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Abstract

Robots in real-world settings are commonly
expected to complete complex temporal
tasks—goals that have explicit order depen-
dencies. Because such goals are difficult to
specify mathematically, we explore how humans
with intuitive task understanding can provide
meaningful feedback on observed robot behavior.
This work focuses on inferring the structure of a
temporal task from pairwise human preferences
and using it to guide reinforcement learning
toward behavior aligned with human intent. Our
method leverages limited feedback to construct
a weighted finite automaton (WFA) that tracks
task progress and shapes the learning process.
We validate the approach in a Minigrid case
study using real human feedback, showing that
it enables agents to learn temporally structured
tasks that would otherwise remain unlearned.

1. Introduction

Robots deployed in real-world settings are increasingly ex-
pected to accomplish complex temporal tasks—goals that
unfold over time rather than being specified as static, one-
shot objective (Choudhury et al., 2022; Nunes & Gini, 2015).
Examples include navigating through a series of waypoints
while avoiding restricted zones, monitoring equipment at
regular intervals, or responding to events in a structured
sequence (e.g., "after picking up object A, deliver it before
returning to base”) (Kivrak et al., 2022). Encoding such
temporal behavior is crucial for enabling robust, high-level
autonomy (Muscettola et al., 1998).

A human with an intuitive understanding of the task at hand
(no math) can provide feedback on collected samples that
significantly help train the robot to accomplish difficult
goals (Mericli et al., 2011; Wang et al., 2020; Knox et al.,
2013). Crucially, this feedback need not come from an
expert in logic or programming. A domain expert or any
user with an intuitive understanding of the task can express
preferences between different robot behaviors (St. Clair &
Mataric, 2015; Otero et al., 2008). This kind of feedback

encodes rich information about the task, even if it is not ex-
pressed in formal symbols. Traditionally, one might attempt
to formalize these temporal tasks using Linear Temporal
Logic (LTL) (Kloetzer & Belta, 2008; Lindemann et al.,
2021). However, specifying correct and complete LTL for-
mulas is often challenging for human operators, especially
when they are not formally trained in logic (Barringer et al.,
2013). Furthermore, in many practical scenarios, the desired
behavior is not easily expressible as a strict logical formula:
it may involve preferences, exceptions, or soft constraints
that LTL does not easily capture. For these reasons, we
propose to use human preference feedback as a means of
teaching robots temporal behaviors in a more intuitive and
flexible way.

We investigate how to learn the underlying structure of a
temporal task from human preferences and use it to guide
reinforcement learning toward behaviors that align with
the human intent. In our framework, a human observes
pairs of robot trajectories and provides ordinal feedback
indicating which trajectory better aligns with the intended
temporal task. These preferences are then used to train an
agent to capture the underlying temporal pattern implicit
in the preferred trajectories. Preferences feedback is often
simple and robust—humans are generally better at saying
this is better than that” than at assigning absolute values or
writing down formal rules (Tajwar et al., 2024; Gao et al.,
2024; Chaudhari et al., 2024; Li et al., 2024). Furthermore,
our preference-based feedback differentiates this work from
many others which require feedback throughout the entire
trajectory (Kauffman, 2023).

The novelty of this work lies in a method for leveraging
human preference feedback to guide reinforcement learning
toward behaviors that align with temporal human intent,
along with a case study demonstrating its effectiveness us-
ing real human feedback. Given the assumption of limited
data, the method employs statistical inference to identify the
trajectory most likely to reflect human intent, rather than at-
tempting to learn a full model of human preferences. To cap-
ture the temporal structure of the task, the method augments
the agent’s state space to track significant events without
requiring storage of the entire trajectory. We validate this
approach through a case study in a Minigrid environment,
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where we show that—under identical hyperparameters—the
agent fails to learn the temporal task without our feedback-
guided framework (Chevalier-Boisvert et al., 2023).

