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Abstract

Recent alignment methods for large language models, most notably rein-
forcement learning from human feedback (RLHF), often train an auxil-
iary reward model to minimize a loss function on binary preference data
over model responses. We study a theoretical setting inspired by principle-
guided methods such as Constitutional AI, in which a small set of principles
(e.g., helpfulness, toxicity) act as “voters” that guide binary comparisons—
such as preferring the less toxic response. We model these principles as
linear directions in an embedding space of responses, a simplifying assump-
tion motivated by the Linear Representation Hypothesis—concepts are lin-
ear directions in representation-space—a useful first-order approximation in
practice. In this linear social choice model, Ge et al. (2024) showed that an
optimal linear reward model can violate Pareto optimality (PO): From the
principles-as-voters lens, this means a response A can be less helpful and
more toxic than B, yet still receive a higher reward. We analyze axiomatic
violations in the linear social choice setting and probe the robustness of
negative results under realistic assumptions. We show that added expres-
sivity does not resolve the issue: polynomial reward models can still fail
PO. We then offer a pragmatic alternative showing that when the data
uniformly covers the embedding space, broad classes of loss-based rules in
the limit exactly recover the axiomatic guarantees. This yields a recipe
for constitutional-style alignment with provable guarantees: enforce bal-
anced coverage via dataset design to restore axiomatic guarantees without
abandoning standard training pipelines.

1 Introduction

Many recent alignment methods follow a common pipeline: collect pairwise (binary) pref-
erences over model responses, fit a reward (or preference) model to these comparisons, and
then optimize the base model to minimize a loss correlated with aligned behavior. In the clas-
sical human-in-the-loop setting of Reinforcement Learning from Human Feedback (RLHF)
(Christiano et al., 2017), human annotators select the preferred response between candi-
date responses. Rather than eliciting unguided preferences, Anthropic introduced principle-
oriented feedback (Bai et al., 2022a) in which annotators judge responses against explicit
principles—helpfulness, honesty, and harmlessness (HHH); this principle-guided supervision
later informed Constitutional AI, which formalizes a written set of principles to guide bi-
nary comparisons of model responses (Bai et al., 2022b). We use “constitutional-style” as
an umbrella term for such principle-guided supervision.
Adopting a social-choice perspective on constitutional-style alignment, we treat principles
as voters that evaluate pairs of model responses by judging which better adheres to the
relevant principle. From this perspective, a minimal requirement - “axiom” - for any ag-
gregation method is Pareto Optimality (PO) (also known as Unanimity (Arrow, 1951)):
e.g., in the HHH framework, if response A is more helpful, more honest, and more harmless
than B, then A should receive higher reward and thus be more likely to be generated by
the model. We study a setting in which principles (such as HHH) are modeled as linear
directions in a representation space. This is a simplifying assumption motivated by the
Linear Representation Hypothesis (LRH) (Park et al.), which posits that some high-level
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concepts are well-approximated by linear features in learned embeddings and which has
been operationally useful in mechanistic interpretability.
Formally, most of our results lie within the linear social-choice framework of Ge et al.
(2024): utilities over a fixed representation are linear, pairwise comparisons yield binary
labels, and optimizing those labels learns a linear reward model. Although the linear social-
choice framework was introduced as a model for RLHF, we contend that both the linearity
assumption and axioms such as PO are more realistic and salient in constitutional-style
alignment with a small number of principles.1

Within the linear social choice model, the authors show that, perhaps surprisingly, an opti-
mally trained linear reward can violate Pareto optimality (PO): everyone prefers response
A to response B, yet B receives higher reward. The concrete counterexample involves only
two (weighted) principles, thus covering the HHH scenario; we discuss it as a warm-up in
Section 3. Finding this result counterintuitive, we ask:

How robust are axiomatic violations under loss-based training?

1.1 Our Contribution

We revisit the axiomatic violations through a lens which is compatible with training
pipelines. As part of our warm-up in Section 3, we provide new intuition on why the PO
violation occurs in the first place, by providing a simplified minimal example that clarifies
what goes wrong. While Ge et al. (2024) show that a social choice combinatorial approach
can recover axiomatic guarantees, our paper focuses on approaches to obtain guarantees
that align with modern ML pipelines—namely, loss-based rules. Our main contributions
are three-fold.

1. Beyond linear rewards. A natural hypothesis is that linear rewards with a frozen
embedding are simply too restrictive; perhaps keeping voters linear but using a
more expressive reward model, such as bounded-degree polynomials, restores PO.
We show that, again surprisingly, this is not the case: even with linear voters and
expressive reward models, violations of PO (and of another natural axiom called
Pairwise Majority Consistency) persist; see Section 4.

2. Generalization. In Section 5, we adopt an axiomatic framework on the embedding
space—rather than a fixed train set—and define a generalized version of Pareto
Optimality (PO). This recognizes the key feature of the linear model - directional
differences between candidates matter, not their embeddings. With finite data, we
cannot expect to satisfy these axioms exactly; This aligns with the core role of
reward models: their value is generalization, so the key question is how well any
desirable property transfers to unseen data.

3. Data-centric perspective. While social-choice axiomatic analyses typically rea-
son from a worst-case perspective, real-world training dynamics are far more sensi-
tive to how we curate and sample (preference) data. Recognizing the limitation of
the worst case approach, we ask: can we choose binary comparison queries so that
axiomatic guarantees are provably recovered? In Section 5, we show that a random
sampling scheme already suffices and in the limit we achieve perfect PO. This sug-
gests practical levers (data inspection, reweighting or careful dataset design) when
combinatorial social-choice algorithms are hard to deploy in real systems.

Results marked with (♦) have their proofs deferred to the appendix.

1.2 Related Work

The field of social choice (Arrow et al., 2010; Brandt et al., 2016) offers a long tradition of
axiomatic guarantees that provide a lens through which to compare different aggregation
rules. This perspective is directly relevant to preference-based alignment: Reinforcement

