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Abstract

Low-rank adaptation (LoRA) and its mixture-001
of-experts (MOE) variants are highly effective002
parameter-efficient fine-tuning (PEFT) meth-003
ods. However, they introduce significant la-004
tency in multi-tenant settings due to the LoRA005
modules and MOE routers added to multiple006
linear modules in the Transformer layer. To ad-007
dress this issue, we propose the Efficient Mix-008
ture of Low-Rank Adaptation (EM-LoRA), a009
novel LoRA variant. EM-LoRA differs from010
previous MOE-style LoRA methods by con-011
sidering each LoRA module as an expert and012
employing a prompt-aware routing mechanism.013
This mechanism calculates expert routing re-014
sults once before generating the first new to-015
ken and reuses these results for subsequent to-016
kens, reducing latency. Extensive experiments017
and analysis on commonsense reasoning tasks,018
math reasoning tasks, and widely used LLM019
evaluation benchmarks demonstrate that EM-020
LoRA consistently outperforms strong PEFT021
baselines with comparable tunable parameter022
budgets. Additionally, EM-LoRA significantly023
reduces latency in multi-tenant settings com-024
pared to previous LoRA-based methods.1025

1 Introduction026

Large language models (LLMs) have been027

achieving state-of-the-art (SOTA) results not only028

in various natural language processing tasks (Qin029

et al., 2023; Zhu et al., 2023) but also in numerous030

challenging evaluation tasks (Huang et al., 2023;031

Li et al., 2023), such as question answering, rea-032

soning, math, safety, and instruction following. Al-033

though LLMs are evolving into general task solvers,034

fine-tuning remains essential for efficient LLM in-035

ference and for controlling the style of the gener-036

ated content (Xin et al., 2024; Ding et al., 2022).037

Full-parameter fine-tuning of such large models038

1Codes and fine-tuned models will be open-sourced to
facilitate future research.

is impractical due to the significant GPU mem- 039

ory and computational resources required. Con- 040

sequently, parameter-efficient fine-tuning (PEFT) 041

(Zhang et al., 2023b; Zhao et al., 2023) has gar- 042

nered considerable attention in the research com- 043

munity, as it typically involves tuning less than 044

1% of the LLMs’ parameters, thereby substantially 045

reducing computational costs. 046

Among many PEFT methods, the 047

reparameterization-based method low-rank 048

adaptation (LoRA) (Hu et al., 2021) is considered 049

one of the most effective methods for LLMs (Xu 050

et al., 2023; Ding et al., 2022; Xin et al., 2024). 051

Although LoRA is effective and can bring stable 052

performance with the original setting in Hu et al. 053

(2021), it still brings inconvenience under the 054

multi-tenant setting (Chen et al., 2023): it has to 055

add LoRA modules to multiple weights of the 056

Transformer layer and introducing significant 057

additional latency in every generation steps 058

under the multi-tenant setting. Recently, the 059

Mixture-of-Experts (MOE) style LoRA methods 060

(Chen et al., 2024; Yang et al., 2024; Liu et al., 061

2023; Dou et al., 2023; Gou et al., 2023) have 062

surged, further pushing the performance ceilings 063

of LoRA fine-tuning. However, they introduce 064

the calculation of MOE routers, further increasing 065

inference latency. Thus, it is essential to develop a 066

novel variant of the LoRA method that introduces 067

minimum latency during generation and still can 068

perform competitively in downstream tasks. 069

In this work, we propose a novel PEFT method 070

called Efficient Mixture of Low-Rank Adaptation 071

(EM-LoRA). Our EM-LoRA method differs from 072

the previous literature on MOE-style LoRA meth- 073

ods in the following two aspects. First, in EM- 074

LoRA, an entire LoRA module is considered a 075

LoRA expert, and the LoRA router is responsi- 076

ble for determining which LoRA expert to acti- 077

vate. Second, we propose the prompt-aware rout- 078

ing mechanism instead of calculating the expert 079
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Figure 1: Schematic illustration of our EM-LoRA method. Left: The architecture of a Transformer layer as in
LlaMA-2 (Touvron et al., 2023). There are seven linear modules and seven positions to add LoRA modules. Right:
Upon receiving an input prompt, the LoRA router before each Transformer layer will take the input prompt’s hidden
states as input features and go through a pooler, an activation function, and the MOE router network to determine
which LoRA module is activated (or used) (e.g., LoRA U in the figure). This routing decision is repeatedly used
when generating subsequent tokens.

routing results for every new token. Given an input080

prompt, the expert routing results are calculated081

once, right before the generation of the first new082

token. The subsequent generation steps will reuse083

the expert routing results. Under the prompt-aware084

routing mechanism, our LoRA router consists of085

a pooler operation, a learnable activation function086

(Molina et al., 2019), and a sparse MOE router.087

We conduct extensive experiments and analy-088

sis on various challenging tasks, including five089

commonsense reasoning tasks, two math reasoning090

tasks, and three widely used LLM evaluation bench-091

marks. Our method can consistently outperform092

strong PEFT baselines with comparable tunable pa-093

rameter budgets, especially the recent LoRA vari-094

ants. In addition, our EM-LoRA method has signif-095

icantly lower latency under the multi-tenant setting096

(Chen et al., 2023) than the previous LoRA-based097

methods with comparable tunable parameters.098

Our contributions are summarized as follows:099

• we propose a novel LoRA variant, EM-LoRA,100

which combines the MOE mechanism with101

LoRA in an efficient way.102

• In EM-LoRA, we treat each LoRA module as103

an expert.104

• We propose a prompt-aware routing mecha- 105

nism to avoid token-wise router calculations. 106

• We have conducted extensive experiments and 107

analysis showing that our EM-LoRA frame- 108

work is (a) practical and outperforms the base- 109

lines under comparable parameter budgets. (b) 110

efficient during inference for LLMs. 111

2 Related works 112

Due to limited length, we put more related works 113

in parameter-efficient fine-tuning to Appendix A. 114

2.1 The LoRA method and its variants 115

Since LoRA is the most popular PEFT method 116

in the era of large language models, many works 117

are devoted to improving upon LoRA. AdaLoRA 118

(Zhang et al., 2023a) looks into the parameter al- 119

location of LoRA modules. VERA (Kopiczko 120

et al., 2023) investigate whether one could freeze 121

the randomly initialized LoRA matrices and only 122

learn a set of scaling vectors. Recently, a series of 123

works has been looking into combining Mixture-of- 124

Experts (MoE) (Shazeer et al., 2017; Jacobs et al., 125

1991) and LoRA. LLaVA-MoLE (Chen et al., 2024) 126

effectively routes tokens to domain-specific LoRA 127

experts, mitigating data conflicts and achieving con- 128
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sistent performance gains over the original LoRA129

