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Abstract

Federated learning for training machine learning models across geographically distributed
regional centers is becoming prevalent. However, because of disparities in location, la-
tency, and computational capabilities, synchronously aggregating models across different
sites requires waiting for stragglers, leading to significant delays. Traditional asynchronous
aggregation across regional centers still faces issues of stale model parameters and outdated
gradients due to hierarchical aggregation involving local clients within each center. To ad-
dress this, we propose Hierarchical Global Asynchronous Federated Learning (HGA-FL),
which combines global asynchronous model aggregation across regional centers with syn-
chronous aggregation and local consistent regularization alignment within each local center.
We theoretically analyze the convergence rate of our method under non-convex optimiza-
tion settings, demonstrating its stable convergence during the aggregation. Experimental
evaluations show that our approach outperforms other baseline two-level aggregation meth-
ods in terms of global model generalization ability, particularly under conditions of data
heterogeneity, latency, and gradient staleness.

Keywords: Asynchronous Federated Learning, Multi-Center, Hierarchical Framework

1. Introduction

With the increasing demands for training learning models, researchers have employed dis-
tributed Federated Learning (FL) to train and aggregate models across a large number
of devices within regional centers. Since the computational capabilities and latencies of
devices within a training center are relatively homogeneous, synchronous FL is typically
utilized for global model training. To address the issue of heterogeneity in FL settings, a
variety of synchronous single-center FL approaches have been proposed (Wang et al., 2020;
Li et al., 2021; Mishchenko et al., 2022). However, when devices exhibit significant het-
erogeneity in computational capabilities and latencies, the overall training time increases,
and efficiency decreases, as high-performance devices may be underutilized while waiting
for stragglers. To mitigate this issue, asynchronous federated learning approaches, such as
FedAsync (Xie et al., 2019), have been proposed to alleviate time overhead. Nevertheless,
asynchronous FL introduces challenges such as stale model parameters, outdated gradients,
and frequent aggregations that consume excessive bandwidth and resources. Consequently,
semi-asynchronous FL methods, such as FedBuff (Nguyen et al., 2022), have been explored
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as a compromise method. Three-tiered FL architectures (Das and Patterson, 2021; Mali-
novsky et al., 2022; Wang et al., 2021; Xu et al., 2022) have been proposed to alleviate net-
work communication overhead and computational burden on individual sub-center servers.
Most existing hierarchical FL methods operate under synchronous settings.

Moreover, in reality, multiple regional centers exhibit heterogeneous computational capa-
bilities and data distributions. Utilizing the same pre-trained Deep Neural Network (DNN)
model initialization and performing an equal number of gradient computations results in
varying completion times across different geographical locations. Consequently, synchronous
model aggregation across these centers leads to substantial waiting times and inefficiencies
(Nguyen et al., 2022). A key challenge in hierarchical asynchronous federated learning lies
in the intricate modeling and theoretical analysis due to gradient staleness compounded by
the multi-level aggregation relationships, making the convergence rate analysis particularly
arduous (Wang et al., 2023). We use the term ”multi-center” (MC) to refer to multiple
regional centers located across various geographical regions. These regional centers act as
intermediate nodes that collect and aggregate models from clients before sending them to
a Global Center for final processing and integration. The term ”Three-tier” refers to the
hierarchical structure comprising the global center, sub-centers, and clients.

Existing studies on multi-tier FL predominantly focus on synchronous aggregation across
hierarchical levels (Das and Patterson, 2021; Malinovsky et al., 2022), lacking investigations
into asynchronous settings. Alternatively, research efforts have centered on resource allo-
cation, scheduling, and client clustering within hierarchical structures (Wang et al., 2021),
overlooking convergence guarantees for the model training process. The aggregation of mod-
els across geographically distributed and resource-heterogeneous multi-center environments
remains challenging due to the absence of asynchronous multi-tier FL approaches and the
associated convergence analysis.

To address the aforementioned challenges, we propose a novel three-tier federated learn-
ing approach with two-level aggregations, named Hierarchical Global Asynchronous FL
(HGA-FL). Our method comprises a global center connected to sub-centers across vari-
ous multiple centers. Each sub-center synchronously aggregates the models trained by its
local clients to form a sub-center model, which is then uploaded to the global center for
asynchronous global aggregation. Local model training employs regularization alignment
techniques. This design, combining global asynchronous aggregation with synchronous sub-
center aggregations, aims to ensure model consistency across sub-centers, improve the gen-
eralization ability of the globally aggregated model, and enhance convergence efficiency.
The key novelties lie in the hierarchical asynchronous aggregation scheme tailored for the
hierarchical multi-center setting and the associated theoretical convergence analysis under
non-convex optimization. Our key contributions are as follows:

• To alleviate the excessive aggregation time overhead resulting from resource hetero-
geneity across regional centers, we propose a novel three-tier federated learning frame-
work that integrates asynchronous global aggregation with synchronous sub-center ag-
gregations. This improves global model aggregation efficiency over existing two-level
solely synchronous aggregation approaches.