The rest of the manuscript is organized as follows. Section
2 introduces preliminary notations needed to describe tran-
sition systems. We introduce the problem formulation in
Section 3. Section 4 describes how we can train an agent
to follow human intent culminating with Algorithm 1. A
case study with real human feedback is presented in Section
5 to demonstrate the effectiveness of our novel Algorithm.
Lastly, we conclude the work in Section 5

Related Works

RLHF has emerged as an effective tool in Al, with notable
success in fine-tuning large language models (LLMs) (Yao
et al., 2024; Vaswani et al., 2017). Beyond LLMs, RLHF
has also demonstrated promise in areas such as robotics,
where human feedback guides agents to perform complex
tasks more efficiently than reward engineering in isolation
(Yang et al., 2024; Mericli et al., 2011; Knox & Stone,
2010). In recommendation systems and content moderation,
RLHF techniques are being used to incorporate subjective
human judgments, improving personalization and fairness
(Stiennon et al., 2020). These success stories highlight
RLHF’s role in bringing raw model capabilities closer to
real-world human expectations.

There have been few developments to the best of our knowl-
edge that apply RLHF for temporal tasks. The important
developments made in (Loftin et al., 2016; Knox & Stone,
2011; Wirth et al., 2017) do provide effective ways of learn-
ing a reward function from human feedback; however, they
differ from our work in a few key ways. They presume
human feedback is provided over an entire path. This ap-
proach requires a human to carefully observe the entire
trajectory and provide feedback at each transition—such as
by pressing a “clicker” to indicate reward—which demands
significantly more attention and effort than our preference-
based feedback framework. From this style of feedback
much effort has gone into deriving a state-dependent reward
function. This assumes that the agent should receive the
same reward each time it enters a specific state. We focus
on temporal tasks where this does not hold true. The work
in (Wang & Atanasov, 2022) shares similarities with ours
in using a weighted finite automaton (WFA) to train agents
on temporal tasks. However, it differs in two key ways.
First, their approach relies on trajectories labeled with scalar
scores, whereas we use only pairwise preferences. Second,
they assume access to large amounts of labeled data to learn
an explicit model of the task, while our method is designed
to operate under limited human feedback. This distinction is
significant: our approach demonstrates that effective learn-
ing is possible with fewer trajectories and without requiring

numerical scores. Pairwise preferences not only reduce the
burden on human annotators but are also less prone to error
than scalar evaluations.

2. Preliminaries

In this section, we describe how we model the agent’s in-
teraction with its environment with a deterministic Markov
decision process (DMDP). The results of this work are easily
extendable to probabilistic models, and this is demonstrated
in Sections 4 and 5 . Let N denote the natural numbers and
R™ be the real-valued n-dimensional vector space. Let I,
denote the n-dimensional identity matrix and e; be the ith
standard basis vector.

Definition 2.1. A deterministic Markov decision process
(DMDP) is a tuple

M = (S,A,A,E,L,So,R)

where:

¢ S is a finite set of states,
¢ A is a finite set of actions,

e A: S x A — Sisadeterministic transition function
that maps a state and action to a successor state,

e Y is afinite set of events with the empty word € € X,

e L:S — Xisalabeling function that assigns to each
state and event that is true in that state,

e R:S x A— Risareward function,

¢ 59 € S is the initial state.

Let M = (S, A, A, %, L, so, R) be a deterministic DMDP.
A finite trajectory of length n is a sequence of state-action
pairs 7 = ((s0,a0), (51,a1), -+, (Sn,an)) € (S x A)"+L,
where for eachi = 0,1,...,n,s; € S, a; € A, and for
i < n, the transition satisfies s;11 = A(s;, a;). A policy
is a function 7 : S — A that maps each state s € S to an
action a € A. The trajectory of length n induced by a policy
mis T = ((80,a0), (51,a1), -+, (Sn,an)) € (S x A)"HL,
such that for each ¢« = 0,1,...,n — 1, the next state is
given by s;11 = A(s;, m(s;)). With a slight abuse of nota-
tion, we extend the labeling function and reward function
from individual states to full trajectories. We extend the
labeling function using the Kleene Star * with L(r) =
L(s9)L(s1)...L(sy) € X* and refer to such a sequence of
events as o (Cassandras & Lafortune, 2008). Similarly,
for any, trajectory 7 = ((so, ao), (s1,a1), .-, (Sn,an)) we
extend the reward function as

R(r) = ZR(Siaai)- (1
i=0
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The empty event e has no effect on a sequence of events.
The empty event is very important in practice because most
states are not associated with a significant event that the
human should be expected to monitor. To illustrate the role
of e we will provide a trajectory example.