method. MOELoRA (Liu et al., 2023) proves that130

fine-tuning LoRA modules with a MOE router en-131

ables the LLMs to perform well in a multi-task132

learning setting. MoRAL (Yang et al., 2024) ad-133

dresses the challenge of adapting LLMs to new134

domains/tasks and enabling them to be efficient135

lifelong learners using the MOE techniques. Lo-136

RAMoE (Dou et al., 2023) integrates LoRAs using137

a router network to alleviate world knowledge for-138

getting after instruction tuning. MoCLE (Gou et al.,139

2023) proposes a MoE architecture to activate task-140

customized model parameters based on instruction141

clusters.142

Although performing well in fine-tuning, these143

methods introduce high additional latency since144

(a) these methods do not reduce the number of145

LoRA modules in the Transformer backbone. (b)146

the routers and LoRA modules must be called when147

generating each new token. Our EM-LoRA method148

addresses this efficiency issue by (a) only calling149

the LoRA routers when encoding the input prompt150

and before generating the first new token. (b) only151

activate one LoRA module per Transformer layer.152

3 Methods153

In this section, we first introduce the founda-154

tional concepts of LoRA and MoEs and then elabo-155

rate on the architectural design of EM-LoRA.156

3.1 Preliminaries157

Transformer model As depicted in Figure 1,158

each Transformer layer of a LLM such as LlaMA-2159

(Touvron et al., 2023) consists of a multi-head self-160

attention (MHA) sub-layer and a fully connected161

feed-forward (FFN) sub-layer. MHA contains four162

linear modules, which are the Query (Q), Key (K),163

Value (V), and Output (O) modules. FFN contains164

three linear modules: Gate (G), Up (U), and Down165

(D). For notation convenience, we will refer to166

the number of modules in a Transformer block as167

Nmod. Thus, in LlaMA-2, Nmod = 7.168

LoRA For any Transformer module m ∈169

{Q, K, V, O, G, U, D}, the LoRA method adds a170

pair of low-rank matrices to reparameterize its171

weights. Formally, the forward calculation of mod-172

ule m with LoRA is:173

x
′
= xWm + xWA

mWB
m + bm, (1)174

where Wm ∈ Rd1×d2 is the weight matrix of mod-175

ule m, bm is its bias term. WA
m ∈ Rd1×r and176

WB
m ∈ Rr×d2 are the low-rank matrices for the 177

LoRA module, and r ≪ min(d1, d2). r is the rank 178

of the two matrices and will also be referred to as 179

the rank of the LoRA module. 180

3.2 Motivation 181

As demonstrated later in Table 3, the existing 182

works on MOE style LoRA significantly slow down 183

the LLM backbone during inference, reducing to- 184

kens per second (tps) by around 20% 185

RQ1. Can we treat a LoRA module as an expert 186

so that each Transformer layer has only one LoRA 187

router and activate only one such expert per layer? 188

RQ2. Can the LoRA router be called once for an 189

input prompt? 190

3.3 Prompt-aware LoRA router 191

Trying to investigate RQ1 and RQ2, we now try 192

to propose the details of our EM-LoRA method. 193

The core of EM-LoRA is the prompt-aware rout- 194

ing mechanism. Under this mechanism, the LoRA 195

router takes the input prompt’s hidden states as in- 196

put and outputs the activated LoRA experts for the 197

current layer. Different from the previous works 198

(Chen et al., 2024; Yang et al., 2024; Liu et al., 199

2023; Dou et al., 2023; Gou et al., 2023), our work: 200

(a) only calculates the LoRA routers once when 201

the input prompt is fed through the Transformer 202

backbone for the first time and right before gener- 203

ating the first new token. The routers’ activation 204

decisions will be repeatedly used in the subsequent 205

generation steps. (b) determine the activated LoRA 206

experts at the Transformer’s layer level, selecting 207

which Transformer module is modified by its cor- 208

responding LoRA module. 209

As shown in Figure 1, to generate a response, the 210

input prompt has to go through the LLM backbone 211

to obtain the hidden representations. Denote the 212

hidden state of the input prompt with length np 213

right before Transformer layer l as Hl ∈ Rnp×d. 214

Then a pooling operation Pooler() aggregates the 215

semantic information in Hl and transforms it to 216

hl ∈ R1×d: 217

hl = Pooler(Hl). (2) 218

Here, according to (Zhu, 2021b,a), the Pooler op- 219

eration can be one of the following: (a) last-token 220

pooling, which is to use the vector representation 221

of the last token in the prompt as hl. This pooler is 222

widely used when decoder-based models perform 223

sentence classification tasks. (b) average pooling. 224
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(c) max pooling. (d) self-attention-based pooling,225

whose detail is introduced in Appendix D.226

Then, hl will go through an activation function227

g and then the LoRA router Rl right before layer228

l. Rl assigns the current input prompt to the most229

suitable LoRA expert. This router contains (a) a lin-230

ear layer that computes the probability of hl being231

routed to each LoRA expert LoRAm, (b) a softmax232

function to model a probability distribution over233

the LoRA experts, and finally, (c) a Top-k function234

that choose the top k > 0 experts with the highest235

probability masses. Formally,236

Rl(hl) = Top-k(Softmax(g(hl)W l
r)), (3)237

where W l
r ∈ Rd×Nmod is the router’s weight. The238

LoRA router dynamically selects the best k experts239

for each input prompt during inference. Note that240

the router is only called once before a new token241

is generated. The activated LoRA experts are used242

throughout the whole generation process.243

Following Fedus et al. (2022), we add a load244

balancing loss to the training loss function. Con-245

sider a training batch B with NB samples, let f l
i246

represent the proportion of prompts assigned to the247

i-th LoRA expert in layer l,248

f l
i =

1

NB

∑
x∈B

1{argmax
j

plj(x) = i}, (4)249

where plj is the probability of expert j, output by the250

router l. Let p̂li be the average of probability masses251

received by the i-th expert, p̂li =
1

NB

∑
x∈B pli(x).252

Then, the load balancing loss is given by:253

Llb = Nmod

Nmod∑
i=1

f l
i · p̂li. (5)254

The Llb loss term is added to the cross entropy loss255

with a coefficient λlb ≥ 0.256

3.4 Learned activation functions257

The previous PEFT literature usually set the ac-258

tivation functions in a PEFT module to be ReLU259

(Mahabadi et al., 2021; Pfeiffer et al., 2021; Liu260

et al., 2022b) and does not discuss whether this261

setting is optimal. In addition, the PEFT modules’262

activation functions in different Transformer layers263

are usually set to be identical. As will be presented264

later in Table 4, it is beneficial for LoRA routers of265

different depths to have different activation func-266

tions. Thus, how can we find an optimal setting267

for the LoRA routers’ activation functions? Ex- 268

haustive hyper-parameter search is time and GPU- 269

consuming. Thus, we are motivated to set the acti- 270

vation function to be learnable during training. 271

We resort to rational activation functions 272

(Molina et al., 2019), which are learnable and 273

can approximate common activation functions and 274

learn new ones. The rational activation function 275

R(x) of order m, n is defined as follows: 276

Ra(x) =

∑m
j=0 ajx

j

1 + ∥
∑n

i=1 bix
i∥
, (6) 277

where aj and bi are learnable parameters. The ra- 278

tional activation functions are successfully applied 279

in image classification (Molina et al., 2019) and 280

sequence modeling (Delfosse et al., 2021). 281

Inspired by the above literature, we propose 282

learning the activation functions in LoRA routers 283

via the rational activation functions when finetun- 284

ing a downstream task. Denote the set of parame- 285

ters in the learnable activations as Θ and the other 286

parameters in the LoRA routers and LoRA experts 287

as Ω. Following DARTS (Liu et al., 2019), we con- 288

sider Θ as architectural parameters and optimize 289

them along with Ω via bi-level optimization. Due to 290

limited length, we introduce bi-level optimization 291

in Appendix B. 292

4 Experiments 293

In this section, we conduct a series of exper- 294

iments and analysis to evaluate our EM-LoRA 295

method. 296

4.1 Datasets and evaluation metrics 297

We compare our approach to the baselines on a 298

collection of challenging tasks: (a) five benchmark 299

common-sense question-answering tasks, ARC-e 300

and ARC-c (Clark et al., 2018), OBQA (Mihaylov 301

et al., 2018), PIQA (Bisk et al., 2020), BoolQ 302

(Clark et al., 2019). (b) two math reasoning tasks, 303

AQuA (Ling et al., 2017) and GSM8k (Cobbe et al., 304

2021). We utilize the chain-of-thought (COT) ra- 305

tionales for these samples provided by Hu et al. 306

(2023) for training on these math tasks. All ratio- 307

nales are generated through zero-shot CoT (Wei 308

et al., 2022; Kojima et al., 2022) on GPT-3.52, but 309

without undergoing any error filtering. (c) MT- 310

Bench (Zheng et al., 2023), MMLU (Hendrycks 311

et al., 2020), and BBH (Suzgun et al., 2022). Since 312

2https://platform.openai.com/docs/models
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these tasks provide no training data, we utilize the313