• We introduce an integrated technique combining global buffer and local regularization
alignment to enhance convergence, improve global-local consistency, and boost gen-
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eralization. We formulate a new FL optimization problem that models the two-level
fusion of asynchronous global and synchronous sub-center aggregations, jointly opti-
mizing the hyperparameters of this integrated method for seamless integration across
the hierarchy while effectively addressing gradient and model staleness.

• We provide a theoretical convergence analysis for our proposed method, ensuring
guaranteed convergence for both global and local models under a nonconvex setting.
Experimental results demonstrate that our approach outperforms existing two-level
fusion hierarchical FL methods in terms of generalization performance and conver-
gence efficiency.

Figure 1: HGA-FL framework.
Figure 2: Model staleness.

2. Framework and System Model

Our proposed HGA-FL encompasses a three-tier architecture with a two-level hierarchical
aggregation framework, as illustrated in Figure 1. The key notations and symbols are
summarized in Table 1. The detailed algorithm is presented in Algorithm 1.

In the HGA-FL framework, we introduce a global buffer and allocate a state variable cj
for each sub-center j at the global center. Each sub-center maintains model wj , represent-
ing the aggregated model from its associated client devices. The global buffer accumulates
the uploaded sub-center models {wj}Kj=0, and once its capacity is reached, the global cen-
ter server aggregates these models to obtain the global model wg, which is subsequently
disseminated to all sub-centers. The state variable cj stores the model update difference
∆j between wj and historical parameters, and is assigned the value of ∆j only after wj

participates in the global aggregation.

The asynchronous aggregation introduces complexities in defining stale models and gra-
dients. Referring to the approaches in CA2FL (Wang et al., 2023) and FedBuffer (Toghani
and Uribe, 2022), we introduce the variables Γj and ζj to quantify model staleness, while
t̂ denotes the global time step (for ease of proof in our following theoretical analysis, we
substitute global fusion step t for t̂).

As depicted in Figure 2, for a given sub-center j, its model wj participates in the
aggregation at time step t̂ based on the global model update disseminated by the global
center at time step t̂−Γt̂

j , which corresponds to the completion of sub-center training from
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the previous global aggregation. Concurrently, the state variable cj at time step t̂ stores

the model update difference ∆
t̂−ζ t̂j
j from the previous global aggregation, assigned at time

step t̂− ζ t̂j , as shown in Algorithm 1, Line 12 and 13, and Figure 1. This formulation offers
the advantage of distinguishing the staleness of model parameters in the global buffer and
state variables across different time periods.

Additionally, in Figure 2, Tw denotes the waiting time of models in the global buffer.
Due to the asynchronous nature, each model arrival originates from different sub-centers
completing their aggregations at varying times in the heterogeneous environment. Conse-
quently, Tw differs across instances, e.g., T 1

w ̸= T 2
w in the Figure 2. In contrast, Tr represents

the time consumed for local training and aggregation within each sub-center, which may
remain consistent across rounds. Γt̂

j contains one each of Tr and Tw, while ζ t̂j is twice the

amount. Therefore, for each sub-center j, the values of Γt̂
j and ζ t̂j vary within each global

aggregation iteration, leading to modeling intricacies. This also suggests variability in Γt
j

and ζtj . Subsequently, we impose a set of constraints to bound these variables (see Section
3.1), addressing the modeling intricacies.

Table 1: Key notations and symbols.

Notations Description

t Accumulated step count for global model aggregation rounds.

T Total number of global model aggregation rounds.

R Number of aggregation rounds inside sub-center.

Γt
j

Step difference between current t and the step point when the sub-center j last received
global model w for clients training.

ζtj
For model update difference ∆

t−ζtj
j which stored in the state variable cj , it represents more

steps and staleness than Γt
j .

t̂ In the experiments, it represents the global time step based on the average computational
time for each mini-batch training.

wt Global model parameter at global step t.

wt
j Model parameter of sub-center j at global step t.

wt
j,i Model parameter of client i inside sub-center j at global step t.

∆
t−Γt

j

j

Difference in model update for sub-center j calculated from the step point t − Γt
j when

sub-center j starts to compute its internal gradients with its clients.

∆
t−ζtj
j

Model update difference stored in the state variable cj .

nj , [nj ], Nj For sub-center j, nj : the set of clients, [nj ]: the set of indices for clients, Nj : total number
of clients.

m, [m], M m: the set of sub-centers, [m]: the set of indices for sub-centers, M : total number of sub-
centers.

Ht, K Ht: set of sub-center models in the global buffer, K: global buffer size.

