

000 001 002 003 004 005 ENFORCING AXIOMS FOR AI ALIGNMENT UNDER 006 LOSS-BASED RULES 007 008

009 **Anonymous authors**
010 Paper under double-blind review
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Recent alignment methods for large language models, most notably reinforcement learning from human feedback (RLHF), often train an auxiliary reward model to minimize a loss function on binary preference data over model responses. We study a theoretical setting inspired by principle-guided methods such as Constitutional AI, in which a small set of principles (e.g., helpfulness, toxicity) act as “voters” that guide binary comparisons—such as preferring the less toxic response. We model these principles as linear directions in an embedding space of responses, a simplifying assumption motivated by the Linear Representation Hypothesis—concepts are linear directions in representation-space—a useful first-order approximation in practice. In this *linear social choice model*, Ge et al. (2024) showed that an optimal linear reward model can violate Pareto optimality (PO): From the principles-as-voters lens, this means a response A can be less helpful and more toxic than B, yet still receive a higher reward. We analyze axiomatic violations in the linear social choice setting and probe the robustness of negative results under realistic assumptions. We show that added expressivity does not resolve the issue: polynomial reward models can still fail PO. We then offer a pragmatic alternative showing that when the data uniformly covers the embedding space, broad classes of loss-based rules in the limit exactly recover the axiomatic guarantees. This yields a recipe for constitutional-style alignment with provable guarantees: enforce balanced coverage *via dataset design* to restore axiomatic guarantees without abandoning standard training pipelines.

1 INTRODUCTION

Many recent alignment methods follow a common pipeline: collect pairwise (binary) preferences over model responses, fit a reward (or preference) model to these comparisons, and then optimize the base model to minimize a loss correlated with aligned behavior. In the classical human-in-the-loop setting of Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017), human annotators select the preferred response between candidate responses. Rather than eliciting unguided preferences, Anthropic introduced principle-oriented feedback (Bai et al., 2022a) in which annotators judge responses against explicit principles—helpfulness, honesty, and harmlessness (HHH); this principle-guided supervision later informed Constitutional AI, which formalizes a written set of principles to guide binary comparisons of model responses (Bai et al., 2022b). We use “constitutional-style” as an umbrella term for such principle-guided supervision.

Adopting a social-choice perspective on constitutional-style alignment, we treat principles as voters that evaluate pairs of model responses by judging which better adheres to the relevant principle. From this perspective, a minimal requirement - “axiom” - for any aggregation method is Pareto Optimality (PO) (also known as Unanimity (Arrow, 1951)): e.g., in the HHH framework, if response A is more helpful, more honest, and more harmless than B, then A should receive higher reward and thus be more likely to be generated by the model. We study a setting in which principles (such as HHH) are modeled as linear directions in a representation space. This is a simplifying assumption motivated by the Linear Representation Hypothesis (LRH) (Park et al.), which posits that some high-level

054 concepts are well-approximated by linear features in learned embeddings and which has
 055 been operationally useful in mechanistic interpretability.
 056

057 Formally, most of our results lie within the *linear social-choice* framework of Ge et al.
 058 (2024): utilities over a fixed representation are linear, pairwise comparisons yield binary
 059 labels, and optimizing those labels learns a linear reward model. Although the linear social-
 060 choice framework was introduced as a model for RLHF, we contend that both the linearity
 061 assumption and axioms such as PO are more realistic and salient in constitutional-style
 062 alignment with a small number of principles.¹
 063

064 Within the linear social choice model, the authors show that, perhaps surprisingly, an optimally
 065 trained linear reward can violate Pareto optimality (PO): everyone prefers response
 066 A to response B, yet B receives higher reward. The concrete counterexample involves only
 067 two (weighted) principles, thus covering the HHH scenario; we discuss it as a warm-up in
 068 [Section 3](#). Finding this result counterintuitive, we ask:
 069

070 *How robust are axiomatic violations under loss-based training?*
 071

072 1.1 OUR CONTRIBUTION 073

074 We revisit the axiomatic violations through a lens which is compatible with training
 075 pipelines. As part of our warm-up in [Section 3](#), we provide new intuition on why the PO
 076 violation occurs in the first place, by providing a simplified minimal example that clarifies
 077 what goes wrong. While Ge et al. (2024) show that a social choice combinatorial approach
 078 can recover axiomatic guarantees, our paper focuses on approaches to obtain guarantees
 079 that align with modern ML pipelines—namely, loss-based rules. Our main contributions
 080 are three-fold.
 081

- 082 **1. Beyond linear rewards.** A natural hypothesis is that linear rewards with a frozen
 083 embedding are simply too restrictive; perhaps keeping voters linear but using a
 084 more expressive reward model, such as bounded-degree polynomials, restores PO.
 085 We show that, again surprisingly, this is not the case: even with linear voters and
 086 expressive reward models, violations of PO (and of another natural axiom called
 087 Pairwise Majority Consistency) persist; see [Section 4](#).
 088
- 089 **2. Generalization.** In [Section 5](#), we adopt an axiomatic framework on the embedding
 090 space—rather than a fixed train set—and define a generalized version of Pareto
 091 Optimality (PO). This recognizes the key feature of the linear model - directional
 092 differences between candidates matter, not their embeddings. With finite data, we
 093 cannot expect to satisfy these axioms exactly; This aligns with the core role of
 094 reward models: their value is generalization, so the key question is how well any
 095 desirable property transfers to unseen data.
 096
- 097 **3. Data-centric perspective.** While social-choice axiomatic analyses typically rea-
 098 son from a *worst-case perspective*, real-world training dynamics are far more sensi-
 099 tive to how we curate and sample (preference) data. Recognizing the limitation of
 100 the worst case approach, we ask: can we *choose* binary comparison queries so that
 101 axiomatic guarantees are provably recovered? In [Section 5](#), we show that a random
 102 sampling scheme already suffices and in the limit we achieve perfect PO. This sug-
 103 gests practical levers (data inspection, reweighting or careful dataset design) when
 104 combinatorial social-choice algorithms are hard to deploy in real systems.
 105

106 Results marked with (♦) have their proofs deferred to the appendix.
 107

108 1.2 RELATED WORK 109

110 The field of social choice (Arrow et al., 2010; Brandt et al., 2016) offers a long tradition of
 111 axiomatic guarantees that provide a lens through which to compare different aggregation
 112 rules. This perspective is directly relevant to preference-based alignment: Reinforcement
 113

¹With many raters, agreement on a binary comparison becomes increasingly unlikely.

108 Learning from Human Feedback (RLHF) (Christiano et al., 2017) and Nash Learning from
 109 Human Feedback (NLHF) (Munos et al., 2024) have natural analogues in social choice. The
 110 optimal solution to the Bradley–Terry loss in RLHF is known to induce a ranking that is
 111 equivalent to the Borda ranking from social choice theory (Anderson et al., 2009; Siththan-
 112 ranjan et al., 2024). Formally, NLHF coincides with the von Neumann winner defined
 113 in Dudík et al. (2015), which in turn matches an old rule from social choice, Fishburn’s
 114 maximal lotteries (Fishburn, 1984).² Building on this connection, several position papers
 115 have recently argued for social choice as a useful lens on RLHF and alignment more broadly
 116 (Conitzer et al., 2024; Dai & Fleisig).

117 Among the first wave of technical results that has emerged since, most relevant to us is the
 118 work by Ge et al. (2024) who propose the linear social-choice model where voters are linear
 119 directions over a fixed embedding. Building on prior work by (Noothigattu et al., 2020)
 120 which explores the axiomatic properties of reward functions defined as MLE estimators of
 121 underlying random utility models, they analyze the ranking over a fixed candidate set in-
 122 duced by an optimal linear reward with respect to axioms including Pareto optimality (PO)
 123 and Pairwise Majority Consistency (PMC). Because these axioms can still be violated in
 124 that setting, they adapt a combinatorial social-choice rule to the linear social-choice model
 125 to obtain the guarantees. The closest analogue in social choice to linear preferences over
 126 a fixed embedding arises in the literature on restricted preference domains (over rankings)
 127 (Elkind et al., 2022).

128 Procaccia et al. (2025) analyze clone robustness and show that an appropriate reweight-
 129 ing of the Bradley–Terry loss can be made to satisfy their axiom. Most existing work at
 130 the intersection of alignment and social choice adopts the classic social-choice setting with
 131 unstructured alternatives, in contrast to the metric setting we study here. Recent work in
 132 this vein includes representative social choice proposed by Qiu (2024), the extension of the
 133 distortion framework of Procaccia & Rosenschein (2006) to preference distributions by Gölz
 134 et al. (2025), an analysis of RLHF when each comparison is labeled by a single annotator
 135 by Xiao et al. (2025), and a proposal towards proportional alignment by Kim et al. (2025).

2 PRELIMINARIES

137 **Social choice model.** The set of alternatives is the d -dimensional space \mathbb{R}^d . A reward
 138 function $r : \mathbb{R}^d \rightarrow \mathbb{R}$ induces a (weak) ordering \preceq_r over the set of all alternatives \mathbb{R}^d by
 139 ranking alternatives according to their rewards, namely $a \preceq_r b \iff r(a) \leq r(b)$ for all
 140 $a, b \in \mathbb{R}^d$.