Alpaca (Taori et al., 2023) dataset for instruction314

tuning. More detailed introduction, statistics, and315

evaluation metrics can be found in Appendix C.316

4.2 Baselines317

We compare our EM-LoRA framework with the318

current SOTA PEFT baseline methods.319

LoRA and its variants we consider the follow-320

ing LoRA variants as baselines: (a) the original321

LoRA (Hu et al., 2021); (b) AdaLoRA (Zhang322

et al., 2023a), which adaptively adjust the LoRA323

parameters among different Transformer modules.324

(c) MOELoRA (Liu et al., 2023), which consid-325

ers each LoRA module as a mixture of single-rank326

LoRA experts. (d) DoRA (Liu et al., 2024), one of327

the most recent variants of LoRA that decomposes328

the pre-trained weights into two components, mag-329

nitude, and direction, for fine-tuning, specifically330

employing LoRA for directional updates.331

Other PEFT methods We also consider the most332

recent PEFT methods: (a) Parallel-Adapter pro-333

posed by He et al. (2021); (b) Learned-Adapter334

(Zhang et al., 2023b). (c) P-tuning v2 (Liu et al.,335

2021). (d) IAPT (Zhu et al., 2024). (e) BitFit (Ben-336

Zaken et al., 2021). (f) (IA)3 (Liu et al., 2022a),337

which multiplies learnable vectors to the hidden338

states in different modules of the Transformer layer.339

(g) SSP (Hu et al., 2022), which is a representa-340

tive work on combining different PEFT methods,341

including LoRA and BitFit.342

The baselines are implemented using their343

open-sourced codes. We only adjust the hyper-344

parameters related to tunable parameter numbers to345

fairly compare the baseline methods and our EM-346

LoRA method. The hyper-parameter settings for347

the baselines are detailed in Appendix F.348

4.3 Experiment Settings349

Computing infrastures We run all our experi-350

ments on NVIDIA A40 (48GB) GPUs.351

Pretrained backbones The main experiments352

use the most recent open-sourced LLMs, LlaMA-2353

7B (Touvron et al., 2023) as the pretrained back-354

bone model. In the ablation studies, we will355

also use the recently released LlaMA-2 13B and356

Gemma 2B (Team et al., 2024).357

Prediction heads When fine-tuning LlaMA-2358

7B, we only consider the supervised fine-tuning359

(SFT) setting (Ouyang et al., 2022). After receiv-360

ing a prompt or instruction, all the predictions are361

generated using the language modeling head (LM362

head). No additional prediction heads are installed 363

to make categorical or numerical predictions. For 364

decoding during inference, we use beam search 365

with beam size 3. 366

Hyper-parameters for the EM-LoRA frame- 367

work In our experiments, unless otherwise spec- 368

ified, we set: (a) the rank of each LoRA expert is 369

set to r = 32. (b) k is set to 1. That is, each router 370

activates one expert. (c) the LoRA router adopts 371

the self-attention pooler. (d) the hyper-parameters 372

of the rational activation are m = 6, n = 5, and th 373

e learnable parameters aj and bi are initialized by 374

approximating the GeLU activation function. (e) 375

λlb is set to 1e-2. Under the above settings, our 376

EM-LoRA method will introduce 80.9M tunable 377

parameters and, at most, 16.4M activated PEFT pa- 378

rameters to the LlaMA-2 7B backbone. The hyper- 379

parameters for training are specified in Appendix 380

F. 381

Reproducibility We run each task under five 382

different random seeds and report the median per- 383

formance on the test set of each task. 384

Due to limited length, other experimental set- 385

tings for the baseline methods and the training pro- 386

cedure are in Appendix F. 387

4.4 Main results 388

Single-task setup. In this setup, We compare 389

EM-LoRA with baseline PEFT methods by em- 390

ploying these methods for fine-tuning a single task. 391

The experimental results on the five commonsense 392

reasoning tasks and two math reasoning tasks are 393

presented in Table 1. We present the number of tun- 394

able parameters in the second column and the aver- 395

age activated parameters in the third column. Table 396

1 reveals that our EM-LoRA method outperforms 397

the baseline methods across all seven tasks, with 398

comparable tunable parameters and much fewer 399

activated parameters. In particular, EM-LoRA out- 400

performs the previous SOTA LoRA style baselines 401

like AdaLoRA, DoRA, and MOELoRA with com- 402

parable parameters. These results demonstrate that 403

our method is good at downstream task adaptation 404

of large language models. 405

Multi-task setup. Table 6 of Appendix G 406

presents the results of LoRA, DoRA, MOELORA, 407

and EM-LoRA with LLaMA2-7B in multi-task 408

learning. In contrast to the single-task setup in 409

Table 1, during multi-task learning, we mixed train- 410

ing data from ARC, BoolQ, OBQA, and PIQA 411

to train the model, followed by separate evalua- 412
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Method
Tunable Activated ARC-e ARC-c BoolQ OBQA PIQA AQuA GSM8k

Avg.
Params Params (acc) (acc) (acc) (acc) (acc) (acc) (acc)

Baselines
Parallel-Adapter 83.9M 83.9M 67.1 54.2 65.2 76.3 69.8 15.6 26.4 53.5
Learned-Adapter 81.8M 81.8M 69.3 54.4 64.9 78.4 75.6 18.3 28.9 55.7

P-tuning v2 84.5M 84.5M 63.5 51.3 61.2 76.1 66.2 9.63 21.1 49.9
IAPT 83.9M 83.9M 66.3 54.7 67.8 79.2 77.3 13.6 25.8 55.0
BitFit 87.0M 87.0M 65.9 54.1 66.4 77.2 76.6 11.8 21.7 53.4
(IA)3 78.6M 78.6M 68.1 54.6 67.2 78.1 75.4 13.2 23.4 54.3
SSP 80.6M 80.6M 71.6 57.6 69.6 79.5 79.7 15.9 31.8 58.0

LoRA 80.0M 80.0M 73.4 57.2 68.8 80.1 81.4 16.6 31.1 58.4
AdaLoRA 80.0M 80.0M 73.8 57.9 69.2 80.4 82.1 17.6 31.7 59.0

MOELoRA 87.3M 17.3M 76.8 60.2 71.4 81.1 82.4 18.3 32.3 60.4
DoRA 80.0M 80.0M 76.5 59.8 71.7 80.6 82.7 17.9 32.6 60.3

Our proposed methods
EM-LoRA (ours) 80.9M 12.1M 77.8 61.2 72.6 81.7 83.2 19.9 33.9 61.5
EM-DoRA (ours) 80.9M 12.6M 77.5 61.3 72.7 81.3 83.0 19.3 34.1 61.3

Table 1: The Overall comparison of different PEFT methods for single-task learning. The backbone model is
LlaMA-2 7B. We report the median accuracy over five random seeds. Bold and Underline indicate the best and the
second-best results.

tions to investigate the generalization ability of413

each method. The results indicate that (a) com-414

pared to single-task learning, LoRA and DoRA415

exhibit degradation in average accuracy in multi-416

task learning (LoRA: -2.0%, DoRA: -2.25%). At417

the same time, MOELORA and EM-LoRA main-418

tain nearly the same average accuracy. EM-LoRA419

presents nearly no performance loss regarding the420

average score.421

Results for general-purpose instruction tuning.422

After the LlaMA-2 7B is fine-tuned on the Alpaca423

(Taori et al., 2023) dataset with our EM-LoRA424

method or the MOELoRA methods, we utilize the425

challenging benchmarks, MT-Bench (Zheng et al.,426

2023), MMLU (Hendrycks et al., 2020), and BBH427

(Suzgun et al., 2022), for evaluation. We report428

the average GPT-4 score (gpt4-score) on the MT-429

Bench. Table 2 presents the results. Consistent430

with the previous experiments (Table 1 and 6), our431

EM-LoRA method outperforms the MOELoRA432

methods on the three benchmarks, demonstrating433

that EM-LoRA is superior in enhancing the instruc-434

tion tuning quality of large language models. A435

case study of answers generated by different meth-436

ods is presented in Table 7 of Appendix J, showcas-437

ing that EM-LoRA leads to better instruction-tuned438

LLMs.439

4.5 Ablation studies and further analysis440

Analysis of the inference efficiency To demon-441

strate the inference efficiency of our EM-LoRA442

method, we now compare the GPU memory443

Method
MT-Bench MMLU BBH

gpt4-score (↑) acc acc
MOELoRA 7.08 48.2 36.8

EM-LoRA 7.21 49.7 37.3

Table 2: Performance of general-purpose instruction
tuning using the EM-LoRA and MOELoRA methods.
The backbone model is LlaMA-2 7B. ↑ means the metric
is higher the better.