1With many raters, agreement on a binary comparison becomes increasingly unlikely.
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Learning from Human Feedback (RLHF) (Christiano et al., 2017) and Nash Learning from
Human Feedback (NLHF) (Munos et al., 2024) have natural analogues in social choice. The
optimal solution to the Bradley–Terry loss in RLHF is known to induce a ranking that is
equivalent to the Borda ranking from social choice theory (Anderson et al., 2009; Siththa-
ranjan et al., 2024). Formally, NLHF coincides with the von Neumann winner defined
in Dudík et al. (2015), which in turn matches an old rule from social choice, Fishburn’s
maximal lotteries (Fishburn, 1984).2 Building on this connection, several position papers
have recently argued for social choice as a useful lens on RLHF and alignment more broadly
(Conitzer et al., 2024; Dai & Fleisig).
Among the first wave of technical results that has emerged since, most relevant to us is the
work by Ge et al. (2024) who propose the linear social-choice model where voters are linear
directions over a fixed embedding. Building on prior work by (Noothigattu et al., 2020)
which explores the axiomatic properties of reward functions defined as MLE estimators of
underlying random utility models, they analyze the ranking over a fixed candidate set in-
duced by an optimal linear reward with respect to axioms including Pareto optimality (PO)
and Pairwise Majority Consistency (PMC). Because these axioms can still be violated in
that setting, they adapt a combinatorial social-choice rule to the linear social-choice model
to obtain the guarantees. The closest analogue in social choice to linear preferences over
a fixed embedding arises in the literature on restricted preference domains (over rankings)
(Elkind et al., 2022).
Procaccia et al. (2025) analyze clone robustness and show that an appropriate reweight-
ing of the Bradley–Terry loss can be made to satisfy their axiom. Most existing work at
the intersection of alignment and social choice adopts the classic social-choice setting with
unstructured alternatives, in contrast to the metric setting we study here. Recent work in
this vein includes representative social choice proposed by Qiu (2024), the extension of the
distortion framework of Procaccia & Rosenschein (2006) to preference distributions by Gölz
et al. (2025), an analysis of RLHF when each comparison is labeled by a single annotator
by Xiao et al. (2025), and a proposal towards proportional alignment by Kim et al. (2025).

2 Preliminaries

Social choice model. The set of alternatives is the d-dimensional space Rd. A reward
function r : Rd → R induces a (weak) ordering ≼r over the set of all alternatives Rd by
ranking alternatives according to their rewards, namely a ≼r b ⇐⇒ r(a) ≤ r(b) for all
a, b ∈ Rd.
There are n voters, and each voter i has a (weak) ordering ≼i over the set of alternatives Rd.
Unlike in the usual social choice setting, we do not observe the full orderings, but instead
we are only offered a partial view of each voter’s preferences. For each voter i, we observe
a list of pairwise (strict) comparisons. Formally, for each i we are given a nonempty finite
set Pi ⊂ (Rd)2 that satisfies (a, b) ∈ Pi =⇒ a ≺i b. A natural special case is when there
is a set C of m candidates in Rd and the sets Pi contain all3 pairwise comparisons between
candidates in C, i.e., Pi = {(a, b) ∈ C2 : a ≺i b}.
In this context, a voting rule takes as input sets of pairwise comparisons P1, . . . , Pn, one for
each voter, and outputs a reward function whose induced ordering attempts to aggregate
the voter preferences.

Loss-based voting rules. We restrict our attention to voting rules that output a reward
function minimizing a total loss function. Given a particular loss function ℓ : R → R, we
define the total loss incurred by reward function r as

L(r) :=
∑
i∈[n]

∑
(a,b)∈Pi

ℓ(r(a)− r(b))

2Both concepts are Nash equilibria of games and coincide because the corresponding payoff
matrices are related by a positive affine transformation; see (Wang et al., 2023; Maura-Rivero
et al., 2025) for the explicit reference to maximal lotteries.

3We assume that the set of candidates C is such that no two candidates are tied for any of the
n voters, i.e., for any a, b ∈ C either a ≺i b or b ≺i a holds.
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where P1, . . . , Pn are the sets of pairwise comparisons of the n voters, as described above.
The voting rule defined by loss function ℓ outputs a reward function r minimizing the total
loss L.
We obtain the Bradley-Terry loss (Bradley & Terry, 1952; Zermelo, 1929) LBT used in RLHF
by choosing the loss function ℓ to be the cross-entropy loss, i.e., ℓBT(x) := log

(
1 + ex

)
.

We will mention the precise assumptions on the loss function ℓ in the theorem statements
later, but for now let us just think of ℓ as a strictly increasing function. Then the idea is
that if some voter has ranked a over b in their set Pi, a reward function should be penalized
for ranking b over a (i.e., for assigning a higher reward to b than a).

Linear social choice. We will mostly focus on the linear social choice model, where the
reward functions are linear, i.e, of the form rθ(x) = 〈θ, x〉. In particular, in this context,
a loss-based voting rule will minimize the total loss L over the set of all linear reward
functions. Furthermore, the voters are also assumed to have orderings that are induced by
linear reward functions.

Axioms. In this paper we will focus on the following two natural axioms.
Definition 1 (Pareto Optimality (PO)). A loss-based voting rule satisfies Pareto optimality
(PO), if it outputs a reward function r that ranks any comparison (a, b) ∈ ∩iPi correctly,
i.e., r(a) < r(b).

In other words, if there exists a comparison between two candidates on which all voters
agree, then PO requires the voting rule to also rank these candidates in the same way as
the voters.
Definition 2 (Pairwise Majority Consistency (PMC)). An ordering ≺ over all alternatives
appearing in the instance is a PMC ordering, if it satisfies: a ≺ b if and only if a strict
majority of voters rank a below b, i.e., |{i : (a, b) ∈ Pi}| > n/2. A loss-based voting rule
satisfies PMC, if whenever a PMC ordering ≺ exists, it outputs a reward function that
induces ≺.

Note that if a PMC ordering exists, then it is necessarily unique.

3 Revisiting the Pareto Optimality Violation

The counterexample to PO provided by Ge et al. (2024) is constructed in R2. It uses two
(weighted) voters with direction vectors v1 = (1, 1) and v2 = (−1, 0) (their magnitudes are
irrelevant) and six candidates in R2, arranged as two triples. The key idea is to place one
triple (a at (2, 1), b at (1, 1) and c at (0, 0)) so that the two voters disagree on the induced
ordering of its three candidates; with suitable weights, however, the optimal direction is
(1, 0).
Each candidate is then duplicated and the copies are perturbed within an ε-neighborhood
of the originals. This replicates every pairwise comparison fourfold and adds an almost
constant term to the loss from comparing each candidate with its own copy. By a generalized
continuity argument, for sufficiently small ε the optimal linear reward for the perturbed
instance remains close to the original one, since as ε → 0 the new loss is (in the limit)
a linear transformation of the old loss. Finally, one forces one of these copies, say c′, to
approach c = (0, 0) from a direction in the left half-space that makes both v1 and v2 strictly
prefer c′ to c, yielding the desired PO violation.
This construction can be tightened to use only four candidates by duplicating a single point,
as we do in the proof of Theorem 4.1. With three non-collinear candidates and any number
of voters, PO is always satisfiable: optimal rewards (note that these are only unique up to
an additive constant) of the unconstrained objective over these three points can always be
realized by some θ ∈ R2. Disagreement between voters (e.g., v1 prefers a � b � c while v2
prefers the reverse) acts like a length constraint in the Bradley–Terry loss. For a pair (a, b),
the loss contains both

log
(
1 + e−⟨θ,a−b⟩) and log

(
1 + e−⟨θ,b−a⟩),

4
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(possibly with different weights). Letting ‖θ‖ → ∞ drives exactly one of these two terms
to +∞ while the other tends to 0; hence the loss penalizes unbounded ‖θ‖. (The same
phenomenon holds more generally for losses bounded below but diverging to → ∞ as their
argument → ∞.)
We next study a minimal example with one voter and three candidates where the optimal
linear reward subject to a norm constraint violates PO. This instance provides insight into
why PO can fail even without such explicit constraints on instances with multiple voters.
Consider a single voter v = (ε, 1) with ε > 0 and three candidates a = (1, 0), b = (0, 0),
c = (−δ, δ) where 0 < δ � 1. Constrain θ to unit length, θ = (θ1, ±