2.1. Model Aggregation Objective

In the sub-center aggregation, we minimize sub-center objective via finding a d-dimensional
model w ∈ Rd:

min
w∈Rd

Fj(w) :=
1

Nj

Nj∑
i=1

Fj,i(w) (1)



HGA-FL

Algorithm 1 HGA-FL

1: Input: w1, ηg, α, K,[m],{nj}j=|[m]|
j=1 ;

2: initial: Global Server send w1 to sub-centers, t← 0, c0 ← 0, v0 ← 0, kb ← 0, ∆t ← 0
3: Global Server:
4: repeat
5: if receive sub-center updates in parallel then

6: ∆t ← ∆t +∆
t−Γt

j

j , kb ← kb + 1
7: end if
8: if kb == K then
9: ct = 1

M

∑M
j=1 c

t
j

10: vt = 1
K

∑
j∈[Ht]

(ct −∆
t−Γt

j

j )

11: wt+1 = wt − ηg(
1
K∆t − vt)

12: Update: for j /∈ [Ht] then ct+1
j ← ctj

13: Update: for j ∈ [Ht] then ct+1
j ← ∆

t−Γt
j

j

14: kb ← 0, ∆t ← 0, t← t+ 1 , transmit wt to sub-centers {j}j∈[Ht]

15: end if
16: until Convergence
17: Sub-centers:
18: Do Sub-centers Procedure in parallel from Algorithm 2

where Fj,i(w) = Eξ∼Dj,i
[fj,i(w; ξj,i)]. The fj,i(·) is the local loss function of client i in sub-

center j. The ξj,i represents the data samples with local dataset Dj,i on client i in sub-center
j, and the ξj,i ̸= ξj,i′ if i ̸= i′ which indicates data heterogeneity.

Additionally, we aim to minimize the global objective across amount of M sub-centers:

min
x∈Rd

F (w) :=
1

M

M∑
j=1

Fj(w), (2)

where Fj(w) = Eξ∼Dj
[fj(w; ξj)]. Dj is the overall data distribution in sub-center j. The

fj(·) is sub-center fusion loss. In this work, we use t to represent global steps (global aggrega-
tion rounds), and focus on the nonconvex and smooth optimization problem for F (·). Con-
sequently, the objective F (wt) can be equivalently expressed as F (wt) := 1

M

∑M
j=1 Fj(w

t).
Recall that, when the global model is transmitted to the sub-center and clients for updates,
at this point we have w = wj = wj,i.

2.2. Sub-center Local Proximal Method

Incorporating a regularizer term in local client model training can enhance alignment be-
tween local and global models, as exemplified by FedProx. However, studies have shown
that such approaches sometimes fail to converge to the global stationary point (Zhang et al.,
2021; Mitra et al., 2021).

To enhance the effect of the local regularizer term, incorporating an additional inner
product term can help mitigate the gap between the local model wt

i and the fusion model wt
j
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Algorithm 2 HGA-FL-Sub

1: Input: w1, ηl, {ni}
Nj

i=1, n,[m],{nj}j=|[m]|
j=1 ;

2: Sub-centers Procedure:
3: for each j ∈ [m] Sub-center j in parallel do
4: tj ← 1, w0

j ← w0, ∇Fj,i(w
0
j,i) = 0, h0j = 0, α > 0

5: repeat
6: if Global wt update then
7: Receive wt, w

tj−1
j ← wt asynchronously

8: Clients ∀i ∈ [nj ] , w
tj−1
j,i ← w

tj−1
j

9: end if
10: for client i ∈ [nj ] in parallel do

11: w
tj
j,i = argmin

θ
{Fj,i(θ)−

〈
∇Fj,i(w

tj−1
j,i ), θ

〉
+

α

2
∥θ − w

tj−1
j ∥2}

12: ∇Fj,i(w
tj
j,i) = ∇Fj,i(w

tj−1
j,i )− α(w

tj
j,i − w

tj−1
j )

13: Transmit client w
tj
j,i to sub-center j

14: end for
15: h

tj
j = h

tj−1
j − α 1

Nj

∑
i∈[nj ]

(w
tj
j,i − w

tj−1
j )

16: w
tj
j = 1

Nj

∑
i∈[nj ]

w
tj
j,i −

1
αh

tj
j

17: if tj == R then

18: Evaluate Γt
j , ∆

t−Γt
j

j = w
tj
j − w

tj−R
j

19: Transmit ∆
t−Γt

j

j to Global Server, tj ← 1
20: end if
21: tj ← tj + 1
22: until Global Server stop
23: end for

(Acar et al., 2021). Thus, drawing inspiration from FedDyn (Acar et al., 2021) and FedPD