141 There are n voters, and each voter i has a (weak) ordering \preceq_i over the set of alternatives \mathbb{R}^d .
 142 Unlike in the usual social choice setting, we do not observe the full orderings, but instead
 143 we are only offered a partial view of each voter’s preferences. For each voter i , we observe
 144 a list of pairwise (strict) comparisons. Formally, for each i we are given a nonempty finite
 145 set $P_i \subset (\mathbb{R}^d)^2$ that satisfies $(a, b) \in P_i \implies a \prec_i b$. A natural special case is when there
 146 is a set C of m candidates in \mathbb{R}^d and the sets P_i contain all³ pairwise comparisons between
 147 candidates in C , i.e., $P_i = \{(a, b) \in C^2 : a \prec_i b\}$.

148 In this context, a voting rule takes as input sets of pairwise comparisons P_1, \dots, P_n , one for
 149 each voter, and outputs a reward function whose induced ordering attempts to aggregate
 150 the voter preferences.

152 **Loss-based voting rules.** We restrict our attention to voting rules that output a reward
 153 function minimizing a total loss function. Given a particular loss function $\ell : \mathbb{R} \rightarrow \mathbb{R}$, we
 154 define the total loss incurred by reward function r as

$$\mathcal{L}(r) := \sum_{i \in [n]} \sum_{(a, b) \in P_i} \ell(r(a) - r(b))$$

158 ²Both concepts are Nash equilibria of games and coincide because the corresponding payoff
 159 matrices are related by a positive affine transformation; see (Wang et al., 2023; Maura-Rivero
 160 et al., 2025) for the explicit reference to maximal lotteries.

161 ³We assume that the set of candidates C is such that no two candidates are tied for any of the
 162 n voters, i.e., for any $a, b \in C$ either $a \prec_i b$ or $b \prec_i a$ holds.

162 where P_1, \dots, P_n are the sets of pairwise comparisons of the n voters, as described above.
 163 The voting rule defined by loss function ℓ outputs a reward function r minimizing the total
 164 loss \mathcal{L} .

165 We obtain the Bradley-Terry loss (Bradley & Terry, 1952; Zermelo, 1929) \mathcal{L}_{BT} used in RLHF
 166 by choosing the loss function ℓ to be the cross-entropy loss, i.e., $\ell_{BT}(x) := \log(1 + e^x)$.
 167

168 We will mention the precise assumptions on the loss function ℓ in the theorem statements
 169 later, but for now let us just think of ℓ as a strictly increasing function. Then the idea is
 170 that if some voter has ranked a over b in their set P_i , a reward function should be penalized
 171 for ranking b over a (i.e., for assigning a higher reward to b than a).
 172

173 **Linear social choice.** We will mostly focus on the linear social choice model, where the
 174 reward functions are linear, i.e., of the form $r_\theta(x) = \langle \theta, x \rangle$. In particular, in this context,
 175 a loss-based voting rule will minimize the total loss \mathcal{L} over the set of all linear reward
 176 functions. Furthermore, the voters are also assumed to have orderings that are induced by
 177 linear reward functions.
 178

179 **Axioms.** In this paper we will focus on the following two natural axioms.
 180

181 **Definition 1** (Pareto Optimality (PO)). A loss-based voting rule satisfies Pareto optimality
 182 (PO), if it outputs a reward function r that ranks any comparison $(a, b) \in \cap_i P_i$ correctly,
 183 i.e., $r(a) < r(b)$.
 184

185 In other words, if there exists a comparison between two candidates on which all voters
 186 agree, then PO requires the voting rule to also rank these candidates in the same way as
 187 the voters.
 188

189 **Definition 2** (Pairwise Majority Consistency (PMC)). An ordering \prec over all alternatives
 190 appearing in the instance is a PMC ordering, if it satisfies: $a \prec b$ if and only if a strict
 191 majority of voters rank a below b , i.e., $|\{i : (a, b) \in P_i\}| > n/2$. A loss-based voting rule
 192 satisfies PMC, if whenever a PMC ordering \prec exists, it outputs a reward function that
 193 induces \prec .
 194

195 Note that if a PMC ordering exists, then it is necessarily unique.
 196

193 3 REVISITING THE PARETO OPTIMALITY VIOLATION

197 The counterexample to PO provided by Ge et al. (2024) is constructed in \mathbb{R}^2 . It uses two
 198 (weighted) voters with direction vectors $v_1 = (1, 1)$ and $v_2 = (-1, 0)$ (their magnitudes are
 199 irrelevant) and six candidates in \mathbb{R}^2 , arranged as two triples. The key idea is to place one
 200 triple (a at $(2, 1)$, b at $(1, 1)$ and c at $(0, 0)$) so that the two voters disagree on the induced
 201 ordering of its three candidates; with suitable weights, however, the optimal direction is
 202 $(1, 0)$.
 203

204 Each candidate is then duplicated and the copies are perturbed within an ε -neighborhood
 205 of the originals. This replicates every pairwise comparison fourfold and adds an almost
 206 constant term to the loss from comparing each candidate with its own copy. By a generalized
 207 continuity argument, for sufficiently small ε the optimal linear reward for the perturbed
 208 instance remains close to the original one, since as $\varepsilon \rightarrow 0$ the new loss is (in the limit)
 209 a linear transformation of the old loss. Finally, one forces one of these copies, say c' , to
 210 approach $c = (0, 0)$ from a direction in the left half-space that makes both v_1 and v_2 strictly
 211 prefer c' to c , yielding the desired PO violation.
 212

213 This construction can be tightened to use only four candidates by duplicating a single point,
 214 as we do in the proof of Theorem 4.1. With three non-collinear candidates and any number
 215 of voters, PO is always satisfiable: optimal rewards (note that these are only unique up to
 216 an additive constant) of the unconstrained objective over these three points can always be
 217 realized by some $\theta \in \mathbb{R}^2$. Disagreement between voters (e.g., v_1 prefers $a \succ b \succ c$ while v_2
 218 prefers the reverse) acts like a *length constraint* in the Bradley-Terry loss. For a pair (a, b) ,
 219 the loss contains both
 220

$$\log(1 + e^{-\langle \theta, a - b \rangle}) \quad \text{and} \quad \log(1 + e^{-\langle \theta, b - a \rangle}),$$

(possibly with different weights). Letting $\|\theta\| \rightarrow \infty$ drives exactly one of these two terms to $+\infty$ while the other tends to 0; hence the loss penalizes unbounded $\|\theta\|$. (The same phenomenon holds more generally for losses bounded below but diverging to $\rightarrow \infty$ as their argument $\rightarrow \infty$.)

We next study a minimal example with one voter and three candidates where the optimal linear reward subject to a norm constraint violates PO. This instance provides insight into why PO can fail even without such explicit constraints on instances with multiple voters. Consider a single voter $v = (\varepsilon, 1)$ with $\varepsilon > 0$ and three candidates $a = (1, 0)$, $b = (0, 0)$, $c = (-\delta, \delta)$ where $0 < \delta \ll 1$. Constrain θ to unit length, $\theta = (\theta_1, \pm\sqrt{1-\theta_1^2})$ with $\theta_1 \in [-1, 1]$. The pairwise Bradley–Terry terms are

$$(a, b) : \log(1 + e^{-\langle \theta, a-b \rangle}) = \log(1 + e^{-\theta_1}),$$

$$(a, c) : \log(1 + e^{-\langle \theta, a-c \rangle}) = \log(1 + e^{-((1+\delta)\theta_1 \pm \delta\sqrt{1-\theta_1^2})}),$$

$$(b, c) : \log(1 + e^{-\langle \theta, c-b \rangle}) = \log(1 + e^{\delta(\theta_1 \pm \sqrt{1-\theta_1^2})}) \leq \log(1 + e^{\delta\sqrt{2}}),$$

since $\max_{\theta_1 \in [-1, 1]} (\theta_1 \pm \sqrt{1-\theta_1^2}) = \sqrt{2}$. Thus the (b, c) term is $O(\delta)$, while the (a, b) term strictly decreases as θ_1 increases, and for small δ the (a, c) term also decreases with θ_1 . Consequently, for sufficiently small δ any minimizer has θ_1 close to 1 and θ in the upper-right quadrant near the x -axis, yielding $\langle \theta, b \rangle > \langle \theta, c \rangle$ while $\langle v, b \rangle > \langle v, c \rangle$. Thus, the presence of other voters can impose a length constraint, and such length constraints lead to PO violations - even for a single voter. Intuitively, the norm constraint can be interpreted as a finite “budget”; directions (such as $a-b$) that are more common or are longer dominate the loss because “misclassification” in such directions contributes larger terms to the loss, and so these terms are prioritized given a length constraint.

4 POLYNOMIAL REWARD FUNCTIONS

In this section, we study an extension of the linear social choice model, where we allow more general reward functions. Namely, we consider polynomial rewards and show that PO and PMC fail even in this case.