√
1− θ21) with

θ1 ∈ [−1, 1]. The pairwise Bradley–Terry terms are

(a, b) : log
(
1 + e−⟨θ,a−b⟩) = log

(
1 + e−θ1

)
,

(a, c) : log
(
1 + e−⟨θ,a−c⟩) = log

(
1 + e−

(
(1+δ)θ1 ± δ

√
1−θ2

1

))
,

(b, c) : log
(
1 + e−⟨θ,c−b⟩) = log

(
1 + eδ(θ1 ±

√
1−θ2

1)
)

≤ log
(
1 + eδ

√
2
)
,

since maxθ1∈[−1,1]

(
θ1 ±

√
1− θ21

)
=

√
2. Thus the (b, c) term is O(δ), while the (a, b)

term strictly decreases as θ1 increases, and for small δ the (a, c) term also decreases with
θ1. Consequently, for sufficiently small δ any minimizer has θ1 close to 1 and θ in the
upper-right quadrant near the x-axis, yielding 〈θ, b〉 > 〈θ, c〉 while 〈v, b〉 > 〈v, c〉. Thus, the
presence of other voters can impose a length constraint, and such length constraints lead to
PO violations - even for a single voter. Intuitively, the norm constraint can be interpreted
as a finite “budget”; directions (such as a−b) that are more common or are longer dominate
the loss because “misclassification” in such directions contributes larger terms to the loss,
and so these terms are prioritized given a length constraint.

4 Polynomial Reward Functions

In this section, we study an extension of the linear social choice model, where we allow more
general reward functions. Namely, we consider polynomial rewards and show that PO and
PMC fail even in this case.
Theorem 4.1. Any loss-based voting rule with a loss function ℓ that is strictly convex, lower
bounded, and differentiable with ℓ′(0) > 0, fails to satisfy PO and PMC even with polynomial
reward functions of bounded degree. Furthermore, this already holds in two dimensions and
with three voters that all lie in the positive quadrant.

In particular, this theorem applies to the Bradley–Terry loss, which thus fails to satisfy PO
and PMC even with polynomial reward functions of bounded degree.

4.1 Proof of Theorem 4.1

The instance consists of m+ 1 := d(d+ 1) + 2 candidates c0, c1, c2, . . . , cm, whose positions
in R2 will be specified later. Furthermore, there are two weighted voters:

• Voter v1 = (1, 0) has a fraction α ∈ (1/2, 1) of the votes and ranks the candidates
in the order

c1 ≺ c0 ≺ c2 ≺ c3 ≺ · · · ≺ cm.

• Voter v2 = (0, 1) has a fraction 1− α of the votes and ranks the candidates in the
order

cm ≺ · · · ≺ c1 ≺ c0.

Note that the voters disagree on all comparisons, except the comparison between c0 and c1,
where they agree. The proof works for any α ∈ (1/2, 1), but we can set, e.g., α = 2/3 to
obtain a setting with three (unweighted) voters.

5
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Total loss function. For now, consider allowing arbitrary reward values r0, r1, . . . , rm ∈ R
for the candidates c0, c1, . . . , cm. The total loss of the reward vector r on this instance can
be written as

L(r) = L(r0, r1, . . . , rm) := α

ℓ(r1 − r0) +

m∑
j=2

ℓ(r0 − rj) +
∑

1≤i<j≤m

ℓ(ri − rj)


+ (1− α)

∑
0≤i<j≤m

ℓ(rj − ri)

(1)

Note that we can assume without loss of generality that, say, r1 = 0, since the total loss
does not change if we subtract r1 from all rewards.

Optimal rewards in the degenerate instance. In our instance, we will position can-
didate c0 very close to c1. Thus, the instance will be closely related to a “degenerate”
instance, where c0 and c1 lie at the same position. In that degenerate instance, the optimal
(arbitrary) rewards are given by the following optimization problem:

min
r

L(r) s.t. r0 = r1 = 0 (2)

Claim 1 (♦). The optimization problem (2) has a unique solution 0 = r∗1 < r∗2 < · · · < r∗m.

Positioning of the candidates. We use these optimal rewards 0 = r∗1 < r∗2 < · · · < r∗m
to define the positions of the candidates. First, we let c1 = (0, 0) and c0 = (δ, δ) for some
sufficiently small δ > 0 to be specified later. Next, for each j ∈ [d], we let Lj := {(x, y) ∈
R2 : y = −2x + j}, i.e., Lj is the line going through point (0, j) with slope −2. Then,
for each i = 2, 3, . . . , n, we position candidate ci at the unique point (x, y) on line Lj such
that −x − y = r∗i , where j = d(i − 1)/(d + 1)e. As a result, for any i ≥ 2, candidate ci is
positioned at (x, y) = (r∗i + j,−2r∗i − j), where j = d(i− 1)/(d+ 1)e.
We give a more detailed description of the positioning of candidates ci for i ≥ 2. We let
c2 be the unique point (x, y) on line L1 such that −x− y = r∗2 . Similarly, we let c3 be the
unique point (x, y) on line L1 such that −x− y = r∗3 . We continue positioning points on L1

in this manner, until d + 1 points have been positioned. Then, we switch to L2. In other
words, cd+3 is the unique point (x, y) on line L2 such that −x − y = r∗d+3. We proceed in
this manner, placing d + 1 points on each line, and then moving on to the next line. Note
that the number of candidates to be positioned (without c0 and c1, since these have been
fixed above) is exactly m− 1 = d(d+1), so we are able to position exactly d+1 candidates
on each of the d lines L1, . . . , Ld. See Figure 1 for an illustration. By construction the
following holds.
Claim 2. The positions of the candidates c0, . . . , cm are consistent with the rankings of
voters v1 and v2. Furthermore, the polynomial p∗(x, y) = −x − y satisfies p∗(ci) = r∗i for
all i ∈ [m] and ranks the candidates in the order c0 ≺ c1 ≺ c2 ≺ · · · ≺ cm.