(Zhang et al., 2021), for client i in sub-center j, we can obtain the local model w
tj
j,i update

function from a proximity operator:

w
tj
j,i = argmin

θ
{Fj,i(θ)−

〈
∇Fj,i(w

tj−1
j,i ), θ

〉
+

α

2
∥θ − w

tj−1
j ∥2}, (3)

where tj denotes the local aggregation index within sub-center j. Owing to the asynchronous
and parallel model fusion across sub-centers, tj is independent of other sub-centers and the

global step t. The inner product term < ∇Fj,i(w
tj−1
j,i ), θ > represents the linear approxima-

tion (first-order Taylor expansion) of the function Fj,i(θ) around the point wj,i. Considering
the first order condition in the objective function from Equation (3) for local optima, we
can have a local gradient update function that satisfies:

∇Fj,i(w
tj
j,i) = ∇Fj,i(w

tj−1
j,i )− α(w

tj
j,i − w

tj−1
j ). (4)
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Referring from FedDyn (Acar et al., 2021), inside sub-center j we have sub-center j
aggregation function:

h
tj
j = h

tj−1
j − α

1

Nj

∑
i∈[nj ]

(w
tj
j,i − w

tj−1
j ), (5)

w
tj
j =

1

Nj

∑
i∈[nj ]

w
tj
j,i −

1

α
h
tj
j , (6)

where Nj is the number of clients participating in the sub-center j fusion at global step t.

The h
tj
j is the state variable for model changes across each sub-center fusion round, and

h0j = 0. Equations (5) and (6) are applied in lines 15 and 16 within Algorithm 2.

After several local aggregations within each sub-center, the sub-center model wj is sent
to the global center. We adopt a surrogate gradient Gt

j for the sub-center model update
at each sub-fusion round, similar to FedLin’s global surrogate approach (Proposition 1 in
(Mitra et al., 2021)). Consequently, in our sub-center model update process, we define

E|wtj
j −w

tj−1
j |2 = E|ηsG

tj
j |2 = η2sE|∇Fj(w

tj
j )|2, where Gt

j is the unbiased surrogate gradient

estimator from Fj(w
t
j), and we have the following proposition:

Proposition 1 For any step tj within the sub-center update, we denote ηsG
tj
j = w

tj
j −w

tj−1
j

following the sub-center client model update rule (4). The surrogate learning rate ηs of sub-
center satisfies:

η2s ≤
2 + 2L2

α2
. (7)

Detail proof of Proposition 1 is provided in the Supplementary Material.

2.3. Global Aggregation

The global server performs asynchronous FL aggregation using a buffer of capacity K,
updating the global model upon accumulating K sub-center models. Each sub-center j

sends the model update difference ∆
t−Γt

j

j = wt
j − w

t−Γt
j

j after local aggregation, where t

denotes the global model wt update step. The real-world time duration between wt and
wt−1 varies since t represents a global fusion step, not a real-world time unit. Let T̂t and
Γ̂t
j = Γt

j · (T̂t − T̂t−1) denote the real-world time step at t and delay, respectively. Our
experiments use real-world time steps, with further details described in Section 4.1.

Let Ht = {wt
j}Kj=0 denote the set of sub-center models collected in the global buffer at

step t. The global server updates the global model from wt to wt+1 using the model change
and offset control variable vt. During the global update at t, let ct = 1

M

∑M
j=1 c

t
j represent

the average model difference accumulation across sub-centers (Wang et al., 2023), where

ctj = ∆
t−ζtj
j if j /∈ Ht, else ctj = ∆

t−Γt
j

j if j ∈ Ht (Algorithm 1, Line 9).

Global Update. The global change variable is ∆t =
∑

j∈[Ht]
∆

t−Γt
j

j , which is calculated

through a set of sub-center model differences from the buffer. The offset between ∆
t−Γt

j

j

and ct is established by computing the average difference vt = 1
K

∑
j∈[Ht]

(ct −∆
t−Γt

j

j ). The
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global model update is given by wt+1 = wt−ηg(
1
K∆t−vt), where ηg is the global step rate.

After updating, ctj is reassigned: if j ∈ [Ht], then ctj ← ∆
t−Γt

j

j ; otherwise, ctj maintains its

value unchanged in the new steps, and ctj = ∆
t−ζtj
j at this time.

Combination of Global and Sub-center. At the initial step, the global sub-center
server broadcasts wt to each sub-center and propagates it to every client. Then, each sub-
center conducts synchronous federated learning with its clients. Clients train their models
to local optimal stationary points based on their proximity operator function argminθ. The
α with the sub-center update rule governs the update of wt

j , contributing to the global ∆t in

the asynchronous buffered update function wt+1 = wt− ηg(
1
K∆t− vt). Local training steps

of clients are not considered for theoretical analysis, given the convenience of the proximity
operator. To analyze the combined aggregation tiers, we only need to focus on evaluating
convergence behavior across different heterogeneity conditions using parameters ηg and α.
The complete process of the HGA-FL method is outlined in Algorithm 1.