Theorem 4.1. *Any loss-based voting rule with a loss function ℓ that is strictly convex, lower bounded, and differentiable with $\ell'(0) > 0$, fails to satisfy PO and PMC even with polynomial reward functions of bounded degree. Furthermore, this already holds in two dimensions and with three voters that all lie in the positive quadrant.*

In particular, this theorem applies to the Bradley–Terry loss, which thus fails to satisfy PO and PMC even with polynomial reward functions of bounded degree.

4.1 PROOF OF THEOREM 4.1

The instance consists of $m+1 := d(d+1) + 2$ candidates $c_0, c_1, c_2, \dots, c_m$, whose positions in \mathbb{R}^2 will be specified later. Furthermore, there are two weighted voters:

- Voter $v_1 = (1, 0)$ has a fraction $\alpha \in (1/2, 1)$ of the votes and ranks the candidates in the order

$$c_1 \prec c_0 \prec c_2 \prec c_3 \prec \dots \prec c_m.$$

- Voter $v_2 = (0, 1)$ has a fraction $1 - \alpha$ of the votes and ranks the candidates in the order

$$c_m \prec \dots \prec c_1 \prec c_0.$$

Note that the voters disagree on all comparisons, except the comparison between c_0 and c_1 , where they agree. The proof works for any $\alpha \in (1/2, 1)$, but we can set, e.g., $\alpha = 2/3$ to obtain a setting with three (unweighted) voters.

270 **Total loss function.** For now, consider allowing arbitrary reward values $r_0, r_1, \dots, r_m \in \mathbb{R}$
 271 for the candidates c_0, c_1, \dots, c_m . The total loss of the reward vector r on this instance can
 272 be written as

$$274 \quad \mathcal{L}(r) = \mathcal{L}(r_0, r_1, \dots, r_m) := \alpha \left(\ell(r_1 - r_0) + \sum_{j=2}^m \ell(r_0 - r_j) + \sum_{1 \leq i < j \leq m} \ell(r_i - r_j) \right) \quad (1)$$

$$277 \quad + (1 - \alpha) \sum_{0 \leq i < j \leq m} \ell(r_j - r_i)$$

$$278$$

279 Note that we can assume without loss of generality that, say, $r_1 = 0$, since the total loss
 280 does not change if we subtract r_1 from all rewards.

282 **Optimal rewards in the degenerate instance.** In our instance, we will position can-
 283 didate c_0 very close to c_1 . Thus, the instance will be closely related to a “degenerate”
 284 instance, where c_0 and c_1 lie at the same position. In that degenerate instance, the optimal
 285 (arbitrary) rewards are given by the following optimization problem:

$$288 \quad \min_r \mathcal{L}(r) \quad \text{s.t.} \quad r_0 = r_1 = 0 \quad (2)$$

$$289$$

290 **Claim 1 (♦).** *The optimization problem (2) has a unique solution $0 = r_1^* < r_2^* < \dots < r_m^*$.*

292 **Positioning of the candidates.** We use these optimal rewards $0 = r_1^* < r_2^* < \dots < r_m^*$
 293 to define the positions of the candidates. First, we let $c_1 = (0, 0)$ and $c_0 = (\delta, \delta)$ for some
 294 sufficiently small $\delta > 0$ to be specified later. Next, for each $j \in [d]$, we let $L_j := \{(x, y) \in$
 295 $\mathbb{R}^2 : y = -2x + j\}$, i.e., L_j is the line going through point $(0, j)$ with slope -2 . Then,
 296 for each $i = 2, 3, \dots, n$, we position candidate c_i at the unique point (x, y) on line L_j such
 297 that $-x - y = r_i^*$, where $j = \lceil (i-1)/(d+1) \rceil$. As a result, for any $i \geq 2$, candidate c_i is
 298 positioned at $(x, y) = (r_i^* + j, -2r_i^* - j)$, where $j = \lceil (i-1)/(d+1) \rceil$.

299 We give a more detailed description of the positioning of candidates c_i for $i \geq 2$. We let
 300 c_2 be the unique point (x, y) on line L_1 such that $-x - y = r_2^*$. Similarly, we let c_3 be the
 301 unique point (x, y) on line L_1 such that $-x - y = r_3^*$. We continue positioning points on L_1
 302 in this manner, until $d+1$ points have been positioned. Then, we switch to L_2 . In other
 303 words, c_{d+3} is the unique point (x, y) on line L_2 such that $-x - y = r_{d+3}^*$. We proceed in
 304 this manner, placing $d+1$ points on each line, and then moving on to the next line. Note
 305 that the number of candidates to be positioned (without c_0 and c_1 , since these have been
 306 fixed above) is exactly $m-1 = d(d+1)$, so we are able to position exactly $d+1$ candidates
 307 on each of the d lines L_1, \dots, L_d . See Figure 1 for an illustration. By construction the
 308 following holds.

308 **Claim 2.** *The positions of the candidates c_0, \dots, c_m are consistent with the rankings of
 309 voters v_1 and v_2 . Furthermore, the polynomial $p^*(x, y) = -x - y$ satisfies $p^*(c_i) = r_i^*$ for
 310 all $i \in [m]$ and ranks the candidates in the order $c_0 \prec c_1 \prec c_2 \prec \dots \prec c_m$.*

312 **Degree- d polynomial reward functions.** We consider the class of reward functions
 313 that are polynomials of degree at most d . As before, without loss of generality, we can
 314 restrict our attention to polynomials p that satisfy $p(c_1) = 0$, i.e., the constant term is zero
 315 (since c_1 lies at the origin). The optimal such polynomial reward functions are given by the
 316 following optimization problem:

$$317 \quad \min_p \mathcal{L}(p(c_0), p(c_1), \dots, p(c_m))$$

$$318 \quad \text{s.t.} \quad p(x, y) \text{ polynomial of degree at most } d$$

$$319 \quad p(0, 0) = 0 \quad (3)$$

$$320$$

322 As shown in Claim 2, the polynomial $p^*(x, y) = -x - y$ ranks c_1 above c_0 when used as
 323 a reward function, i.e., $p^*(c_1) > p^*(c_0)$. On the other hand, both voters v_1 and v_2 rank
 c_0 over c_1 . In the rest of this proof, our goal will be to show that the optimal polynomial

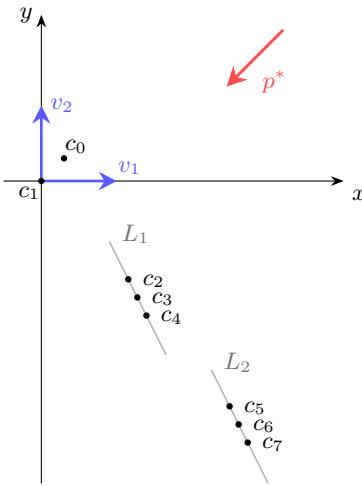


Figure 1: Illustration of the positioning of the candidates for degree $d = 2$. The red arrow labeled p^* indicates the direction of increase of the linear polynomial $p^*(x, y) = -x - y$.

degree- d reward function for our instance (i.e., any solution to (3)) is close to p^* , and thus also ranks c_1 above c_0 . This will immediately show that Pareto optimality does not hold for our instance.

Claim 3. *In the degenerate instance where $\delta = 0$, and thus $c_0 = c_1 = (0, 0)$, the polynomial $p^*(x, y) = -x - y$ is the unique optimal solution of (3).*

Proof. By [Claim 2](#), the polynomial p^* achieves the optimal rewards r^* from (2), and thus p^* is an optimal solution of (3) in the degenerate instance where $\delta = 0$. In order to show that p^* is the unique optimal solution, it suffices to show that no other degree- d polynomial achieves the optimal rewards r^* , which are the unique optimal solution of (2) by [Claim 1](#). This follows from the fact that the zero polynomial is the only degree- d polynomial that simultaneously vanishes at all points c_i , a fact which we prove next.

Consider a polynomial p of degree at most d such that $p(c_i) = 0$ for all $i \in [m]$. We will show that $p = 0$. First, we apply a rotation around the origin to the (x, y) plane such that the lines L_j are now of the form $L_j = \{(x, y) \in \mathbb{R}^2 : y = s_j\}$ for some $0 < s_1 < s_2 < \dots < s_d$. Note that p is still a polynomial of degree at most d in this new basis.

Now since p vanishes at $d+1$ distinct points on L_j , it follows that p restricted to $y = s_j$ is the zero polynomial, i.e., $p|_{y=s_j} = 0$. As a result,⁴ p must contain a factor $(y - s_j)$ for each $j \in [d]$. Since p has degree at most d , it follows that p can be written as $p(x, y) = C \cdot \prod_{j \in [d]} (y - s_j)$. But now $p(0, 0) = r_1^* = 0$, together with $s_j \neq 0$ for all j , implies that $C = 0$ and thus $p = 0$. \square

We will use Berge's maximum theorem to argue that for sufficiently small $\delta > 0$, any optimal solution to (3) must be close to p^* .