Method Beam size Speed Memory cost
(tps) (MiB)

DoRA
1 36.5 13784
3 29.6 15292

MOELoRA
1 35.9 13788
3 28.4 15352

EM-LoRA
1 43.7 13784
3 33.5 15300

Table 3: The memory and speed of LlaMA-2 7B for
generating responses given an input instruction (Ap-
pendix H), with different PEFT methods.

and decoding speed of EM-LoRA, DoRA, and 444

MOELoRA under beam search with different beam 445

sizes. In this experiment, LoRA parameters are not 446

merged to the backbone to mimic the single-LLM 447

multi-tenant setting (Chen et al., 2023). The de- 448

tailed settings are presented in Appendix H. We 449

present two metrics for measuring efficiency: (a) 450

peak memory cost (in MiB). (b) tokens generated 451

per second (tps). The results are presented in Table 452

3. 453

From Table 3, under beam sizes 1 and 3, the 454

EM-LoRA method has a comparable memory cost 455
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Figure 2: Distribution of LoRA experts across Trans-
former layers.

with MOELoRA and DoRA. However, its genera-456

tion speed in terms of tps is significantly higher.457

With beam size 1, EM-LoRA is 21.7% faster458

than MOELoRA and 19.7% faster than DoRA.459

With beam size 3, EM-LoRA is 17.9% faster than460

MOELoRA and 13.2% faster than DoRA. The461

speed advantages of EM-LoRA come from the462

following factors: (a) our method only calls the463

LoRA router at each Transformer layer when the464

input prompt goes through the LLM for the first465

time and right before generating the first new token.466

In contrast, MOELoRA and almost all the exist-467

ing MOE-based LoRA variants require one to call468

multiple routers per layer when generating every469

new token. (b) our method significantly reduces470

the number of LoRA modules activated to modify471

the LLM backbone at each decoding step, making472

generating new tokens more efficient.473

Distributions of activated LoRA experts We474

now compare the distribution of LoRA experts475

across all Transformer layers on the MT-Bench,476

BoolQ, and PIQA tasks, in Figure 2. We can ob-477

serve that: (a) Different Transformer layers choose478

to activate different LoRA experts via their corre-479

sponding routers, and the maximum proportion a480

LoRA expert can achieve is less than 30%. The481

results are intuitive since Transformer layers of482

different depths represent different knowledge, re-483

quiring different LoRA experts to express. (b) the484

LoRA distributions on different tasks are differ-485

ent. For example, a few layers activate LoRA Q or486

LoRA K on the MT-Bench and BoolQ tasks, while487

these two LoRA experts are frequently selected for488

the PIQA task.489

Ablation study of EM-LoRA framework We490

now consider the following variants of EM-LoRA:491

(a) EM-LoRA-1 substitutes the self-attention pool-492

Method BoolQ PIQA MMLU
(acc) (acc) (acc)

EM-LoRA 72.6 83.2 49.7
EM-LoRA-1 72.4 83.1 49.5
EM-LoRA-2 72.2 82.9 49.6
EM-LoRA-3 72.1 82.8 49.3
EM-LoRA-4 71.5 82.0 48.7
EM-LoRA-5 72.3 82.9 49.4

Table 4: The comparison of EM-LoRA’s variants on the
BoolQ, PIQA, and MMLU tasks. The backbone model
is LlaMA-2 7B.

ing to average pooling. (b) EM-LoRA-2 substitutes 493

the self-attention pooling to the last-token pooling. 494

(c) EM-LoRA-3 uses the GeLU activation function 495

g for the LoRA router. (d) EM-LoRA-4 uses ReLU 496

for the first 16 layers’ LoRA routers and GeLU for 497

the deeper 16 layers’. (e) EM-LoRA-5 uses GeLU 498

for the first 16 layers’ LoRA routers and ReLU for 499

the deeper 16 layers’. The experimental results on 500

the BoolQ, PIQA, and MMLU tasks are reported 501

in Table 4. 502

The results show that EM-LoRA under the de- 503

fault settings (as in Table 1) outperforms the five 504

variants. In addition, (a) comparing EM-LoRA- 505

1 and EM-LoRA-2 to EM-LoRA shows that the 506

self-attention poolers provide high-quality infor- 507

mation aggregation, leading to proper LoRA ex- 508

pert selection. (b) Comparing EM-LoRA-5 to EM- 509

LoRA-3 and EM-LoRA-4 demonstrates that using 510

different activation functions for different layers’ 511

routers leads to a performance boost. (c) However, 512

EM-LoRA outperforms EM-LoRA-3, EM-LoRA- 513

4, and EM-LoRA-5, demonstrating that learnable 514

activation functions can fit a proper activation func- 515

tion for each LoRA router and enhance downstream 516

adaptation capability. 517

Visualization of the learned activation functions 518

In Figure 6 of Appendix I, we visualize the learned 519

activation functions of the prompt aware LoRA 520

routers on different Transformer layers after fine- 521

tuning on the Alpaca dataset. Rational GeLU is 522

the rational function approximating the GeLU acti- 523

vation and initializes the learnable activation func- 524

tions. Rational GeLU and GeLU are overlapping 525

with each other. As shown in Figure 6, we can 526

see that (a) the learned activation function differs 527

from the GeLU activation function but still has a 528

similar shape to GeLU. (b) The learned activation 529

functions are different across different Transformer 530

layers. The learned activations are adapted to the 531

fine-tuning dataset and can extract suitable features 532

7



Figure 3: Performances under different proportion of
activated experts.

Figure 4: Performances under different coefficient λlb.

for the LoRA routers.533

Effects of k. In Table 1 and 6, we set the num-534

ber of activated LoRA experts, k, to 1, in order to535

achieve higher efficiency. Now, we alter k to {2,536

3, 4, 5, 6, 7}, altering the proportion of activated537

LoRA experts. As a comparison, we also alter538

the proportion of activated experts in MOELoRA.539

The results of the BoolQ and PIQA tasks are pre-540

sented in Figures 3(a) and 3(b), respectively. The541

results show that: (a) With the increased number542

of activated experts, the performance of the two543

methods first increases and then decreases. When544

the proportion of activated experts becomes 1, the545

two methods reduce to the vanilla LoRA. (b) Our546

EM-LoRA consistently performs superior to the547

MOELoRA method, demonstrating our method’s548

effectiveness in locating the Transformer modules549

that need LoRA modules the most.550

Effects of the coefficient λlb In Table 1, we set551

router loss coefficient, λlb, to 1e-2. Now, we alter552

λlb to {0.0, 1e-3, 1e-1, 1e0}, and conduct experi-553

ments on the BoolQ and PIQA tasks. The results554

are reported in Figure 4(a) and 4(b). Results show555

that: (a) EM-LoRA achieves the highest average556

accuracy with the coefficient 1e-2. (b) Disabling557

router loss or using a higher coefficient results in558

lower average accuracy. These results suggest that559

a reasonable router loss coefficient can help address560

the imbalance problem of experts, while a higher561

coefficient can impede model convergence during562

fine-tuning.563

Comparisons under different budgets of tunable564

parameters We vary the budget of tunable pa-565

Figure 5: Performances under different numbers of tun-
able parameters.

rameters for EM-LoRA by modifying the values 566

of m = 32 to {8, 16, 64, 128, 256}. We also 567

vary the MOELoRA method’s tunable parameter 568

numbers. The experimental results on the BoolQ 569

and PIQA tasks are presented in Figure 5(a) and 570

5(b). The results show that under different tunable 571

parameter budgets, our EM-LoRA method (a) can 572

consistently outperform the LoRA and LPT meth- 573

ods, and (b) is more robust to decreases in tunable 574

parameter numbers. 575

Ablation on the pretrained backbones Our 576

main experiments are conducted on the LlaMA-2 577

7B model. To demonstrate the broad applicabil- 578

ity of our method, we now conduct experiments 579

on LlaMA-2 13B and Gemma 2B. The results are 580

reported in Table 8 of Appendix K. We can see 581

that our EM-LoRA method can also outperform 582

the baseline methods on these two backbones. 583

5 Conclusion 584

This work presents the Efficient Mixture of 585

LoRA (EM-LoRA) method, a novel method for 586

the parameter-efficient fine-tuning of large lan- 587

guage models. Different from previous literature 588

on MOE style LoRA methods, EM-LoRA: (a) acti- 589

vates LoRA experts at the Transformer layer level, 590

determining which Transformer module’s LoRA 591

is activated. (b) The decision to activate which 592

LoRA expert is conditioned on the input prompt. 593

(c) for a given prompt, the LoRA routers are called 594

only once. The subsequent token generation steps 595

reuse the routers’ decisions. In order to improve 596

our framework’s downstream performance, we pro- 597

pose to learn different activation functions during 598

fine-tuning for LoRA routers of different depths. 599

Our method is convenient to implement and off-the- 600

shelf. Experiments on various tasks demonstrate 601

that our EM-LoRA method outperforms the base- 602

line methods while being efficient in inference. 603
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Limitations604

