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Abstract

Large Language Models (LLMs) are increas-001
ingly being used as autonomous agents in high-002
stakes domains, yet their behavior in com-003
plex, real-world environments remains under-004
explored. This survey introduces the concept of005
AI hospitals—LLM-driven multi-agent ecosys-006
tems that simulate clinical workflows and sup-007
port a wide range of medical applications. We008
review 70+ recent studies and propose a taxon-009
omy covering core components and application010
areas. By analyzing how these systems inte-011
grate language, knowledge, and interaction in012
dynamic settings, we highlight AI hospitals as013
a powerful testbed for evaluating LLMs beyond014
static benchmarks. We also outline open chal-015
lenges in aligning LLM behavior with clinical016
reasoning, safety, and patient-centered goals,017
offering a roadmap for the future at the inter-018
section of NLP and healthcare.019

1 Introduction020

Over the past decade, natural language processing021

(NLP) and artificial intelligence (AI) have achieved022

significant advances across tasks such as transla-023

tion, summarization, and question answering. In024

recent years, Large Language Models (LLMs) have025

emerged as a transformative force, demonstrat-026

ing strong generalization, reasoning, and interac-027

tion capabilities. Beyond text generation, LLMs028

are increasingly being deployed as autonomous029

agents capable of decision-making and collabora-030

tion in real-world systems. A promising exam-031

ple of this shift is the AI hospital: a multi-agent032

simulation framework in which LLMs act as di-033

verse clinical agents—doctors, nurses, patients, re-034

searchers—within simulated hospital environments.035

These systems go beyond static benchmark eval-036

uation by enabling dynamic, interdisciplinary as-037

sessments of agent behavior in clinical decision-038

making, education, mental health support, and col-039

laborative research. Despite growing interest, re-040

Figure 1: Overview of the LLM-based multi-agent AI
Hospital. Figure 2 & 3 present the taxonomy of core
components and applications. Table 2 and 3 in the ap-
pendix outline the key challenges and future directions.

search on AI hospitals remains fragmented. Ex- 041

isting studies often focus on isolated multi-agent 042

applications, lacking a unifying framework to con- 043

nect them. To date, no prior survey has systemat- 044

ically examined these efforts through the lens of 045

AI hospitals, nor analyzed their core components, 046

applications, and open challenges. 047

This survey addresses this gap by organizing 70+ 048

recent studies into a structured taxonomy across 049

three dimensions: 1) Core Components: Ana- 050

lyzing the fundamental elements of AI hospitals, 051

including agent roles, interaction patterns, tool 052

integration, memory management, and reasoning 053

mechanisms. 2) Applications: Investigating how 054

AI hospitals contribute to simulating specific med- 055

ical scenarios, solving complex tasks, evaluating 056

agents, and generating synthetic data for training 057

medical AI systems. 3) Key Challenges & Future 058

Directions. By providing a cohesive framework, 059

this work aims to strengthen collaboration between 060

NLP and healthcare communities and to recontex- 061

tualize LLMs as agents within real-world systems. 062
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2 Core Components063

2.1 Agent Roles064

Patient-Centered Agents are designed to sim-065

ulate patients with different demographic back-066

grounds, health conditions, and communication067

abilities. Patient Agent supports various appli-068

cations in AI hospitals, such as clinical training,069

patient education, and medical history collection.070

Many works (Bao et al., 2024; Wang et al., 2023a)071

focus on enhancing the realism of patient agents.072

Recent studies (Du et al., 2024; Li et al., 2024d; Yu073

et al., 2024; Liu et al., 2025) also leverage evolu-074

tionary learning, fine-tuning techniques, Chain-of-075

Thought (CoT), and Retrieval-Augmented Genera-076

tion (RAG) to enhance patient agents’ consistency,077

realism, and role-playing stability while reduc-078

ing hallucinations. Psychological Patient Agent079

(PPA) simulates mental health conditions for AI-080

driven treatment training (Wang et al., 2024b; Wei081

et al., 2024a). Unlike general patient agents, PPAs082

must replicate mood changes, cognitive distortions,083

and treatment resistance, with studies focusing on084

authenticity through expert-guided prompt engi-085

neering (Louie et al., 2024), structured cognitive086

modeling (Wang et al., 2024d), and simulations fos-087

tering adaptive communication (Chen et al., 2023b).088

Resident Agents model general populations transi-089

tioning into patient agents when ill, autonomously090

navigating healthcare processes while also support-091

ing public health simulations and epidemiologi-092

cal modeling by incorporating disease progression,093

healthcare-seeking behavior, and policy interven-094

tions (Li et al., 2024b; Williams et al., 2023).095

Medical Professional Agents can perform tasks096

such as patient consultation, medical history col-097

lection, clinical reasoning, diagnostic decision-098

making, emotional support, care coordination, and099

auxiliary examinations. General Doctor Agent100

, often called primary care physician (PCP), per-101

forms initial patient assessments and oversees102

the diagnostic process. Several studies have ex-103

plored various aspects of these agents, including104

their questioning strategies (Liu et al., 2025), au-105

tonomous learning for diagnostic optimization (Du106

et al., 2024), reasoning in clinical conversa-107

tions (Johri et al., 2023), adaptive multi-agent col-108

laboration (Kim et al., 2024), the role of PCP in di-109

agnosis (Wang et al., 2024a), and their integration110

into AI hospital environments (Fan et al., 2024).111

Specialist Agent represents domain-specific medi-112

cal experts such as cardiologists, radiologists, and113
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Figure 2: Taxonomy of AI hospital core components.

hematologists, for handling complex cases and con- 114

tributing expert knowledge to diagnostic and treat- 115

ment decision-making. Specialist agents require 116

high-precision reasoning, deep medical expertise, 117

and the ability to collaborate effectively in multi- 118

disciplinary team (MDT). Many works (Chen et al., 119

2024e; Kim et al., 2024) highlight the benefits of 120

structured expertise, domain-specific knowledge, 121

and coordinated decision-making in the AI Hos- 122

pital. Therapist Agent provides emotional sup- 123

port, psychological intervention and psychother- 124

apy (Wang et al., 2024b; Qiu and Lan, 2024; Chen 125

et al., 2023b). Nurse Agent facilitates triage, basic 126

care and patient coordination (Bao et al., 2024; Li 127

et al., 2024b). Medical Technician Agents aid 128

diagnostic procedures, ensuring accurate test re- 129

sults (Schmidgall et al., 2024b). Medical students 130

& Examiner agent Simulate clinical training to 131

improve medical history collection and diagnostic 132

skills (Li et al., 2024d; Yao et al., 2024b). 133

Medical AI Teamwork Agents collaborate to 134

tackle complex AI hospital tasks beyond a single 135

agent’s capacity. They handle information extrac- 136

tion, reasoning, and decision-making in disease 137

analysis, diagnosis, patient triage, medical plan- 138

ning, and final decisions. Goal-Driven Reason- 139

ing Agent coordinates multi-step reasoning using 140
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structured pipelines, dual-agent frameworks, and141