Example 1. Let M be a DMDP and T =
((s0,a0), (s1,a1)) is a trajectory in M with L(sy) = o9
and L(sg) = e. Then L(t) = L(s9)L(s1) which after
applying the labeling function becomes L(T) = oge = 09
where the last equality holds because € has no effect on
the event sequence. The empty event is very important
in practice because most states are not associated with
a significant event that the human should be expected to
monitor.

3. Problem Formulation

Our goal is to learn a policy that completes a temporal task
as inferred from human preference feedback. A human
trainer, with intuitive knowledge of the task, observes pairs
of trajectories and identifies which trajectory in each pair
better fulfills the temporal objective. The likelihood of incor-
rect labeling is assumed to be inversely proportional to the
difference in scores between the two trajectories. A higher
score implies the path does a better job of accomplishing the
unknown temporal task. Given a collection of such ordered
preference pairs, our aim is to synthesize a policy that best
reflects the preferences demonstrated by the human

This problem presents a significant challenge because
human preferences are both unknown and trajectory-
dependent, which prevents the use of a memoryless op-
timal policy. If a quantitative model of these preferences
were known in advance, the optimal policy 7™* could be
computed efficiently using techniques such as shortest-path
algorithms (e.g., Dijkstra’s algorithm) (Shu-Xi, 2012; Gallo
& Pallottino, 1988). However, human intent is often com-
plex and difficult to model explicitly. Unlike traditional
reward functions, which are typically defined over individ-
ual state-action pairs, human preferences depend on the
entire trajectory 7, making them unsuitable for local eval-
uation or optimization. As a result, purely state-dependent
policies are insufficient, as they cannot track which task-
relevant events have occurred. Although memory-based
policies could theoretically resolve this by storing the full
trajectory, they quickly become computationally intractable,
especially in probabilistic environments (Sutton & Barto,
2018). Furthermore, because human feedback is expensive
to obtain, we do not assume that the dataset D is large
enough to support full preference model learning.

Consider the human observes a series of trajectories through
M and provides a dataset:

D={(o}.07)},

where 0 = L(7) denotes the sequence of events or word
associated with the trajectory 7 through a DMDP M. Each
pair indicates that the o is preferred over o; by the hu-
man, meaning it better satisfies the underlying (and un-
known) temporal task. We assume the human observer has
an intuitive understanding of the temporal task, enabling
the provision of useful preference based feedback. We also
assume the human only focuses on the sequence of events
associated with 7 rather than the entire trajectory itself. This
reduces the workload on the human. Furthermore, subtle
differences in trajectory are difficult for a human to discern
and may distract the human from focusing on the more
important event sequences.

We use the Bradley-Terry (BT) probabilistic model to ac-
count for human labeling errors. It is reasonable to assume
that a human is more likely to “mislabel” a pair if the two
paths receive similar levels of approval from the human
with regards to the temporal task. This intuitive concept is
precisely provided with the BT probabilistic model. The BT
model defines the probability that o is preferred to o~ as

exp(f(o™))
exp(f(o+)) +exp(f(o7))

where f : ¥* — R is an unknown ”scoring” function
and > denotes preference. The BT model has shown to
be very effective in modeling randomness with ordered
pairs obtained from interactions (Matthews & Morris, 1995;
Cattelan et al., 2013).

Plot =07) = )

Our formal objective is to recover a policy that aligns with
the temporal preferences encoded in D. This leads to the
optimization problem:

max arg max f(L(Tﬂ—)) + R(Tﬂ—) (3)

where R is the reward function for the DMDP M associated
with the environment.