3. Convergence Analysis

For analyzing the convergence of our algorithm, the common properties are listed in the
Supplementary Material.

3.1. Assumptions and Relative Properties

Assumption 1 (Bounded gradient delay). The Γt
j is defined as the step difference between

the global step point at which the sub-center j started to compute the gradient and the step
t when begin global aggregation. It represents the delay for sub-center j at global fusion step
t. We assume that the maximum gradient delay is bounded,

Γmax = max
t∈[T ],j∈[Ht]

{Γt
j} ≤ ∞. (8)

Assumption 2 (Bounded state delay). We assume that the maximum state gradient delay
is bounded,

ζmax = max
t∈[T ],j∈[m]

{ζtj} ≤ ∞. (9)

Assumption 1 is a common assumption adopted in convergence analysis for asynchronous
FL (Wang et al., 2023).

Assumption 3 For each client i ∈ [nj ], the function Fj,i(w) : R
d → R is L-smooth (i.e.,

L is Lipschitz constant) with L > 0 for each sub-center, as follows when ∀w,w′:

∥∇Fj,i(w)−∇Fj,i(w
′)∥ ≤ L∥w − w′∥, (10)

Fj,i(w)− Fj,i(w
′) ≤ ⟨∇Fj,i(w

′), w − w′⟩+ L

2
∥w − w′∥2. (11)

Assumption 4 (Bounded variance within sub-center). For all clients i ∈ [nj ], the variance
of a stochastic gradient:

Eξj,i∼Dj,i
∥∇fj,i(w; ξj,i)−∇Fj,i(w)∥2 ≤ σ̂2

j,i. (12)
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The σ̂2
j,i denotes the bound for the variance of stochastic gradients of local client i on a

single data point ξj,i. The Dj,i is the data samples on client i in sub-center j.

Assumption 5 (Bounded diversity within sub-center). For all clients i ∈ [nj ], the variance
of a local gradient satisfies:

1

Nj

Nj∑
i=1

E∥∇Fj,i(w)−∇Fj(w)∥2 ≤ σ̄2
j . (13)

We have new assumptions to address data heterogeneity across sub-centers as follows.

Assumption 6 (Bounded variance across sub-center). The variance of stochastic gradi-
ents in each sub-center j is bounded

Eξj∼Dj
[∥∇fj(w; ξj)−∇Fj(w)∥2] ≤ σ̂2

j , (14)

where σ̂2
j = maxi∈[nj ] σ̂

2
j,i and ∇fj(w; ξj) denotes the average stochastic gradient on data set

Dj for sub-center j.

Moreover, let ∇fj(w;Dj) =
1

|Dj |
∑

ξi∈Dj
∇fj(w; ξj) represent the averaged stochastic gradi-

ent computed over dataset Dj where Dj = ∪
Nj

i=1Dj,i. And ∇Fj(w) denotes the gradient of
sub-center objective. Consequently we extend Assumption 6 as follows:

E[∥∇fj(w;Dj)−∇Fj(w)∥2] ≤ σ2
s , (15)

where σ2
s = maxj∈[m] σ̂

2
j . The σ2

s denotes the maximum variance of stochastic gradients
across all sub-centers.

Assumption 7 (Bounded global diversity). Extending from Assumption 5, the variance
of the gradient for each sub-center j ∈ [m] from the global gradient is bounded:

1

M

M∑
j=1

[∥∇Fj(w)−∇F (w)∥2] ≤ σ2
g . (16)

For all sub-center objective functions, the Fj(w) satisfies the property of Assumption 7.
Detailed explanations for the assumptions are provided in the Supplementary Material.

3.2. Main Theorem and Analysis

In our method, referring to Theorem 4 in (Acar et al., 2021), with α ≥ 20L, under Assump-
tion 4 and 5, via smooth objective Fj(·), the convergence rate under nonconvex case can be
represented to ensure satisfaction for each sub-center j as follows

E

 1

R

R∑
tj=1

∥∥∥∇Fj

(
γ
tj−1
j

)∥∥∥2
 ≤ 1

R
(3α(Fj(w

0
j )− F ∗

j ) + 30L3 1

α
Bj), (17)

where Bj = 1
Nj

∑
i∈[nj ]

E∥w0
j,i − w0

j∥2. The w0
j is sub-center model in the first round of

sub-center internal communication. The w0
j,i denotes the model parameter of client i in the

first round inside sub-center j. The γ
tj
j = 1

Nj

∑
i∈[nj ]

w
tj
j,i and F ∗

j = minw Fj(w).
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Theorem 1 Considering all local workers participate in training within sub-center under
Assumptions 1 to 7 with nonconvex and smooth conditions. Let ζ2max ≥ 1 and Γ2

max ≥ 1. For

global step rate ηg ≤
5
√
6(
√

16(4Γ2
max+ζ2max)+1−1)