Theorem 4.2 (Berge's Maximum Theorem ([Berge, 1997](#)); simplified version). *Let $A \subseteq \mathbb{R}^n$ and $B \subseteq \mathbb{R}^m$ such that B is nonempty and compact. Let $f: A \times B \rightarrow \mathbb{R}$ be continuous. Define the set-valued function $f^*: A \rightrightarrows B$ by $f^*(a) = \arg \max_{b \in B} f(a, b)$. Then f^* is upper-hemicontinuous with nonempty and compact values.*

Claim 4. *There exists a sufficiently small $\delta > 0$ such that any optimal solution of (3) satisfies $p(c_1) > p(c_0)$.*

⁴More formally, divide polynomial p by polynomial $y - s_1$ in $(\mathbb{R}[x])[y]$. We obtain $p(x, y) = (y - s_1)q(x, y) + r(x)$, where we note that r only depends on x since it must have degree strictly less than one in y . Now $p|_{y=s_1} = 0$ implies that $r = 0$. Then, we can continue by dividing q by $y - s_2$ in the same manner to obtain the full factorization.

378 Before proving this claim, let us see why this implies [Theorem 4.1](#). For δ as given by the
 379 claim, any optimal solution ranks c_1 over c_0 . On the other hand, both voters v_1 and v_2 rank
 380 c_0 over c_1 , so Pareto optimality is not satisfied. Furthermore, voter v_1 always (trivially)
 381 agrees with a strict majority of the voters; in particular, the ordering of voter v_1 is PMC
 382 for the instance. However, any optimal solution ranks c_1 over c_0 , even though a majority
 383 (in fact, everyone) agrees to the opposite. Thus, the example also fails PMC.
 384

385 *Proof.* In order to use Berge’s maximum theorem, we need to make sure that the domain
 386 over which we are optimizing is compact. Let $S = \{s = (s_{i,j})_{i,j \geq 0: i+j \leq d} : s_{i,j} \in \mathbb{R}, s_{0,0} = 0\}$
 387 represent all polynomials of degree at most d with zero constant coefficient, i.e., for each
 388 $s \in S$, the corresponding polynomial is given by $p_s(x, y) = \sum_{i=0}^d \sum_{j=0}^{d-i} s_{i,j} x^i y^j$. Let S'
 389 denote the subset of S where all coefficients have magnitude at most 2, i.e., $S' = \{s \in S : |s_{i,j}| \leq 2\}$. Let $s^* \in S$ be such that $p_{s^*} = p^*$, i.e., $s_{1,0}^* = s_{0,1}^* = -1$ and all other coefficients
 390 are zero. Note that S' is compact and s^* lies in the interior of S' .
 391

392 Now define $f : [0, 1] \times S' \rightarrow \mathbb{R}$, $(\delta, s) \mapsto \mathcal{L}(p_s(c_0(\delta)), p_s(c_1), \dots, p_s(c_m))$. Clearly, f is
 393 continuous, since the loss function ℓ is continuous, and S' is nonempty and compact. Thus,
 394 by Berge’s maximum⁵ theorem ([Theorem 4.2](#)), the set-valued function $f^* : [0, 1] \rightrightarrows S', \delta \mapsto$
 395 $\arg \min_{s \in S'} f(\delta, s)$ is upper-hemicontinuous.

396 Recall that by [Claim 3](#), when $\delta = 0$, the polynomial $p^*(x, y) = -x - y$ is the unique minimizer
 397 of \mathcal{L} , i.e., $f^*(0) = \{s^*\}$, where $s^* \in S$ is as defined above such that $p^* = p_{s^*}$. As shown in
 398 [Claim 2](#), the polynomial $p^* = p_{s^*}$ satisfies $p^*(c_1) > p^*(c_0)$. By continuity, it follows that
 399 there exists small enough $\varepsilon \in (0, 1)$, such that we also have $p_s(c_1) > p_s(c_0)$ for all $s \in S$
 400 with $\|s - s^*\|_\infty \leq \varepsilon$. Now, since f^* is upper-hemicontinuous, we know that for sufficiently
 401 small $\delta \in (0, 1]$, we have $\|s - s^*\|_\infty \leq \varepsilon$ for all $s \in f^*(\delta)$. In particular, since $\varepsilon < 1$, $f^*(\delta)$
 402 lies in the interior of S' . By convexity of the function $s \mapsto \mathcal{L}(p_s(c_0(\delta)), p_s(c_1), \dots, p_s(c_m))$,
 403 it follows that $f^*(\delta)$ is the set of minimizers over all of S (not just S'). So for sufficiently
 404 small $\delta > 0$, any minimizer p of (3) must satisfy $p(c_1) > p(c_0)$. \square
 405

406 5 RECOVERING PARETO OPTIMALITY WITH UNIFORM DATA

407 In this section, we return to the setting of linear social choice. We consider an idealized
 408 setting where (i) the dataset contains comparisons in all possible directions of space, (ii)
 409 each of these comparisons has unit length, and (iii) each direction appears uniformly. More
 410 formally, this corresponds to a setting where the total loss can be written as
 411

$$412 \quad \mathcal{L}(\theta) := \sum_{i=1}^n \int_{x \in S^{d-1}, \langle v_i, x \rangle \geq 0} \ell(-\langle \theta, x \rangle) dx \quad (4)$$

413 where $v_1, \dots, v_n \in \mathbb{R}^d \setminus \{0\}$ are the voters (inducing a ranking according to the corresponding
 414 reward function $r_{v_i}(x) = \langle v_i, x \rangle$).
 415

416 We can define a version of PO over this “complete” dataset.
 417

418 **Definition 3.** We say that $\theta \in \mathbb{R}^d$ is Pareto optimal (PO) over \mathbb{R}^d with respect to voters
 419 $v_1, \dots, v_n \in \mathbb{R}^d \setminus \{0\}$ if whenever a direction $x \in S^{d-1}$ satisfies $\langle v_i, x \rangle > 0$ for all i , we also
 420 have $\langle \theta, x \rangle > 0$.
 421

422 **Theorem 5.1.** *In the idealized setting, any loss-based voting rule with a loss function ℓ that
 423 is convex, nondecreasing, lower bounded, and differentiable with $\ell'(0) > 0$, satisfies PO, as
 424 long as there are at least two distinct voters.*

425 On the other hand, we can show that the analogous definition of Pairwise Majority Consis-
 426 tency (PMC) is not satisfied even in this setting.
 427

428 **Definition 4.** We say that $\theta \in \mathbb{R}^d$ is pairwise majority consistent (PMC) over \mathbb{R}^d with
 429 respect to voters $v_1, \dots, v_n \in \mathbb{R}^d \setminus \{0\}$ if whenever a direction $x \in S^{d-1}$ satisfies $\langle v_i, x \rangle > 0$
 430 for a strict majority of all i , we also have $\langle \theta, x \rangle > 0$. A voting rule satisfies PMC if it outputs
 431 a PMC vector whenever one exists.

⁵The theorem clearly also applies to minimization by replacing f by $-f$.

432 **Theorem 5.2 (♦).** *In the idealized setting, any loss-based voting rule with a loss function ℓ that is strictly convex, nondecreasing, lower bounded, and differentiable with $\ell'(0) > 0$ fails
433 PMC.*

434
435 Although PMC fails in this uniform data setting, it is not at all obvious whether PMC is
436 even desirable here. For example, if a p fraction of votes come from direction v_1 and a $(1-p)$
437 fraction from direction v_2 , then in the uniform data setting PMC becomes a discontinuous
438 requirement: the rule must output direction v_1 whenever $p > 0.5$ and direction v_2 whenever
439 $p < 0.5$. In many applications, one may instead prefer to interpolate between the two. See
440 the work by Lederer et al. (2024) for a recent discussion of similar considerations in rank
441 aggregation (from which PMC is inherited).
442

443 5.1 PROOF OF THEOREM 5.1

444 Let \mathcal{L}_i denote the loss with respect to voter i , i.e.,

$$445 \mathcal{L}_i(\theta) := \int_{x \in S^{d-1}, \langle v_i, x \rangle \geq 0} \ell(-\langle \theta, x \rangle) dx = \frac{1}{2} \int_{x \in S^{d-1}} \ell(-\text{sgn}(\langle v_i, x \rangle) \cdot \langle \theta, x \rangle) dx,$$

446 where the sign function is defined as
447

$$448 \text{sgn}(t) = 1 \text{ if } t > 0, \quad \text{sgn}(t) = 0 \text{ if } t = 0, \quad \text{sgn}(t) = -1 \text{ if } t < 0.$$

449 Then we can write $\mathcal{L}(\theta) = \sum_{i=1}^n \mathcal{L}_i(\theta)$.
450

451 **Claim 5 (♦).** *If $\theta, \theta' \in \mathbb{R}^d$ satisfy $\|\theta\|_2 = \|\theta'\|_2$ and $\langle \theta', v_i \rangle > \langle \theta, v_i \rangle$, then $\mathcal{L}_i(\theta') < \mathcal{L}_i(\theta)$.*

452 **Claim 6 (♦).** *If there are at least two distinct voters, then \mathcal{L} attains its minimum.*