In Equation (3), the term f(L(7,)) represents the reward
associated with aligning the agent’s behavior with human-
specified temporal intent, while R(7,) captures the reward
for efficient interaction with the environment. These two
components are treated separately for both practical and
conceptual reasons. First, human feedback is often sparse
and coarse, making it unrealistic to expect detailed feed-
back on low-level motion or step-by-step decisions. Instead,
humans typically express preferences over high-level tem-
poral patterns—such as completing subtasks in the correct
order—which is modeled by f(L(7,)), where L(7,) is the
sequence of labels induced by the policy 7. Second, we
assume that R is a known, environment-defined reward
function that encourages efficient behavior, such as mini-
mizing time or energy. For example, f(L(7,)) might reward
executing tasks in the correct order (e.g., picking up a key
before opening a door), while R(7,) rewards completing
this task in the fewest possible steps.
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4. Learning a Policy from Human Preferences

To compute a policy that aligns with human feedback, we
augment the environment’s state space to track task-relevant
events observed by the agent. This begins by identifying the
event sequence that best reflects the temporal objective en-
coded in the preference dataset D (see Section 4.1) since no
model is available for the human preferences. We use this
sequence to construct a weighted finite automaton (WFA)
that assigns real-valued scores to trajectories based on how
closely their induced event sequences match the inferred
human intent in Section 4.2. Augmenting the WFA with the
transition space allows an agent to accomplish goals with
a memoryless policy that otherwise would have required a
memory-dependent policy. This construction enables effi-
cient event tracking and supports direct computation of the
optimal policy via shortest-path algorithms in the determin-
istic case in Section 4.3. These results are extended to the
probabilistic case in Section 4.4 where the WFA not only
augments the state space, but also provides a state-dependent
reward function leading to a memoryless policy.

4.1. Statistical Inference of Temporal Human Intent

We use statistical inference to identify the sequence of events
o™ that best aligns with human preferences by maximizing
the objective in Equation (3). Since human feedback is
costly and limited, we do not attempt to learn the full scoring
function f. Furthermore, we do not assume f is of any
specific form. Thus, we instead focus on extracting the
most preferred event sequence as a surrogate for human
intent. The agent is then rewarded based on how closely
its behavior matches this inferred sequence c™**, thereby
guiding learning without requiring full recovery of f.

To identify the highest-scoring event sequence from hu-
man preference data, we perform maximum likelihood
estimation (MLE) using the Bradley-Terry (BT) proba-
bilistic model. Given a dataset of pairwise preferences
D = {(0;",0; )}, where each pair indicates that event
sequence cr;" is preferred over o, , the likelihood of the
dataset under the BT model is given by:

N ex O'Ti_

i exp(f(of) +exp(f(o7))

As shown in (Glickman, 2013) the following iterative up-
date can be used to compute the event sequence scores that
maximize the log-likelihood in (4):

> Wij
> (wij +wj) /(ei + efi)

fi = log( )- %)

where f; is the score assigned to event sequence o;, and w;;
denotes the number of times ¢; was preferred over o in

the dataset. In practice, we solve for the scores f; and the
highest scoring event sequence using the implementation
provided in the Choix Python package (Maystre, 2022).
This result is formalized with the following Lemma.

Lemma 4.1. Let F = {01,...,05} be a finite set of event
sequences, and let D = {(o;f,07)}N, C F x Fbea
dataset of pairwise preferences, where each ordered pair
(07,07 indicates that sequence o is preferred over o; .
We assume the following:

e Foralli € {1,...,N}, it holds that o;" ,o; € F,

 Forall o € F, there exists at least one i € {1,...,N}
such that o = o

, oro =o;.

That is, the dataset D is defined over elements of F, and
every element of F appears in at least one preference
pair. Suppose the preferences are modeled according to
the Bradley-Terry (BT) probabilistic model with (2).

