the
field of unsupervised domain adaptation (UDA). Early efforts align the marginal distribution of
each domain by minimizing a pre-defined distribution discrepancy, such asH∆H-divergence (Ben-
David et al., 2010) and Maximum Mean Discrepancy (MMD) (Gretton et al., 2006). Inspired by
Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), Ganin et al. (2016) first adopt
a domain adversarial neural network (DANN) to learn domain-invariant features, where a domain
discriminator is exploited to approximate the domain discrepancy. Since then, various adversarial
training based methods are proposed for learning at image level (Hoffman et al., 2018) , feature
level (Long et al., 2018a) or output level (Tsai et al., 2018). While another line of works adopt semi-
supervised learning techniques. For example, self-training methods (Zheng & Yang, 2021; Zhang
et al., 2021; 2019) assign pseudo labels to unlabeled images and train the model with these pseudo
labels iteratively. Although these UDA methods are related to our work, they usually assume that
the test stage shares the same class categories in the training stage, which is broken by the setting
of FSL. Besides, the test data are all from the target domain, while the CDCS-FSL assumes that the
domain gap exists between the query set and support set in the meta-testing stage.

3 PROBLEM SETUP

Formally, a FSL task often adopts a setting of N-way-K-shot classification, which aims to discrimi-
nate between N novel classes with K exemplars per class. Given a support set S = {(xi, yi)}N×Ki=1
where xi ∈ XN denotes a data sample in novel classes and yi ∈ YN is the class label, the goal of
FSL is to learn a mapping function φ : φ(xq)→ yq which classifies a query sample xq in the query
set Q to the class label yq ∈ YN . Besides S and Q, a large labeled dataset B ⊂ XB × YB (termed
the base set) is often provided for pre-training (meta-training), where the sample set XB and the base
class set YB do not overlap with XN and YN .

Conventional FSL studies assume the three sets S, Q and B are from the same domain (e.g. the
natural image domain). Recently, cross-domain FSL proposes a more general assumption that the
base set is from a source domain and the support set and query set are from a different target domain,
i.e., B ⊂ Ds and S,Q ⊂ Dt, where Ds and Dt are the source and target domain, respectively. In
this paper, we take a step further and propose a new setting where the support set and the query set
are from different domains. Specifically, in this setting, we assume the base set also belongs to the
source domain, i.e., B ⊂ Ds , while for the support set and query set, there are two situations:
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Figure 2: Framework. In the representation learning phase, we pre-train a feature extractor with
the proposed bi-directional prototypical alignment strategy to learn compact and aligned representa-
tions. In the evaluation phase, we fix the feature extractor and train a new linear classification head
with the support set. The entire model is tested on the query set.

1. Ds − Dt: the support set is from the source domain and the query set is from the target
domain, i.e., S ⊂ Ds and Q ⊂ Dt.

2. Dt − Ds: the support set is from the target domain and the query set is from the source
domain, i.e., S ⊂ Dt and Q ⊂ Ds.

We refer to such setting as cross-domain cross-set few-shot learning (CDCS-FSL). To facilitate
crossing the domain gap, we allow an additional unlabelled dataset U from the target domain for
meta-training. The class space of the unlabeled dataset has an interaction with the base classes, but
does not overlap with novel classes in meta-testing.

4 APPROACH

Briefly, our approach contains two phases: 1) In the representation learning phase, we pre-train a
feature extractor f : xi → f(xi) with the base set B and the unlabeled target set U ; 2) In the
evaluation phase, we fix the feature extractor and train a linear classification head g : f(xi)→ yi on
the support set S, and the entire model φ = g ◦ f is used to predict the labels for the query set Q.
The framework of our approach is illustrated in Figure 2.

4.1 BI-DIRECTIONAL PROTOTYPICAL ALIGNMENT

To mitigate the domain shift, a straightforward way is to learn aligned representations by minimizing
the point-to-point distances between the prototypes of different domains, which are approximated
using labeled data within a batch. In our case, although we can use pseudo labels to estimate pro-
totypes of the target domain, the naive prototype alignment is still problematic due to the following
two points. First, since the prototypes are estimated on a limited number of samples in a batch, they
are likely to deviate from the true class centers and mislead the alignment. This problem will be
exacerbated in the iterative process of pseudo-labeling and feature learning, where the noisy pseudo
labels may lead to further misalignment between the source and target domains. Second, although
minimizing the point-to-point distance can reduce the domain shift in intra-class samples, the fea-
ture distribution of different classes may be mixed due to the lack of constraints regarding inter-class
relationships. Hence, the discrimination capability of the learned representations is still insufficient.