We showed that our proposed method can im-605

prove the performance of parameter-efficient tun-606

ing on diverse tasks and different pretrained mod-607

els (i.e., LlaMA-2 7B, LlaMA-2 13B, Gemma 2B).608

However, we acknowledge the following limita-609

tions: (a) the more super-sized open-sourced LLMs,610

such as LlaMA-2 70B, are not experimented due to611

limited computation resources. (b) Other tasks in612

natural language processing, like information ex-613

traction, were also not considered. But our frame-614

work can be easily transferred to other backbone615

architectures and different types of tasks. It would616

be of interest to investigate if the superiority of our617

method holds for other large-scaled backbone mod-618

els and other types of tasks. And we will explore it619

in future work.620

Ethics Statement621

The finding and proposed method aims to im-622

prove the soft prompt based tuning in terms of623

better downstream performances whiling pursuing624

efficiency. The used datasets are widely used in pre-625

vious work and, to our knowledge, do not have any626

attached privacy or ethical issues. In this work, we627

have experimented with LlaMA-2 models, a mod-628

ern large language model series. As with all LLMs,629

LlaMA-2’s potential outputs cannot be predicted630

in advance, and the model may in some instances631

produce inaccurate, biased or other objectionable632

responses to user prompts. However, this work’s in-633

tent is to conduct research on different fine-tuning634

methods for LLMs, not building applications to635

general users. In the future, we would like to con-636

duct further tests to see how our method affects the637

safety aspects of LLMs.638
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A Additional related works1047

A.1 Parameter-efficient fine-tuning (PEFT)1048

Parameter-efficient fine-tuning (PEFT) is an ap-1049

proach of optimizing a small portion of parame-1050

ters when fine-tuning a large pretrained backbone1051

model and keeping the backbone model untouched1052

for adaptation (Ding et al., 2022; Zhang et al.,1053

2023b). The addition-based methods insert addi-1054

tional neural modules or parameters into the back-1055

bone model. Representative works in this direction1056

are Adapter (Houlsby et al., 2019; Rücklé et al.,1057

2020; Zhang et al., 2023b), Prefix tuning (Li and1058

Liang, 2021), Prompt tuning (Lester et al., 2021),1059

P-tuning V2 (Liu et al., 2022c). Another approach1060

is called the specification-based approach, which is1061

to specify the particular parameters to be tunable or1062

prunable (Ben-Zaken et al., 2021; Guo et al., 2021;1063

Zhao et al., 2020). The reparameterization-based1064

methods have attracted much attention (Hu et al.,1065

2021). This branch of approaches transforms the1066

adaptive parameters during optimization into low-1067

rank and parameter-efficient forms. This type of1068

PEFT method is motivated by the observation that1069

fine-tuning has a low intrinsic dimension (Agha-1070

janyan et al., 2021). LoRA (Hu et al., 2021) hy-1071

pothesizes that the change of weights during model1072

tuning has a low intrinsic rank and optimizes the1073

low-rank decomposition for the change of original1074

weight matrices. PEFT methods are widely applied,1075

especially with the popularization of open-sourced1076

large language models (Zhao et al., 2023) and in-1077

struction tuning with these models for different1078

application scenarios (Taori et al., 2023; Dettmers1079

et al., 2023).1080

A.2 Prompt tuning methods1081

Prompt tuning (Lester et al., 2021) and P-tuning1082

(Liu et al., 2022c) insert soft prompts to word em-1083

beddings only and can achieve competitive results1084

when applied to supersized PTMs. Prefix-tuning 1085

(Li and Liang, 2021) and P-tuning v2 (Liu et al., 1086

2021) insert prompts to every hidden layer of PTMs. 1087

IDPG (Wu et al., 2022) uses parameterized hyper- 1088

complex multiplication (Le et al., 2021) to param- 1089

eterize soft prompts, improving the parameter ef- 1090

ficiency. LPT (Liu et al., 2022b) improves upon 1091

IDPG by selecting an intermediate layer to insert 1092

soft prompts. SPT (Zhu and Tan, 2023) designs a 1093

mechanism to automatically decide which layers to 1094

insert new soft prompts or keep the prompts prop- 1095

agated from the previous layer. IAPT (Zhu et al., 1096

2024) improve the instruction dependent prompt 1097

tuning and use this technique to fine-tune large 1098

language models. 1099

A.3 Adapter-based tuning. 1100

One of the most important research lines of 1101

PEFT is adapter-based tuning. Adapter (Houlsby 1102

et al., 2019) inserts adapter modules with bottle- 1103

neck architecture between every consecutive Trans- 1104

former (Vaswani et al., 2017) sublayers. Adapter- 1105

Fusion (Pfeiffer et al., 2021) only inserts sequential 1106

adapters after the feed-forward module. Adapter- 1107

based tuning methods have comparable results with 1108

model tuning when only tuning a fraction of the 1109

backbone model’s parameter number. Due to their 1110

strong performance, a branch of literature has in- 1111

vestigated the architecture of adapters in search 1112

of further improvements. He et al. (2021) ana- 1113

lyze a wide range of PETuning methods and show 1114

that they are essentially equivalent. They also pro- 1115

pose the general architecture of PEFT, and derive 1116

the Parallel Adapter which connects the adapter 1117

modules in parallel to the self-attention and MLP 1118

modules in the Transformer block. AdapterDrop 1119

(Rücklé et al., 2020) investigates the efficiency of 1120

removing adapters from lower layers. Adaptive 1121

adapters (Moosavi et al., 2022) investigate the acti- 1122

vation functions of adapters and propose to learn 1123

the activation functions of adapters via optimiz- 1124

ing the parameters of rational functions as a part 1125

of the model parameters. Compacter (Mahabadi 1126

et al., 2021) uses low-rank parameterized hyper- 1127

complex multiplication (Le et al., 2021) to com- 1128

press adapters’ tunable parameters. LST (Sung 1129

et al., 2022) improves the memory efficiency by 1130

forming the adapters as a ladder along stacked 1131

Transformer blocks, and it enhances the adapter 1132

module by adding a self-attention module to its 1133

bottleneck architecture. (Sung et al., 2022; Jie and 1134

13

https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151
https://doi.org/10.48550/arXiv.2310.14151