Degree-d polynomial reward functions. We consider the class of reward functions
that are polynomials of degree at most d. As before, without loss of generality, we can
restrict our attention to polynomials p that satisfy p(c1) = 0, i.e., the constant term is zero
(since c1 lies at the origin). The optimal such polynomial reward functions are given by the
following optimization problem:

min
p

L(p(c0), p(c1), . . . , p(cm))

s.t. p(x, y) polynomial of degree at most d

p(0, 0) = 0

(3)

As shown in Claim 2, the polynomial p∗(x, y) = −x − y ranks c1 above c0 when used as
a reward function, i.e., p∗(c1) > p∗(c0). On the other hand, both voters v1 and v2 rank
c0 over c1. In the rest of this proof, our goal will be to show that the optimal polynomial

6
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x

y

L1

L2

v1

v2

c1

c0

p∗

c2
c3
c4

c5
c6
c7

Figure 1: Illustration of the positioning of the candidates for degree d = 2. The red arrow
labeled p∗ indicates the direction of increase of the linear polynomial p∗(x, y) = −x− y.

degree-d reward function for our instance (i.e., any solution to (3)) is close to p∗, and thus
also ranks c1 above c0. This will immediately show that Pareto optimality does not hold
for our instance.
Claim 3. In the degenerate instance where δ = 0, and thus c0 = c1 = (0, 0), the polynomial
p∗(x, y) = −x− y is the unique optimal solution of (3).

Proof. By Claim 2, the polynomial p∗ achieves the optimal rewards r∗ from (2), and thus
p∗ is an optimal solution of (3) in the degenerate instance where δ = 0. In order to show
that p∗ is the unique optimal solution, it suffices to show that no other degree-d polynomial
achieves the optimal rewards r∗, which are the unique optimal solution of (2) by Claim 1.
This follows from the fact that the zero polynomial is the only degree-d polynomial that
simultaneously vanishes at all points ci, a fact which we prove next.
Consider a polynomial p of degree at most d such that p(ci) = 0 for all i ∈ [m]. We will show
that p = 0. First, we apply a rotation around the origin to the (x, y) plane such that the
lines Lj are now of the form Lj = {(x, y) ∈ R2 : y = sj} for some 0 < s1 < s2 < · · · < sd.
Note that p is still a polynomial of degree at most d in this new basis.
Now since p vanishes at d+1 distinct points on Lj , it follows that p restricted to y = sj is the
zero polynomial, i.e., p

∣∣
y=sj

= 0. As a result,4 p must contain a factor (y−sj) for each j ∈ [d].
Since p has degree at most d, it follows that p can be written as p(x, y) = C ·

∏
j∈[d](y− sj).

But now p(0, 0) = r∗1 = 0, together with sj 6= 0 for all j, implies that C = 0 and thus
p = 0.

We will use Berge’s maximum theorem to argue that for sufficiently small δ > 0, any optimal
solution to (3) must be close to p∗.
Theorem 4.2 (Berge’s Maximum Theorem (Berge, 1997); simplified version). Let A ⊆ Rn

and B ⊆ Rm such that B is nonempty and compact. Let f : A × B → R be continuous.
Define the set-valued function f∗ : A ⇒ B by f∗(a) = argmaxb∈B f(a, b). Then f∗ is
upper-hemicontinuous with nonempty and compact values.
Claim 4. There exists a sufficiently small δ > 0 such that any optimal solution of (3)
satisfies p(c1) > p(c0).

4More formally, divide polynomial p by polynomial y − s1 in (R[x])[y]. We obtain p(x, y) =
(y − s1)q(x, y) + r(x), where we note that r only depends on x since it must have degree strictly
less than one in y. Now p

∣∣
y=s1

= 0 implies that r = 0. Then, we can continue by dividing q by
y − s2 in the same manner to obtain the full factorization.
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Before proving this claim, let us see why this implies Theorem 4.1. For δ as given by the
claim, any optimal solution ranks c1 over c0. On the other hand, both voters v1 and v2 rank
c0 over c1, so Pareto optimality is not satisfied. Furthermore, voter v1 always (trivially)
agrees with a strict majority of the voters; in particular, the ordering of voter v1 is PMC
for the instance. However, any optimal solution ranks c1 over c0, even though a majority
(in fact, everyone) agrees to the opposite. Thus, the example also fails PMC.

Proof. In order to use Berge’s maximum theorem, we need to make sure that the domain
over which we are optimizing is compact. Let S = {s = (si,j)i,j≥0:i+j≤d : si,j ∈ R, s0,0 = 0}
represent all polynomials of degree at most d with zero constant coefficient, i.e., for each
s ∈ S, the corresponding polynomial is given by ps(x, y) =

∑d
i=0

∑d−i
j=0 si,jx

iyj . Let S′

denote the subset of S where all coefficients have magnitude at most 2, i.e., S′ = {s ∈ S :
|si,j | ≤ 2}. Let s∗ ∈ S be such that ps∗ = p∗, i.e., s∗1,0 = s∗0,1 = −1 and all other coefficients
are zero. Note that S′ is compact and s∗ lies in the interior of S′.
Now define f : [0, 1] × S′ → R, (δ, s) 7→ L(ps(c0(δ)), ps(c1), . . . , ps(cm)). Clearly, f is
continuous, since the loss function ℓ is continuous, and S′ is nonempty and compact. Thus,
by Berge’s maximum5 theorem (Theorem 4.2), the set-valued function f∗ : [0, 1] ⇒ S′, δ 7→
argmins∈S′ f(δ, s) is upper-hemicontinuous.
Recall that by Claim 3, when δ = 0, the polynomial p∗(x, y) = −x−y is the unique minimizer
of L, i.e., f∗(0) = {s∗}, where s∗ ∈ S is as defined above such that p∗ = ps∗ . As shown in
Claim 2, the polynomial p∗ = ps∗ satisfies p∗(c1) > p∗(c0). By continuity, it follows that
there exists small enough ε ∈ (0, 1), such that we also have ps(c1) > ps(c0) for all s ∈ S
with ‖s − s∗‖∞ ≤ ε. Now, since f∗ is upper-hemicontinuous, we know that for sufficiently
small δ ∈ (0, 1], we have ‖s − s∗‖∞ ≤ ε for all s ∈ f∗(δ). In particular, since ε < 1, f∗(δ)
lies in the interior of S′. By convexity of the function s 7→ L(ps(c0(δ)), ps(c1), . . . , ps(cm)),
it follows that f∗(δ) is the set of minimizers over all of S (not just S′). So for sufficiently
small δ > 0, any minimizer p of (3) must satisfy p(c1) > p(c0).