To overcome these drawbacks, we propose a bi-directional prototypical alignment strategy, which
pushes the features from one domain to be clustered around the prototypes of the other domain,
meanwhile far away from the prototypes of other classes. Given the source domain base set B and
the target domain unlabeled set U , we first assign pseudo labels to each target sample with an initial
classifier φ0 trained on the base set and obtain Û = {(xi, ŷi)|xi ∈ U}, where ŷi = φ0(xi) is the
pseudo label. Then, we obtain the source prototypes {psk}

|YB|
k=1 and the target prototypes {ptk}

|YB|
k=1
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(details can be found below). It should be noted that the prototypes are estimated on the entire
datasets B and Û , and adjusted together with the update of the feature extractor and pseudo labels.

For a source sample (xsi , y
s
i ) ∈ B of the q-th class, we minimize its feature distance to the prototype

of the same class in the target domain, and meanwhile maximize its distances to prototypes of other
classes. Here, a softmax loss function for the source-to-target alignment is formulated as:

`s−t(x
s
i , y

s
i ) = − log

exp (−||f(xsi )− ptq||/τ)∑|YB|
k=1 exp (−||f(xsi )− ptk||/τ)

, (1)

where τ is a temperature factor. Similarly, for a target sample (xti, ŷ
t
i) ∈ Û with ŷti = q, a target-to-

source alignment loss function is as follows:

`t−s(x
t
i, ŷ

t
i) = − log

exp (−||f(xti)− psq||/τ)∑|YB|
k=1 exp (−||f(xti)− psk||/τ)

. (2)

Since the initial pseudo labels are more likely to be incorrect, we gradually increase the weight
of these two losses following the principle of curriculum learning (Bengio et al., 2009). For the
source-to-target alignment, the loss weight starts from zero and converges to one, formulated as:

w(t) =
2

1 + exp (−αt/Tmax)
− 1, (3)

where t is the current training step, Tmax is the maximum training step, and α is a hyperparameter
controlling the convergence speed. For the target-to-source alignment, since the pseudo labels be-
come more confident along with the training process, a natural curriculum is achieved by setting a
confidence threshold to filter out the target samples with low confidence pseudo labels (Sohn et al.,
2020).

Therefore, the total loss for the bi-directional prototypical alignment is

`bPA =
1

|B|

|B|∑
i=1

w(t)`s−t(x
s
i , y

s
i ) +

1

|Û |

|Û|∑
i=1

1(p(ŷti) > β)`t−s(x
t
i, ŷ

t
i), (4)

where p(·) is the confidence of a pseudo label, and β is the confidence threshold below which the
data samples will be dropped.

Updating Pseudo Label. The pseudo labels are initially predicted by a classifier φ0 pre-trained
on the base set B. As the representations are updated, we update the pseudo labels by re-training
a classifier φt = h ◦ f based on the current feature extractor f , where h is a linear classification
head for the base classes. The final pseudo labels are updated by linear interpolation between the
predictions of the initial classifier φ0 and the online updated classifier φt:

ŷi = arg max
k

λφ0(k|xi) + (1− λ)φt(k|xi), (5)

where λ is the interpolation coefficient. The combination of these two classifiers makes it possible
to rectify the label noise of the initial classifier, and meanwhile inhibit the rapid change of pseudo
labels of online classifier especially in the early training stage.

Generating Prototypes. Note that we are intended to estimate the prototypes on the entire dataset
and update them with representation learning. For the source domain, instead of calculating the
mean value of intra-class samples in the feature space, a cheaper way is to approximate prototypes
with the normalized weights of the classification head h, as the classifier weights tend to align with
class centers in order to reduce classification error (Qiao et al., 2018). Specifically, we set the source
prototypes as psk = Wk, where Wk is the normalized classification weight for the k-th class. For
the target domain, we adopt the momentum technique to update prototypes. The prototypes are
initialized as zeros. At each training step, we first estimate the prototypes using target samples in
the current batch with their pseudo labels. Then, we update target prototype ptk as:

ptk ←− mptk + (1−m)
1

nk

|Ûb|∑
i=1

1(ŷti = k)f(xti), (6)

where nk is the number of the target samples classified into the k-th class in a target batch Ûb, and
m is the momentum term controlling the update speed.
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4.2 stabPA

Strong data augmentation has proved to be effective for learning generalizable representations, es-
pecially in self-supervised learning studies, e.g. contrastive learning. Given a sample x, strong data
augmentation generates additional data points {x̃i}ni=1 by applying various strong transformations
(Chen et al., 2020; He et al., 2020). The assumption behind strong data augmentation is that the
strong transformation does not change the semantics of the original samples.