453 **Claim 7 (♦).** *If there exists $x \in S^{d-1}$ such that $\langle v_i, x \rangle > 0$ for all voters $i \in [n]$, then $\theta = 0$
454 is not a minimum of \mathcal{L} .*

455 Finally, we use these three claims to prove the following.
456

457 **Claim 8.** *Any minimizer θ^* of \mathcal{L} satisfies PO over \mathbb{R}^d with respect to the voters v_1, \dots, v_n .*

458 *Proof.* First of all, note that if there does not exist $x \in S^{d-1}$ such that $\langle v_i, x \rangle > 0$ for all
459 $i \in [n]$, then PO is trivially satisfied. Thus, from now on assume that the set $D := \{x \in S^{d-1} : \langle v_i, x \rangle > 0 \text{ for all } i \in [n]\}$ is not empty. In particular, by [Claim 7](#), this implies any
460 minimizer θ^* of \mathcal{L} is not the zero vector.
461

462 Consider any $\theta \neq 0$ such that there exists $x \in D$ such that $\langle \theta, x \rangle \leq 0$. We will show that
463 there exists θ' with $\mathcal{L}(\theta') < \mathcal{L}(\theta)$ and thus θ is not optimal. Since the set D is open, we can
464 assume without loss of generality that in fact $\langle \theta, x \rangle < 0$. Furthermore, for simplicity we will
465 assume that $\|\theta\|_2 = 1 = \|x\|_2$. If that is not the case, then one can simply scale x so that it
466 has the same length as θ and the same proof idea applies.
467

468 Let $\theta' := (1 + \delta)\theta + \varepsilon x$. We will show that for some carefully selected $\varepsilon, \delta > 0$, θ' satisfies
469 $\langle \theta', v_i \rangle > \langle \theta, v_i \rangle$ and $\|\theta'\|_2 = \|\theta\|_2 = 1$. As a result, using [Claim 5](#), it will follow that
470 $\mathcal{L}_i(\theta') < \mathcal{L}_i(\theta)$ for all $i \in [n]$, and thus $\mathcal{L}(\theta') < \mathcal{L}(\theta)$, as desired.
471

472 The condition $\langle \theta', v_i \rangle > \langle \theta, v_i \rangle$ holds as long as $\delta \langle v_i, \theta \rangle + \varepsilon \langle v_i, x \rangle > 0$, which holds as long
473 as $\varepsilon > -\frac{\langle v_i, \theta \rangle}{\langle v_i, x \rangle} \delta$ holds for all $i \in [n]$. Let $M := 2 + \max\{0, -1/\langle \theta, x \rangle, \max_i -\langle v_i, \theta \rangle / \langle v_i, x \rangle\}$.
474 Then letting $\varepsilon := M\delta$ ensures that the aforementioned condition is satisfied.
475

476 It remains to pick $\delta > 0$ such that $\|\theta'\|_2 = 1$. We can write
477

$$\begin{aligned} 478 \|\theta'\|_2^2 &= \langle \theta', \theta' \rangle = \langle (1 + \delta)\theta + M\delta x, (1 + \delta)\theta + M\delta x \rangle \\ 479 &= (1 + \delta)^2 + 2(1 + \delta)M\delta \langle \theta, x \rangle + M^2\delta^2 \\ 480 &= 1 + 2\delta + \delta^2 + 2M\delta \langle \theta, x \rangle + 2\delta^2 M \langle \theta, x \rangle + M^2\delta^2 \\ 481 &= 1 + \delta^2(1 + 2M \langle \theta, x \rangle + M^2) + \delta(2 + 2M \langle \theta, x \rangle). \end{aligned}$$

482 Note that $1 + 2M \langle \theta, x \rangle + M^2 \geq 1 - 2M + M^2 > 0$ and $2 + 2M \langle \theta, x \rangle < 0$, by the choice of M
483 and since $\langle \theta, x \rangle \in [-1, 0)$. As a result, we have that for sufficiently large $\delta > 0$, $\|\theta'\|_2 > 1$,
484 and for sufficiently small $\delta > 0$, $\|\theta'\|_2 < 1$. By the intermediate value theorem, it follows
485 that there exists $\delta > 0$ such that $\|\theta'\|_2 = 1$, and this completes the proof. \square

486 Theorem 5.1 follows by combining [Claim 6](#), which guarantees that a minimizer exists, with
 487 [Claim 8](#), which guarantees that any minimizer satisfies PO.
 488

489 6 DISCUSSION AND FUTURE DIRECTIONS 490

491 We contribute to the recent effort to import ideas from social choice—especially the axiomatic
 492 approach—into the study of AI alignment, pluralistic alignment and multi-objective
 493 alignment. At the same time, classical social choice is largely framed for discrete settings
 494 (e.g., complete rankings over a fixed option set), which do not directly reflect modern ML
 495 pipelines. If social choice is to inform alignment, the axioms and tools must be adapted to
 496 the knobs that actually exist in these pipelines.

497 In this spirit, we analyze why a seemingly minimal axiom such as Pareto Optimality (PO)
 498 can fail. Seeking models that better reflect training constraints, we focus on loss-based rules
 499 and pursue theoretically tractable proxies for practice: (1) enlarging the reward class, (2)
 500 requiring guarantees that hold out-of-sample, and (3) making the data-generating distribu-
 501 tion explicit. The first point acknowledges that, while many analyses assume unconstrained
 502 rewards, such optima are unlikely to be realized in practice. For (1), we establish a negative
 503 result for bounded-degree polynomial rewards and conjecture that fixed-width, fixed-depth
 504 MLPs over a frozen embedding space fail for similar reasons.

505 As a step toward generalization, we show that in structured settings (e.g., linear social
 506 choice), axioms specified over a fixed alternative set admit natural analogues over the
 507 entire embedding space. In particular, in the linear social choice model, pairwise judgments
 508 between embeddings a and b can inform different queries such as $a + \varepsilon$ vs. $b - \varepsilon$ (noisy per-
 509 turbations) or $a + r$ vs. $b + r$ (shared direction, translated), providing leverage beyond the
 510 observed preferences. For (3), we prove that PO is achievable under data distributions in
 511 which both inter-embedding distances and directions are suitably uniform/balanced. Tak-
 512 ing our simplified model as given, one can then examine the distribution of embedding
 513 differences—e.g., via PCA—to assess how close it is to this regime.

514 While one can balance the lengths of comparison directions by renormalizing the loss, achiev-
 515 ing more uniform directional coverage may require reweighting comparisons, and in the worst
 516 case, collecting additional data. A natural next step is to derive explicit sampling bounds
 517 in the uniform setting. Beyond random sampling, a promising direction is to formalize
 518 reweighting and data-query strategies—can we gather data to attain PO in a more targeted
 519 (and more efficient) manner?

520 While proposing new axioms is not our focus, future research should consider how other
 521 axioms extend to embedding spaces and can be satisfied through data selection. Overall,
 522 our results point to a different way of addressing axiomatic violations within loss-based
 523 frameworks.

524 REFERENCES 525

526 Lowell Bruce Anderson, Helena Dandurova, James E. Falk, and Lana Yeganova. Relationships
 527 between borda voting and zermelo ranking. *Social Choice and Welfare*, 32(3):355–365, 2009. doi: 10.1007/s00355-008-0327-7.
 528

529 Kenneth J. Arrow. *Social Choice and Individual Values*. Wiley, 1951.

530 Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. *Handbook of social choice and
 531 welfare*, volume 2. Elsevier, 2010.

532 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
 533 Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful
 534 and harmless assistant with reinforcement learning from human feedback. *arXiv preprint
 535 arXiv:2204.05862*, 2022a.

536 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
 537 Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional
 538 AI: Harmlessness from AI feedback. *arXiv preprint arXiv:2212.08073*, 2022b.

540 Claude Berge. *Topological Spaces: including a treatment of multi-valued functions, vector*
 541 *spaces, and convexity*. Courier Corporation, 1997.

542

543 Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs. i. the
 544 method of paired comparisons. *Biometrika*, 39(3-4):324–345, 1952. doi: 10.1093/biomet/39.3-4.324.

545

546 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. *Handbook*
 547 *of computational social choice*. Cambridge University Press, 2016.

548

549 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
 550 Deep reinforcement learning from human preferences. *Advances in neural information*
 551 *processing systems*, 30, 2017.

552

553 Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H Holliday, Bob M Jacobs,
 554 Nathan Lambert, Milan Mossé, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, et al.
 555 Position: social choice should guide AI alignment in dealing with diverse human feedback.
 556 In *Proceedings of the 41st International Conference on Machine Learning*, pp. 9346–9360,
 557 2024.

558

559 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni,
 560 Guotong Xie, Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models
 561 with scaled AI feedback. In *Forty-first International Conference on Machine Learning*.

562

563 Jessica Dai and Eve Fleisig. Mapping social choice theory to RLHF. In *ICLR 2024 Workshop*
 564 *on Reliable and Responsible Foundation Models*.

565

566 Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, and Masrour
 567 Zoghi. Contextual dueling bandits. In *Proceedings of the 28th Conference on Learning*
 568 *Theory*, pp. 563–587, 2015.