5 Recovering Pareto Optimality with Uniform Data

In this section, we return to the setting of linear social choice. We consider an idealized
setting where (i) the dataset contains comparisons in all possible directions of space, (ii)
each of these comparisons has unit length, and (iii) each direction appears uniformly. More
formally, this corresponds to a setting where the total loss can be written as

L(θ) :=
n∑

i=1

∫
x∈Sd−1,⟨vi,x⟩≥0

ℓ(−〈θ, x〉) dx (4)

where v1, . . . , vn ∈ Rd\{0} are the voters (inducing a ranking according to the corresponding
reward function rvi(x) = 〈vi, x〉).
We can define a version of PO over this “complete” dataset.
Definition 3. We say that θ ∈ Rd is Pareto optimal (PO) over Rd with respect to voters
v1, . . . , vn ∈ Rd \ {0} if whenever a direction x ∈ Sd−1 satisfies 〈vi, x〉 > 0 for all i, we also
have 〈θ, x〉 > 0.
Theorem 5.1. In the idealized setting, any loss-based voting rule with a loss function ℓ that
is convex, nondecreasing, lower bounded, and differentiable with ℓ′(0) > 0, satisfies PO, as
long as there are at least two distinct voters.

On the other hand, we can show that the analogous definition of Pairwise Majority Consis-
tency (PMC) is not satisfied even in this setting.
Definition 4. We say that θ ∈ Rd is pairwise majority consistent (PMC) over Rd with
respect to voters v1, . . . , vn ∈ Rd \ {0} if whenever a direction x ∈ Sd−1 satisfies 〈vi, x〉 > 0
for a strict majority of all i, we also have 〈θ, x〉 > 0. A voting rule satisfies PMC if it outputs
a PMC vector whenever one exists.

5The theorem clearly also applies to minimization by replacing f by −f .
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Theorem 5.2 (♦). In the idealized setting, any loss-based voting rule with a loss function ℓ
that is strictly convex, nondecreasing, lower bounded, and differentiable with ℓ′(0) > 0 fails
PMC.

Although PMC fails in this uniform data setting, it is not at all obvious whether PMC is
even desirable here. For example, if a p fraction of votes come from direction v1 and a (1−p)
fraction from direction v2, then in the uniform data setting PMC becomes a discontinuous
requirement: the rule must output direction v1 whenever p > 0.5 and direction v2 whenever
p < 0.5. In many applications, one may instead prefer to interpolate between the two. See
the work by Lederer et al. (2024) for a recent discussion of similar considerations in rank
aggregation (from which PMC is inherited).

5.1 Proof of Theorem 5.1

Let Li denote the loss with respect to voter i, i.e.,

Li(θ) :=

∫
x∈Sd−1,⟨vi,x⟩≥0

ℓ(−〈θ, x〉) dx =
1

2

∫
x∈Sd−1

ℓ(− sgn(〈vi, x〉) · 〈θ, x〉) dx,

where the sign function is defined as
sgn(t) = 1 if t > 0, sgn(t) = 0 if t = 0, sgn(t) = −1 if t < 0.

Then we can write L(θ) =
∑n

i=1 Li(θ).
Claim 5 (♦). If θ, θ′ ∈ Rd satisfy ‖θ‖2 = ‖θ′‖2 and 〈θ′, vi〉 > 〈θ, vi〉, then Li(θ

′) < Li(θ).
Claim 6 (♦). If there are at least two distinct voters, then L attains its minimum.
Claim 7 (♦). If there exists x ∈ Sd−1 such that 〈vi, x〉 > 0 for all voters i ∈ [n], then θ = 0
is not a minimum of L.

Finally, we use these three claims to prove the following.
Claim 8. Any minimizer θ∗ of L satisfies PO over Rd with respect to the voters v1, . . . , vn.

Proof. First of all, note that if there does not exist x ∈ Sd−1 such that 〈vi, x〉 > 0 for all
i ∈ [n], then PO is trivially satisfied. Thus, from now on assume that the set D := {x ∈
Sd−1 : 〈vi, x〉 > 0 for all i ∈ [n]} is not empty. In particular, by Claim 7, this implies any
minimizer θ∗ of L is not the zero vector.
Consider any θ 6= 0 such that there exists x ∈ D such that 〈θ, x〉 ≤ 0. We will show that
there exists θ′ with L(θ′) < L(θ) and thus θ is not optimal. Since the set D is open, we can
assume without loss of generality that in fact 〈θ, x〉 < 0. Furthermore, for simplicity we will
assume that ‖θ‖2 = 1 = ‖x‖2. If that is not the case, then one can simply scale x so that it
has the same length as θ and the same proof idea applies.
Let θ′ := (1 + δ)θ + εx. We will show that for some carefully selected ε, δ > 0, θ′ satisfies
〈θ′, vi〉 > 〈θ, vi〉 and ‖θ′‖2 = ‖θ‖2 = 1. As a result, using Claim 5, it will follow that
Li(θ

′) < Li(θ) for all i ∈ [n], and thus L(θ′) < L(θ), as desired.
The condition 〈θ′, vi〉 > 〈θ, vi〉 holds as long as δ〈vi, θ〉 + ε〈vi, x〉 > 0, which holds as long
as ε > − ⟨vi,θ⟩

⟨vi,x⟩δ holds for all i ∈ [n]. Let M := 2 + max{0,−1/〈θ, x〉,maxi −〈vi, θ〉/〈vi, x〉}.
Then letting ε := Mδ ensures that the aforementioned condition is satisfied.
It remains to pick δ > 0 such that ‖θ′‖2 = 1. We can write

‖θ′‖22 = 〈θ′, θ′〉 = 〈(1 + δ)θ +Mδx, (1 + δ)θ +Mδx〉
= (1 + δ)2 + 2(1 + δ)Mδ〈θ, x〉+M2δ2

= 1 + 2δ + δ2 + 2Mδ〈θ, x〉+ 2δ2M〈θ, x〉+M2δ2

= 1 + δ2(1 + 2M〈θ, x〉+M2) + δ(2 + 2M〈θ, x〉).
Note that 1+2M〈θ, x〉+M2 ≥ 1− 2M +M2 > 0 and 2+2M〈θ, x〉 < 0, by the choice of M
and since 〈θ, x〉 ∈ [−1, 0). As a result, we have that for sufficiently large δ > 0, ‖θ′‖2 > 1,
and for sufficiently small δ > 0, ‖θ′‖2 < 1. By the intermediate value theorem, if follows
that there exists δ > 0 such that ‖θ′‖2 = 1, and this completes the proof.
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Theorem 5.1 follows by combining Claim 6, which guarantees that a minimizer exists, with
Claim 8, which guarantees that any minimizer satisfies PO.