4(4Γ2
max+ζ2max)

and α ≥ 10
√
6(2 + 2L2)LR with Proposition

1, then the global rounds for algorithm 1 satisfies

1

T

T∑
t=1

E∥∇F (wt)∥2 ≤ 2α

CηgRT
(F (w1)− E[F (wT+1)]) + 5RL2(4− 3L)

BC2

α2K
σ2
s

+ 15R2L4ηg
BC3

α3K
σ2
s + 60R3L5η2g(4Γ

2
max + ζ2max)

BC4

α4K
σ2
s

+ 12R2L2η2g(4Γ
2
max + ζ2max)

(4M +K)C2

α2K
σ2
g + 3RLηg

(4M +K)C

αK
σ2
g ,

(18)

where C =
√
2 + 2L2 and B = 5K + (24M + 6K)R.

Theorem 1 states the convergence of Algorithm 1 to a stationary point.

Corollary 1 For nonconvex case, under the same conditions as Theorem 1, by choosing

ηg = 1√
T

and α =

√
(2+2L2)R

K , we can have convergence rate of HGA-FL satisfies

1

T

T∑
t=1

E∥∇F (wt)∥2 = O

(
3
√
RL(4M +K)σ2

g√
TK

)
+O

(
F (w1)− F ∗
√
TKR

)
+O

(
15L4

√
KRBσ2

s√
T

)

+O
(
60RL5(4Γ2

max + ζ2max)KBσ2
s

T

)
+O

(
12RL2(4Γ2

max + ζ2max)(4M +K)σ2
g

T

)
,

(19)
where B = 5K+(24M+6K)R, and F ∗ is the optimal point of the objective. The O swallows
all other constants.

Note that under the choice of ηg from Corollary 1, we have global communication fusion

round T to satisfy the constraint ηg ≤
5
√
6(
√

16(4Γ2
max+ζ2max)+1−1)

4(4Γ2
max+ζ2max)

from Theorem 1. The

proof process of Theorem 1 and Corollary 1 are presented in Supplementary Material D.
Remark : The second term on the right-hand side of Corollary 1 conforms to the O( 1√

T
)

convergence rate w.r.t. T , exhibits stable non-convex convergence behavior. This stability
reduces noise sensitivity, which is a prevalent evaluation characteristic in asynchronous FL
(Toghani and Uribe, 2022; Wang et al., 2023), potentially avoiding local minima trapping
by enabling more exploration, benefiting DNN training against overfitting. From Corollary
1, it’s evident that a larger K may marginally accelerate convergence, as K exists in the
denominator of the terms on the right-hand side. However, when the sub-center fusion
rounds R significantly exceed K, it diminishes the impact of K. This also suggests that in
practical scenarios, the associated σ2

g with R tends to be more substantial.
When K = 1, our method reduces and exhibits similarities to a raw global asynchronous

FL method (Xie et al., 2019; Nguyen et al., 2022). From Theorem 1, with a decreased
number of sub-center fusion rounds R, it requires more T to converge to the same stationary
point of the global model’s objective. A larger buffer size K helps reduce T to achieve the
global optimum stationary point. If M = 1 and K = 1, the algorithm 1 reduces to a single
center FL with the local consistent regularization method.
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Table 2: Comparison of multi-tiered baselines for top test accuracy (%) with LDA αd = 0.2,
100 clients, sub-center amount M = 8 and sub-center fusion rounds R = 8 (100% F-MNIST
and 10% EMNIST samples) across various global buffers K.

Alg.
K = 3 K = 5 K = 7

EMNIST F-MNIST EMNIST F-MNIST EMNIST F-MNIST

FedBuff-G +

S-Avg 56.26 80.59 57.72 79.57 17.89 62.79

S-Prox 57.78 81.10 57.69 78.87 16.25 70.01

S-Dyn 37.61 65.36 16.06 35.70 7.25 16.12

CA2FL-G +

S-Avg 25.25 72.74 35.26 77.13 42.80 79.01

S-Prox 29.08 74.05 38.58 78.27 45.44 79.97

S-Dyn 64.30 83.68 68.69 84.74 71.30 85.43

HGA-FL 74.77 86.66 76.61 87.12 77.46 87.13

4. Experiments and Result

4.1. Experiment Setting

Datasets and Models. We evaluate on EMNIST, FashionMNIST (F-MNIST) and CIFAR-
10 datasets. EMNIST has 47 classes, 112,800 training. For non-i.i.d. and imbalanced data,
we use Label Dirichlet Allocation (LDA) and local long-tailed (LLT) partitioning (Tang
et al., 2021). LDA draws samples from Dir(αd) per client, where αd is the Dirichlet con-
centration factor. For LLT in experiments, we default to using 200 samples per client
(Ns = 200). We train with the classical two-Convolution Layers (2-Conv) DNN suggested
in many works (Das and Patterson, 2021) and Resnet-18 (Acar et al., 2021). Except for
CIFAR-10, without specific statement, we use 2-Conv for all datasets.