The maximum likelihood estimates { ﬁ ﬁvil, where f F =
R is the inferred scoring function and f; = f (04), can be
computed by maximizing the log-likelihood defined in Equa-
tion (4). These estimates are obtained using the following
iterative fixed-point update (Glickman, 2013):

f¢+1 = log ( Zj Wij ; _ >
Z >, (wij +wji)/(eF + ef7)

(6)

where w;; denotes the number of times event sequence o;
was preferred over o; in D. The update converges to a
local maximum of the log-likelihood under mild regularity
conditions (Bong & Rinaldo, 2022; Hunter, 2004). We
define the highest-scoring event sequence in the maximum
likelihood sense as the element of F with the greatest score
under the inferred function f That is,

max £

= 7

o arg max f(o), (7

where f : F — R is the scoring function estimated from
the dataset D using the Bradley-Terry model.

We use Lemma 4.1 to obtain a ranking system for the event
sequences recorded in D that aligns with the human in-
tent while simultaneously accounting for mislabels. The
estimate function f is only used to obtain the ranking sys-
tem. Unlike learning the full scoring function f, obtaining
a preference-consistent ranking requires significantly less
data (Braga-Neto, 2024), making it more practical in set-
tings where human feedback is limited. Because the model
maximizes the likelihood of observed preferences, it natu-
rally handles mislabels. For instance, if the pair (o4, o) is
presented ten times and the human selects o, nine out of
ten times, the model will still assign a higher score to o,
reflecting the overall trend in the feedback.
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4.2. Temporal Task Tracking via Weighted Finite
Automata

We derive a mechanism from the event sequence o™ in the
form of a Weighted Finite Automaton (WFA) to guide the
reinforcement learning process. This WFA enables the agent
to accomplish temporal tasks that are dependent on the entire
trajectory rather than each state-action pair in isolation. The
WFA guides training by acting as a “flow chart”. More
precisely, it augments the state space with temporal progress,
enabling the agent to track task completion independently of
the DMDP state. It also supports structured reward shaping
by assigning intermediate rewards or penalties based on how
well the agent follows the target temporal sequence o™
for probabilistic systems. A formal definition of a WFA is
given below.

Definition 4.2. We define a weighted finite automaton
(WFA) as
A= (to,{To}oex, tr)

where:

e to € R" is the initial weight vector,
* ty € R" is the final weight vector,

e For each event 0 € X, T, € R™ " is a transition
weight matrix.

Given a finite word or event sequence 0 = 0103 ...0% €
>>*, the WFA defines a real-valued function:

fa(0) =to Ty Ty, - Ty ts.

This score f4(0) € R represents how well the sequence
o aligns with a temporal pattern and we colloquially re-
fer to it as the score of a word. This scoring function is
used later used to shape both the reward function and state
augmentation in the RL framework.

We will use 0™ to create a specific WFA A™** such that
its associated scoring function f4m« Wwill increase as the
trajectory follows o™ and decrease if the agent’s trajectory
deviates from o™**. The scoring function f gmx achieves this
by applying a linear transformation to the current score at
each step, where the transformation depends on the most re-
cently observed event in 2. If the event aligns with the next
expected event in 0™, the event sequence’s score increases.
Otherwise, the score decreases, thereby discouraging diver-
gence from the target sequence. Finally, this form of WFA
provides a more expressive representation than classical au-
tomata, which only indicate binary acceptance or rejection.
In contrast, the WFA assigns a real-valued score that quanti-
fies how closely a given sequence aligns with the preferred
sequence o™ inferred from human behavior (Khoussainov
& Nerode, 2012).

Definition 4.3. Let 0™ = g™ o™ ...00® € ¥™ be a
finite word of length n, and define a function N : ¥ — oN
such that:

N(o)={i|iec{0,1,...,n—1}, 0™ =o}.