symbolic reasoning (Yu et al., 2024; Hong et al.,142

2024; Shi et al., 2024b). Clinical Judge Agent en-143

sures AI-driven diagnoses meet accuracy, effective-144

ness, and guideline adherence (Johri et al., 2023;145

Yue et al., 2024a). Critic Agent refines reasoning,146

mitigates biases, and enhances reliability through147

structured feedback (Ke et al., 2024; Hong et al.,148

2024). Planning Agent decomposes tasks, opti-149

mizes workflows, and improves triage and struc-150

tured conversations (Yue et al., 2024a; Shi et al.,151

2024a). Decision Agent mediates conflicting as-152

sessments and synthesizes insights for coherent,153

evidence-based diagnoses (Tang et al., 2023; Wang154

et al., 2024g). Recording Agent logs key medical155

insights (Ke et al., 2024; Yu et al., 2024).156

AI-Assisted Research Agents optimize new157

knowledge discovery, research support, and sci-158

entific review. Research Planning Agent plays159

a crucial role in structuring research tasks and en-160

suring efficient problem decomposition in complex161

domains, leveraging hierarchical decision-making162

and adaptive optimization to refine research strate-163

gies and enhance scientific impact (Swanson et al.,164

2024; Xiao et al., 2024). Research Executor165

Agent facilitates clinical research by assisting in166

hypothesis testing, statistical analysis, and exper-167

iment interpretation, leveraging domain-specific168

expertise to optimize research workflows and min-169

imize execution failures (Swanson et al., 2024;170

Xiao et al., 2024). Scientific Critic Agent is re-171

sponsible for assessing the quality and validity of172

AI-generated solutions, ensuring reliable decision-173

making in research and clinical settings(Xiao et al.,174

2024). Database Agent is designed to retrieve,175

manage, and integrate medical information for im-176

proved decision-making (Shi et al., 2024b).177

2.2 Interaction Patterns178

AI Hospital employs different interaction patterns179

to enhance efficiency, reliability, and decision-180

making. Task-Focused Collaboration decom-181

poses complex medical tasks into structured sub-182

tasks for efficiency and consistency. Modular archi-183

tectures follow predefined workflows to accomplish184

tasks, such as the ERRG workflow (Extract, Re-185

trieve, Rewrite, Generate) (Li et al., 2024d). Multi-186

agent systems like AIPatient(Yu et al., 2024), Clin-187

icalAgent (Yue et al., 2024a), and EHRAgent (Shi188

et al., 2024b) assign roles and execute tasks se-189

quentially to enhance reasoning and decision-190

making. Expert-Guided Decision-Making en-191

sures AI-driven medical decisions are clinically 192

reliable. Multiple studies (Du et al., 2024; Chen 193

et al., 2024e; Kim et al., 2024; Tang et al., 2023) 194

emphasize expert integration in decision-making, 195

research, and medical education, ensuring domain 196

expertise and consensus validation. Iterative Prob- 197

lem Optimization (IPO) refines problem-solving 198

through feedback loops. AI agents iteratively adjust 199

queries (Yu et al., 2024), refine diagnostic interac- 200

tions via conversational and reflection-based correc- 201

tions (Du et al., 2024; Bao et al., 2024), and critique 202

each other’s reasoning (Tang et al., 2023). Program- 203

ming agents iteratively enhance code accuracy (Shi 204

et al., 2024b). Automated Knowledge Integra- 205

tion (AKI) merges diverse medical knowledge and 206

patient data for accurate, context-aware decision- 207

making. Techniques include knowledge-enhanced 208

retrieval (Shi et al., 2024a), memory-based inte- 209

gration (Liao et al., 2024), and Directed Acyclic 210

Graph (DAG)-based structuring (Du et al., 2024). 211

Multi-modal approaches combine structured and 212

unstructured EHR data, sensor inputs, and medical 213

evidence (Yang et al., 2024a), while team-based 214

models apply adaptive fusion (Wang et al., 2024a), 215

confidence validation (Lu et al., 2024), and struc- 216

tured reasoning (Hong et al., 2024). Role-based 217

Coordination assigns AI agents specific roles (e.g., 218

physicians, therapists, or patients) to simulate med- 219

ical interactions and enhance diagnosis, training, 220

and decision-making (Du et al., 2024; Wang et al., 221

2024b; Qiu and Lan, 2024). Multi-disciplinary AI 222

teams integrate specialists’ insights into compre- 223

hensive diagnoses (Wang et al., 2024g; Chen et al., 224

2024e). Systems like AgentClinic (Schmidgall 225

et al., 2024b) and Agent Hospital (Li et al., 2024b) 226

expand role-based AI applications to triage, recep- 227

tion, and follow-ups. Multi-Round Interactive 228

Debate fosters structured discussions where AI 229

agents critique, resolve disagreements, and refine 230

conclusions (Fan et al., 2024; Li et al., 2023b; Kim 231

et al., 2024). Approaches employ voting (Tang 232

et al., 2023), debate strategies (Smit et al., 2023), 233

and confidence-based stopping (Lu et al., 2024). 234

AI-driven research teams apply debate mechanisms 235

to synthesize findings (Swanson et al., 2024). 236

2.3 Tool Integration 237

In AI hospitals, agents use diverse tools to enhance 238

efficiency and accuracy. For example, Retrieval 239

systems ensure rapid access to medical knowl- 240

edge by dynamically retrieving patient records and 241

evidence-based guidelines, aiding both patient and 242
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doctor agents in contextual reasoning (Du et al.,243

2024; Kim et al., 2024). Knowledge graphs struc-244

ture medical knowledge into interconnected net-245

works, enabling AI systems to navigate relation-246

ships between symptoms, treatments, and med-247

ical histories for informed decision support (Li248

et al., 2024d; Yu et al., 2024; Chen et al., 2024e).249

Medical decision trees provide structured diag-250

nostic pathways, ensuring AI-driven recommen-251

dations align with established clinical guidelines252

and expert knowledge (Yang et al., 2024a; Li253

et al., 2023a). LLM-as-KB transforms LLMs254

into dynamic knowledge repositories, allowing255

AI to synthesize medical insights beyond static256

databases (Yue et al., 2024a; Frisoni et al., 2024).257

Smart devices and sensor data integration facil-258

itate real-time health monitoring, merging wear-259

able data with EHR insights to enhance predic-260

tive analytics and personalized care (Yang et al.,261

2024a; Abbasian et al., 2023). Multi-modality262

processing tools enable AI hospitals to integrate263

textual, visual, and sensor data, improving tasks264

such as radiology interpretation and decision tree-265

based diagnostics (Li et al., 2024d; Yang et al.,266

2024a; Li et al., 2024a). Computational reason-267

ing tools equip AI with logical inference and code268

execution capabilities, supporting automated clini-269

cal research and data-driven modeling (Wang et al.,270

2024f; Hong et al., 2024). Finally, some other clin-271

ical decision support tools optimize diagnostic272

accuracy by leveraging external APIs, existing pre-273

dictive models/systems, and structured reporting274

systems (Wang et al., 2024a; Li et al., 2024a). And275

some other biomedical research tools accelerate276

drug discovery and genomic analysis, enabling AI-277

powered advancements in computational biology278

and molecular medicine (Swanson et al., 2024; Jin279

et al., 2023; Liu et al., 2024).280

2.4 Memory Management281

AI Hospital leverages structured memory manage-282

ment for adaptive learning and decision-making.283

Long-Term Memory (LTM) retains knowledge284

across sessions, integrating internal model updates285

and external databases for enhanced reasoning. In-286

ternal Memory embedded in the model parameters287

serves as a foundational knowledge repository for288

the agent to support zero-shot and few-shot tasks.289

For example, Li et al. (2024d) leverages the in-290

herent common-sense knowledge within LLMs to291

supplement missing information in clinical case292

graphs, ensuring the generation of plausible at-293

tributes based on pre-existing knowledge. Wang 294

et al. (2024e) integrates internal memory by fine- 295

tuning ChatGPT with real patient clinical records, 296

resulting in more accurate adverse event and drug 297

predictions. External Memory supplements AI 298

hospital systems with structured knowledge from 299

databases, knowledge graphs, and retrieval sys- 300

tems while enabling real-time adaptation. Static 301

Storage maintains long-term, structured knowl- 302

edge, such as NIH resources for disease-specific 303

agents (Wang et al., 2024a), CCD for patient his- 304

tory (Wang et al., 2024d), and structured ESI manu- 305

als (Lu et al., 2024). Medical knowledge databases, 306

textbooks, and diagnostic guidelines serve as stable 307

references (Yang et al., 2024a; Shi et al., 2024a; 308

Yue et al., 2024b), while drug knowledge graphs 309

and clinical trial registries support evidence-based 310

decision-making (Chen et al., 2024e; Yue et al., 311

2024a; Liu et al., 2024). Dynamic Updating in- 312

tegrates real-time knowledge via retrieval systems 313

and APIs, refining AI behavior with expert feed- 314

back (Louie et al., 2024), synchronizing clinical 315

guidelines (Yang et al., 2024a), and leveraging 316

PubMed or GitHub updates (Wang et al., 2024f). 317

Additionally, long-term memory enhances task ex- 318

ecution by retrieving past cases (Shi et al., 2024b; 319

Schmidgall et al., 2024b; Bao et al., 2024), preserv- 320

ing user preferences like recurring health concerns 321

for personalized responses. 322

Short-Term Memory (STM) and Multi-Agent 323

Shared Working Memory (WM) serve comple- 324

mentary roles in AI hospitals and medical dialogue 325

systems, ensuring context retention, reasoning con- 326

sistency, and collaborative decision-making. STM 327

is a temporary, agent-specific memory that main- 328

tains coherence during task execution but is cleared 329

afterward (Liu et al., 2025). Medical dialogue sys- 330

tems use dialogue history, entity extraction, or sum- 331

maries to mitigate forgetfulness and enhance rea- 332

soning. In contrast, WM is a globally shared mem- 333

ory facilitating knowledge synchronization, feed- 334

back integration, and structured reasoning across 335

agents. It supports dynamic inference buffers, exe- 336

cution trace retention, and cross-agent coordination. 337

For instance, Lu et al. (2024) updates summary 338

reports for diagnostic consistency, while Hong 339

et al. (2024) structures symbolic inference steps. 340

WM also optimizes iterative decision-making (Kim 341

et al., 2024; Xiao et al., 2024), reducing redundancy 342

by storing shared task outcomes (Xiao et al., 2024). 343

Feedback integration enhances refinement, as seen 344

in expert voting (Tang et al., 2023), meta-doctor 345
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consolidation (Wang et al., 2024g), and structured346

critique cycles (Swanson et al., 2024).347

2.5 Reasoning Mechanisms348

Direct: derives conclusions through structured349

logic without external feedback. Single-path fol-350

lows a linear progression, where each step builds351

on the previous one, as seen in ERRG (Li et al.,352

2024d), cognitive conceptualization maps (Wang353

et al., 2024d), ClientCAST (Wang et al., 2024b),354

and medical diagnostic frameworks like MDA-355

gents (Kim et al., 2024) and expert systems (Yan356

et al., 2024). CoT-based approaches include Agent-357

Clinic (Schmidgall et al., 2024b), AI nurse simula-358

tors (Bao et al., 2024), CoT-driven coding (Wang359

et al., 2024f), least-to-most reasoning in clin-360

ical agents (Yue et al., 2024a), and Chain-of-361

Diagnosis models (Chen et al., 2024d). Multi-path362

enables parallel inference for flexible decision-363

making, integrating multi-agent systems like364

EvoPatient (Du et al., 2024), RareAgents (Chen365

et al., 2024e), MDAgents (Kim et al., 2024), and366

MedAgents (Tang et al., 2023). Other methods367

leverage multi-agent collaboration (Wang et al.,368

2024g), expert self-consistency (Li et al., 2024c),369

and symbolic reasoning (Wang et al., 2024a; Hong370

et al., 2024). Additionally, LLM planners (Liu371

et al., 2024) generate parallel solutions before val-372

idation, while simulated medical research meet-373

ings (Swanson et al., 2024) synthesize discussions374

into optimal decisions.375

Feedback-Based: adjusts reasoning by integrat-376

ing feedback to refine. External Feedback en-377

hances AI agents by incorporating real-time data,378

expert input, and structured resources, enabling379

agents to refine their understanding through inter-380

actions and external tools (Chen et al., 2024d; Johri381

et al., 2023). Medical consultation systems iter-382

atively update diagnoses through patient interac-383

tions, while decision-making agents query external384

resources like Phenomizer and DrugBank for real-385

time clinical knowledge (Li et al., 2024c). Self386

Feedback enables AI agents to refine reasoning in-387

ternally by evaluating logic, correcting inconsisten-388

cies, and iteratively improving outputs (Louie et al.,389

2024; Yu et al., 2024). Reflection-based techniques390

such as Reflection CoT and self-play mechanisms391

further enhance AI models by structuring error392

analysis and collaborative discussions (Schmidgall393

et al., 2024b). Applications extend to code genera-394

tion, drug discovery, medical research, and medical395

exam question generation (Wang et al., 2024f).396

3 Applications 397

3.1 Simulating Specific Scenarios 398

Clinical Workflow Simulation employs multi- 399

agent to model patient care, from consultation to 400

diagnosis. Some works simulate the full consulta- 401

tion workflow, where patient, doctor, and evaluator 402

agents interact. Liu et al. (2025) segmented con- 403

sultations into four stages and identifies the weak- 404

est stage as the limiting factor, akin to Liebig’s 405

law. Johri et al. (2023) proposed CRAFT-MD, us- 406

ing doctor agents interacting with structured pa- 407

tient agents and an automatic grading system. Li 408

et al. (2024c) developed MEDIQ, integrating ab- 409

stention strategies, rationale generation, and self- 410

consistency to refine diagnosis. Fan et al. (2024) in- 411

troduced AI Hospital, where doctor agents engage 412

in multi-round discussions, mediated by a Cen- 413

tral Agent to resolve disagreements. Schmidgall 414

et al. (2024b) presented AgentClinic, a multimodal 415

benchmark incorporating cognitive biases and in- 416

complete information to evaluate LLM-based doc- 417

tor agents. Another direction expands simulations 418

beyond consultation to the entire patient journey. 419

Bao et al. (2024) developed PIORS, an outpatient 420

reception system using a Service Flow-aware Med- 421

ical Scenario Simulation framework to enhance 422

department recommendations. Li et al. (2024b) pro- 423

posed Agent Hospital, a fully autonomous system 424

covering disease onset to recovery. Its MedAgent- 425

Zero framework enables doctor agents to refine 426

their diagnostic accuracy via case-based learning 427

and RAG, mirroring real-world physicians’ itera- 428

tive knowledge refinement and boosting medical 429

evaluation performance. Given the communication- 430

centric nature of mental health care, a large body 431

of work also focuses on Psychological Counsel- 432

ing and Mental Health Interaction, which can 433

be viewed as a specialized form here. Exam- 434

ples include Roleplay-doh (Louie et al., 2024), 435

which turns expert feedback into behavior rules; 436

PATIENT-Ψ (Wang et al., 2024d), which incor- 437

porates CBT principles; and Chen et al. (2023b), 438

which aligns interactions with DSM-5 criteria. 439

Multi-Disciplinary Medical Team Simulation 440

replicates real-world medical teams’ collaborative 441

processes, optimizing communication, informa- 442

tion sharing, and decision-making for complex 443

clinical scenarios. For rare disease, Chen et al. 444

(2024e) introduced RareAgents, where a patient 445

agent presents symptoms, an attending physician 446

agent assembles an MDT, and specialists iteratively 447
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Figure 3: Taxonomy of AI hospital applications.