569

570 Edith Elkind, Martin Lackner, and Dominik Peters. Preference restrictions in computational
 571 social choice: A survey. *arXiv preprint arXiv:2205.09092*, 2022.

572

573 Peter C Fishburn. Probabilistic social choice based on simple voting comparisons. *The*
 574 *Review of Economic Studies*, 51(4):683–692, 1984.

575

576 Luise Ge, Daniel Halpern, Evi Micha, Ariel D. Procaccia, Itai Shapira, Yevgeniy Vorob-
 577 eychik, and Junlin Wu. Axioms for AI Alignment from Human Feedback. *Advances in*
 578 *Neural Information Processing Systems*, 37:80439–80465, 2024.

579

580 Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds,
 581 Maribeth Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Im-
 582 proving alignment of dialogue agents via targeted human judgements. *arXiv preprint*
 583 *arXiv:2209.14375*, 2022.

584

585 Paul Götz, Nika Haghtalab, and Kunhe Yang. Distortion of AI alignment: Does preference
 586 optimization optimize for preferences? *arXiv preprint arXiv:2505.23749*, 2025.

587

588 Kihyun Kim, Jiawei Zhang, Asuman Ozdaglar, and Pablo A Parrilo. Population-
 589 proportional preference learning from human feedback: An axiomatic approach. *arXiv*
 590 *preprint arXiv:2506.05619*, 2025.

591

592 Patrick Lederer, Dominik Peters, and Tomasz Wąs. The squared Kemeny rule for averaging
 593 rankings. In *Proceedings of the 25th ACM Conference on Economics and Computation*
 594 (*EC*), pp. 755, 2024. doi: 10.1145/3670865.3673521.

595

596 Roberto-Rafael Maura-Rivero, Marc Lanctot, Francesco Visin, and Kate Larson. Jackpot!
 597 alignment as a maximal lottery, 2025. URL <https://arxiv.org/abs/2501.19266>.

598

599 Remi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Row-
 600 land, Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Côme
 601 Fiegel, et al. Nash learning from human feedback. In *International Conference on Machine*
 602 *Learning*, pp. 36743–36768. PMLR, 2024.

594 Ritesh Noothigattu, Dominik Peters, and Ariel D Procaccia. Axioms for learning from
 595 pairwise comparisons. *Advances in Neural Information Processing Systems*, 33:17745–
 596 17754, 2020.

597 Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the
 598 geometry of large language models. In *Forty-first International Conference on Machine
 599 Learning*.

600 Ariel D Procaccia and Jeffrey S Rosenschein. The distortion of cardinal preferences in
 601 voting. In *International Workshop on Cooperative Information Agents*, pp. 317–331.
 602 Springer, 2006.

603 Ariel D Procaccia, Benjamin Schiffer, and Shirley Zhang. Clone-robust AI alignment. *arXiv
 604 preprint arXiv:2501.09254*, 2025.

605 Tianyi Qiu. Representative social choice: From learning theory to AI alignment. *arXiv
 606 preprint arXiv:2410.23953*, 2024.

607 R. Tyrrell Rockafellar. *Convex analysis*. Princeton Mathematical Series. Princeton Univer-
 608 sity Press, 1970.

609 Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional prefer-
 610 ence learning: Understanding and accounting for hidden context in RLHF. In *The Twelfth
 611 International Conference on Learning Representations (ICLR)*, 2024.

612 Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox,
 613 Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models from
 614 scratch with minimal human supervision. *Advances in Neural Information Processing
 615 Systems*, 36:2511–2565, 2023.

616 Yuanhao Wang, Qinghua Liu, and Chi Jin. Is RLHF more difficult than standard RL?
 617 a theoretical perspective. In *Advances in Neural Information Processing Systems 36
 618 (NeurIPS 2023)*, 2023.

619 Jiancong Xiao, Zhekun Shi, Kaizhao Liu, Qi Long, and Weijie J Su. Theoretical tensions in
 620 RLHF: Reconciling empirical success with inconsistencies in social choice theory. *arXiv
 621 preprint arXiv:2506.12350*, 2025.

622 Ernst Zermelo. Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der
 623 Wahrscheinlichkeitsrechnung. *Mathematische Zeitschrift*, 29:436–460, 1929. doi: 10.1007/
 624 BF01180541.

625

631 A ADDITIONAL RELATED WORK

632

633 As an alternative to unguided preference elicitation (“which response do you prefer?”), sev-
 634 eral authors (Bai et al., 2022a; Glaese et al., 2022) proposed principle-guided supervision:
 635 annotators judge responses with respect to explicit criteria such as helpfulness, honesty, and
 636 harmlessness (HHH). In current practice, RLHF often elicits binary preferences from users
 637 as a general signal without specifying how to evaluate “better,” and human comparisons are
 638 noisy—commonly modeled with the Bradley–Terry framework. Asking raters to compare
 639 responses with respect to a named principle (e.g., “which is more harmful?”) provides a
 640 clearer target and greater control, reducing variance from idiosyncratic tastes (e.g., prefer-
 641 ring a flattering style). Taking this perspective, we can view the principles as the voters. As
 642 models become more capable, human raters can be replaced or augmented with model-based
 643 judges, yielding Reinforcement Learning from AI Feedback (RLAIF). This makes alignment
 644 methods more scalable. E.g., it is cheap to score the same pairwise comparison against mul-
 645 tiple principles, which may legitimately disagree (a response can be more helpful yet more
 646 harmful). Constitutional AI (CAI) (Bai et al., 2022b) is a concrete framework built around
 647 RLAIF: it introduces an explicit “constitution”—a curated set of principles—which judges
 648 which of two responses better adheres to a given principle. Notably, when CAI was intro-
 649 duced, Anthropic reported a Pareto improvement on the helpfulness–harmlessness frontier:

increased harmlessness at fixed helpfulness relative to RLHF baselines. Many other works implement constitutional-style alignment, often under different labels, by conditioning binary comparisons on explicit criteria (rubrics/attributes), using verifier- or judge-guided feedback, or training separate objectives that are later combined (Cui et al.; Sun et al., 2023; Glaese et al., 2022).

B MISSING PROOFS FROM SECTION 4

B.1 PROOF OF CLAIM 1

Proof. Recall that $r_1 = 0$. For each $j \in \{2, \dots, m\}$, we have that both the terms $(1-\alpha) \cdot \ell(r_j)$ and $\alpha \cdot \ell(-r_j)$ appear in \mathcal{L} . Since ℓ is convex and $\ell'(0) > 0$, it follows that $\lim_{x \rightarrow +\infty} \ell(x) = +\infty$. Furthermore, recall that ℓ is lower bounded over \mathbb{R} . As a result, it follows that $\mathcal{L}(r) \rightarrow +\infty$ when $|r_j| \rightarrow +\infty$.

Since the loss function ℓ is strictly convex, the function $\phi : (r_2, \dots, r_m) \mapsto \mathcal{L}(0, 0, r_2, \dots, r_m)$ is also strictly convex.⁶ Thus, together with the previous paragraph, it follows that ϕ attains its unique minimum r^* .

It remains to argue that the optimal rewards are ordered $0 = r_1^* < r_2^* < \dots < r_m^*$. To prove this, we first introduce some additional notation. Define $h : \mathbb{R} \rightarrow \mathbb{R}$, $x \mapsto \alpha \cdot \ell(x) + (1-\alpha) \cdot \ell(-x)$. Note that h is convex and differentiable, and thus its derivative h' is nondecreasing. Furthermore, it satisfies

$$h'(0) = \alpha \cdot \ell'(0) - (1-\alpha) \cdot \ell'(0) = (2\alpha - 1) \cdot \ell'(0) > 0$$

since $\alpha > 1/2$ and $\ell'(0)$. We can rewrite the total loss function as

$$\mathcal{L}(0, 0, r_2, \dots, r_m) = \ell(0) + 2 \sum_{j=2}^m h(-r_j) + \sum_{i=2}^{m-1} \sum_{j=i+1}^m h(r_i - r_j)$$

and thus the partial derivatives for all $i > 2$ as

$$\frac{\partial \mathcal{L}}{\partial r_i}(r) = -2h'(-r_i) - \sum_{k=2}^{i-1} h'(r_k - r_i) + \sum_{k=i+1}^m h'(r_i - r_k).$$

Assume towards a contradiction that $r_i^* \geq r_{i+1}^*$ for some $i \in \{2, \dots, m-1\}$. We will handle the remaining case $i = 1$ separately at the end. Since r^* is the optimal solution and \mathcal{L} is differentiable, we have $\partial \mathcal{L} / \partial r_i(r^*) = 0$ for all $i \geq 2$. However, we can write

$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial r_{i+1}}(r^*) - \frac{\partial \mathcal{L}}{\partial r_i}(r^*) &= 2(h'(-r_i^*) - h'(-r_{i+1}^*)) - h'(r_i^* - r_{i+1}^*) - h'(r_i^* - r_{i+1}^*) \\ &\quad + \sum_{k=2}^{i-1} (h'(r_k^* - r_i^*) - h'(r_k^* - r_{i+1}^*)) + \sum_{k=i+2}^m (h'(r_{i+1}^* - r_k^*) - h'(r_i^* - r_k^*)) \\ &\leq -2h'(r_i^* - r_{i+1}^*) < 0 \end{aligned}$$

where in the first inequality we used the fact that $r_i^* \geq r_{i+1}^*$ and h' is nondecreasing. In the second inequality we used $h'(r_i^* - r_{i+1}^*) \geq h'(0) > 0$. Since the partial derivatives are zero, this is a contradiction. So, it must be that $r_i^* < r_{i+1}^*$ for all $i \geq 2$.