Staleness Setting. Practically, we use global time step t̂ to serve as the foundational
time unit. This t̂ derives from the average computational time required for mini-batch
training across all local workers. The duration between consecutive global fusion steps t and
t+ 1 depends on t̂, relative to the average time taken for mini-batch gradient computation
across all workers.

Diverse Multi-center FLs. We propose a set of two-level hierarchical joint aggrega-
tion FL methods combining asynchronous and synchronous approaches. At the upper level,
we employ asynchronous global aggregation using FedAsync, FedBuff and CA2FL base-
lines, denoted as FedAsync-G, FedBuff-G, and CA2FL-G, respectively. At the lower level,
we employ synchronous sub-center aggregation with FedAvg (S-Avg), FedProx (S-Prox),
and FedDyn (S-Dyn) baselines.

We employ the global aggregation component of HGA-FL from Algorithm 1 Line 3 to
Line 16 denoted as HGA-FL-G, alongside diverse sub-center fusion methods to assess their
performance. S-Avg, an example of sub-center synchronous fusion within the hierarchy
framework, is depicted in Algorithm 3 from Supplementary Material.

Common Settings. We adopt default hyperparameters for both asynchronous and
synchronous approaches from their original works. For HGA-FL, unless stated otherwise,
we default to ηg = 0.1, α = 2. All other common settings are M = 8, K = 3, Γmax = 500,
R = 8, T = 200, LDA α = 0.2 with 10% dataset sample quantity, 50 clients, 2 local epochs
for global test accuracy.
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Figure 3: Effect of α and ηg
in HGA-FL.

0 25 50 75 100 125 150 175 200
Communication Rounds

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

FashionMNIST, K=5

FedBuff-G + S-Avg
FedBuff-G + S-Dyn
FedBuff-G + S-Prox
CA2FL-G + S-Avg
CA2FL-G + S-Dyn
CA2FL-G + S-Prox
HGA-FL

(a) Diverse MC, F-MNIST
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(b) Diverse MC, EMNIST

Figure 4: Comparison of
multiple center methods.
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Figure 5: Global Asyn. vs
Syn.

4.2. Result and Analysis

In this section, we experimentally compare the efficiency and extendibility of our hierarchical
HGA-FL with other combined asynchronous and synchronous FL methods.

Effect of ηg and α. To evaluate hyperparameter sensitivity, we utilize the Fash-
ionMNIST dataset in HGA-FL, varying ηg and α for global and sub-center aggregation,
respectively. We employ 100 clients with 5 local epochs, R = 5, Ns = 200, LLT αl=0.9, a
2-Conv DNN, K = 4, M = 8 and Γmax = 500 relative to t̂. Results are depicted in Figure
3. Our findings indicate that, ηg value ranging from 0.1 to 0.5 and α values ranging from 1
to 2 demonstrate optimal performance, consistent with the constraints outlined in Theorem
1 and Corollary 1. More analysis can be found in the Supplementary Material.

Effects of Diverse Global Asynchronous methods with Buffer. We construct a
set of 3-tier architecture of two level aggregation combination methods. For global asyn-
chronous methods, we adopt baseline FedBuff-G, and CA2FL-G. We incorporate sub-center
synchronous baseline S-Avg, S-Prox and S-Dyn. We compare these combined methods with
our HGA-FL methods based on global model accuracy, which indicate the generalization,
using the common setting. The results are shown in Table 2. Due to page limitations, we
present part of the results in Figure 4. We observe that a large buffer size K helps improve
global test accuracy and our method outperforms other combined algorithms, indicating its
strong generalization capabilities.

Effects of HGA-FL-G with Diverse Sub-center Aggregation. We compare HGA-
FL to an integrated version HGA-FL-G incorporating S-Avg and S-Prox sub-center aggre-
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gations, using LDA αd = 0.2. We also evaluate SCAFFOLD-ExP (Jhunjhunwala et al.,
2023) for sub-center aggregation (S-SCAFF-ExP), an optimized SCAFFOLD version with
default settings in their original paper. And the results in Table 4 show that HGA-FL
outperforms others on EMNIST and F-MNIST datasets.