refine diagnoses using dynamic memory and medi-448

cal toolkits. Similarly, Kim et al. (2024) proposed449

MDAgents, employing a hierarchical collaboration450

strategy where a single doctor handles simple cases,451

while MDTs, moderated by an external knowledge-452

integrating agent, address complex ones. Tang453

et al. (2023) introduced MEDAGENTS, structur-454

ing MDT collaboration into four phases—expert455

recruitment, independent analysis, collaborative456

consultation, and final decision-making—to en-457

hance reasoning without training. In EHR model-458

ing, Wang et al. (2024g) proposed ColaCare, where459

DoctorAgent processes structured EHR data with460

medical guidelines, while MetaAgent refines clini-461

cal decisions through iterative assessments, improv-462

ing predictive modeling by integrating numerical463

predictions with textual reasoning.464

Simulated Patients for Medical Education im-465

prove student training in communication, clinical466

reasoning, and diagnosis within a controlled setting.467

Advances in LLM-driven simulations enhance fi-468

delity and interactivity. Du et al. (2024) introduced469

EvoPatient, a multi-agent framework where doctor-470

patient agents iteratively co-evolve using RAG and471

personality traits. Wei et al. (2024a) proposed472

MEDCO, integrating structured training, interdisci-473

plinary collaboration, and multimodal inputs with474

memory and peer discussion modules. For assess-475

ment, Mehandru et al. (2024) proposed AI-SCE for476

process-focused training, while Yao et al. (2024b)477

introduced MedQA-CS with simulated student in-478

teractions and structured evaluations.479

Other Medical Process Optimization and Cross-480

Disciplinary Simulation AI-driven methodolo-481

gies have been explored for optimizing medical482

processes and enabling cross-disciplinary simula-483

tions. Swanson et al. (2024) introduced a multi-484

agent "Virtual Lab," where LLM-powered agents485

(e.g., principal investigator, biologist, scientific 486

critic) collaborate using biomedical tools like ESM 487

and AlphaFold-Multimer to design nanobody treat- 488

ments for SARS-CoV-2 variants, showcasing AI’s 489

potential in accelerating interdisciplinary research. 490

Similarly, Williams et al. (2023) proposed a gener- 491

ative AI-enhanced epidemic modeling platform, 492

where LLM-driven agents autonomously assess 493

health status and public health data to simulate 494

pandemic dynamics, improving traditional agent- 495

based modeling. These works demonstrate AI’s 496

role in advancing scientific discovery and public 497

health modeling through intelligent agent-based 498

decision-making. 499

3.2 Solving Complex Tasks 500

Many AI Hospital works leverage multi-agent 501

frameworks to enhance diagnosis, triage, research, 502

and discovery in dynamic clinical settings. 503

Clinical Decision-Making: AI hospitals improve 504

diagnostic accuracy and transparency, especially 505

for rare or complex diseases. Systems like 506

RareAgents (Chen et al., 2024e), MMedAgent (Li 507

et al., 2024a), and DrHouse (Yang et al., 2024a) 508

integrate tools, memory, and retrieval for consis- 509

tent, multimodal reasoning. Others focus on in- 510

terpretability: DiagnosisGPT (Chen et al., 2024d), 511

ArgMed-Agents (Hong et al., 2024), and MedA- 512

gents (Tang et al., 2023) use structured reasoning 513

or argumentation to reduce bias and enhance trust. 514

Triage and Clinical Trials: Agent-based systems 515

like TriageAgent (Lu et al., 2024), PIORS (Bao 516

et al., 2024), and ClinicalAgent (Yue et al., 2024a) 517

improve emergency triage, outpatient routing, and 518

trial matching using guideline-based retrieval and 519

reasoning strategies. 520

Knowledge-Intensive Workflows: AI agents sup- 521

port data science tasks such as EHR analysis (Shi 522

et al., 2024b), code generation (Wang et al., 2024f), 523

fact-checking (Yue et al., 2024b), and question gen- 524

eration (Yao et al., 2024a), streamlining clinical 525

research. 526

Scientific Discovery: Multi-agent labs like Virtual- 527

Lab (Swanson et al., 2024), CellAgent (Xiao et al., 528

2024), and DrugAgent (Liu et al., 2024) automate 529

biomedical discovery, integrating reasoning agents 530

with domain tools to accelerate hypothesis genera- 531

tion, molecular analysis, and drug development. 532

3.3 Evaluating Agents 533

AI hospital evaluations are shifting from static 534

benchmarks to interactive, multi-agent simulations 535
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that capture real-time reasoning, collaboration, and536

patient engagement (Johri et al., 2023; Schmidgall537

et al., 2024b; Li et al., 2024c). Recent work em-538

phasizes state-aware evaluation, using patient sim-539

ulators like SAPS (Liao et al., 2024) and role-540

play settings (Louie et al., 2024; Wang et al.,541

2024b) to test an agent’s adaptability and coher-542

ence across turns. Multi-agent frameworks such as543

AI Hospital (Fan et al., 2024) and ClinicalLab (Yan544

et al., 2024) assess inter-agent collaboration, dis-545

pute resolution, and cross-department knowledge546

exchange. Multimodal evaluation is also gaining547

traction: MMedAgent (Li et al., 2024a) combines548

imaging and text-based reasoning, while others as-549

sess tool-assisted clinical calculations (Khandekar550

et al., 2024). Finally, OSCE-style benchmarks like551

MedQA-CS (Yao et al., 2024b), OSCEBot (Pereira552

et al., 2023), and AI-SCE (Mehandru et al., 2024)553

offer comprehensive, scenario-based evaluations of554

real-world clinical skills.555

3.4 Synthesizing Data for Training556

Synthetic data generation in AI hospitals supports557

realistic, privacy-preserving training for medical558

LLMs. Multi-agent co-evolution frameworks (Du559

et al., 2024; Li et al., 2024b) simulate diagnostic560

dialogues, refine agent reasoning, and improve gen-561

eralization to benchmarks. NoteChat (Wang et al.,562

2023a) transforms clinical notes into role-played,563

polished conversations via planning, simulation,564

and feedback. AMIE (Tu et al., 2024) uses self-565

play and auto-feedback to enhance history-taking566

and reasoning. These methods reduce annotation567

costs while maintaining clinical validity, enabling568

scalable training for downstream applications.569

4 Key Challenges & Future Directions570

1Agent Roles Recontextualizing NLP models as571

clinical agents demands role-consistent behaviors572

reflecting real-world complexity. Doctor agents573

must demonstrate diverse diagnostic reasoning,574

clinical decision-making, and personalized com-575

munication styles, while patient agents require nu-576

anced disclosure of medical histories influenced577

by social determinants of health. Techniques like578

memory modules, inverse reinforcement learning,579

and dynamic knowledge graphs will be essential580

to capture these complexities. A critical interdisci-581

plinary challenge is integrating social, psychologi-582

1Due to space limitations, we include detailed discussions
and Table 2 and 3 for this section in Appendix A.

cal, and behavioral theories into NLP frameworks, 583

enhancing realism, fairness, and patient diversity 584

in clinical simulations. 585

Interaction Patterns The design of interaction pat- 586

terns in multi-agent healthcare remains challenging, 587

particularly regarding meaningful human participa- 588

tion. Current studies typically limit human roles 589

to evaluation, rather than interactive partners, re- 590

stricting NLP’s practical impact. A key direction 591

is exploring hybrid human-AI interaction models, 592

clearly distinguishing human contributions from au- 593

tonomous agent behaviors. Techniques from fields 594

such as game theory, human-computer interaction, 595

and cognitive science could enrich NLP’s methods 596

for modeling realistic and beneficial human-agent 597

collaboration. 598

Tool Integration While current works integrate 599

diverse tools, systematic evaluation frameworks 600

remain underdeveloped, limiting assessment of 601

their true interdisciplinary impact. Future research 602

should move beyond static NLP benchmarks, lever- 603

aging AI hospital ecosystems as dynamic environ- 604

ments to rigorously evaluate how well integrated 605

tools improve real clinical workflows and outcomes. 606

Interdisciplinary validation frameworks must as- 607

sess tools’ contributions to patient safety, decision 608

quality, and healthcare accessibility. 609

Memory Management remains critical for in- 610

tegrating NLP within longitudinal patient care. 611

While current models rely on static EHRs and 612

retrieval-augmented generation, accurately captur- 613

ing temporal disease progression and dynamic pa- 614

tient profiles requires advanced interdisciplinary so- 615

lutions. Temporal knowledge graphs and dynamic 616

memory retrieval methods should be explored to 617

align NLP outputs with patient comprehension lev- 618

els, enabling more personalized, adaptive, and clin- 619

ically relevant interactions. 620

Reasoning Mechanisms Most NLP reasoning ap- 621

proaches remain limited to single-path inference, 622

insufficient for complex, uncertain clinical scenar- 623

ios. Future research should integrate adaptive rea- 624

soning frameworks combining single-path, multi- 625

hop, and probabilistic approaches, leveraging in- 626

sights from clinical reasoning literature. Bayesian 627

inference, Markov Decision Processes (MDPs), 628

and decision-theoretic methods from cognitive sci- 629

ence and medicine could enhance NLP agents’ abil- 630

ity to handle clinical uncertainty, improve safety, 631

and support rigorous interdisciplinary evaluations 632

of clinical reasoning. 633

Simulating Specific Scenario & Solving Com- 634
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plex Tasks AI hospital simulations must address635