This function records the indices at which each event o €
appears in the sequence ™. We say that a Weighted Finite
Automaton A = (to,{Ts}oex, ty) accepts o™ if the
following conditions are satisfied:

e tg = e; € R", the first standard basis vector,
s ty=1[1,1,...,1]T e R",
e T, = I,, where ¢ is the empty word,

¢ For each o € ], the transition matrix is defined as:

T, = cl, + Z (peie 1 — cee] ),
i€EN (o)

e where p > 1 and 0 < ¢ < 1 are constants.

Here, n is the length of 0™, and e; € R™ denotes the ¢-th
standard basis vector. We refer to p as the progress factor
and c as the stationary factor.

The scoring capabilities of A™** that accepts o™ will now
be demonstrated with an example. Observe that f gmx is not
meant to model the unknown scoring function f entirely,
but rather just its inferred maximum o™

Example 2. Consider the the scenario where 0™ = (pickup
box = oy, open door = 01). The WFA, A™™, that accepts
o™ is as follows.

1
to=[1 0 0],t;=|1
1
0 125 0 075 0 0
Ty, =10 075 0 |, T,,=| 0 0 125
0 0 07 0 0 075

where p = 1.25 is a hyperparemeter used to reward forward
progress through the temporal objective and c = 0.75 is a
hyperparemeter that penalizes events that are not aligned
with the temporal objective. Observe that the score of the
highest scoring word is 0™ and f 4(0go1) = 1.5625 which
is greater than zero. On the contrary for a less desired word
000001 we have that fa(ooooo1) =1.17 which is less than

fa(o™™).

Lastly, we conclude with a Lemma summarizing how a
WFA that accepts a word 0™ is maximized at c™*. This
Lemma is significant because it proves that if the agent
maximizes fm then it will also follow o™*.
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Lemma 4.4. Let X be an alphabet, 0™ € ©* and A™
be a WFA that accepts 0. Then f gmax(0™™) = p™ where
n is the length of ¢ and p is the progress factor. Fur-
thermore, for all o € X* for which ¢ # o we have that

Foas (075 > fams(0).

Proof. Let X, 0™, and A™** be as defined above. Proving
famx (c™**) = p" falls immediately from induction. Show-
ing famx(o™*) > famx(0) is also trivial. We can demon-
strate that if an event occurs that does not follow ¢™** then
the score will be multiplied by the stationary factor ¢, which
is less than one. O]

4.3. WFA Guided Policy for Deterministic Systems

We will now present how the WFA that accepts o™ can

provide us with a closed form solution for an optimal policy
by replacing the unknown scoring function with the WFA in
(3) from Section 3. Specifically, we reformulate the original
unconstrained optimization problem into a constrained one,
where the policy must generate a trajectory whose induced
event sequence follows o™**. By constructing the product
of the WFA and the DMDP, we can apply a shortest-path
algorithm to compute a trajectory that both satisfies the
temporal structure inferred from human preferences and
maximizes the known state-dependent reward function.

The product between a WFA and DMDP that tracks the
agent’s progress through the temporal task described with
o™ will now be defined

Definition 4.5. Let M = (S, A, A, X, L, sg) be a DMDP,
and let
A= (t07 {TU}UEEa tf)

be a Weighted Finite Automaton (WFA) with to € R",
ty € R", and transition matrices T, € R"*" for each
oEX.

The product DMDP M x A is defined as:
M =(8,A,A,%, L, (50, t0))

where:

¢ § =5 x R"” is the product state space,

« A: S x A— S is the transition function defined by:

T((s,t),a) = (s, 1),
where 5" = A(s,a) and t' = T (4t,

 L((s,t)) = L(s) extends the labeling function to the
product state.

This augmented space tracks both the environment state and
the automaton’s internal state, allowing the agent to reason

about its progress through c™** The resulting product MDP
enables reward shaping and policy learning to account for
temporal structure. The WFA state has no direct way of
affecting the original state dynamics. It only affects the
policy. Example 3 provides a graphical representation of

how the product space tracks the agent’s progress relative to
o.max.

We will now provide an example that is an extension of
Example 2 to demonstrate how the reward function guides
the policy to follow o™#*.