It remains to show that $r_1^* < r_2^*$, i.e., $r_2^* > 0$. Assume towards a contradiction that $r_2^* \leq 0$. We can write

$$\sum_{i=2}^m \frac{\partial \mathcal{L}}{\partial r_i}(r^*) = -2 \sum_{i=2}^n h'(-r_i^*) + \sum_{i=2}^{m-1} \sum_{j=i+1}^m (h'(r_i^* - r_j^*) - h'(r_i^* - r_j^*)) = -2 \sum_{i=2}^m h'(-r_i^*)$$

⁶Here we use the fact that for $(r_2, \dots, r_m) \neq (r'_2, \dots, r'_m)$, there exists $j \in \{2, \dots, m\}$ such that $r_j \neq r'_j$, and thus \mathcal{L} contains a term for which $\ell((r_j + r'_j)/2) < \ell(r_j)/2 + \ell(r'_j)/2$.

702 since every term $h'(r_i^* - r_j^*)$ appears once with a positive sign and once with a negative sign.
 703 Thus, we can write

$$\begin{aligned}
 704 \sum_{i=2}^m \frac{\partial \mathcal{L}}{\partial r_i}(r^*) + 2 \frac{\partial \mathcal{L}}{\partial r_2}(r^*) &= -2 \sum_{i=2}^m h'(-r_i^*) - 4h'(-r_2^*) + 2 \sum_{k=3}^m h'(r_2^* - r_k^*) \\
 705 &= -6h'(-r_2^*) + 2 \sum_{k=3}^m (h'(r_2^* - r_k^*) - h'(-r_k^*)) \\
 706 &\leq -6h'(-r_2^*) < 0
 \end{aligned}$$

707 where in the first inequality we used the fact that $r_2^* \leq 0$ and h' is nondecreasing. In the
 708 second inequality we used $h'(-r_2^*) \geq h'(0) > 0$. Since all the partial derivatives are zero,
 709 this is a contradiction. So we also have $r_2^* > 0 = r_1^*$. \square

C MISSING PROOFS FROM SECTION 5

C.1 PROOF OF CLAIM 5

719 *Proof.* First of all, note that since $\|\theta\|_2 = \|\theta'\|_2$ and $\langle \theta', v_i \rangle > \langle \theta, v_i \rangle$, it must be that $\theta \neq 0$
 720 and $\theta' \neq 0$. Without loss of generality, since the statement of the claim does not change if
 721 we rotate the space, we can assume that $v_i = e_1$ is the unit length vector with entry 1 in
 722 the first dimension and 0 otherwise.

723 Next, we argue that, without loss of generality, we can assume that $\theta_2 \geq 0$ and $\theta_j = 0$
 724 for all $j \geq 3$, and similarly for θ' . Let $R' : \mathbb{R}^{d-1} \rightarrow \mathbb{R}^{d-1}$ denote the rotation around the
 725 origin in $(d-1)$ -dimensional space that maps $(\theta_2, \dots, \theta_d)$ to $(\alpha, 0, \dots, 0)$, where $\alpha \geq 0$.
 726 Define $R : \mathbb{R}^d \rightarrow \mathbb{R}^d$ by $R(x) = (x_1, R'(x_2, \dots, x_d))$. Note that $\|R(\theta)\|_2 = \|\theta\|_2$ and
 727 $\langle R(\theta), v_i \rangle = \langle \theta, v_i \rangle$, since $v_i = e_1$. We will show that $\mathcal{L}_i(R(\theta)) = \mathcal{L}_i(\theta)$. Note that R is a
 728 bijection and we have

$$\begin{aligned}
 729 \langle R(\theta), x \rangle &= \theta_1 x_1 + \langle R'(\theta_2, \dots, \theta_d), (x_2, \dots, x_d) \rangle = \theta_1 x_1 + \langle (\theta_2, \dots, \theta_d), R'^{-1}(x_2, \dots, x_d) \rangle \\
 730 &= \langle \theta, R^{-1}(x) \rangle
 \end{aligned}$$

731 where R'^{-1} is the inverse rotation to R' . We can thus write

$$\begin{aligned}
 732 \mathcal{L}_i(R(\theta)) &= \int_{x \in S^{d-1}, x_1 \geq 0} \ell(-\langle R(\theta), x \rangle) dx = \int_{x \in S^{d-1}, x_1 \geq 0} \ell(-\langle \theta, R^{-1}(x) \rangle) dx \\
 733 &= \int_{x \in S^{d-1}, x_1 \geq 0} \ell(-\langle \theta, x \rangle) dx \\
 734 &= \mathcal{L}_i(\theta)
 \end{aligned}$$

735 since R^{-1} is a smooth bijection that preserves distances. Thus, we can assume that $\theta_2 \geq 0$
 736 and $\theta_j = 0$ for all $j \geq 3$, and similarly for θ' .

737 Let T be the rotation that maps θ to θ' . We can write

$$\begin{aligned}
 738 \mathcal{L}(\theta) &= \int_{x \in S^{d-1}, x_1 \geq 0} \ell(-\langle \theta, x \rangle) dx \\
 739 &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \geq 0} \ell(-\langle \theta, T^{-1}(x) \rangle) dx \\
 740 &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \geq 0} \ell(-\langle T(\theta), x \rangle) dx \\
 741 &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \geq 0, x_1 \geq 0} \ell(-\langle \theta', x \rangle) dx + \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \geq 0, x_1 \leq 0} \ell(-\langle \theta', x \rangle) dx.
 \end{aligned}$$

742 We can also decompose

$$\begin{aligned}
 743 \mathcal{L}(\theta') &= \int_{x \in S^{d-1}, x_1 \geq 0} \ell(-\langle \theta', x \rangle) dx \\
 744 &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \geq 0, x_1 \geq 0} \ell(-\langle \theta', x \rangle) dx + \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \leq 0, x_1 \geq 0} \ell(-\langle \theta', x \rangle) dx.
 \end{aligned}$$

756 Thus, we obtain

$$\begin{aligned}
 758 \quad \mathcal{L}(\theta) - \mathcal{L}(\theta') &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \geq 0, x_1 \leq 0} \ell(-\langle \theta', x \rangle) dx - \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \leq 0, x_1 \geq 0} \ell(-\langle \theta', x \rangle) dx \\
 759 &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 \leq 0, x_1 \geq 0} \ell(\langle \theta', x \rangle) - \ell(-\langle \theta', x \rangle) dx \\
 760 &= \int_{x \in S^{d-1}, [T^{-1}(x)]_1 < 0, x_1 > 0} \ell(\langle \theta', x \rangle) - \ell(-\langle \theta', x \rangle) dx.
 \end{aligned}$$

761 Note that the domain $\{x \in S^{d-1}, [T^{-1}(x)]_1 < 0, x_1 > 0\}$ has positive measure, since
 762 $\langle \theta', v_i \rangle > \langle \theta, v_i \rangle$. Furthermore, we have $\ell(t) > \ell(-t)$ for all $t > 0$.⁷ As a result, if we
 763 can show that $\langle \theta', x \rangle > 0$ for all $x \in S^{d-1}$ with $[T^{-1}(x)]_1 < 0$ and $x_1 > 0$, then we will
 764 obtain $\mathcal{L}(\theta) - \mathcal{L}(\theta') > 0$, as desired.

765 Recall that we assume without loss of generality that $\theta_2, \theta'_2 \geq 0$ and $\theta_j = \theta'_j = 0$ for all $j \geq 3$.
 766 Furthermore, by assumption we have $\theta'_1 > \theta_1$. Consider any $x \in S^{d-1}$ with $\langle \theta', x \rangle \leq 0$ and
 767 $x_1 > 0$. Assume towards a contradiction that $[T^{-1}(x)]_1 < 0$. The rotation T^{-1} maps θ' to θ ,
 768 which both lie in the upper hemisphere, and $\theta'_1 > \theta_1$. Thus, the rotation is counter-clockwise
 769 and of angle at most π . Since $x_1 > 0$, we can assume without loss of generality that $\theta_1 < 0$
 770 and $\theta_2 = 0$, i.e., θ is in the negative x axis direction. Indeed, since $x_1 > 0$, if rotating x
 771 in the counterclockwise direction by some angle $\alpha < \pi$ yields a point y with $y_1 < 0$, then
 772 rotating it by any angle $\beta \in (\alpha, \pi]$ will also yield a point y with $y_1 < 0$. Now it is easy to
 773 see that the rotation T^{-1} that maps θ' to the negative axis direction also maps any point x
 774 with $\langle \theta', x \rangle \leq 0$ to a point $y = T^{-1}(x)$ with $y_1 \geq 0$, a contradiction. \square

779 C.2 PROOF OF CLAIM 6

780 *Proof.* We show that for any $M \in \mathbb{R}$, there exists a $t > 0$ such that if $\|\theta\|_2 > t$ then
 781 $\mathcal{L}(\theta) > M$. Then, since $\mathcal{L}(0)$ is finite, we can conclude that \mathcal{L} attains its minimum. Observe
 782 that since at least two voters are distinct, say v_1 and v_2 , there exists $\kappa < 1$ such that
 783 for any $\theta \in S^{d-1}$, there exists $i \in \{1, 2\}$ such that $\langle \theta, v_i \rangle \leq \kappa$. Here we assume that
 784 $\|v_1\|_2 = \|v_2\|_2 = 1$ without loss of generality.