challenges in modeling realistic clinical scenar-636

ios extending beyond acute patient visits, includ-637

ing chronic disease management and public health638

emergencies. Interdisciplinary NLP research must639

incorporate socio-behavioral dynamics and broader640

environmental contexts to accurately represent real-641

world complexity. Ensuring robustness in multi-642

agent architectures also requires addressing tech-643

nical bottlenecks such as hallucinations, biases,644

and computational scalability. Enhanced error-645

handling, uncertainty quantification, and human646

expert oversight are critical for meaningful inter-647

disciplinary deployment in healthcare.648

Evaluating Agents Evaluating NLP-driven clinical649

agents requires shifting from accuracy-focused met-650

rics toward interdisciplinary frameworks aligning651

with real-world medical practice. Future evalua-652

tions should incorporate measures reflecting clin-653

ical utility, usability, patient-centered outcomes,654

and cost-effectiveness, leveraging feedback loops655

involving clinicians and patients. Balancing infer-656

ence efficiency and resource costs, as well as inte-657

grating medical-specific domain knowledge with658

general-purpose LLM capabilities, represents an659

interdisciplinary evaluation challenge critical to im-660

pactful real-world deployment.661

Synthesizing Data for Training Synthesizing re-662

alistic, unbiased, and privacy-compliant data re-663

mains challenging for training NLP-driven medical664

agents. While reinforcement learning and self-play665

approaches offer promise, applying them in clin-666

ical contexts faces limitations from data scarcity667

and ethical concerns. Future interdisciplinary di-668

rections include dynamic synthetic data generation669

through multi-agent collaboration, multimodal in-670

tegration, and fairness-driven evaluation metrics.671

Interdisciplinary collaboration involving domain672

experts, ethicists, and clinicians is essential for gen-673

erating synthetic data capable of reliably informing674

real-world clinical practice.675

Governance, Ethics, and the Roles of AI Re-676

searchers and Medical Practitioners The deploy-677

ment of AI hospital systems introduces significant678

governance and ethical challenges related to trans-679

parency, responsibility allocation, security, and eq-680

uitable healthcare access. As these systems increas-681

ingly influence medical decision-making, establish-682

ing clear accountability frameworks for errors or683

adverse outcomes becomes critical. In particular,684

implicit biases in resource allocation—reflected in685

training data or agent behavior—may exacerbate686

social inequalities if left unaddressed. A robust 687

governance framework must ensure compliance 688

with ethical standards, protect patient privacy, and 689

support interdisciplinary oversight. 690

Transparent version control and model evolu- 691

tion tracking are necessary to monitor changes in 692

behavior, mitigate unintended consequences, and 693

ensure reproducibility across deployments. Ad- 694

dressing these challenges will require collaboration 695

among NLP researchers, clinicians, ethicists, and 696

policymakers, as well as international cooperation 697

to establish consistent norms and regulations. 698

From the perspective of AI&NLP researchers, a 699

key challenge lies in fully leveraging the AI hospi- 700

tal as a testbed to iteratively address the technical, 701

behavioral, and evaluation challenges discussed 702

throughout Section 4. This includes simulating 703

failures, validating safety interventions, and align- 704

ing agent behaviors with domain expectations—not 705

only for technical excellence but for responsible 706

impact For medical practitioners, the challenge is 707

to integrate AI systems into clinical practice in a 708

way that improves equity and efficiency without 709

increasing burden or disrupting workflows. AI hos- 710

pitals must be designed not to replace, but to assist 711

human judgment—enhancing clinician decision- 712

making through trustworthy collaboration. This 713

requires deep involvement of healthcare profession- 714

als throughout the system design and testing pro- 715

cess. By embedding clinical expertise into develop- 716

ment, AI hospitals can be grounded in real-world 717

needs, bridging the gap between language-based AI 718

systems and practical, ethical medical applications. 719

5 Conclusion 720

As large language models increasingly take on 721

agentic roles, AI hospitals provide a compelling 722

framework for reimagining NLP in complex, high- 723

stakes domains like healthcare. By simulating 724

multi-agent clinical workflows and enabling dy- 725

namic, role-based evaluation, these systems move 726

beyond static benchmarks—offering new ways to 727

assess reasoning, collaboration, and safety in real- 728

world contexts. More broadly, AI hospitals illus- 729

trate how recontextualizing NLP systems within in- 730

terdisciplinary environments can surface both lim- 731

itations and opportunities. They challenge us to 732

bridge linguistic modeling with clinical reasoning, 733

decision-making under uncertainty, and societal 734

considerations such as fairness, trust, and impact. 735
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6 Limitations736

Due to space constraints, we can only provide a737

concise summary of each method rather than an738

exhaustive technical discussion. Even though we739

have included a more detailed discussion in the ap-740

pendix, readers may still need to refer to original pa-741

pers and code repositories for full implementation742

details. Our literature review mainly covers *ACL,743

NeurIPS, ICLR, ICML, AAAI, select medical jour-744

nals, and preprints (arXiv, medRxiv, bioRxiv), so745

some relevant work may be overlooked. Given the746

field’s rapid evolution, we remain committed to747

updating our perspectives and incorporating new748

advancements.749
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7 LLMs Can Simulate Standardized Patients via Agent Coevolution arXiv link (Du et al., 2024)
8 PATIENT-Ψ: Using Large Language Models to Simulate Patients for Training Mental Health Professionals EMNLP24 link (Wang et al., 2024d)
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17 MEDAGENTS: Large Language Models as Collaborators for Medical Reasoning ACL Findings 2024 link (Tang et al., 2023)
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20 AgentClinic: A Multimodal Agent Benchmark for Simulated Clinical Environments arXiv link (Schmidgall et al., 2024b)
21 TRIAGEAGENT: Multi-Agents for LLM-Based Clinical Triage EMNLP Findings 2024 link (Lu et al., 2024)
22 PIORS: Personalized Intelligent Outpatient Reception Using Multi-Agents arXiv link (Bao et al., 2024)
23 Can Large Language Models Replace Data Scientists in Clinical Research? arXiv No (Wang et al., 2024f)
24 The Virtual Lab: AI Agents Design New SARS-CoV-2 Nanobodies BioRxiv link (Swanson et al., 2024)
25 MEDCO: Medical Education Copilots Using Multi-Agent Framework arXiv No (Wei et al., 2024a)
26 Should We Be Going MAD? Multi-Agent Debate Strategies for LLMs ICML2024 link (Smit et al., 2023)
27 Beyond Direct Diagnosis: Multi-Specialist Agent Consultation for Diagnosis arXiv No (Wang et al., 2024a)
28 ClinicalAgent: Clinical Trial Multi-Agent System with LLM Reasoning BCB ’24 link (Yue et al., 2024a)
29 Enhancing Clinical Trial Patient Matching via Multi-Agent Knowledge Augmentation arXiv No (Shi et al., 2024a)
30 ArgMed-Agents: Explainable Clinical Decision Reasoning via Argumentation BIBM2024 No (Hong et al., 2024)
31 Synergistic Multi-Agent Framework with Trajectory Learning AAAI25 link (Yue et al., 2024b)
32 Empowering Biomedical Discovery with AI Agents Cell No (Gao et al., 2024)
33 MedDM: LLM-executable Clinical Guidance Tree for Decision-Making arXiv No (Li et al., 2023a)
34 Text2MDT: Extracting Medical Decision Trees from Texts arXiv No (Zhu et al., 2024)
35 BioKGBench: A Knowledge Graph Benchmark arXiv link (Lin et al., 2024)
36 Medical Graph RAG: Safe LLMs via Graph Retrieval-Augmented Generation arXiv link (Wu et al., 2024)
37 HeCiX: Integrating Knowledge Graphs and LLMs for Biomedical Research arXiv No (Kulkarni et al., 2024)
38 KRAGEN: Knowledge Graph-Enhanced RAG for Biomedical Problem Solving Bioinformatics link (Matsumoto et al., 2024)
39 Accelerating Medical Knowledge Discovery via Automated Knowledge Graphs KGSWC 2024 No (Khalid et al., 2024)
40 Augmented Non-Hallucinating LLMs as Medical Information Curators npj Digital Medicine No (Gilbert et al., 2024)
41 Benchmarking Retrieval-Augmented Generation for Medicine ACL Findings 2024 link (Xiong et al., 2024a)
42 Improving Retrieval-Augmented Generation in Medicine with Iterative Follow-up Questions arXiv link (Xiong et al., 2024b)
43 Almanac — Retrieval-Augmented Language Models for Clinical Medicine NEJM AI link (Zakka et al., 2024)
44 Augmenting Black-box LLMs with Medical Textbooks for Biomedical QA EMNLP Findings 2024 link (Wang et al., 2023b)
45 To Generate or Retrieve? Effectiveness of Artificial Contexts in Medical QA ACL 2024 link (Frisoni et al., 2024)
46 AgentMD: Empowering Language Agents for Risk Prediction arXiv link (Jin et al., 2024)
47 MedCalc-Bench: Evaluating LLMs for Medical Calculations NeurIPS 2024 link (Khandekar et al., 2024)
48 Augmenting ChatGPT with Clinician-Informed Tools for Medical Calculations medRxiv No (Goodell et al., 2023)
49 GeneGPT: Augmenting LLMs with Domain Tools for Biomedical Information Bioinformatics link (Jin et al., 2023)
50 EHRAgent: Code-Empowered LLMs for Few-shot Complex Tabular Reasoning EMNLP 2024 link (Shi et al., 2024b)
51 MMedAgent: Learning to Use Medical Tools with Multi-modal Agent EMNLP Findings 2024 link (Li et al., 2024a)
52 Conversational Health Agents: A Personalized LLM-Powered Agent Framework arXiv link (Abbasian et al., 2023)
53 PathAsst: A Generative AI Assistant for Pathology Analysis AAAI Technical Track link (Sun et al., 2023)
54 GPT-agents Based on Medical Guidelines for Traumatic Brain Injury Rehabilitation Scientific Reports No (Li et al., 2024e)
55 CellAgent: An LLM-driven Multi-Agent Framework for Automated Single-cell Data Analysis arXiv No (Xiao et al., 2024)
56 DrugAgent: Automating AI-Aided Drug Discovery via LLM Multi-Agent Collaboration arXiv No (Liu et al., 2024)
57 Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents arXiv No (Li et al., 2024b)
58 AI Hospital: Benchmarking LLMs in a Multi-agent Medical Interaction Simulator COLING 2025 link (Fan et al., 2024)
59 ClinicalLab: Aligning Agents for Multi-Departmental Clinical Diagnostics arXiv link (Yan et al., 2024)
60 LLM-empowered Chatbots for Psychiatrist and Patient Simulation arXiv No (Chen et al., 2023b)
61 MediQ: Question-Asking LLMs and a Benchmark for Interactive Clinical Reasoning NeurIPS 2024 link (Li et al., 2024c)
62 Epidemic Modeling with Generative Agents arXiv link (Williams et al., 2023)
63 NoteChat: A Dataset of Synthetic Patient-Physician Conversations ACL 2024 Findings link (Wang et al., 2023a)
64 Evaluating Large Language Models as Agents in the Clinic npj Digital Medicine No (Mehandru et al., 2024)
65 MedQA-CS: Benchmarking LLMs Clinical Skills Using an AI-SCE Framework arXiv link (Yao et al., 2024b)
66 Towards Conversational Diagnostic AI arXiv No (Tu et al., 2024)
67 LLM-based Medical Assistant Personalization with Short- and Long-Term Memory NAACL 2024 link (Zhang et al., 2023)
68 CoD: Towards an Interpretable Medical Agent Using Chain of Diagnosis arXiv link (Chen et al., 2024d)
69 Multi-Agent Conversation Framework Enhances Rare Disease Diagnosis in LLMs Preprint link (Li et al., 2023b)
70 MEDAIDE: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration Preprint No (Wei et al., 2024b)
71 RAG-Gym: Optimizing Reasoning and Search Agents with Process Supervision Preprint link (Xiong et al., 2025)
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Key Challenges Future Research Directions