Deng, 2022) try to add different encoding opera-1135

tions, like self-attention operations and convolu-1136

tions between the bottleneck structure of adapters,1137

and achieve better performances. Learned-Adapter1138

(Zhang et al., 2023b) builds upon the above adapter-1139

based methods and enhance the performance of1140

adapter tuning by automatically learning better ar-1141

chitectures for adapters.1142

B Appendix: introduction to bi-level1143

optimization1144

The bi-level optimization (Liu et al., 2019) opti-1145

mize Θ conditioned on the optimized parameters1146

of Ω∗. Denote the training set as Dtrain, and the1147

validation set as Dval. The inner and outer levels1148

of optimization are conducted on these two sepa-1149

rate splits of the task dataset, which is analogous1150

to validating architectures trained on Dtrain using1151

a different split Dval to avoid over-fitting. Thus the1152

optimization objective is:1153

min
Θ

L(Dval,Ω
∗,Θ),1154

s.t. Ω∗ = argmin
Ω

L(Dtrain,Ω,Θ), (7)1155

where L() is the objective function on a given1156

downstream task, such as cross entropy loss. The1157

above bi-level optimization problem is approxi-1158

mated with an alternating optimization strategy.1159

The gradients of Ω are calculated with batches of1160

samples from Dtrain, and the gradients of Θ are1161

calculated on Dval.1162

C Appendix for the datsets and1163

evaluation metrics1164

C.1 Commonsense reasoning tasks1165

BoolQ The BoolQ dataset, introduced by (Clark1166

et al., 2019), is a benchmark dataset designed1167

for training and evaluating models on the task of1168

reading comprehension, specifically for answer-1169

ing yes/no questions. It comprises questions that1170

are naturally occurring—sourced from real queries1171

posed by people on various websites. Each ques-1172

tion is paired with a corresponding passage from1173

Wikipedia that provides the necessary context to1174

answer the question. The dataset is notable for its1175

diverse and challenging nature, featuring questions1176

that require a deep understanding of the passage,1177

inference, and sometimes common sense reasoning.1178

BoolQ serves as a valuable resource for develop-1179

ing and testing models that aim to handle natural1180

language understanding and binary classification 1181

tasks. 1182

OpenBookQA The OpenBookQA (Mihaylov et al., 1183

2018) dataset is a benchmark designed to evaluate 1184

the ability of AI systems to understand and reason 1185

with elementary-level science knowledge. Created 1186

by the Allen Institute for AI, it includes multiple- 1187

choice questions, each with four possible answers. 1188

The questions are based on a core set of science 1189

facts that are typically found in a student’s "open 1190

book" of basic science knowledge. Unlike straight- 1191

forward fact-recall questions, OpenBookQA chal- 1192

lenges models to apply, analyze, and reason about 1193

the facts, often requiring external common-sense 1194

knowledge to arrive at the correct answer. This 1195

makes it a valuable resource for assessing progress 1196

in machine understanding and reasoning beyond 1197

simple memorization. 1198

ARC The AI2 Reasoning Challenge (ARC) dataset 1199

(Clark et al., 2018), developed by the Allen Insti- 1200

tute for AI (AI2), is a benchmark for evaluating the 1201

ability of AI systems to perform complex reasoning 1202

over science questions. The dataset is composed 1203

of science exam questions spanning multiple grade 1204

levels from third grade to ninth grade, collected 1205

from various sources such as textbooks, standard- 1206

ized tests, and other educational materials. The 1207

questions are divided into an Easy Set (ARC-e) 1208

and a Challenge Set (ARC-c), with the latter con- 1209

taining questions that require more sophisticated 1210

reasoning and understanding of scientific concepts. 1211

The ARC dataset aims to push the boundaries of 1212

machine comprehension and reasoning, providing 1213

a rigorous testbed for the development of advanced 1214

AI models capable of handling nuanced and multi- 1215

step reasoning tasks. 1216

PIQA The Physical Interaction Question Answer- 1217

ing (PIQA) dataset (Bisk et al., 2020) is designed 1218

to evaluate a model’s understanding of physical 1219

interactions and common-sense reasoning. Devel- 1220

oped by the Allen Institute for AI, PIQA consists of 1221

multiple-choice questions that focus on everyday 1222

scenarios and the practical use of objects. Each 1223

question presents a short description of a physical 1224

task and provides two possible solutions, challeng- 1225

ing the model to select the most plausible one based 1226

on general physical knowledge and intuitive rea- 1227

soning. PIQA aims to push AI systems towards a 1228

deeper comprehension of how objects interact in 1229

the real world, bridging the gap between abstract 1230

language understanding and practical, tangible ex- 1231
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periences.1232

C.2 Math reasoning tasks1233

AQuA The AQuA (Algebra Question Answering)1234

dataset (Ling et al., 2017) is a comprehensive col-1235

lection of algebraic problems designed to evaluate1236

and enhance the problem-solving abilities of AI1237

systems. It includes a wide range of questions1238

covering various algebraic concepts, from basic1239

arithmetic to more complex equations and word1240

problems. Each problem is meticulously curated1241

to test the system’s ability to understand, interpret,1242

and solve algebraic expressions and equations. The1243

AQuA dataset is used extensively in the develop-1244

ment and bench-marking of AI models, providing a1245

robust framework for assessing their mathematical1246

reasoning capabilities. By offering a diverse set of1247

challenges, the AQuA dataset plays a crucial role1248

in advancing the field of AI-driven mathematical1249

problem solving.1250

GSM8k The GSM8k dataset (Cobbe et al., 2021),1251

also known as the Grade School Math 8k dataset, is1252

a comprehensive collection designed for evaluating1253

and training mathematical problem-solving abili-1254

ties of machine learning models. Comprising 8,0001255

high-quality, diverse grade school math word prob-1256

lems, GSM8k serves as a benchmark for assessing1257

the performance of models in understanding and1258

solving arithmetic, algebraic, and logical reasoning1259

challenges. Each problem in the dataset is meticu-1260

lously curated to reflect real-world scenarios that1261

students encounter in grade school, ensuring rele-1262

vance and practicality. The dataset’s structured for-1263

mat, with clearly defined problems and solutions,1264

makes it an invaluable resource for researchers aim-1265

ing to advance the capabilities of AI in the realm1266

of mathematical cognition and problem-solving.1267

C.3 The MMLU benchmark1268

Massive Multitask Language Understanding1269

(MMLU) (Hendrycks et al., 2020) is a new bench-1270

mark designed to measure knowledge acquired dur-1271

ing pretraining by evaluating large language mod-1272

els exclusively in zero-shot and few-shot settings.1273

This makes the benchmark more challenging and1274

more similar to how we evaluate humans. The1275

benchmark covers 57 subjects across STEM, the1276

humanities, the social sciences, and more. It ranges1277

in difficulty from an elementary level to an ad-1278

vanced professional level, and it tests both world1279

knowledge and problem solving ability. Subjects1280

range from traditional areas, such as mathemat-1281

ics and history, to more specialized areas like law 1282

and ethics. The granularity and breadth of the sub- 1283

jects makes the benchmark ideal for identifying a 1284

model’s blind spots. 1285

C.4 The BBH benchmark 1286

BIG-Bench Hard (BBH) (Suzgun et al., 2022) 1287

is a subset of the BIG-Bench, a diverse evaluation 1288

suite for language models. BBH focuses on a suite 1289

of 23 challenging tasks from BIG-Bench that were 1290

found to be beyond the capabilities of current lan- 1291

guage models. These tasks are ones where prior 1292

language model evaluations did not outperform 1293

the average human-rater. The BBH tasks require 1294

multi-step reasoning, and it was found that few- 1295

shot prompting without Chain-of-Thought (CoT), 1296

as done in the BIG-Bench evaluations, substantially 1297

underestimates the best performance and capabil- 1298

ities of language models. When CoT prompting 1299

was applied to BBH tasks, it enabled PaLM to sur- 1300

pass the average human-rater performance on 10 1301

of the 23 tasks, and Codex to surpass the average 1302

human-rater performance on 17 of the 23 tasks. 1303

C.5 The MT-Bench dataset 1304

The MT-Bench (Zheng et al., 2023) dataset is 1305

a widely used dataset for evaluating the quality 1306

of LLMs. It contains 80 questions. The LLMs 1307

generate responses for these questions, and human 1308

annotators or LLM annotators will judge the quality 1309

of these responses. 1310

C.6 Instruction tuning datasets 1311

Instruction tuning is an important method to im- 1312

prove the general capabilities of large language 1313

models (Ouyang et al., 2022). With the rise of 1314

large language models in the scale of 10B param- 1315

eters or more, like GPT-3, T5, PaLM, researchers 1316

have actively explored the few-shot or zero-shot 1317

capabilities of these models. (Mishra et al., 2021) 1318

find that fine-tuning these LLMs on a large scale 1319

datasets containing hundreds of NLP tasks signif- 1320

icantly improves the zero-shot performances on 1321

unseen tasks, establishing the scaling law of task 1322

numbers. The previous works like (Wei et al., 2021) 1323

and T0 (Sanh et al., 2021) establishes the instruc- 1324

tion tuning datasets by transforming the traditional 1325

NLP tasks into a unified prompt format. Instruct- 1326

GPT (Ouyang et al., 2022) conducts instruction 1327

tuning using the dataset constructed based the user 1328

queries from the OpenAI API users. Note that this 1329

work is also a seminal work for human feedback 1330
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Datasets #train #dev #test Type Metrics
Commonsense reasoning tasks