Table 3: Comparison of HGA-FL and asynchronous/synchronous global fusion with diverse
synchronous sub-center fusion methods via LDA αd = 0.1 and 50 clients

Alg.
T = 200, Acc. Achieve Acc. 54%

EMNIST Global T Time Step t̂ Speedup

FedAsync-G +

S-Avg 54.2% 136 1875 28.30×
S-Prox 55.1% 111 1550 34.24×
S-Dyn 61.47% 9 175 303.28×

S-SCAFF-ExP 10.06% − − −

Sync Avg +

S-Avg 54.71% 118 53074 1×
S-Prox 54.8% 123 55304 0.96×
S-Dyn 57.42% 7 3568 14.88×

S-SCAFF-ExP 13.45% − − −
HGA-FL 73.3% 14 1006 52.76×

Alg. EMNIST F-MNIST

HGA-FL-G +

S-Avg 61.14 75.62

S-Prox 61.99 76.33

S-SCAFF-ExP 11.16 41.42

HGA-FL 72.67 80.12

Table 4: Comparison of top global
test accuracy (%) between HGA-FL
and sub-center baselines combined with
HGA-FL-G using LDA on 50 clients.

Alg.
LDA αd = 0.6 LDA αd = 0.2

2-Conv ResNet18 2-Conv ResNet18

FedBuff-G + S-Dyn 12.01 20.84 11.15 16.08

CA2FL-G + S-Dyn 15.91 34.64 15.59 26.58

HGA-FL 21.04 37.45 19.13 32.68

Table 5: Comparison of top global test accuracy
(%) on 10% CIFAR-10 samples via LDA with
2-Conv DNN and ResNet-18.

Compare to Asynchronous and Synchronous Global Aggregation. We compare
our method with both baseline asynchronous and synchronous global aggregation methods,
each combined with different sub-center fusion methods. For global methods, we adopt
FedAsync global fusion (FedAsync-G) and synchronous averaging (Sync Avg) methods.
Results are presented in Table 3 and Figure 5. Notably, multi-center FLs with global
synchronous method, the Sync Avg, require more global time steps t̂ to achieve the same 54%
accuracy compared to asynchronous global methods. While HGA-FL outperforms other
methods overall in global accuracy, FedAsync-G with S-Dyn exhibits faster convergence.
However, FedAsync-G’s training curve displays significant fluctuations and instability (see
Figure 5 (a)).

Compare Across Models. We compared HGA-FL to global methods (FedBuff-G and
CA2FL-G) with S-Dyn on both 2-Conv DNN and ResNet18 models. So we exclusively used
S-Dyn in the sub-center for this experiment. Results from Table 5 indicate that HGA-
FL maintains its superiority over most alternatives. These findings highlight the strong
generalizability of the HGA-FL method among asynchronous global methods.

Effect of Staleness. We conducted a comparison between HGA-FL and HGA-FL-G
using S-Avg and S-Prox with different maximum delays Γmax. Results from Table 6 and
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Alg. Γmax=100 Γmax=500 Γmax=2500

HGA-FL-G +
S-Avg 62.22 61.11 60.94

S-Prox 63.29 62.02 61.87

HGA-FL 74.21 72.71 73.27

Table 6: Comparison of HGA-FL-G com-
bined with various synchronous sub-center
FL methods by top global test accuracy
(%) via Γmax, LDA EMNIST, K = 3,
M = 8 and 50 clients.

Alg. R = 4 R = 8 R = 16 R = 32

HGA-FL
M=8 39.3 45.39 50.49 53.51
M=16 37.09 41.6 47.54 52.36
M=20 35.54 41.48 47.29 51.92

Table 7: Top global test accuracy (%) of
HGA-FL with varying R and M on LLT
EMNIST,K = M

2 , T=500 and 100 clients.

Figure 12 in the Supplementary Material show that a larger Γmax indeed affects the model’s
test accuracy. However, HGA-FL continues to outperform, even with Γmax = 2500.

Effect of M and R. We explore various combinations of sub-center numbers M and
sub-center aggregation rounds R in HGA-FL comparisons. Using a buffer size K equal to
half the value ofM , we deploy 100 clients to the EMNIST dataset following LLT distribution
with Ns = 100 and αl = 0.9. The results in Table 7 reveal that a smaller number of sub-
centers M with corresponding buffer size K achieve a higher global model test accuracy.
This suggests that a larger number of sub-centers engaged in fusion with the same total
number of clients may introduce more gradient variance and model drift, ultimately reducing
global test accuracy. These findings are consistent with the convergence rates specified in
Theorem 1 and Corollary 1.

5. Conclusion

With the prevalence of training deep learning models involving non-convex optimization,
collaborative multi-organization model training has garnered attention to mitigate latency
and heterogeneity impacts. Our novel HGA-FL method facilitates joint training across
multi-level, multi-center network structures, benefiting geographically distributed multiple
regional centers with synchronous intra-center yet asynchronous inter-center aggregations
due to latency. Compared to existing multi-tier FL methods, HGA-FL significantly improves
overall training efficiency and generalization. Additionally, our HGA-FL consistently out-
performs other proposed multi-center FL based on baselines in terms of global accuracy,
generalization, and often aggregation time efficiency.
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