6 Discussion and Future Directions

We contribute to the recent effort to import ideas from social choice—especially the ax-
iomatic approach—into the study of AI alignment, pluralistic alignment and multi-objective
alignment. At the same time, classical social choice is largely framed for discrete settings
(e.g., complete rankings over a fixed option set), which do not directly reflect modern ML
pipelines. If social choice is to inform alignment, the axioms and tools must be adapted to
the knobs that actually exist in these pipelines.
In this spirit, we analyze why a seemingly minimal axiom such as Pareto Optimality (PO)
can fail. Seeking models that better reflect training constraints, we focus on loss-based rules
and pursue theoretically tractable proxies for practice: (1) enlarging the reward class, (2)
requiring guarantees that hold out-of-sample, and (3) making the data-generating distribu-
tion explicit. The first point acknowledges that, while many analyses assume unconstrained
rewards, such optima are unlikely to be realized in practice. For (1), we establish a negative
result for bounded-degree polynomial rewards and conjecture that fixed-width, fixed-depth
MLPs over a frozen embedding space fail for similar reasons.
As a step toward generalization, we show that in structured settings (e.g., linear social
choice), axioms specified over a fixed alternative set admit natural analogues over the en-
tire embedding space. In particular, in the linear social choice model, pairwise judgments
between embeddings a and b can inform different queries such as a+ ε vs. b− ε (noisy per-
turbations) or a+ r vs. b+ r (shared direction, translated), providing leverage beyond the
observed preferences. For (3), we prove that PO is achievable under data distributions in
which both inter-embedding distances and directions are suitably uniform/balanced. Tak-
ing our simplified model as given, one can then examine the distribution of embedding
differences—e.g., via PCA—to assess how close it is to this regime.
While one can balance the lengths of comparison directions by renormalizing the loss, achiev-
ing more uniform directional coverage may require reweighting comparisons, and in the worst
case, collecting additional data. A natural next step is to derive explicit sampling bounds
in the uniform setting. Beyond random sampling, a promising direction is to formalize
reweighting and data-query strategies—can we gather data to attain PO in a more targeted
(and more efficient) manner?
While proposing new axioms is not our focus, future research should consider how other
axioms extend to embedding spaces and can be satisfied through data selection. Overall,
our results point to a different way of addressing axiomatic violations within loss-based
frameworks.
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A Additional Related Work

As an alternative to unguided preference elicitation (“which response do you prefer?”), sev-
eral authors (Bai et al., 2022a; Glaese et al., 2022) proposed principle-guided supervision:
annotators judge responses with respect to explicit criteria such as helpfulness, honesty, and
harmlessness (HHH). In current practice, RLHF often elicits binary preferences from users
as a general signal without specifying how to evaluate “better,” and human comparisons are
noisy—commonly modeled with the Bradley–Terry framework. Asking raters to compare
responses with respect to a named principle (e.g., “which is more harmful?”) provides a
clearer target and greater control, reducing variance from idiosyncratic tastes (e.g., prefer-
ring a flattering style). Taking this perspective, we can view the principles as the voters. As
models become more capable, human raters can be replaced or augmented with model-based
judges, yielding Reinforcement Learning from AI Feedback (RLAIF). This makes alignment
methods more scalable. E.g., it is cheap to score the same pairwise comparison against mul-
tiple principles, which may legitimately disagree (a response can be more helpful yet more
harmful). Constitutional AI (CAI) (Bai et al., 2022b) is a concrete framework built around
RLAIF: it introduces an explicit “constitution”—a curated set of principles— which judges
which of two responses better adheres to a given principle. Notably, when CAI was intro-
duced, Anthropic reported a Pareto improvement on the helpfulness–harmlessness frontier:
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increased harmlessness at fixed helpfulness relative to RLHF baselines. Many other works
implement constitutional-style alignment, often under different labels, by conditioning bi-
nary comparisons on explicit criteria (rubrics/attributes), using verifier- or judge-guided
feedback, or training separate objectives that are later combined (Cui et al.; Sun et al.,
2023; Glaese et al., 2022).

B Missing proofs from Section 4

B.1 Proof of Claim 1

Proof. Recall that r1 = 0. For each j ∈ {2, . . . ,m}, we have that both the terms (1−α)·ℓ(rj)
and α · ℓ(−rj) appear in L. Since ℓ is convex and ℓ′(0) > 0, it follows that limx→+∞ ℓ(x) =
+∞. Furthermore, recall that ℓ is lower bounded over R. As a result, it follows that
L(r) → +∞ when |rj | → +∞.
Since the loss function ℓ is strictly convex, the function ϕ : (r2, . . . , rm) 7→ L(0, 0, r2, . . . , rm)
is also strictly convex.6 Thus, together with the previous paragraph, it follows that ϕ attains
its unique minimum r∗.
It remains to argue that the optimal rewards are ordered 0 = r∗1 < r∗2 < · · · < r∗m. To prove
this, we first introduce some additional notation. Define h : R → R, x 7→ α · ℓ(x) + (1− α) ·
ℓ(−x). Note that h is convex and differentiable, and thus its derivative h′ is nondecreasing.
Furthermore, it satisfies

h′(0) = α · ℓ′(0)− (1− α) · ℓ′(0) = (2α− 1) · ℓ′(0) > 0

since α > 1/2 and ℓ′(0). We can rewrite the total loss function as

L(0, 0, r2, . . . , rm) = ℓ(0) + 2

m∑
j=2

h(−rj) +

m−1∑
i=2

m∑
j=i+1

h(ri − rj)

and thus the partial derivatives for all i > 2 as

∂L
∂ri

(r) = −2h′(−ri)−
i−1∑
k=2

h′(rk − ri) +

m∑
k=i+1

h′(ri − rk).

Assume towards a contradiction that r∗i ≥ r∗i+1 for some i ∈ {2, . . . ,m− 1}. We will handle
the remaining case i = 1 separately at the end. Since r∗ is the optimal solution and L is
differentiable, we have ∂L/∂ri(r∗) = 0 for all i ≥ 2. However, we can write

∂L
∂ri+1

(r∗)− ∂L
∂ri

(r∗) = 2(h′(−r∗i )− h′(−r∗i+1))− h′(r∗i − r∗i+1)− h′(r∗i − r∗i+1)

+

i−1∑
k=2

(h′(r∗k − r∗i )− h′(r∗k − r∗i+1)) +

m∑
k=i+2

(h′(r∗i+1 − r∗k)− h′(r∗i − r∗k))