§ 4 Profile/Roles

1. Role Consistency: Ensuring that doctor and patient agents exhibit behavior consistent with their roles
across different contexts, such as doctors demonstrating diverse diagnostic styles and decision-making ap-
proaches, while patients dynamically adjust their information disclosure strategies based on consultation
stages.
2. Modeling Information Asymmetry: Simulating real-world information asymmetry, where patients may
selectively disclose information due to privacy or psychological factors, while doctors must make decisions
with limited information.
3. Inverse Reinforcement Learning (IRL) for Patient Decision-Making: Real patients’ behaviors are not
driven by fixed reward functions. Using IRL to learn patient decision patterns (e.g., healthcare-seeking
timing, treatment adherence) can enhance patient agent realism.
4. Patient Population Diversity: Current patient agents may be overly homogeneous. Integrating social de-
terminants of health (SDOH), such as housing, economic status, and educational background, can enhance
diversity, ensuring system fairness and generalizability.

1. Enhancing Role-Playing and Personalization Techniques: Utilizing short-term memory modules, interview-
driven personality modeling, and expert feedback optimization to make agent behavior more aligned with real-
world medical scenarios.
2. Modeling Patient Behavior with Uncertainty: Introducing behavior patterns like avoidance of negative dia-
gnoses and risk perception adjustments to better simulate patient decision-making using heuristic methods
and utility functions.
3. Using IRL to Improve Patient Agent Realism: Learning real patients’ decision trajectories to enable AI age-
nts to better simulate patient decision-making across different contexts, thereby improving medical simulations.
4. Building More Representative Patient Agents: Incorporating factors such as SDOH to ensure AI hospital
systems accurately reflect the healthcare behaviors of diverse populations, improving applicability in medical
training and patient education.

§ 4 Interaction Patterns

1. Defining Human Roles: Current AI hospital systems primarily view AI agents as assistive tools, without
clarifying whether humans should act as observers, active participants, or even replace certain AI agent
functions.
2. Strategic Decision-Making and Information Uncertainty Modeling: Existing interaction models rely
mainly on end-to-end LLM predictions, lacking explicit mathematical modeling, making it difficult to capture
inherent information asymmetry in medical scenarios.
3. Collaboration and Competition Among Multi-Agent Systems: Long-term interactions between LLM
agents remain underexplored. Doctor and patient agents may have competitive relationships in certain tasks
(zero-sum games) but are mostly cooperative (cooperative games).
4. Modeling Medical Uncertainty: Both patient and doctor agents may lack complete information during
diagnosis. Optimizing interaction strategies in highly uncertain environments remains a challenge.

1. Incorporating Human Interaction for Evaluation and Enhancement: Embedding real humans in AI hospital
systems to explore the differentiation between AI agents and humans (Turing-like tests) and assess optimal human-
AI collaboration models.
2. Optimizing AI Agent Interaction via Game Theory: Using methods such as Stackelberg games, Bayesian
games, and informational games to model AI hospital systems, improving decision-making under information
asymmetry.
3. Enhancing Long-Term Evolution Mechanisms Among AI Agents: Applying evolutionary game theory to
optimize strategies over time, such as patient agents learning effective symptom disclosure and doctor agents
refining diagnostic questioning techniques.
4. Using Bayesian Inference to Improve Medical Decision-Making: Developing Bayesian game-based diagnos-
tic strategies that allow doctor agents to optimize questioning methods under uncertainty, while patient agents
dynamically adjust responses based on perception, improving realism and medical education value.

§ 4 Tools

1. Static Integration of Tools: Current AI hospital systems treat tools as static components, lacking system-
atic evaluation methods to assess their actual effectiveness in medical environments.
2. Uncertainty in Tool Effectiveness: For instance, LLM-as-KB has shown superiority over traditional RAG
in specific benchmarks, but its advantages in real-world medical applications remain unclear.
3. Lack of Real-World Impact-Based Evaluation Frameworks: Existing tool evaluations rely primarily on
standardized quantitative metrics, whereas clinical applications should assess tools based on their impact on
agent interactions and patient health outcomes.

1. Dynamic Tool Integration and Adaptive Optimization: Exploring how AI hospital system tools can dynami-
cally adapt to different tasks and contexts rather than being statically invoked, enhancing applicability in complex
medical decision-making.
2. Validating Tool Performance in Real Medical Tasks: Moving beyond traditional benchmarks to establish eva-
luation frameworks specific to AI hospital systems, measuring tool effectiveness in supporting doctor decision-
making and improving patient education.
3. Analyzing the Impact of Tools on Agent Interactions and Medical Outcomes: Developing novel evaluation
metrics to assess how tools influence doctor-patient agent collaboration efficiency, information accuracy, and
overall decision-making quality.

§ 4 Memory

1. Limitations of Static EHR: Current methods treat EHRs as static knowledge bases, neglecting the temp-
oral dependencies of disease progression, making it difficult to reflect patients’ long-term health conditions
comprehensively.
2. Insufficient Dynamic Memory Access Mechanisms: Existing memory modules lack effective triggering
mechanisms, making it difficult to dynamically adjust information storage and retrieval based on patient hea-
lth literacy or behavioral feedback.
3. Lack of Patient Behavior Modeling: Current systems fail to simulate long-term patient health behavior
changes, such as how treatment adherence evolves in chronic disease management, making it challenging for
doctor agents to adapt their interaction strategies.

1. Time-Series Health Data Modeling: Constructing temporal graphs to encode patient history, medication usage,
and consultation records, enabling LLM agents to identify key disease progression points and optimize medical
interactions.
2. Intelligent Memory Access Optimization: Introducing adjustable access control mechanisms, such as health
literacy-based reading difficulty detection, ensuring that patient agents receive medical information at an
appropriate comprehension level.
3. Behavioral Adaptive Memory Modules: Leveraging habit-forming models to simulate patients transitioning
from doctor dependence to autonomous health management, allowing AI agents to provide personalized medical
support at different stages.

§ 4 Reasoning Patterns

1. Limitations of Single Reasoning Paths: CExisting methods primarily rely on direct step-by-step reasoning,
which struggles to handle the complexity and dynamic nature of real-world medical environments.
2. Insufficient Handling of Uncertainty: Doctor and patient agents often lack complete information during
interactions, and current AI reasoning frameworks struggle to flexibly adjust decisions, increasing the likelihood
of errors or hallucinations.
3. Lack of Dynamic Reasoning Mechanisms: AI agents in multi-agent interactions still operate with
independent reasoning, lacking the ability to dynamically adjust decisions based on ongoing interactions, limit-
ing their performance in complex medical tasks.

1. Expanding Uncertainty Modeling Methods: Incorporating Bayesian inference to allow AI agents to adjust
reasoning paths through probabilistic updates rather than relying solely on deterministic reasoning.
2. Introducing Time-Series Decision Models: Utilizing Markov Decision Processes (MDP) to optimize AI
agents’ decision-making in patient interactions, enabling dynamic diagnostic strategies based on state changes.
3. Using POMDPs for Partially Observable Environments: Applying Partially Observable Markov Decision
Processes (POMDPs) to help AI agents make more reasonable inferences when full patient history is unavailable,
such as prompting clarifying questions instead of making premature conclusions.
4. Integrating Multi-Agent Collaborative Reasoning: Developing new reasoning mechanisms that enable
different AI agents to dynamically adjust their decisions based on shared information, improving the intelligence
and adaptability of the overall medical system.

Table 2: Key Challenges and Future Directions for different core components in AI Hospital.
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Key Challenges Future Research Directions

§ 4 Simulating Specific Scenarios & Solving Complex Tasks

1. Limitations in Medical Simulations: Current systems focus primarily on patient consultation stages, lacking
comprehensive simulations of preoperative preparation, postoperative recovery, and chronic disease management,
reducing real-world applicability.
2. Influence of External Environmental Factors: Public health events (e.g., COVID-19) can alter hospital op-
erations and patient behaviors, but existing systems lack adaptability to unexpected events, limiting their genera-
lization capabilities.
3. Insufficient Social Cognition Modeling: Patient decision-making is often influenced by social dynamics,
peer influence, and observational learning, yet current AI agents lack the ability to simulate these behaviors,
reducing their effectiveness in health education and disease management.
4. System Robustness Issues: Multi-agent architectures may lead to hallucination generation, bias accumulation,
and difficulties in handling long-form interactions, where frequent interactions amplify errors, decreasing overall
system reliability.
5. Inadequate Risk Management: Existing systems struggle to handle long-tail cases, rare diseases, or adversa-
rial attacks, where error accumulation may lead to misdiagnosis or resource waste, requiring improved safety
mechanisms.