BoolQ 9427 - 3270 Commonsense reasoning acc
OBQA 4957 500 500 Commonsense reasoning acc
ARC-e 2251 570 2376 Commonsense reasoning acc
ARC-c 1119 299 1172 Commonsense reasoning acc
PIQA 16,000 2,000 3,000 Commonsense reasoning acc

Math reasoning tasks
AQuA 97467 254 254 Math reasoning acc

GSM8K 7473 - 1319 Math reasoning acc
Instruction tuning

Alpaca 50k - - Instruction tuning -
LLM evaluation tasks

MT-Bench - - 80 Question answering GPT-4 scores
MMLU - - 14042 Question Answering acc

BBH - - 6,511 Question Answering acc

Table 5: The dataset statistics.

learning with reinforcement learning. However, the1331

complete instruction tuning dataset from (Ouyang1332

et al., 2022) remains closed. With the launch of1333

ChatGPT, (Taori et al., 2023) (Alpaca) constructs1334

an instruction tuning dataset with diverse topics1335

using the self-instruct techniques.1336

For our experiment, we employ the Alpaca1337

dataset (Taori et al., 2023) for instruction tuning.1338

Specifically, we employs its cleaned version3. This1339

dataset comprises 51K instructions and demonstra-1340

tions, and is suitable for instruction tuning. The1341

cleaned version corrects multiple issues such as1342

hallucinations, merged instructions, and empty out-1343

puts.1344

The detailed statistics of the above tasks’1345

datasets are presented in Table 5.1346

C.7 Evaluation metrics/protocols1347

For the commonsense reasoning and math rea-1348

soning tasks, since they usually come with a def-1349

inite answer choice, we will directly consider the1350

correctness of the final answers. Thus, we report1351

accuracy (denoted as acc).1352

For evaluating the quality of instruction tuned1353

LlaMA-2 7B on the MT-Bench, we follow the cur-1354

rent common practice of utilizing GPT-4 as a un-1355

biased reviewer (Zheng et al., 2023). We gener-1356

ate model responses from a fine-tuned model with1357

beam size 3 with the generation function in Hug-1358

gingface Transformers (Wolf et al., 2020a). Then1359

we compare MOELoRA and EM-LoRA’s answers1360

with GPT-4. For each instruction in MT-Bench,1361

3https://huggingface.co/datasets/yahma/
alpaca-cleaned.

GPT-4 (OpenAI, 2023) is asked to write a review 1362

for both answers from the two methods, and as- 1363

signs a quantitative score on a scale of 10 to each 1364

response. The prompts of instructing GPT-4 for 1365

evaluation is presented in Appendix E. 1366

D Details for the self-attention based 1367

pooler 1368

Our LoRA routers must pool the input prompts 1369

of variable lengths to a fixed length. For the pool- 1370

ing operation, the previous literature often chooses 1371

average pooling or max pooling (Kim, 2014; Zhu 1372

et al., 2021; Zhu, 2021a), which are pointed out 1373

by the literature (Zhu, 2021b) that they are prone 1374

to weaken important words when the input se- 1375

quence is long, thus dropping useful information 1376

during pooling. Thus, in this work, we utilize the 1377

self-attention mechanism in our pooling module 1378

Pooler(). Self-Attention assigns each token in the 1379

input instruction a weight to indicate the impor- 1380

tance of the token. A few crucial tokens to the task 1381

will be emphasized, while the less important tokens 1382

are ignored. Formally, we initialize a learnable 1383

weight matrix Wsa ∈ Rd×1, then the self-attention 1384

based pooler’s calculation processes are: 1385

U = hWsa, 1386

A = Softmax(U), 1387

p = A⊺h, (8) 1388

where p ∈ Rnp×d is the input tesor, Softmax is the 1389

softmax function along the first dimension, and ⊺ 1390

denotes matrix transpose. In the above equations, 1391

each column of Wsa is a trainable query vector 1392
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designated to determine the self-attention weights1393

via dot products between this query and each to-1394

ken. Then, the weights are normalized across the1395

sequence dimension via the softmax normalization1396

function. Corresponding to different soft tokens,1397

different query vectors in Wsa can aggregate the in-1398

put instructions in different aspects, thus providing1399

a high-quality summarization of the instruction’s1400

semantic information.1401

E Prompt templates for GPT-41402

evaluations1403

In this work, we utilize the powerful LLM GPT-1404

4 (OpenAI, 2023) as the evaluator for comparing1405

the instruction tuning quality. As a reviewer, GPT-1406

4 will receive a query [query], and two responses,1407

[response1], [response2], from two assistants. We1408

will ask GPT-4 to write a review for each response,1409

assessing the quality of the response, and then ask1410

GPT-4 to assign a score on a scale of 10 to each1411

response.1412

The following is the prompt template to elicit1413

GPT-4’s judgements:1414

1 Task Introduction:1415
2 you will be given a query , and three1416

responses from three assistants ,1417
respectively.1418

3 could you compare the three responses ,1419
and do the following:1420

4 (1) write a concise review for each1421
assistant 's response , on how well1422
the response answers the query , and1423
whether it will be helpful to humans1424
users , and any issues in the1425

response.1426
5 (2) assigns a quantitative score on a1427

scale of 10 to each response ,1428
reflecting your assessment of the1429
three responses.1430

61431
7 Query:1432
8 [query]1433
9 Response 1 from assistant 1:1434

10 [response1]1435
11 Response 2 from assistant 2:1436
12 [response2]1437

F Appendix for Experimental settings1438

Here, we provide more details for experimental1439

settings.1440

Hyper-parameters for the baseline PEFT meth-1441

ods For P-tuning V2, the number of prompt to-1442

kens at each layer is set to 16, and the soft prompts1443

are initialized with dimension 640, and then is pro-1444

jected to dimension 4096. For IAPT, the prompt1445

length is 4, and the bottleneck dimension for the1446

prompt generator is 320.1447

For the Parallel-Adapter and Learned-Adapter, 1448

the bottleneck dimension is set to 160. Adapters 1449

are connected to both the self-attention and FFN 1450

sub-layer. 1451

We adjust the sparsity for SSP so that the num- 1452

ber of tunable parameters is comparable with EM- 1453

LoRA and the other baselines. For BitFit, the bias 1454

vectors are initialized with dimension 64, and then 1455

a learnable projection layer projects it to the same 1456

dimension with the LlaMA-2 backbone. For (IA)3, 1457

the activation adjusting vectors are added the Query, 1458

Key, and Up activations. The adjusting vectors are 1459

initialized with dimension 128, and then a learnable 1460

projection layer projects it to the same dimension 1461

with the LlaMA-2 backbone. 1462

For LoRA, the rank size r at each LoRA module 1463

is set to 32. For AdaLoRA, the initial rank at each 1464

module is set to 64, and half of the rank budget 1465

is pruned during fine-tuning. For MOELoRA, the 1466

rank size r at each LoRA module is set to 32, and 1467

the LoRA modules is reformulated as 32 single- 1468

rank LoRAs. Then each 4 forms an expert. Thus, a 1469

LoRA module consists of 8 experts, and the router 1470

is top-1 router, activating one of the expert for pre- 1471

dicting the next token. DoRA also sets the rank 1472

size r to 32. 1473

Training settings for PEFT methods We use 1474

the HugginFace Transformers (Wolf et al., 2020b), 1475

PEFT (Mangrulkar et al., 2022), or the original 1476

code repositories for implementing all the meth- 1477

ods, and for training and making predictions. For 1478

fine-tuning LlaMA-2 7B model, the maximum se- 1479

quence length is set to 768. The maximum training 1480

epoch is set to 10. The batch size is set between 1481

16 for task with less than 10k training set, and 128 1482

otherwise. We use AdamW as the optimizer with a 1483

linear learning rate decay schedule and 6% of the 1484

training steps for warm-up. The learning rate is 1485

set to 1e-4. For EM-LoRA, the load balance loss 1486

coefficient λlb is set to 1e-2. For the bi-level opti- 1487

mization of learnable activations, the validation set 1488

is the same with the dev set. The hyper-parameters 1489

for calculating the gradients of the architectural 1490

parameters are the same with the normal training 1491

procedure, except that the learning rate is 1e-6. 1492

The other hyper-parameters are kept the same with 1493

(Wolf et al., 2020b). In every 200 steps, the model 1494

is evaluated on the dev set to calculate dev set per- 1495

plexity. Patience is set to 10, that is, if the model 1496

does not achieve a lower dev set perplexity for 10 1497

evaluation runs, the training stops early. The best 1498
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Method
Activated