≤ −2h′(r∗i − r∗i+1) < 0

where in the first inequality we used the fact that r∗i ≥ r∗i+1 and h′ is nondecreasing. In the
second inequality we used h′(r∗i − r∗i+1) ≥ h′(0) > 0. Since the partial derivatives are zero,
this is a contradiction. So, it must be that r∗i < r∗i+1 for all i ≥ 2.
It remains to show that r∗1 < r∗2 , i.e., r∗2 > 0. Assume towards a contradiction that r∗2 ≤ 0.
We can write

m∑
i=2

∂L
∂ri

(r∗) = −2

n∑
i=2

h′(−r∗i ) +

m−1∑
i=2

m∑
j=i+1

(h′(r∗i − r∗j )− h′(r∗i − r∗j )) = −2

m∑
i=2

h′(−r∗i )

6Here we use the fact that for (r2, . . . , rm) ̸= (r′2, . . . , r
′
m), there exists j ∈ {2, . . . ,m} such that

rj ̸= r′j , and thus L contains a term for which ℓ((rj + r′j)/2) < ℓ(rj)/2 + ℓ(r′j)/2.
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since every term h′(r∗i −r∗j ) appears once with a positive sign and once with a negative sign.
Thus, we can write

m∑
i=2

∂L
∂ri

(r∗) + 2
∂L
∂r2

(r∗) = −2

m∑
i=2

h′(−r∗i )− 4h′(−r∗2) + 2

m∑
k=3

h′(r∗2 − r∗k)

= −6h′(−r∗2) + 2

m∑
k=3

(h′(r∗2 − r∗k)− h′(−r∗k))

≤ −6h′(−r∗2) < 0

where in the first inequality we used the fact that r∗2 ≤ 0 and h′ is nondecreasing. In the
second inequality we used h′(−r∗2) ≥ h′(0) > 0. Since all the partial derivatives are zero,
this is a contradiction. So we also have r∗2 > 0 = r∗1 .

C Missing proofs from Section 5

C.1 Proof of Claim 5

Proof. First of all, note that since ‖θ‖2 = ‖θ′‖2 and 〈θ′, vi〉 > 〈θ, vi〉, it must be that θ 6= 0
and θ′ 6= 0. Without loss of generality, since the statement of the claim does not change if
we rotate the space, we can assume that vi = e1 is the unit length vector with entry 1 in
the first dimension and 0 otherwise.
Next, we argue that, without loss of generality, we can assume that θ2 ≥ 0 and θj = 0
for all j ≥ 3, and similarly for θ′. Let R′ : Rd−1 → Rd−1 denote the rotation around the
origin in (d − 1)-dimensional space that maps (θ2, . . . , θd) to (α, 0, . . . , 0), where α ≥ 0.
Define R : Rd → Rd by R(x) = (x1, R

′(x2, . . . , xd)). Note that ‖R(θ)‖2 = ‖θ‖2 and
〈R(θ), vi〉 = 〈θ, vi〉, since vi = e1. We will show that Li(R(θ)) = Li(θ). Note that R is a
bijection and we have
〈R(θ), x〉 = θ1x1 + 〈R′(θ2, . . . , θd), (x2, . . . , xd)〉 = θ1x1 + 〈(θ2, . . . , θd), R′−1(x2, . . . , xd)〉

= 〈θ,R−1(x)〉
where R′−1 is the inverse rotation to R′. We can thus write

Li(R(θ)) =

∫
x∈Sd−1,x1≥0

ℓ(−〈R(θ), x〉) dx =

∫
x∈Sd−1,x1≥0

ℓ(−〈θ,R−1(x)〉) dx

=

∫
x∈Sd−1,x1≥0

ℓ(−〈θ, x〉) dx

= Li(θ)

since R−1 is a smooth bijection that preserves distances. Thus, we can assume that θ2 ≥ 0
and θj = 0 for all j ≥ 3, and similarly for θ′.
Let T be the rotation that maps θ to θ′. We can write

L(θ) =
∫
x∈Sd−1,x1≥0

ℓ(−〈θ, x〉) dx

=

∫
x∈Sd−1,[T−1(x)]1≥0

ℓ(−〈θ, T−1(x)〉) dx

=

∫
x∈Sd−1,[T−1(x)]1≥0

ℓ(−〈T (θ), x〉) dx

=

∫
x∈Sd−1,[T−1(x)]1≥0,x1≥0

ℓ(−〈θ′, x〉) dx+

∫
x∈Sd−1,[T−1(x)]1≥0,x1≤0

ℓ(−〈θ′, x〉) dx.

We can also decompose

L(θ′) =
∫
x∈Sd−1,x1≥0

ℓ(−〈θ′, x〉) dx

=

∫
x∈Sd−1,[T−1(x)]1≥0,x1≥0

ℓ(−〈θ′, x〉) dx+

∫
x∈Sd−1,[T−1(x)]1≤0,x1≥0

ℓ(−〈θ′, x〉) dx.
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Thus, we obtain

L(θ)− L(θ′) =
∫
x∈Sd−1,[T−1(x)]1≥0,x1≤0

ℓ(−〈θ′, x〉) dx−
∫
x∈Sd−1,[T−1(x)]1≤0,x1≥0

ℓ(−〈θ′, x〉) dx

=

∫
x∈Sd−1,[T−1(x)]1≤0,x1≥0

ℓ(〈θ′, x〉)− ℓ(−〈θ′, x〉) dx

=

∫
x∈Sd−1,[T−1(x)]1<0,x1>0

ℓ(〈θ′, x〉)− ℓ(−〈θ′, x〉) dx.

Note that the domain {x ∈ Sd−1, [T−1(x)]1 < 0, x1 > 0} has positive measure, since
〈θ′, vi〉 > 〈θ, vi〉. Furthermore, we have ℓ(t) > ℓ(−t) for all t > 0.7 As a result, if we
can show that 〈θ′, x〉 > 0 for all x ∈ Sd−1 with [T−1(x)]1 < 0 and x1 > 0, then we will
obtain L(θ)− L(θ′) > 0, as desired.
Recall that we assume without loss of generality that θ2, θ′2 ≥ 0 and θj = θ′j = 0 for all j ≥ 3.
Furthermore, by assumption we have θ′1 > θ1. Consider any x ∈ Sd−1 with 〈θ′, x〉 ≤ 0 and
x1 > 0. Assume towards a contradiction that [T−1(x)]1 < 0. The rotation T−1 maps θ′ to θ,
which both lie in the upper hemisphere, and θ′1 > θ1. Thus, the rotation is counter-clockwise
and of angle at most π. Since x1 > 0, we can assume without loss of generality that θ1 < 0
and θ2 = 0, i.e., θ is in the negative x axis direction. Indeed, since x1 > 0, if rotating x
in the counterclockwise direction by some angle α < π yields a point y with y1 < 0, then
rotating it by any angle β ∈ (α, π] will also yield a point y with y1 < 0. Now it is easy to
see that the rotation T−1 that maps θ′ to the negative axis direction also maps any point x
with 〈θ′, x〉 ≤ 0 to a point y = T−1(x) with y1 ≥ 0, a contradiction.