In this work, we further hypothesize that strongly augmented intra-class samples in different do-
mains can also be aligned. It is expected that strong data augmentation can further strengthen the
learning of cross-domain representations, since stronger augmentation provides more diverse data
samples and makes the learned aligned representations more robust for various transformations in
both the source domain and target domain.

Following this idea, we extend the bi-directional prototypical alignment with strong data augmenta-
tion and the proposed entire framework is termed stabPA. Specifically, for a source sample (xsi , y

s
i )

and a target sample (xti, ŷ
t
i), we generate their strongly augmented versions (x̃si , y

s
i ) and (x̃ti, y

t
i).

Within the bi-directional prototypical alignment framework, we minimize the feature distance of
a strongly augmented image to its prototype with the same class label in the other domain, and
maximize its distance to the prototypes of other classes. Totally, the stabPA loss is

`stabPA =
1

|B̃|

|B̃|∑
i=1

w(t)`s−t(x̃
s
i , y

s
i ) +

1

|Ũ |

|Ũ|∑
i=1

1(p(ŷti) > β)`t−s(x̃
t
i, ŷ

t
i), (7)

where B̃ and Ũ are the augmented base set and unlabeled target set, respectively.

To perform strong data augmentation, we apply random crop, Cutout (DeVries & Taylor, 2017),
and RandAugment (Cubuk et al., 2020). RandAugment comprises 14 different transformations and
randomly selects a fraction of transformations for each sample. In Cubuk et al. (2020), a global
magnitude controlling all transformations needs to be optimized via grid search on a validation set.
However, random selection of the magnitude for each transformation works well in our study, which
is similar to Sohn et al. (2020).

5 EXPERIMENTS

5.1 ADAPTING THE DATASETS FOR CDCS-FSL

DomainNet. DomainNet (Peng et al., 2019) is a large scale multi-domain image dataset. It con-
tains 345 categories in 6 different domains, about 0.6 million images in total. In our experiments,
we choose the real domain as the source domain and choose one domain from painting, clipart and
sketch as the target domain. Similar to previous work, we randomly split the dataset into 3 parts:
base set (228 categories), validation set (33 categories) and novel set (65 categories), and discard
19 categories with too few images. To construct the unlabeled target dataset, we remove the la-
bels of the target base set and validation set. These unlabeled images combined with the labeled
source base set are use for pre-training. The validation sets in both domains are used to tune the
hyperparameters. We finally report the 5-way 1-shot and 5-way 5-shot accuracies on the novel set.

Office-Home. Office-Home (Venkateswara et al., 2017) contains 65 object categories usually
found in office and home settings. We randomly select 40 categories as the base set, 10 categories
as the validation set and 15 categories as the novel set. There are 4 domains for each category: real,
art, clipart and product. We set the source domain as real and choose the target domain from the
other three domains. The training and testing process are the identical with the DomainNet dataset.

5.2 COMPARISON WITH BASELINES

We first compare our approach with conventional FSL methods, including ProtoNet (Snell et al.,
2017), RelationNet (Sung et al., 2018), MetaOptNet (Lee et al., 2019), Tian et al. (2020) and Deep-
EMD (Zhang et al., 2020), which all train the model only with source domain data. We also compare
to the methods that leverage unlabeled target data to alleviate domain shift, including the adversar-
ial training method DANN (Ganin et al., 2016), semi-supervised learning methods Mean Teacher
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Table 1: Comparison to baselines on the DomainNet dataset. We report 5-way 1-shot and 5-way
5-shot accuracies with 95% confidence interval.

real-painting real-clipart real-sketch

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet (NeurIPS’17) 45.36±0.81 57.23±0.79 44.65±0.81 58.04±0.81 39.28±0.77 51.68±0.81

RelationNet (CVPR’18) 42.69±0.77 52.63±0.74 44.12±0.81 57.24±0.80 36.52±0.73 47.32±0.75

MetaOptNet (CVPR’19) 44.02±0.77 56.34±0.34 42.46±0.80 57.92±0.79 36.37±0.72 48.20±0.79

Tian et al. (ECCV’20) 46.69±0.86 56.87±0.84 48.30±0.85 59.67±0.84 40.23±0.73 50.41±0.80

DeepEMD (CVPR’20) 47.60±0.87 56.62±0.78 49.02±0.83 60.43±0.82 42.75±0.79 51.66±0.80

DANN (JMLR’16) 45.94±0.84 56.83±0.86 47.31±0.86 59.42±0.84 42.44±0.79 53.47±0.75

Mean Teacher (NeurIPS’17) 46.92±0.83 57.74±0.84 48.48±0.81 61.54±0.84 43.39±0.81 54.57±0.79