1. Expanding Coverage of Medical Scenarios: Incorporating long-term health management, postoperative re-
covery, and chronic disease monitoring modules into AI hospital systems to improve simulation comprehensive-
ness and real-world adaptability.
2. Enhancing Adaptability to External Events: Developing dynamic behavior adjustment and memory mech-
anisms to enable AI agents to respond effectively to public health crises or emergency medical situations, impr-
oving system robustness.
3. Incorporating Social Cognition Theories: Designing patient agents with observational learning mechanisms
to simulate the impact of social influences on medical decision-making and optimizing AI interaction in online
patient communities and medical forums.
4. Optimizing Multi-Agent Collaboration Frameworks: Reducing error propagation by developing fair bench-
marking tests and optimization algorithms to ensure multi-agent systems outperform single-agent or standalone
LLMs in complex tasks.
5. Introducing Uncertainty Quantification and Safety Protocols: Implementing safety triggers (e.g., expert
intervention, anomaly detection) in high-risk scenarios and using extreme-case simulations to enhance system
reliability in rare disease cases.

§ 4 Evaluating Agents

1. Limitations of Existing Evaluation Methods: Current evaluation frameworks focus primarily on task acc-
uracy, traditional generation metrics, or LLM-as-Judge assessments, lacking alignment with real-world medical
environments where doctors rely on patient feedback and peer reviews.
2. Insufficient Consideration of Computational Costs and Efficiency: High performance in multi-agent AI
hospital systems may partially depend on increased computational resources, but no standardized cost-perform-
ance trade-off analysis framework currently exists, making evaluations unrealistic.
3. Lack of Fair Benchmarking Tests: Inconsistent test datasets, varying computational resource allocation, and
vague task definitions hinder cross-system comparisons, reducing the reliability of evaluation results.
4. Limitations of Medical LLMs in Agent-Based Tasks: While medical-specific LLMs (e.g., Med-PaLM2,
DoctorGLM) possess superior medical knowledge, their intelligent behavior in AI hospital environments
remains weak, often relegating them to tools rather than autonomous agents.

1. Developing More Realistic Agent Evaluation Frameworks: Incorporating social evaluation mechanisms
(e.g., patient feedback, peer ratings, interaction quality analysis) to simulate how doctors are assessed in real-
world environments, making evaluations more aligned with medical practice.
2. Optimizing Computational Cost Assessment: Creating weighted cost models that analyze trade-offs between
computational resource consumption, inference time, and performance gains, reducing over-reliance on large
models in multi-agent AI hospital systems.
3. Establishing Fair Multi-Agent Benchmark Tests: Standardizing test datasets, computational resources, and
task definitions to ensure fair and reliable evaluations between multi-agent and single-agent systems, improving
reproducibility in research.
4. Enhancing Medical LLMs’ Agent Capabilities: Investigating how to retain intelligent agent capabilities in
medical-specific LLMs, such as optimizing autonomous decision-making and interaction strategies to enable them
to perform complex tasks in multi-agent environments.
5. Developing Evaluation Standards Beyond Medical Exams: Moving beyond medical exam-based evaluations
to build broader clinical task benchmarks covering medical reasoning, interaction ability, and real-world applica-
tions for a more comprehensive performance assessment.

§ 4 Synthesizing Data for Training

1. Limitations of RL in Medical Environments: AI hospitals have not been fully utilized as reinforcement
learning (RL) environments, and real-world medical data scarcity and ethical constraints make it difficult to
design appropriate training environments and reward mechanisms.
2. Lack of Diversity and Fairness in Synthetic Data: Current synthetic data generation heavily relies on
manual rules, failing to comprehensively simulate real-world medical scenarios. Long-term self-training may
lead to data homogeneity and mode collapse, reducing model generalizability.
3. Absence of Standardized and Shareable Training Data: Existing training environments are relatively
isolated, making it difficult for different AI hospital systems to share synthetic data, limiting model portability
and cross-system applicability.

1. Utilizing AI Hospitals as RL Training Environments: Designing reward mechanisms based on patient simu-
lation and doctor decision-making, enabling AI agents to optimize medical decision-making through interactive
learning, such as improving post-surgery care interventions.
2. Enhancing the Dynamism and Multimodal Nature of Synthetic Data: Incorporating multi-agent collabora-
tion to generate synthetic data that more closely mirrors real-world conditions while integrating text, images, and
speech to improve data expressiveness.
3. Developing Data Quality Assessment and Bias Detection Mechanisms: Creating automated data evaluation
tools to detect and correct biases and errors in synthetic data, ensuring that it enhances AI agent capabilities
without introducing unfairness.
4. Establishing Standardized and Shareable Synthetic Data Frameworks: Developing unified data standards
and benchmarks to facilitate synthetic data sharing across AI hospital systems, improving model stability and
portability.

§ 4 Governance, Ethics, and the Roles of AI Researchers and Medical Practitioners

1. Accountability and Transparency: As AI hospital systems play a growing role in medical decision-making,
a major ethical concern is how to define accountability for errors made by AI agents while ensuring system tran-
sparency and traceability.
2. Bias and Its Impact on Healthcare Equity: Medical AI systems may introduce implicit biases in resource
allocation, exacerbating social inequalities. A unified governance framework is lacking to regulate fairness,
safety, and privacy protection.
3. Challenges in Clinical Integration of AI Hospital Systems: AI is still difficult to seamlessly integrate into
doctors’ workflows. Healthcare professionals may perceive AI as an additional burden rather than a genuinely
useful clinical support tool.
4. Lack of Interdisciplinary Collaboration: There remains a gap between AI research and medical practice.
Limited involvement of physicians and healthcare professionals in AI development results in systems that fail
to effectively address real-world medical needs.

1. Establishing Governance Frameworks for AI Hospital Systems: Implementing human oversight mechanisms
to monitor critical decisions, introducing transparent version management to ensure system updates are traceable,
and promoting international collaboration to develop unified AI governance standards in healthcare.
2. Enhancing Fairness and Explainability in AI Hospital Systems: Developing fairness evaluation and bias corr-
ection mechanisms to ensure equitable resource allocation and prevent AI from reinforcing biases in medical
decision-making.
3. Seamless Integration of AI into Clinical Workflows: Designing AI systems that align with doctors’ workflows,
ensuring they serve as assistive tools rather than additional burdens, and developing user interfaces that meet cli-
nical needs.
4. Bridging AI Research and Medical Practice: Encouraging active participation of physicians, nurses, and other
healthcare professionals in AI development and evaluation to ensure AI hospital systems effectively address clinical
challenges and improve the synergy between AI research and real-world healthcare applications.
5. Exploring High-Fidelity Clinical Simulation Environments: Utilizing AI hospital systems to create realistic
medical training environments that enhance AI agents’ autonomous learning capabilities, optimizing their perfor-
mance in medical education, patient education, and long-term self-learning.

Table 3: Key Challenges and Future Directions for different applications in AI Hospital.
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A Key Challenges and Future Directions1790

Agent Roles In AI hospitals, different agents1791

should exhibit behavioral patterns consistent with1792

their designated roles to enhance the realism and1793

practicality of medical simulations in different sit-1794

uations. Some work has mentioned and tried to1795

improve this in their scenarios, but discussion and1796

evaluation of this in more scenarios is necessary1797

and needs to be more unified. For example, Doctor1798

agents should exhibit variations in diagnostic styles,1799

communication methods, and decision-making pro-1800

cesses, even when based on the same underlying1801

model (Kim et al., 2024). Patient agents must dy-1802

namically adjust their responses across different1803

stages, ensuring that they gradually reveal med-1804

ical history during consultations rather than dis-1805

closing everything at once (Wang et al., 2023a).1806

Subsequent work may consider better integrating1807

STM/LTM/WM modules to maintain contextual1808

coherence (Zhang et al., 2023). At the same time,1809

recent advancements in role-playing (Chen et al.,1810

2024a) and personalization (Chen et al., 2024a,c;1811

Zhang et al., 2024) methods in the general NLP1812

domain, such as interview-driven persona model-1813

ing (Park et al., 2024) and expert feedback-based1814

refinements (Louie et al., 2024), can be leveraged1815

to improve agent behavior.1816

Another key aspect is managing information1817

asymmetry, a fundamental characteristic of real-1818

world medical conversations (Ariss, 2009; Greco,1819

2020). Doctor agents seek comprehensive patient1820

information, whereas patient agents may selec-1821

tively withhold certain details due to privacy con-1822

cerns or psychological barriers (Gill and Maynard,1823

2006). Modeling patient responses using hedging1824

language can better reflect real-world uncertainty,1825

and employing utility functions can capture how1826

patients weigh different trade-offs, such as balanc-1827

ing disclosure of medical history versus preserving1828

personal comfort (Lehtinen, 2013). Additionally,1829

patients tend to avoid negative diagnoses and adjust1830

responses based on perceived risk, behaving more1831

conservatively when severe illnesses are a concern.1832

These behavioral tendencies should be embedded1833

into AI agents to enhance realism.1834

Inverse reinforcement learning (IRL) (Chadi and1835

Mousannif, 2022) is another promising approach1836

for improving the decision-making of patient and1837

doctor agents. Some work uses a small predefined1838

action space to better control agents’ behavior and1839

facilitate optimization. However, since patients in1840

the real world do not follow a predefined reward 1841

function, IRL can be used to infer their underlying 1842

decision-making processes and other unconsidered 1843

actions. This enables AI agents to learn patterns, 1844

such as when patients decide to seek medical atten- 1845

tion, comply with prescribed treatments, or respond 1846

to doctor recommendations (Snoswell et al., 2024). 1847

Training doctor and patient agents to align with 1848

observed human decision-making trajectories will 1849

significantly improve their realism in medical sim- 1850

ulations and further improve the generalizability of 1851

these methods in the real world. 1852

Finally, ensuring the diversity of patient agents is 1853

another key challenge, as homogeneous behaviors 1854

among agents can limit the robustness of evalua- 1855

tion and data synthesis (Yu et al., 2024; Bakkum 1856

et al., 2024). To address this issue, demographic at- 1857

tributes should be supplemented with other factors, 1858

such as social determinants of health (SDOH) (Ong 1859

et al., 2024). Additionally, some studies have at- 1860

tempted to extract information from actual clini- 1861

cal notes to construct agent profiles or memories, 1862

which to some extent increases diversity. However, 1863

in the real world, a patient’s information is much 1864

more extensive, whereas clinical notes only capture 1865

a small portion. This makes it more challenging 1866

to reconstruct a patient agent with sufficient infor- 1867

mational depth based on the compressed represen- 1868

tation in clinical notes. While some approaches 1869

have leveraged LLMs‘ commonsense reasoning ca- 1870

pabilities and knowledge graphs to alleviate this 1871

problem, more in-depth exploration is needed to ef- 1872

fectively reconstruct patient agents with sufficient 1873

informational depth based on clinical notes. These 1874

enhancements will enable the AI hospital to re- 1875

flect diverse patient populations more accurately, 1876

thereby improving the generalizability and fairness 1877

of AI applications in healthcare. 1878

Interaction Patterns The interaction patterns 1879

within multi-agent AI hospital systems remain 1880

largely undefined, particularly regarding the roles, 1881

behaviors, and interactions of humans within these 1882

systems. Currently, most existing studies do not 1883

explore the scenario where humans are directly em- 1884

bedded in the system, but rather humans (whether 1885

experts or ordinary people) are just observers, eval- 1886

uators, or provide some external feedback. A funda- 1887

mental question is whether humans should only act 1888

as observers or actively participate as participants, 1889

replacing or supplementing certain AI agents. If 1890

participation is required, how can a unified frame- 1891

work to guide human identity and participation pat- 1892
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terns in different scenarios be more conveniently1893