Example 3. Continuing from Example 2 with o™ =
(pickup box = oy, open door = o1). We provide the graphi-
cal representation of the WFA in Figure I to illustrate how
the WFA state can easily account for which events have been
recorded in the trajectory. The "up” arrows at a transition
indicate a positive reward while the ”down” arrows indi-
cate a negative reward. If no events have occurred then
the WFA portion of the product transition state t1will be
e1. As the agent follows o™ the WFA state transitions from
t; =[0,1.25,0] and t3 = [0,0,1.5625]. Thus, as t evolves
along the trajectory the agent knows where along o™ it is.

max

Figure 1. Graphical representation of WFA that accepts ¢ =
ooo1. The "up” arrows at a transition indicate a positive reward
while the "down” arrows indicate a negative reward. Thus reward-
ing the agent if it follows o™,

A lemma will now be introduced to show a closed-form
solution for obtaining a policy that follows c™** while max-
imizing the known reward function discussed in Section
3.

Lemma 4.6. Let M be a DMDP, D = { (o}, Ui_)}ilil bea
set of preferences, where each o is a sequence of events, and
o™ s the preferred sequence derived from (5). Let A" be
the WFA that accepts ™. Then the policy that maximizes

the reward function defined with M while following o™ is

7" = arg max R(7;) such that fam(L(77)) = p" (8)

where p is the progress factor in A™ and n is the number of
events in o™, This equation is solved through any shortest
path algorithm.

Although Lemma 4.6 applies only to deterministic
DMDPs—which may not fully capture the uncertainty
present in real-world environments—the same underlying
principles can be extended to the probabilistic case. In
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particular, we continue to use a weighted finite automaton
(WFA) to track the agent’s progress in following the pre-
ferred event sequence, enabling temporal structure to inform
policy learning even when transitions are uncertain.

4.4. WFA augmented RL Training

A WFA that accepts the highest scoring recording word
can help guide the reinforcement learning process towards
a policy that aligns with the human preferences. The ac-
cepting WFA influences training in two key ways. First,
it extends the state space to include the automaton state,
which tracks the agent’s progress through the temporal task
described with ™. This addition makes the policy more
robust to reward hacking, as the WFA state changes in re-
sponse to task-relevant events—even when the underlying
DMDP state does not. In this sense, the WFA acts as a
“temporal counter,” recording which parts of the task have
been completed. Second, the WFA enables the design of
structured reward signals by assigning intermediate rewards
or penalties based on the agent’s advancement through the
temporal pattern encoded by o™,

The scoring function fmx, derived from the WFA, pro-
vides a reward mechanism that promotes forward progress
through the target sequence o™, while penalizing devia-
tions. This reward function serves as a heuristic that operates
independently of the DMDP state. Importantly, this inde-
pendence makes the reward robust to reward hacking, as
the agent cannot exploit repeated DMDP states to consis-
tently receive the same reward—rewards are instead tied to
progress through the temporal task (Sutton & Barto, 2018).
Specifically, the agent is rewarded or penalized based on
whether the score f 4mx increases or decreases after incorpo-
rating a new event. The reward function only needs to track
the current automaton state ¢; and the previous one t;_1,
making it independent of the entire sequence of events. We
will define it below

Definition 4.7. Lett;_;,t; € R™ be the previous and cur-
rent WFA state vectors, and let £ € R™ be the final weight
vector of the WFA. Let R be a reward function from a prob-
abilistic MDP. The reward function at time step ¢ is defined
as:

rp + R(Sl) if (ti — tifl)—rtf >0

R(si, ti) = i
(si, ti) {—TC+R(Si) if (¢ —tio1) 'ty <0,

where:

* 1, > 0: reward for making forward progress through
the WFA,

* r. > 0: penalty for regressing from the temporal ob-
jective.

We conclude this section by presenting an algorithm that
summarizes our method for both DMDP and MDP. Once
the reward function is obtained with Definition (1) we can
employ any reinforcement learning algorithm of our choice
since the reward is purely state dependent (Sutton & Barto,
2018).