Fixmatch (NeurIPS’20) 48.86±0.87 61.62±0.79 48.70±0.82 61.94±0.82 44.48±0.80 55.26±0.83

STARTUP (ICLR’21) 47.53±0.88 58.13±0.82 49.24±0.87 61.51±0.86 43.78±0.82 54.89±0.81

stabPA (Ours) 50.51±0.85 63.19±0.78 51.63±0.83 62.78±0.85 47.54±0.81 59.10±0.79

painting-real clipart-real sketch-real

ProtoNet (NeurIPS’17) 45.25±0.97 65.60±0.95 47.50±0.95 65.91±0.78 42.85±0.89 59.46±0.85

RelationNet (CVPR’18) 43.04±0.97 61.18±0.90 45.86±0.95 62.65±0.81 41.29±0.96 56.39±0.88

MetaOptNet (CVPR’19) 44.31±0.94 63.20±0.89 46.15±0.98 63.51±0.82 40.27±0.95 55.65±0.85

Tian el al. (ECCV’20) 46.57±0.99 63.90±0.95 49.66±0.98 65.33±0.80 41.90±0.86 56.95±0.84

DeepEMD (CVPR’20) 47.86±1.04 63.86±0.93 50.89±1.00 67.46±0.78 46.02±0.93 60.39±0.87

DANN (JMLR’16) 46.85±0.97 64.29±0.94 50.02±0.94 66.87±0.78 43.66±0.92 60.14±0.81

Mean Teacher (NeurIPS’17) 46.84±0.96 64.97±0.94 49.60±0.97 67.39±0.89 44.52±0.89 60.04±0.86

Fixmatch (NeurIPS’20) 49.15±0.93 67.46±0.89 49.18±0.93 66.72±0.81 45.97±0.95 62.46±0.87

STARTUP (ICLR’21) 47.58±0.98 65.27±0.92 51.32±0.98 67.95±0.78 45.23±0.96 61.97±0.88

stabPA (Ours) 51.87±0.99 70.84±0.88 53.53±1.04 71.57±0.81 49.18±0.96 67.14±0.85

(Tarvainen & Valpola, 2017), Fixmatch (Sohn et al., 2020), and the cross-domain FSL method
STARTUP (Phoo & Hariharan, 2021). For a fair comparison, we re-implement these methods with
the same backbone and optimizer. Further details can be found in Appendix A.1. The comparison
results are shown in Tables 1 and 2.

stabPA vs few-shot learning methods. On the DomainNet, our approach outperforms all the FSL
baselines by a large margin across different domains and situations. Compared to ProtoNet, our
approach improves the 5-shot accuracy by 7.4% in the most difficult real-sketch situation, and by
5.7% in the easier clipart-real situation. Similar results can be found on the Office-Home dataset
in Table 2 . The significant improvements indicate that few-shot learners trained on one domain are
difficult to adapt to the other domains, while the proposed stabPA learning aligned representations
across domains can alleviate this problem and improve the cross-domain FSL performance.

stabPA vs pseudo-labeling methods. Similar to our approach, Mean Teacher, Fixmatch and
STARTUP train the model with additional unlabeled target images. Particularly, Fixmatch also
applies strong data augmentation to unlabeled images. However, our approach outperforms them in
all situations. We claim that the strength of stabPA derives not only from pseudo labeling and strong
augmentation, but also from the proposed bi-directional prototypical alignment strategy. This is
particularly evident in the real-sketch and sketch-real situations (up to 4.7% improvement in 5-shot
accuracy), where the domain shift is very significant.

5.3 RESULTS ANALYSIS

5.3.1 HAS stabPA LEARNED COMPACT AND ALIGNED REPRESENTATIONS?

To verify whether stabPA indeed learns compact and aligned representations, we visualize the fea-
ture distribution through the pre-training process using t-SNE (Van der Maaten & Hinton, 2008).
From Figure 3 (a)-(d), we can see that in the beginning, samples from different classes are heavily
mixed. There are no distinct classification boundaries between classes. Besides, samples from two
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Table 2: Comparison on the Office-Home dataset.

real-product real-clipart real-art

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet (NeurIPS’17) 30.72±0.62 39.74±0.64 28.52±0.58 34.81±0.59 26.80±0.47 34.56±0.58

Tian et al. (ECCV’20) 33.88±0.69 45.79±0.69 30.44±0.60 38.27±0.64 30.26±0.57 38.80±0.61

Fixmatch (NeurIPS’20) 36.05±0.73 48.45±0.70 33.79±0.64 43.13±0.67 31.81±0.60 41.48±0.60