785 Let M be arbitrary. Let $\theta \in S^{d-1}$ be arbitrary. Without loss of generality, say that voter
 786 $v_1 = e_1$ is such that $\langle \theta, v_1 \rangle \leq \kappa$. Since the loss function ℓ is lower bounded, there exists
 787 $K < 0$ such that

$$\begin{aligned}
 788 \quad \mathcal{L}(t\theta) &\geq K + \mathcal{L}_1(t\theta) \geq K + \int_{x \in S^{d-1}, x_1 \geq 0} \ell(-\langle t\theta, x \rangle) dx \\
 789 &\geq 2K + \int_{x \in S^{d-1}, x_1 \geq 0, \langle \theta, x \rangle \leq f(\kappa, d)} \ell(-\langle t\theta, x \rangle) dx
 \end{aligned}$$

790 where $f(\kappa, d) < 0$ is such that the set $\{x \in S^{d-1} : x_1 \geq 0, \langle \theta, x \rangle \leq f(\kappa, d)\}$ has strictly
 791 positive measure bounded away from zero by at least $g(\kappa, d) > 0$. As a result, we obtain
 792 that

$$\mathcal{L}(t\theta) \geq -2K + g(\kappa, d) \cdot \ell(-t \cdot f(\kappa, d)) > M$$

793 for a sufficiently large $t > 0$, since ℓ is strictly increasing for positive inputs.⁸ \square

794 C.3 PROOF OF CLAIM 7

795 *Proof.* Let $z \in S^{d-1}$ be such that $\langle v_i, z \rangle > 0$ for all voters $i \in [n]$. We can write

$$\mathcal{L}_i(t \cdot z) = \int_{x \in S^{d-1}, \langle v_i, x \rangle \geq 0} \ell(-\langle t \cdot z, x \rangle) dx.$$

796 Taking the derivative with respect to t at $t = 0$ we obtain

$$\frac{d}{dt} \Big|_{t=0} \mathcal{L}_i(t \cdot z) = \int_{x \in S^{d-1}, \langle v_i, x \rangle \geq 0} -\langle z, x \rangle \ell'(0) dx = \ell'(0) \int_{x \in S^{d-1}, \langle v_i, x \rangle \geq 0} -\langle z, x \rangle dx < 0$$

⁷This follows from the fact that ℓ is nondecreasing and $\ell'(0) > 0$.

⁸This follows from the fact that ℓ is convex and $\ell'(0) > 0$.

810 which follows from $\ell'(0) > 0$ and
 811

$$812 \int_{x \in S^{d-1}, \langle v_i, x \rangle \geq 0} \langle z, x \rangle dx > 0$$

813 which follows from $\langle v_i, z \rangle > 0$ using similar ideas to those in the proof of [Claim 5](#). \square
 814

816 C.4 PROOF OF [THEOREM 5.2](#)

818 *Proof.* Consider \mathbb{R}^2 and let $v_1 = (0, 1)$, $v_2 = (1, 0)$. For $p \in [1/4, 1/2]$, we consider the
 819 instance where a fraction p of the voters are in direction v_1 , and the remaining fraction
 820 $(1 - p)$ are in direction v_2 . Thus, the total loss function that is minimized over $\theta \in \mathbb{R}^2$ can
 821 equivalently be written as

$$822 \mathcal{L}(\theta, p) := 2p \int_{x \in S^1, x_2 \geq 0} \ell(-\langle \theta, x \rangle) dx + 2(1 - p) \int_{x \in S^1, x_1 \geq 0} \ell(-\langle \theta, x \rangle) dx.$$

825 By [Claim 6](#), $\mathcal{L}(\cdot, p)$ attains its minimum for each $p \in [1/4, 1/2]$. Furthermore, since ℓ is
 826 strictly convex, so is⁹ $\mathcal{L}(\cdot, p)$, and thus the minimizer of $\mathcal{L}(\cdot, p)$ is unique.
 827

828 For any $p < 1/2$, v_2 is the strict majority voter and so $\theta = v_2$ is the only pairwise majority
 829 consistent direction. In order to show that PMC is not satisfied, it thus suffices to prove
 830 that for some $p < 1/2$, the minimizer of the total loss is different from direction v_2 .

831 First, for $p = 1/2$ we can write
 832

$$833 \mathcal{L}(\theta, 1/2) = \int_{x \in S^1, x_2 \geq 0} \ell(-\langle \theta, x \rangle) dx + \int_{x \in S^1, x_1 \geq 0} \ell(-\langle \theta, x \rangle) dx \\ 834 = \int_{x \in S^1, x_1 \geq 0} (\ell(-\langle R(\theta), x \rangle) + \ell(-\langle \theta, x \rangle)) dx,$$

837 where R denotes the 90° clockwise rotation, i.e., $R(\theta) = (\theta_2, -\theta_1)$. Let $\theta' = (\theta_2, \theta_1)$ and note
 838 that $\langle R(\theta), x \rangle = \theta_2 x_1 - \theta_1 x_2 = \langle \theta', (x_1, -x_2) \rangle$. Since the domain of integration is symmetric
 839 with respect to the transformation $(x_1, x_2) \mapsto (x_1, -x_2)$, we obtain
 840

$$841 \mathcal{L}(\theta, 1/2) = \int_{x \in S^1, x_1 \geq 0} (\ell(-\langle \theta', x \rangle) + \ell(-\langle \theta, x \rangle)) dx.$$

843 It follows that $\mathcal{L}(\theta, 1/2) = \mathcal{L}(\theta', 1/2)$, i.e., the loss is invariant under permuting θ_1 and θ_2 .
 844 By convexity,
 845

$$846 \mathcal{L}((\theta + \theta')/2, 1/2) \leq \frac{1}{2}(\mathcal{L}(\theta, 1/2) + \mathcal{L}(\theta', 1/2)) = \mathcal{L}(\theta, 1/2),$$

848 so the unique minimizer θ^* of $\mathcal{L}(\cdot, 1/2)$ satisfies $\theta_1^* = \theta_2^*$. From [Claim 7](#), we know $\theta^* \neq 0$.
 849 By [Theorem 5.1](#), PO holds for this instance, so θ^* lies in the positive cone of v_1 and v_2 , and
 850 in particular $\theta_2^* > 0$.

851 Now let $M > 3\|\theta^*\|$ and $B(M) = \{\theta \in \mathbb{R}^2 : \|\theta\| \leq M\}$. The map $\mathcal{L}: B(M) \times [1/4, 1/2] \rightarrow \mathbb{R}$
 852 is continuous, so by Berge's theorem ([Theorem 4.2](#)) the function¹⁰

$$853 \mathcal{L}^*: [1/4, 1/2] \rightarrow B(M), \quad \mathcal{L}^*(p) = \arg \min_{\theta \in B(M)} \mathcal{L}(\theta, p)$$

855 is continuous. Thus, for sufficiently small $\delta \in (0, 1/4)$,

$$856 \|\mathcal{L}^*(1/2 - \delta) - \theta^*\| < \theta_2^* \leq \|\theta^*\|,$$

858 so

$$859 \|\mathcal{L}^*(1/2 - \delta)\| \leq \|\theta^*\| + \|\mathcal{L}^*(1/2 - \delta) - \theta^*\| \leq 2\|\theta^*\| < M.$$

861 ⁹This follows from standard results in convex analysis ([Rockafellar, 1970](#)) together with the
 862 observation that for any $a \neq b$, the set of points x on S^1 such that $\langle a - b, x \rangle = 0$ has measure zero
 863 (on S^1).

864 ¹⁰For each $p \in [1/4, 1/2]$, the minimizer is unique.

864 In particular, $\mathcal{L}^*(1/2 - \delta)$ does not lie on the boundary of $B(M)$, and therefore also minimizes
865 $\mathcal{L}(1/2 - \delta, \theta)$ over all $\theta \in \mathbb{R}^2$.
866

867 Finally, any $(t, 0)$ with $t > 0$ has distance at least θ_2^* from θ^* , so $\mathcal{L}^*(1/2 - \delta)$ is not a
868 scalar multiple of the majority voter $v_2 = (1, 0)$, and therefore PMC is not satisfied when
869 $p = 1/2 - \delta$. \square

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917