C.2 Proof of Claim 6

Proof. We show that for any M ∈ R, there exists a t > 0 such that if ‖θ‖2 > t then
L(θ) > M . Then, since L(0) is finite, we can conclude that L attains its minimum. Observe
that since at least two voters are distinct, say v1 and v2, there exists κ < 1 such that
for any θ ∈ Sd−1, there exists i ∈ {1, 2} such that 〈θ, vi〉 ≤ κ. Here we assume that
‖v1‖2 = ‖v2‖2 = 1 without loss of generality.
Let M be arbitrary. Let θ ∈ Sd−1 be arbitrary. Without loss of generality, say that voter
v1 = e1 is such that 〈θ, v1〉 ≤ κ. Since the loss function ℓ is lower bounded, there exists
K < 0 such that

L(tθ) ≥ K + L1(tθ) ≥ K +

∫
x∈Sd−1,x1≥0

ℓ(−〈tθ, x〉) dx

≥ 2K +

∫
x∈Sd−1,x1≥0,⟨θ,x⟩≤f(κ,d)

ℓ(−〈tθ, x〉) dx

where f(κ, d) < 0 is such that the set {x ∈ Sd−1 : x1 ≥ 0, 〈θ, x〉 ≤ f(κ, d)} has strictly
positive measure bounded away from zero by at least g(κ, d) > 0. As a result, we obtain
that

L(tθ) ≥ −2K + g(κ, d) · ℓ(−t · f(κ, d)) > M

for a sufficiently large t > 0, since ℓ is strictly increasing for positive inputs.8

C.3 Proof of Claim 7

Proof. Let z ∈ Sd−1 be such that 〈vi, z〉 > 0 for all voters i ∈ [n]. We can write

Li(t · z) =
∫
x∈Sd−1,⟨vi,x⟩≥0

ℓ(−〈t · z, x〉) dx.

Taking the derivative with respect to t at t = 0 we obtain
d

dt

∣∣
t=0

Li(t · z) =
∫
x∈Sd−1,⟨vi,x⟩≥0

−〈z, x〉ℓ′(0) dx = ℓ′(0)

∫
x∈Sd−1,⟨vi,x⟩≥0

−〈z, x〉 dx < 0

7This follows from the fact that ℓ is nondecreasing and ℓ′(0) > 0.
8This follows from the fact that ℓ is convex and ℓ′(0) > 0.
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which follows from ℓ′(0) > 0 and∫
x∈Sd−1,⟨vi,x⟩≥0

〈z, x〉 dx > 0

which follows from 〈vi, z〉 > 0 using similar ideas to those in the proof of Claim 5.

C.4 Proof of Theorem 5.2

Proof. Consider R2 and let v1 = (0, 1), v2 = (1, 0). For p ∈ [1/4, 1/2], we consider the
instance where a fraction p of the voters are in direction v1, and the remaining fraction
(1− p) are in direction v2. Thus, the total loss function that is minimized over θ ∈ R2 can
equivalently be written as

L(θ, p) := 2p

∫
x∈S1,x2≥0

ℓ(−〈θ, x〉) dx+ 2(1− p)

∫
x∈S1,x1≥0

ℓ(−〈θ, x〉) dx.

By Claim 6, L(·, p) attains its minimum for each p ∈ [1/4, 1/2]. Furthermore, since ℓ is
strictly convex, so is9 L(·, p), and thus the minimizer of L(·, p) is unique.
For any p < 1/2, v2 is the strict majority voter and so θ = v2 is the only pairwise majority
consistent direction. In order to show that PMC is not satisfied, it thus suffices to prove
that for some p < 1/2, the minimizer of the total loss is different from direction v2.
First, for p = 1/2 we can write

L(θ, 1/2) =
∫
x∈S1,x2≥0

ℓ(−〈θ, x〉) dx+

∫
x∈S1,x1≥0

ℓ(−〈θ, x〉) dx

=

∫
x∈S1,x1≥0

(
ℓ(−〈R(θ), x〉) + ℓ(−〈θ, x〉)

)
dx,

where R denotes the 90◦ clockwise rotation, i.e., R(θ) = (θ2,−θ1). Let θ′ = (θ2, θ1) and note
that 〈R(θ), x〉 = θ2x1− θ1x2 = 〈θ′, (x1,−x2)〉. Since the domain of integration is symmetric
with respect to the transformation (x1, x2) 7→ (x1,−x2), we obtain

L(θ, 1/2) =
∫
x∈S1,x1≥0

(
ℓ(−〈θ′, x〉) + ℓ(−〈θ, x〉)

)
dx.

It follows that L(θ, 1/2) = L(θ′, 1/2), i.e., the loss is invariant under permuting θ1 and θ2.
By convexity,

L
(
(θ + θ′)/2, 1/2

)
≤ 1

2

(
L(θ, 1/2) + L(θ′, 1/2)

)
= L(θ, 1/2),

so the unique minimizer θ∗ of L(·, 1/2) satisfies θ∗1 = θ∗2 . From Claim 7, we know θ∗ 6= 0.
By Theorem 5.1, PO holds for this instance, so θ∗ lies in the positive cone of v1 and v2, and
in particular θ∗2 > 0.
Now let M > 3‖θ∗‖ and B(M) = {θ ∈ R2 : ‖θ‖ ≤ M}. The map L : B(M)× [1/4, 1/2] → R
is continuous, so by Berge’s theorem (Theorem 4.2) the function10

L∗ : [1/4, 1/2] → B(M), L∗(p) = argmin
θ∈B(M)

L(θ, p)

is continuous. Thus, for sufficiently small δ ∈ (0, 1/4),
‖L∗(1/2− δ)− θ∗‖ < θ∗2 ≤ ‖θ∗‖,

so
‖L∗(1/2− δ)‖ ≤ ‖θ∗‖+ ‖L∗(1/2− δ)− θ∗‖ ≤ 2‖θ∗‖ < M.

9This follows from standard results in convex analysis (Rockafellar, 1970) together with the
observation that for any a ̸= b, the set of points x on S1 such that ⟨a− b, x⟩ = 0 has measure zero
(on S1).

10For each p ∈ [1/4, 1/2], the minimizer is unique.
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In particular, L∗(1/2−δ) does not lie on the boundary of B(M), and therefore also minimizes
L(1/2− δ, θ) over all θ ∈ R2.
Finally, any (t, 0) with t > 0 has distance at least θ∗2 from θ∗, so L∗(1/2 − δ) is not a
scalar multiple of the majority voter v2 = (1, 0), and therefore PMC is not satisfied when
p = 1/2− δ.
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