STARTUP (ICLR’21) 34.62±0.74 47.18±0.71 30.70±0.63 38.10±0.62 32.06±0.59 41.94±0.63

stabPA (Ours) 37.71±0.80 50.28±0.73 34.04±0.69 43.86±0.64 32.76±0.62 43.05±0.62

product-real clipart-real art-real

ProtoNet (NeurIPS’17) 30.27±0.62 38.98±0.64 28.44±0.63 35.85±0.59 27.31±0.58 36.27±0.66

Tian et al. (ECCV’20) 33.98±0.67 44.27±0.63 30.86±0.66 38.99±0.63 30.30±0.62 41.56±0.72

Fixmatch (NeurIPS’20) 35.83±0.76 47.17±0.68 33.20±0.74 43.20±0.69 32.32±0.66 44.68±0.72

STARTUP (ICLR’21) 34.80±0.68 45.00±0.64 30.17±0.68 38.84±0.70 32.40±0.66 44.71±0.73

stabPA (Ours) 36.78±0.73 48.61±0.66 34.73±0.71 43.41±0.65 33.33±0.68 46.02±0.77

1

3

5

7

9

11

0 10 20 30 40 50 60 70 80

Do
m

ai
n 

di
st

an
ce

Epochs

Baseline
Basic PA
Ours

0.90 

0.95 

1.00 

1.05 

1.10 

1.15 

1.20 

0 10 20 30 40 50 60 70 80

Se
pa

ra
bi

lit
y 

(S
ou

rc
e)

Epochs

Baseline
Basic PA
Ours

0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
1.25 

0 10 20 30 40 50 60 70 80

Se
pa

ra
bi

lit
y 

(T
ar

ge
t)

Epochs

Baseline
Basic PA
Ours

(e) (f) (g)

(a) (d)

Epoch = 1 Epoch = 10Epoch = 2

(b) (c)

Epoch = 4

Figure 3: (a)-(d) t-SNE visualization of feature distribution at different training epochs. Samples
of the same class are painted in similar colors, where darker triangles represent source samples and
lighter reverted triangles represent target samples (best viewed in color). Class centers are marked
in black border. (e) Domain distance on novel classes. (f)-(g) Separability among novel classes in
the source and target domains. Separability is represented by the average distance ratio, the lower
the better.

domains are far away from each other, which indicates the existence of a considerable domain shift
(such as the classes in green and orange). However, as training continues, samples from the same
class begin to aggregate together, and the margin between different classes gets larger and larger, i.e.,
the feature distribution becomes more compact. Moreover, we can see that samples from different
domains are grouping into their ground-truth classes, even though no label information is given for
the target domain. These observations demonstrate that stabPA is indeed capable to learn compact
and aligned representations.

5.3.2 CAN stabPA LEARN GENERALIZABLE REPRESENTATIONS FOR NEW CLASSES?

To validate the generalization capability of the representations learned by stabPA, we propose two
quantitative metrics which indicate the domain distance and class separability among new classes.

Specifically, to the measure domain distance, we first calculate prototypes psk and ptk for each novel
class in the source and target domain. Then we obtain the Euclidean distance between the two
prototypes per class and compute the average distance over all novel classes. We refer to this metric
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Table 3: Ablation studies on DomainNet. Mean and 95% confidence interval are reported.

sketch-real real-sketch

`s−t `t−s aug 1-shot 5-shot 1-shot 5-shot

× × × 41.90±0.86 56.95±0.84 40.23±0.73 50.41±0.80

X × × 44.83±0.95 60.87±0.91 42.86±0.78 52.16±0.78

× X × 44.45±0.92 61.97±0.90 44.20±0.77 54.83±0.79

X X × 47.59±1.00 64.32±0.86 47.01±0.84 56.68±0.81

X X X 49.18±0.96 67.14±0.85 47.54±0.81 59.10±0.79

as Prototype Distance (PD), which can be formulated as: PD = 1
|YN |

∑
k∈YN

||psk − ptk||. A small
PD value means the two domains are well aligned to each other.

To represent the class separability, for each sample xi with the class label yi, we calculate the ratio
of its distance to the prototype of class yi to the distance to the closest neighbouring class prototype.
Then the average is computed over all samples in novel classes, which is termed Average Distance
Ratio (ADR). Formally, ADR = 1

|XN |
∑

xi∈XN

||f(xi)−pyi
||

mink 6=yi
||f(xi)−pk|| . When ADR is less than 1,

most samples can be correctly classified into their ground-truth classes. We calculate the ADR for
the source domain and target domain separately to validate whether the learned representations can
generalize across different domains.