Algorithm 1 Temporal Preferences to Policy (TP2P)
I: Input: MDP M, and preference set D =
+ N .
{(o;",0;,)},_,, where each o is a sequence of events

2: Output: A memoryless optimal policy 7™

3: Obtain c™** through statistical inference using iterative
updates of Equation (5)

4: Construct a weighted finite automaton that accepts o™,
denoted A™*, and define the corresponding scoring
function f gmax

5: if M is deterministic then

6:  Build product DMDP between M and A™*: M =

(S, 4, A,%, L, (50, to))

7: Compute 7™ = arg max, [famx(7x) + R(7r)] us-

ing a shortest-path solver

8: else
9:  Build product system between the probabilistic MDP
M and f _Amax
10:  Use A™* to define the reward function R 4mx from
Definition 4.7

11:  Procure 7™ from any reinforcement learning al-
gorithm on the product space with reward Ryroq =
Rgmx + R

12: end if

S. Minigrid Case Study
5.1. Simulation Setup

Our TP2P Algorithm was implemented on a temporal task
using the Minigrid library in Python to demonstrate the
effectiveness of our algorithm with real human feedback.
An agent was trained on a POMDP gridworld designed to
simulate a warehouse environment in which the following
sequence of events was to be followed: locate and pickup a
key, use said key to unlock and open a door, pass through the
door and close it once on the other side, drop the key, and
finally locate and pickup a box. The agent can move forward,
turn left or right, pickup and drop objects, and interact with
certain objects (in this case being able to unlock/open and
close doors). First, a human observer with knowledge of
the temporal goal reviewed a series of trajectory pairs and
indicated a preference for one trajectory in each pair. Next,
the accepting WFA of the temporal task, A™* is obtained
via TP2P (Algorithm 1). A graphical representation of A™*
is provided in 3. Then, this WFA is augmented with the
environment state space to provide intermediary rewards
for moving through the WFA. Lastly, a policy is procured
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Figure 2. The gridworld on which the agent was trained. Shown
are example rollout trajectories presented to the user to obtain
ordinal feedback.

through proximal policy optimization (PPO) (Schulman
etal., 2017).

not pickup(key) not open(door)

0 e WG

0 1
U pickup(key) U open(door)

pickup(box)

any() not pickup(box)

not drop(key)

drop(key)

close(door)

not close(door)

Figure 3. The WFA learned from human feedback on the rollout
trajectories.

5.2. Results

It was found that when using PPO the WFA augmented
POMDP converged to a steady-state average return of
slightly over 1.00 per episode while the baseline using only
the diminishing temporal reward failed to converge in the
same time frame. Human feedback was provided on 15
different trajectory pairs and required a total of 5 minutes
and 10 seconds of human feedback to watch the 15 pairs.
The training scheme used 1, 000, 000 frames on Minigrid
with four parallel environments. The entire end-to-end algo-
rithm took 7 minutes to run on a 12th Gen Intel(R) Core(TM)
15-12500 processor with 32 GB of RAM. It was found that
without a pseudo-memory policy as allowed by the WFA
the agent was unable to converge to a successful policy in
the time allotted with all other hyperparameters being equal.
However, with the WFA convergence was rapid — occurring
in less than 800, 000 frames on average.

—— PPO + WFA
— PPO

Reward per Episode
5
8

0.0 0.2 0.4 0.6 0.8 1.0
Time x 108

Figure 4. Average reward per episode over time for both the PPO
and PPO + WFA schemes.

6. Conclusion

This work presents a method for leveraging pairwise human
preferences to guide reinforcement learning in temporally
structured tasks. By inferring a preferred event sequence
and encoding it as a weighted finite automaton, we enable
agents to track task progress and align their behavior with
human intent using limited feedback. Our case study in
a Minigrid environment demonstrates the effectiveness of
this approach, showing that it enables successful learning of
temporal tasks that would otherwise remain unlearned.
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