and appropriately defined? In addition, integrating1894

real human interactions into AI hospital systems1895

could open new research directions, such as eval-1896

uating whether humans can accurately distinguish1897

between AI agents and other human participants1898

during collaboration. This approach aligns with the1899

Turing test concept and may redefine how AI Hospi-1900

tal is assessed and applied in medical contexts. Ad-1901

ditionally, incorporating strategic decision-making1902

and modeling uncertainty into the AI hospital can1903

enhance system intelligence (Balogh et al., 2015;1904

Dhawale et al., 2017; Hu et al., 2024b). Current1905

approaches rely on end-to-end LLM predictions1906

without explicit mathematical modeling. By lever-1907

aging some methodologies like game theory (Blake1908

and Carroll, 2016; Sun et al., 2025; Djulbegovic1909

et al., 2015; Glycopantis and Stavropoulou, 2018),1910

we can better model asymmetric information chal-1911

lenges in medical interactions. For instance, doctor-1912

patient interactions can be framed as zero-sum1913

games (e.g., patients withholding symptoms to1914

test diagnostic ability) or cooperative games (e.g.,1915

Nash Bargaining for optimized questioning). Multi-1916

agent systems can employ Stackelberg games (Ger-1917

stgrasser and Parkes, 2023) to optimize informa-1918

tion exchange, with doctor agents guiding patient1919

agents toward informative disclosures. Evolution-1920

ary game theory (Bloembergen et al., 2015) may1921

enable agents to refine their strategies over time.1922

Bayesian games may model medical uncertainty,1923

allowing doctor agents to use Bayesian inference1924

to refine questioning strategies while patient agents1925

adjust responses based on perceived health sta-1926

tus (Verma et al., 2019; Chatzimichail and Hatjimi-1927

hail, 2023).1928

Tool Integration In the current AI hospital, tools1929

are often treated as static utilities. Most works1930

directly integrate them without systematically eval-1931

uating and adapting their effectiveness within dif-1932

ferent scenarios (Wang et al., 2024c). A key chal-1933

lenge for the future is how to leverage the AI Hos-1934

pital—an environment that closely resembles the1935

real world—to better evaluate and validate new1936

tools and determine whether they are truly effective1937

rather than relying on traditional static benchmarks1938

and flawed evaluation metrics. For example, while1939

new tools such as domain-specific RAG (Xiong1940

et al., 2024a,b, 2025; Zakka et al., 2024; Wang1941

et al., 2023b; Li et al., 2024e), GraphRAG (Lin1942

et al., 2024; Wu et al., 2024; Kulkarni et al., 2024;1943

Matsumoto et al., 2024; Khalid et al., 2024; Gilbert1944

et al., 2024), and LLM-as-KB (Frisoni et al., 2024) 1945

always demonstrated their advantages over previ- 1946

ous methods on certain benchmark datasets, it re- 1947

mains unclear whether these advantages translate 1948

effectively into AI hospital agents or real-world 1949

users. In a real clinical setting, the success of a tool 1950

is not solely measured by standard benchmark per- 1951

formance but also by its ability to support different 1952

agents in providing more reliable and interpretable 1953

assistance to both clinicians and patients. There- 1954

fore, a crucial future direction is establishing the 1955

AI Hospital as a more unified and robust evaluation 1956

framework that goes beyond traditional quantita- 1957

tive metrics and instead assesses tools based on 1958

their real-world impact on agent interactions and 1959

patient outcomes. 1960

Memory Management Existing research largely 1961

relies on static EHRs as memory to represent pa- 1962

tients, often utilizing RAG or GraphRAG-based 1963

methods (Yu et al., 2024) to retrieve relevant back- 1964

ground information to support patient agents to 1965

generate appropriate and factual responses. While 1966

this approach enables a certain level of personaliza- 1967

tion, it still faces significant challenges, particularly 1968

in comprehensively and dynamically representing 1969

a patient’s longitudinal EHR and optimizing mem- 1970

ory access mechanisms (Xie et al., 2022). One 1971

million-dollar question is how to accurately repre- 1972

sent a patient’s long-term health information. Cur- 1973

rent methods often treat EHRs as static knowledge 1974

bases, overlooking the temporal dependencies in 1975

disease progression and medical decision-making. 1976

Future research can explore constructing tempo- 1977

ral graphs (Rasmussen et al., 2025) to encode a 1978

patient’s medical history, medication usage, and 1979

visit records in a time-series format, allowing LLM 1980

agents to identify critical transition points in dis- 1981

ease progression and adjust their interaction strate- 1982

gies accordingly (Chen et al., 2024b). For example, 1983

in chronic disease management, patient agents may 1984

not immediately adhere to a doctor’s recommenda- 1985

tions but instead undergo a habit-forming process 1986

where they gradually adjust their health behaviors. 1987

Therefore, the memory module must be able to 1988

model a patient’s evolving adherence to long-term 1989

medical advice and dynamically adapt the way and 1990

frequency in which doctor agents provide infor- 1991

mation. Similarly, LLM agents can leverage habit 1992

formation models to simulate how long-term pa- 1993

tients gradually adapt and modify their health be- 1994

haviors (Singh et al., 2024; Zhang et al., 2022). For 1995

instance, some patients may rely heavily on doctor 1996
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agents for guidance in the early stages of a disease,1997

but as they become more familiar with disease man-1998

agement, they may transition toward making more1999

autonomous decisions.2000

Another critical issue is designing more sophis-2001

ticated trigger mechanisms to optimize memory2002

access and retrieval. A typical scenario is patient2003

education (Cai et al., 2023), where even if a doc-2004

tor agent provides relevant information, a patient2005

may fail to comprehend it if the readability level2006

does not align with their health literacy. As a result,2007

the memory module must incorporate more fine-2008

grained access control mechanisms. For instance, if2009

a patient agent exhibits comprehension difficulties2010

(e.g., asking repeated questions or giving incoher-2011

ent responses), the system should automatically ad-2012

just how information is stored and retrieved in the2013

future, ensuring that when information is recalled,2014

it is presented in a manner that better matches the2015

patient’s health literacy level. This mechanism can2016

be further refined by using reading comprehension2017

difficulty models to shape how patient agents in-2018

terpret and respond to doctor queries, making their2019

behavior more aligned with that of individuals with2020

low health literacy.2021

Reasoning Mechanisms Most research is still lim-2022

ited to direct reasoning with a single path. How-2023

ever, this design struggles to generalize to the com-2024

plex and dynamic real-world medical environment.2025

Therefore, establishing a more adaptive reasoning2026

framework that enables AI agents to make more2027

reasonable decisions in uncertain environments is2028

a key direction for future research. Note that this2029

does not mean that direct reasoning of a single2030

path should be discarded; instead, it should be used2031

only as part of the agent reasoning mechanism to2032

handle appropriate scenarios. In recent years, sig-2033

nificant progress has been made in clinical reason-2034

ing, particularly in some multi-hop reasoning med-2035

ical QA benchmarks (Xu et al., 2024; Huang et al.,2036

2025b; Faray de Paiva et al., 2025; Tran et al., 2024;2037

Hu et al., 2024a). These methods exhibit stronger2038

adaptability in simulating clinical reasoning, allow-2039

ing LLMs to handle complex medical reasoning2040

tasks more effectively. However, these methods2041

usually require a lot of computation during training2042

or testing and have not been proven to be more2043

efficient and flexible for agents in dynamic environ-2044

ments. The future challenge is further integrating2045

these reasoning capabilities into AI hospital agents.2046

A core issue is that medical AI agents must be2047

able to handle uncertainty and base their actions on2048

reasoning (Balogh et al., 2015; Alli et al., 2024). 2049

For example, in an AI hospital system, a patient 2050

agent may change its mind during a conversation, 2051

while a doctor agent may lack complete informa- 2052

tion about the patient’s health status. In such cases, 2053

AI must understand and infer “Why did the patient 2054

agent change their mind?” to adjust its decision- 2055

making process accordingly. This involves not only 2056

general knowledge reasoning but also uncertainty 2057

modeling to improve AI agents’ judgment and re- 2058

duce hallucinations. For example, to better model 2059

uncertainty in AI hospital systems, Bayesian In- 2060

ference and Markov Decision Processes (MDP) 2061

offer promising approaches (Bennett and Hauser, 2062

2013; Polotskaya et al., 2024). Bayesian Networks 2063

enable AI to probabilistically reason over patient 2064

symptoms, history, and socioeconomic status, dy- 2065

namically adjusting decisions via Bayesian updates. 2066

MDPs further support decision-making in dynamic 2067

interactions, optimizing actions based on state tran- 2068

sitions and rewards. Given the inherent uncertainty 2069

in medical reasoning, Partially Observable MDPs 2070

(POMDPs) may provide a more realistic frame- 2071

work, allowing AI to infer missing patient informa- 2072

tion and adopt strategies like information gathering 2073

or abstaining from uncertain decisions. 2074

Simulating Specific Scenario & Solving Com- 2075

plex Tasks One of the primary challenges in AI 2076

Hospital applications lies in achieving more pre- 2077

cise and comprehensive medical simulations, par- 2078

ticularly in integrating time-sensitive and event- 2079

driven information. Currently, most simulations 2080

are confined to patient visits, with limited consid- 2081

eration of pre-visit preparations, and even fewer 2082

studies focusing on after-visit follow-ups or daily 2083

patient care. However, in real-world healthcare 2084

settings, many critical factors occur beyond the 2085

visit itself, such as chronic disease management, 2086

post-surgical recovery, and long-term health inter- 2087

ventions. Additionally, public health events like 2088

COVID-19 impact hospital operations and patient 2089

behaviors, necessitating adaptive multi-agent AI 2090

systems 2. However, current systems lack flexibil- 2091

ity to model such disruptions, limiting realism (Gür- 2092

can, 2024). For example, social cognitive theory 2093

may offer a framework in such context for simulat- 2094

ing patient decision-making, as individuals often 2095

rely on social dynamics over medical advice (Yang 2096

et al., 2024b; Al Owayyed et al., 2024). Integrating 2097

2https://en.wikipedia.org/wiki/Impact_of_the_
COVID-19_pandemic_on_hospitals
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observational learning and social adaptation into2098