In experiments, we compare the proposed stabPA approach with a FSL baseline method (Tian et al.,
2020) that does not leverage target images, and Basic PA which aligns two domains by simply
minimizing the point-to-point distance between prototypes of two domains (Xie et al., 2018). The
results are presented in Figure 3 (e)-(g). We can notice that all these methods can achieve lower
domain distance as training processes, and Basic PA gets the lowest domain distance at the end.
However, Basic PA does not improve the class separability as much as our approach, as shown
in Figure 3 (f)-(g). The inferior class separability can be understood that Basic PA merely aims
to reduce the feature distance between two domains, without taking account of the intra-class and
inter-class distances in the learned feature space. Rather than the global alignment adopted by Basic
PA, the proposed stabPA considers the feature-to-prototype distances across different domains and
classes, so that the domain alignment and class separability can be improved at the same time.

5.3.3 ABLATION STUDIES

We conduct ablation studies on various components of the stabPA. The results on the DomainNet
dataset are shown in Table 3. As all key components are removed, we adopt the baseline method
Tian et al. (2020) to train feature extractor with only the source data, which is the first row of the
table. When the unlabeled target data are available, applying either source-to-target alignment or
target-to-source alignment can improve the performance evidently. Interestingly, we can see that the
target-to-source alignment is more effective than the source-to-target alignment (about 1.2 points on
average). This is probably because the source prototypes estimated by the ground truth labels are
more accurate than the target prototypes estimated by the pseudo labels. Improving the quality of
target prototypes may reduce this gap. When combing these two alignments together, we can get
better results, indicating that the two kinds of alignment are to some extent complementary to each
other. Finally, the best results are obtained by combining the strong data augmentation techniques,
verifying that strong data augmentation can further strengthen the cross-domain alignment.

6 CONCLUSIONS

In this work, we have investigated a novel problem in FSL, namely CDCS-FSL, where a domain
shift exists between the support set and query set. To tackle this problem, we have proposed stabPA,
a prototype-based domain alignment framework to learn compact and aligned representations. On
two widely-used multi-domain FSL datasets, we have built benchmarks and compared our approach
to multiple elaborated baselines. Extensive experimental results have demonstrated the advantage of
our approach. Through more in-depth analysis, we have also validated the generalization capability
of the representations learned by stabPA and the effectiveness of each component of the proposed
model.
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7 REPRODUCIBILITY STATEMENT

We have uploaded the source code as supplemental materials to ensure reproducibility.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Hyperparameters. In our implementation, ResNet-18 (He et al., 2016) is adopted as the back-
bone, which outputs a 512-d feature vector. Before feeding the vector for prototypical alignment,
we apply `2 normalization for the feature vector and prototypes. The temperature τ for `s−t and
`t−s is 0.25 and 0.1, respectively. To control the loss weight for `s−t, Tmax and α are set as 50,000
and 7, respectively. The loss weight for `t−s is fitted adaptively by setting the confidence threshold
β = 0.5. We set λ = 0.2 to balance the pseudo label generated by the initial classifier and the online
updated classifier. The momentum term m is set as 0.99.

Training. We train our approach for 50 epochs on the DomainNet dataset. On the smaller Office-
Home dataset, we train the model for 100 epochs. Adam (Kingma & Ba, 2014) is adopted as the
default optimizer with the learning rate as 1e-3. The batch size is set as 256, where source data and
target data have the same number in a batch.

12
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Evaluation. During evaluation, we fix the feature extractor and apply `2 normalization to the
output feature vector. The linear classification head for each few-shot task (episode) is randomly
initialized, and trained on the support features for 1000 steps with logistic regression. 15 query
samples per class are used to evaluate the performance of the learned classifier. We finally report the
average accuracy over 600 episodes with 95% confidence interval.

ProtoNet and RelationNet. ProtoNet and RelationNet are two meta-learning methods, which are
trained on a series of few-shot tasks (episodes). During training, we randomly sample episodes
from the base set, each of which contains N = 5 classes and K = 5 samples per class serving
as the support set, and another 15 samples per class as the query set. We also train ProtoNet and
RelationNet for 50 epochs on the DomainNet dataset and 100 epochs on the Office-Home dataset.
The number of training episodes of each epoch is particularly defined to make sure the number of
seen samples (both the support and query samples) in an epoch is roughly equal to the size of the
dataset.

MetaOptNet. MetaOptNet aims to learn an embedding function that generalizes well to novel
categories under the linear classification rule. We implement this method based on the official code 1

but replace the backbone network and optimizer to be the same as our approach. Similar to ProtoNet
and RelationNet, the training process of MetaOptNet is also episodic.

Tian et al. Tian et al. (2020) follows the transfer learning paradigm, which trains a base model to
classify base classes, and leverage the learned representations to classify novel classes by learning a
new classification head. We train this baseline with the same optimization method as our approach
except that the batch size is set as 128 as only source data are used for training.