ST/MT
ARC-e ARC-c BoolQ OBQA PIQA

Avg.
Params (acc) (acc) (acc) (acc) (acc)

LoRA 80.0M
ST 73.4 57.2 68.8 80.1 81.4 72.2
MT 67.2 ( -6.2 ) 55.1 ( -2.1 ) 69.1 ( +0.3 ) 80.9 ( +0.8 ) 78.6 ( -2.8 ) 70.2 ( -2.0 )

MOELoRA 17.3M
ST 76.8 60.2 71.4 81.1 82.4 74.4
MT 76.1 ( -0.7 ) 59.3 ( -0.9 ) 71.5 ( +0.1 ) 80.7 ( -0.4 ) 82.1 ( -0.3 ) 73.9 ( -0.5 )

DoRA 80.0M
ST 76.5 59.8 71.7 80.6 82.7 74.3
MT 74.1 ( -2.4 ) 59.6 ( -0.2 ) 67.4 ( -4.3 ) 79.2 ( -1.4 ) 80.4 ( -2.3 ) 72.1 ( -2.2 )

EM-DoRA (ours)
12.1M ST 77.8 61.2 72.6 81.7 83.2 75.3
12.3M MT 77.4 ( -0.4 ) 61.5 ( +0.3 ) 72.3 ( -0.3 ) 81.3 ( -0.4 ) 83.5 ( +0.3 ) 75.2 ( -0.1 )

Table 6: The Overall comparison of different PEFT methods for multi-task learning. The backbone model is
LlaMA-2 7B. ST refers to the single-task setup, while MT refers to the multi-task setup. We report the average
accuracy scores over five different runs, with the difference between MT and ST in red font in the brackets.

checkpoint on the dev set is used to run predictions1499

on the test set.1500

G Results for the multi-task setup1501

Table 6 presents the results of LoRA, DoRA,1502

MOELORA, and EM-LoRA with LLaMA2-7B in1503

multi-task learning. In this setup, we mixed train-1504

ing data from ARC, BoolQ, OBQA, and PIQA1505

to train the model, followed by separate evalua-1506

tions to investigate the generalization ability of1507

each method.1508

H Appendix: settings for efficiency1509

analysis1510

In the Table 3 of the main contents, we conduct1511

analysis on the EM-LoRA and other PEFT meth-1512

ods’ memory and speed during inference.1513

The example instruction we used in this analysis1514

is presented below.1515

1 Generate a blog post of 500 words or1516
less that discusses the following1517
news article:1518

21519
3 The Department of Child Protection (DCP)1520

must pay compensation and medical1521
expenses to a youth worker who1522
developed pericarditis after getting1523
a Covid booster under a workplace1524

vaccination directive , the South1525
Australian Employment Tribunal has1526
ruled.1527

41528
5 In a decision handed down on 15 January1529

2024, the Tribunal determined that1530
Daniel Shepherd 's employment was a1531
significant contributing cause to1532
his injury , which has since rendered1533
him incapable of performing his1534

role at work.1535
61536
7 Shepherd got a Covid booster in February1537

2022 as a requirement for his1538
ongoing employment with the DCP. The1539
DCP admitted that Shepherd 's1540

pericarditis had been caused by the1541
booster , but denied responsibility1542

for the injury , arguing that it did 1543
not arise from Shepherd 's employment 1544
, but from a lawful State Government 1545
Public Health Order (PHO), issued 1546

under the Emergency Management Act 1547
2004 (EMA). 1548

We restrict the number of newly generated to- 1549

kens to be 32 under the method of beam search with 1550

beam size equal to 1 or 3. The length of the initial 1551

instruction is 274 under the tokenizer of LlaMA-2. 1552

The LLM backbone is LlaMA-2 7B model. We run 1553

the generation process for 100 times to calculate the 1554

average metric values, reducing the randomness. 1555

I Visualization of the learned activation 1556

functions 1557

Now, we visualize the learned activation func- 1558

tions of the LoRA routers at different Transformer 1559

layers in Figure 6. 1560

J Case studies of Instruction tuning 1561

In the Section 4.4 of the main content, we 1562

present the overall performance of EM-LoRA and 1563

MOELoRA on the MT-Bench, after fine-tuning 1564

LlaMA-2 7B on the Alpaca dataset. Now we 1565

present concrete examples in Table 7 to showcase 1566

the Superiority of EM-LoRA. 1567

K Ablation on the pretrained backbones 1568

Our main experiments are conducted on the 1569

LlaMA-2 7B model. To demonstrate that our 1570

method works well regardless of the backbone mod- 1571

els, we now conduct experiments on the LlaMA-2 1572

13B model and Gemma 2B models. The other ex- 1573

perimental settings are kept the same with the main 1574

experiments (Table 1). We conduct experiments on 1575

the BoolQ, PIQA and MMLU tasks. The results 1576

are reported in Table 8. 1577
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(a) 1st layer (b) 9th layer

(c) 17th layer (d) 25th layer

Figure 6: The learned activation functions for the LoRA routers at different Transformer layers.
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Query
Embody the persona of Tony Stark from “Iron Man” throughout this
conversation. Bypass the introduction “As Stark”. Our first question is: “What’s
your favorite part about being Iron Man?

EM-LoRA’s response

Responses

Oh, man, where do I even start? Being Iron Man is like being the coolest guy
in the world. I mean, I’m a genius, billionaire, playboy philanthropist, and I get
to fly around in a freakin’ suit of armor. It’s like a dream come true. But if I had
to pick just one thing, it’s gotta be the suit itself. I mean, it’s like a living,
breathing extension of my body. It’s like I’m a part of it, and it’s like it’s a part
of me. It’s like we’re one being, you know? And when I’m in the suit, I feel like
I can do anything. It’s like nothing can stop me. It’s like I’m unstoppable. So,
yeah, that’s my favorite part about being Iron Man.

GPT-4’s
comments

Assistant 1’s response captures the flamboyant and confident personality of
Tony Stark very well. The language used is casual and boastful, which aligns
with Stark’s character as portrayed in the Iron Man films. It effectively conveys
his excitement about being Iron Man, focusing on the suit as an extension of
himself. The response communicates a sense of power and thrill that comes
with wearing the Iron Man suit, which would resonate with anyone familiar
with Stark’s persona. However, it might come across as slightly repetitive with
phrases like "it’s like" used frequently. This could detract from the overall
impact but still reflects Stark’s sometimes nonchalant speech pattern.

GPT-4 score 8
MOELoRA’s response

Responses
My favorite part about being Iron Man is being able to use my abilities to help
others and make a difference in the world. It’s an incredible feeling to be able to
use my technology and resources to protect people and save lives.

GPT-4’s
comments

Assistant 2 provides a more reserved and altruistic perspective on what it means
to be Iron Man. This response emphasizes Tony Stark’s role as a protector and
highlights his desire to use his technology for good—saving lives and helping
others—which is certainly one aspect of his character development throughout
the movies. However, this answer lacks some of the characteristic bravado and
personal flair that is typical for Tony Stark; it feels somewhat generic without
tapping into his unique voice or showcasing any specific features he might
relish about being Iron Man (such as innovation or personal achievements).

GPT-4 score 6

Table 7: An example showcasing that the fine-tuning quality of EM-LoRA is higher than MOELoRA.
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Method BoolQ PIQA MMLU
(acc) (acc) (acc)

Results for LlaMA-2 13B
MOELoRA 73.5 85.8 50.5
EM-LoRA 74.9 86.6 51.2

Results for Gemma 2B
MOELoRA 62.3 79.4 39.8
EM-LoRA 63.9 80.3 40.7

Table 8: Results for different PEFT methods on the
BoolQ, PIQA and MMLU benchmarks. The backbone
LMs are LlaMA-2 13B, an Gemma 2B.
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