AI agents can enhance patient behavior modeling,2099

improving simulation fidelity and AI-driven health2100

solutions.2101

Moreover, the robustness and reliability of AI2102

Hospital remain major concerns. While multi-2103

agent architectures showcase promising poten-2104

tial, they also introduce inherent challenges (Bertl2105

et al., 2023), such as LLMs hallucination genera-2106

tion (Huang et al., 2025a; Zuo and Jiang, 2024; Li2107

et al., 2023c), alignment issues, and limitations in2108

long-text processing, which hinder their effective-2109

ness in complex medical tasks. These problems are2110

further exacerbated by the high frequency of inter-2111

actions between agents, leading to computational2112

bottlenecks and error accumulation, degrading the2113

entire system’s performance. For example, patient2114

agents may incorrectly attribute their symptoms to2115

severe illnesses (such as cancer) based on incom-2116

plete or incorrect information, while doctor agents2117

may develop biases influenced by recent diagnostic2118

cases (Quinn et al., 2021). If left unchecked, these2119

biases can not only reduce the reliability of individ-2120

ual agents but also propagate errors throughout the2121

system, amplifying their negative impact.2122

Finally, risk management in the AI Hospital is2123

crucial (Balogh et al., 2015). Risks like the cu-2124

mulative effect of error and the inability to han-2125

dle long-tail cases or rare scenarios all underscore2126

the importance of implementing safeguard mecha-2127

nisms. For instance, in long-tail medical cases, the2128

system may struggle to adapt effectively, leading to2129

false positives or negatives, compromising diagnos-2130

tic accuracy and wasting healthcare resources. To2131

mitigate these risks, future work should integrate2132

uncertainty quantification, allowing agents to trig-2133

ger safety protocols when encountering ambiguous2134

cases. Additionally, extreme scenario simulations2135

should be employed to strengthen testing environ-2136

ments, ensuring system reliability under complex2137

conditions. Designing error isolation mechanisms2138

can prevent a single agent’s mistake from cascading2139

through the entire system. Finally, human expert2140

intervention remains a critical safeguard, ensuring2141

that AI-generated decisions align with ethical and2142

medical standards through expert oversight and2143

real-time monitoring.2144

Evaluating Agents Compared to general-domain2145

evaluation methods, the unique characteristics of2146

the medical setting—such as the roles of doctors2147

and patients and the complexity of tasks—make hu-2148

man evaluation particularly challenging (Tam et al.,2149

2024). As a result, most existing approaches still fo- 2150

cus on task accuracy, traditional generation metrics, 2151

or naive LLM-as-Judge evaluation methods, with 2152

limited consideration of efficiency and cost fac- 2153

tors. Future research should explore more effective 2154

evaluation methods that align more closely with 2155

real-world medical practice. For instance, in ac- 2156

tual healthcare environments, doctors are typically 2157

assessed through patient feedback, peer reviews, 2158

and survey-based evaluations (Baines et al., 2018). 2159

These social evaluation mechanisms have not yet 2160

been fully integrated into AI hospital system assess- 2161

ments (Moy et al., 2024). Additionally, drawing 2162

inspiration from the Turing test (Nov et al., 2023), 2163

researchers could investigate systematic methods 2164

to measure the "intelligence" and "usability" of AI 2165

agents during medical interactions. 2166

Another overlooked aspect is cost and efficiency. 2167

In the general NLP domain, Scaling Test Time 2168

Compute (TTC) has become a crucial factor in as- 2169

sessing system performance improvements (Snell 2170

et al., 2024). However, in AI hospital research, lit- 2171

tle attention has been given to how computational 2172

resource consumption impacts the practical value 2173

of a system (Fan et al., 2024; Smit et al., 2023). 2174

Many AI hospital designs (e.g., Iterative Problem 2175

Optimization or Multi-Round Interactive Debate) 2176

achieve superior performance partially due to in- 2177

creased inference computational power rather than 2178

genuine intelligent collaboration. Therefore, future 2179

evaluation frameworks should consider how to stan- 2180

dardize the cost of AI agents and establish reason- 2181

able value metrics. For example, an agent’s compu- 2182

tational resource demands, inference time, and per- 2183

formance gains could be factored into a weighted 2184

cost model to analyze the trade-offs between ef- 2185

ficiency, cost, and performance across different 2186

strategies. Furthermore, in medical tasks, how dif- 2187

ferent agents (e.g., expert-level AI vs. smaller-scale 2188

medical AI) collaborate to minimize costs—such 2189

as reducing reliance on high-cost models—remains 2190

an open question. One potential direction of explo- 2191

ration may be to simulate expert-medical student 2192

task delegation and collaboration. Here, experts 2193

are often more expensive in real-world tasks (such 2194

as medical annotation and evaluation), so strong 2195

LLMs that require more computational cost can 2196

be used, while corresponding medical students can 2197

use LLMs with weaker capabilities but more cost- 2198

effective. It is an interesting topic to study how 2199

to maintain high-quality results in tasks such as 2200

medical annotation and evaluation while reducing 2201
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the reliance on strong LLMs (i.e., reducing the2202

computational cost of the entire system).2203

Additionally, most AI hospital research pre-2204

dominantly relies on general-purpose LLMs2205

such as GPT-4 (Achiam et al., 2023) and2206

LLaMA (Dubey et al., 2024), with limited ex-2207

ploration of medical-specific LLMs like Doctor-2208

GLM (Xiong et al., 2023), HuatuoGPT (Chen2209

et al., 2023a), BianQue (Chen et al., 2023c), Bi-2210

oLLaMA (Tran et al., 2023), BioMistral (Labrak2211

et al., 2024), and Baichuan-M1 (Wang et al., 2025).2212

Some studies, such as MedQA-CS (Yao et al.,2213

2024b), have noted that while medical LLMs2214

achieve higher exam scores, they often lose emer-2215

gent abilities—which are crucial for agentic be-2216

havior in AI hospital settings. As a result, many2217

approaches merely use these medical models as2218

"tools" (Frisoni et al., 2024) rather than active2219

agents. Future work should focus on preserving2220

these agentic capabilities in medical LLMs, given2221

their clear advantage in medical knowledge. More-2222

over, this challenge aligns with the previously men-2223

tioned evaluation metric deficiencies—new bench-2224

marks beyond medical exams must be developed2225

to assess these models comprehensively. Without2226

such advancements, it will be difficult to ensure2227

simultaneous progress in both medical knowledge2228

and real-world medical problem-solving capabili-2229

ties.2230

Synthesizing Data for Training Efficiently synthe-2231

sizing high-quality data for training in AI hospital2232

systems remains a core challenge. Although ex-2233

isting studies, such as DeepSeek-r1 (DeepSeek-AI2234

et al., 2025), have demonstrated that models can2235

continuously improve through reinforcement learn-2236

ing (RL) (Jayaraman et al., 2024) in specific envi-2237

ronments without supervised data, AI hospitals, as2238

complex medical environments, have not yet been2239

fully utilized as RL environments to support the2240

training of medical LLMs and intelligent agents2241

while providing high-quality synthetic data. In tra-2242

ditional RL frameworks, agents optimize their poli-2243

cies by interacting with the environment and receiv-2244

ing reward signals. However, in medical scenar-2245

ios, the scarcity of real-world data and ethical con-2246

straints pose challenges in designing appropriate2247

environments and reward mechanisms. AI hospi-2248

tals offer a controlled simulation environment that2249

can construct different types of feedback signals2250

based on patient simulations, physician decision-2251

making processes, and the success rate of medi-2252

cal tasks (Li et al., 2024b; Ouyang et al., 2022;2253

Rafailov et al., 2023; Yao et al., 2023; Mishra et al., 2254

2024). For example, the AI hospital can simu- 2255

late different patient recovery processes in train- 2256

ing a postoperative care assistant. The agent’s 2257

decisions—such as adjusting care plans, recom- 2258

mending follow-ups, or modifying medication reg- 2259

imens—can receive rewards based on changes in 2260

the patient’s virtual health status. If the agent’s 2261

decision accelerates patient recovery (e.g., an im- 2262

provement in the virtual patient’s health score), it 2263

receives a positive reward; if it leads to adverse 2264

events (e.g., a decline in the health score or the 2265

occurrence of complications), it receives a negative 2266

reward. This interactive feedback mechanism not 2267

only reduces reliance on manually labeled datasets 2268

but also enables agents to learn optimal medical 2269

decision-making strategies through trial and error. 2270

However, ensuring that AI hospitals generate 2271

sufficiently diverse and fair data remains a criti- 2272

cal challenge. Current synthetic data mechanisms 2273

primarily rely on manually designed rules, mak- 2274

ing it difficult to accurately reflect the complex- 2275

ity of real-world medical scenarios (Giuffré and 2276

Shung, 2023). For instance, existing datasets often 2277

lack simulations of postoperative care and other 2278

longitudinal medical tasks, as well as sufficiently 2279

rich medical annotations, limiting the adaptability 2280

and generalization capabilities of intelligent agents. 2281

Additionally, with the introduction of self-training 2282

techniques, if agents are continuously trained on 2283

self-generated data, the homogenization of data dis- 2284

tribution could lead to mode collapse or extreme 2285

biases, ultimately degrading model performance in 2286

real-world applications (Arora et al., 2023). There- 2287

fore, future research should focus on developing 2288

more dynamic data synthesis mechanisms, leverag- 2289

ing multi-agent collaboration to generate data that 2290

better reflects real-world medical scenarios. Addi- 2291

tionally, integrating multimodal information—such 2292

as text, images, and speech—can enhance the ex- 2293

pressiveness of these datasets (Acosta et al., 2022). 2294

Simultaneously, robust data evaluation and bias de- 2295

tection mechanisms must be established to ensure 2296

that synthetic data not only improves agent capa- 2297

bilities but also avoids reinforcing existing errors, 2298

safeguarding fairness and reliability (Ueda et al., 2299

2023; Schmidgall et al., 2024a). 2300
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