DeepEMD. DeepEMD contains two training phases: pre-training and meta-training. We use the
output model of Tian et al. as the pre-trained model and then follow the official implementation 2 to
finetune the model via meta-training.

DANN. We use a three-layer fully connected network as the domain discriminator to implement
DANN, following the Pytorch implementation 3 released by Long et al. (2018b). The gradient
reverse layer (Ganin et al., 2016) is adopted to train the feature vector and domain discriminator in
an adversarial manner. To stabilize training, the weight of the adversarial loss starts from zero, and
gradually grows to one.

Mean Teacher, Fixmatch and STARTUP. All of these approaches use pseudo-labeled samples to
train the model. Differently, Mean Teacher predicts pseudo labels with a teacher network that is the
ensemble of historical models by aggregating their model weights with exponential moving average
(EMA). In our implementation, the smoothing coefficient for EMA is set as 0.99. Fixmatch trains
the model with a consistency loss, i.e., enforcing the network prediction for a strongly augmented
sample to be consistent with the prediction of its weakly augmented counterpart. We implement
Fixmatch based on a publicly available implementation4. STARTUP adopts fixed pseudo labels that
are predicted by a classifier pre-trained on the base set, and imposes a self-supervised loss on the
target data. In our re-implementation, we do not utilize the self-supervised loss item since we find
that it does not provide improvement in our case.

A.2 PSEUDO LABEL UPDATE STRATEGY

Since we resort to pseudo labels for prototype estimation and feature alignment, ensuring the pseudo
label accuracy is very important to the effectiveness of our bi-directional prototypical alignment
strategy. Pseudo labels can be predicted with a fixed classifier pre-trained on the source base dataset,
as in Phoo & Hariharan (2021), or a classifier that is online updated along the representation learning.
In our implementation, we combine them together by linearly interpolating their pseudo labels.

1https://github.com/kjunelee/MetaOptNet
2https://github.com/icoz69/DeepEMD
3https://github.com/thuml/CDAN
4https://github.com/kekmodel/FixMatch-pytorch
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painting-real real-painting

Method λ 1-shot 5-shot 1-shot 5-shot

`s−t

0.0 48.56±1.04 66.24±0.92 48.89±0.85 58.72±0.79

0.2 48.76±0.99 67.21±0.91 49.08±0.84 59.33±0.77

1.0 48.20±0.99 65.79±0.90 48.79±0.87 57.51±0.79

`t−s

0.0 47.83±1.01 66.30±0.92 48.26±0.83 59.17±0.77

0.2 48.53±1.02 67.09±0.94 48.88±0.84 60.18±0.80

1.0 48.93±1.01 67.12±0.94 48.53±0.86 59.29±0.80

`s−t & `t−s

0.0 48.35±1.02 66.96±0.91 48.72±0.84 59.78±0.78

0.2 49.31±1.06 68.15±0.92 49.63±0.84 60.13±0.79

1.0 48.74±1.02 66.81±0.93 49.26±0.87 59.33±0.81

Table 4: The impact of interpolation coefficient λ.

When the interpolation coefficient λ = 0 (or1), our approach degenerates to only using the fixed (or
online updated) classifier. We assess the effectiveness of this combining strategy on the DomainNet
dataset. The results are shown in Table 4.

For the source-to-target alignment, we can see that interpolation with λ = 0.2 is better than both the
fixed and online updated classifier. For the target-to-source alignment, λ = 0.2 and λ = 1 compete
with each other, but both are better than λ = 0. When applying alignment from two directions to
form our final model, the use of combined pseudo labels is still better than using either of them.
The reason for the success of the combination is that the pseudo labels predicted by online updated
classifier will change constantly especially in early training stage, which disturbs the model training.
Interpolation with the fixed pseudo labels can make the pseudo labels more consistent. On the other
hand, the pseudo labels predicted by current classifier can rectify the noise in the fixed pseudo labels,
as demonstrated in Zhang et al. (2021).

A.3 DATASET PARTITION

A.3.1 DOMAINNET

DomainNet contains 345 categories in total. We discard 19 categories with too few images and
randomly split the rest 326 categories into three sets: 228 categories for the base set, 33 categories
for the validation set, and 65 categories for the novel set. The detailed categories of each set are
listed below:

Ybase =

{aircraft carrier, airplane, alarm clock, ambulance, animal migration, ant, asparagus, axe, backpack, bat, bathtub, beach,
bear, beard, bee, belt, bench, bicycle, binoculars, bird, book, boomerang, bottlecap, bowtie, bracelet, brain, bread, bridge,
broccoli, broom, bus, butterfly, cactus, cake, calculator, camera, candle, cannon, canoe, car, cat, ceiling fan, cell phone,
cello, chair, church, circle, clock, cloud, coffee cup, computer, couch, cow, crab, crayon, crocodile, cruise ship, diamond,
dishwasher, diving board, donut, dragon, dresser, drill, drums, duck, ear, elbow, elephant, envelope, eraser, eye, fan, feather,
fence, finger, fire hydrant, fireplace, firetruck, flamingo, flashlight, flip flops, flower, flying saucer, foot, fork, frog, frying
pan, giraffe, goatee, grapes, grass, guitar, hamburger, hammer, hand, harp, headphones, hedgehog, helicopter, helmet, hockey
puck, hockey stick, horse, hot air balloon, hot tub, hourglass, hurricane, jacket, key, keyboard, knee, ladder, lantern, laptop,
leaf, leg, light bulb, lighter, lightning, lion, lobster, lollipop, mailbox, marker, matches, megaphone, mermaid, microphone,
microwave, moon, motorbike, moustache, nail, necklace, nose, octagon, oven, paint can, paintbrush, palm tree, panda, pants,
paper clip, parachute, parrot, passport, peanut, pear, peas, pencil, penguin, pickup truck, picture frame, pizza, pliers, police
car, pond, popsicle, postcard, potato, power outlet, purse, rabbit, radio, rain, rainbow, rake, remote control, rhinoceros, rifle,
sailboat, school bus, scorpion, screwdriver, see saw, shoe, shorts, skateboard, skyscraper, smiley face, snail, snake, snorkel,
soccer ball, sock, stairs, stereo, stethoscope, stitches, stove, strawberry, submarine, sweater, swing set, sword, t-shirt, table,
teapot, teddy-bear, television, tent, the Eiffel Tower, the Mona Lisa, toaster, toe, toilet, tooth, toothbrush, tornado, tractor,
train, tree, triangle, trombone, truck, underwear, van, vase, violin, washing machine, watermelon, waterslide, whale, wheel,
windmill, wine bottle, zigzag}

Yvalidation =

{arm, birthday cake, blackberry, bulldozer, campfire, chandelier, cooler, cup, dumbbell, hexagon, hospital, house plant, ice
cream, jail, lighthouse, lipstick, mushroom, octopus, raccoon, roller coaster, sandwich, saxophone, scissors, skull, speedboat,
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spreadsheet, suitcase, swan, telephone, traffic light, trumpet, wine glass, wristwatch}

Ynovel =

{anvil, banana, bandage, barn, basket, basketball, bed, blueberry, bucket, camel, carrot, castle, clarinet, compass, cookie,
dog, dolphin, door, eyeglasses, face, fish, floor lamp, garden, garden hose, golf club, hat, hot dog, house, kangaroo, knife,
map, monkey, mosquito, mountain, mouth, mug, ocean, onion, owl, piano, pig, pillow, pineapple, pool, river, rollerskates,
sea turtle, sheep, shovel, sink, sleeping bag, spider, spoon, squirrel, steak, streetlight, string bean, syringe, tennis racquet, the
Great Wall of China, tiger, toothpaste, umbrella, yoga, zebra}

A.3.2 OFFICE-HOME

There are 65 categories in the Office-Home dataset. We select 40 categories as the base set, 10
categories as the validation set, and 15 categories as the novel set, which are listed below:

Ybase =

{alarm clock, bike, bottle, bucket, calculator, calendar, chair, clipboards, curtains, desk lamp, eraser, exit sign, fan, file
cabinet, folder, glasses, hammer, kettle, keyboard, lamp shade, laptop, monitor, mouse, mug, paper clip, pen, pencil, postit
notes, printer, radio, refrigerator, scissors, sneakers, speaker, spoon, table, telephone, toothbrush, toys, tv}

Yvalidation =

{bed, computer, couch, flowers, marker, mop, notebook, pan, shelf, soda}

Ynovel =

{backpack, batteries, candles, drill, flipflops, fork, helmet, knives, oven, push pin, ruler, screwdriver, sink, trash can, web-
cam}

15


	Introduction
	Related Work
	Few-Shot Learning
	Unsupervised Domain Adaptation

	Problem Setup
	Approach
	Bi-directional Prototypical Alignment
	stabPA

	Experiments
	Adapting the Datasets for CDCS-FSL
	Comparison with Baselines
	Results Analysis
	Has stabPA learned compact and aligned representations?
	Can stabPA learn generalizable representations for new classes?
	Ablation Studies


	Conclusions
	Reproducibility Statement
	Appendix
	Implementation Details
	Pseudo Label Update Strategy
	Dataset Partition
	DomainNet
	Office-Home



