
Published as a conference paper at ICLR 2023

WHERE TO BEGIN? ON THE IMPACT OF PRE-TRAINING
AND INITIALIZATION IN FEDERATED LEARNING

John Nguyen Jianyu Wang Kshitiz Malik Maziar Sanjabi Michael Rabbat

Meta AI
{ngjhn,jianyuwang,kmalik2,maziars,mikerabbat}@meta.com

ABSTRACT

An oft-cited challenge of federated learning is the presence of heterogeneity. Data
heterogeneity refers to the fact that data from different clients may follow very
different distributions. System heterogeneity refers to client devices having different
system capabilities. A considerable number of federated optimization methods
address this challenge. In the literature, empirical evaluations usually start federated
training from random initialization. However, in many practical applications of
federated learning, the server has access to proxy data for the training task that can
be used to pre-train a model before starting federated training. Using four standard
federated learning benchmark datasets, we empirically study the impact of starting
from a pre-trained model in federated learning. Unsurprisingly, starting from a
pre-trained model reduces the training time required to reach a target error rate and
enables the training of more accurate models (up to 40%) than is possible when
starting from random initialization. Surprisingly, we also find that starting federated
learning from a pre-trained initialization reduces the effect of both data and system
heterogeneity. We recommend future work proposing and evaluating federated
optimization methods to evaluate the performance when starting from random and
pre-trained initializations. This study raises several questions for further work on
understanding the role of heterogeneity in federated optimization.

1 INTRODUCTION

Federated learning (FL) has emerged as a popular distributed machine learning paradigm for privately
training a shared model across many participants. At the same time, the training data never leaves
the participant’s devices. This paper empirically investigates the impact of model initialization on
federated optimization methods. Previous empirical evaluations of FL methods start federated training
from a randomly initialized model. Transfer learning from pre-trained models has become common
practice in natural language processing Radford et al. (2019); Devlin et al. (2018) and computer
vision He et al. (2019); Dosovitskiy et al. (2020), yielding state-of-the-art results on many tasks and
enabling faster model convergence in the centralized setting. Although public proxy data is available
at the server in many applications, few prior works studied the impact of starting federated training
from a pre-trained model.

In cross-device FL (Kairouz et al., 2019), the primary setting considered in this paper, a central
server coordinates many client devices (possibly in hundreds of millions). Each device possesses
a local dataset, and the data at different devices follow different distributions, leading to the data
heterogeneity challenge (Kairouz et al., 2019). Moreover, client devices have different system
capabilities, leading to system heterogeneity. Finally, devices communicate with the server over
low-bandwidth communication links making the performance bottleneck.

The predominant approach to federated training builds on local update methods such as FE-
DAVG (McMahan et al., 2016), where a device performs several local updates (e.g., one epoch
of SGD on their local training set) before transmitting an update to the server. Although this reduces
communication overhead, it can also exacerbate data heterogeneity. Several approaches have been
proposed to address this challenge (Li et al., 2018; Hsu et al., 2019; Reddi et al., 2020; Wang et al.,

1

Published as a conference paper at ICLR 2023

Pre-trained Random

60.0

65.0

70.0

75.0

CIFAR-10

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

30.0

35.0

40.0

45.0

50.0

55.0

CIFAR-10
Pre-trained Random

23.0

24.0

25.0

Stack Overflow

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

15.0

16.0

17.0

18.0

19.0

20.0

Stack Overflow

Pre-trained Random

85.0

90.0

FEMNIST

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

75.0

80.0

85.0

90.0

FEMNIST
Pre-trained Random

24.0

25.0

26.0

Reddit

FedAdam Proximal
FedAdam SGD
FedAdam MineLite

FedAvg Proximal
FedAvg SGD
FedAvg MineLite

FedAvgM Proximal
FedAvgM SGD
FedAvgM MineLite

5.0

10.0

15.0

20.0

Reddit

Figure 1: We tested the accuracy of four datasets using random and pre-trained weights. We used
solid lines for SGD, dashed lines for PROXIMAL, and dotted lines for MIMELITE. The graph shows
how the algorithm rankings changed between the random and pre-trained models. Although no single
method is the best for all tasks, FEDADAM with SGD for CLIENTOPT performed consistently well
when starting from a pre-trained model, especially for the larger language modeling tasks of Stack
Overflow and Reddit.

2020; Karimireddy et al., 2020; 2021; Zhang et al., 2021; Acar et al., 2021). However, few prior
works examine the impact of initialization on federated training.

Contributions. In this work, we consider the question: How does model initialization (random
or pre-trained) impact the behavior of federated optimization methods? We perform an extensive
empirical study, comparing 15 variations of federated optimization methods on four commonly-used
FL benchmark datasets. Our study reveals three key findings:

1. Although optimizers designed to address heterogeneity typically lead to better performance
when starting from a random initialization, when starting from a pre-trained model, we
observe that (cf. Fig. 1): (i) there is not as big a difference between optimizers in terms of
accuracy after a fixed number of rounds, and (ii) using an adaptive optimizer at the server,
such as FEDADAM, is more important than using any method for addressing heterogeneity.

2. Starting from a pre-trained model significantly reduces the difference between having non-
IID vs. IID data for clients. Furthermore, when starting from a pre-trained model, the
number of local epochs per round can be significantly increased without degrading the final
accuracy.

3. The initial loss is sometimes lower when starting from a random model. However, the largest
Hessian eigenvalue (i.e., local Lipshitz constant or smoothness) is consistently smaller
at initialization when starting from a pre-trained model compared to when starting from
random initialization.

Some of our empirical observations are consistent with existing FL theoretical convergence guarantees.
Our findings also highlight that some aspects of FL are not captured with the existing theory,
suggesting directions for future work.

Initializing FL with a pre-trained model can increase final model accuracy and reduce the number
of rounds required to achieve a target accuracy. Pre-training leads to communication savings and
reduces the overall training time. Figure 2 demonstrates the benefit of pre-training across several
datasets (hyperparameters were tuned separately for each dataset–initialization pair; see Section 3 for
details of the experimental setup).

2

Published as a conference paper at ICLR 2023

Algorithm 1 FedOpt framework
1: Input: initial global model x0, server and client step sizes ηs, ηc, local epochs E, rounds T
2: for each round t = 1, . . . , T do
3: Server sends xt−1 to all clients i ∈ St.
4: for each client i ∈ St in parallel do
5: Initialize local model y0i ← xt−1.
6: Each client performs E epochs of local updates via yk+1

i = CLIENTOPT(yki , Fi, ηc). Let
yEi denote the result after performing E epochs of local updates.

7: After local training, client i sends ∆t
i = xt−1 − yEi to the server.

8: end for
9: Server computes aggregate update ∆t = 1

|St|
∑

i∈St pi∆
t
i.

10: Server updates global model xt = SERVEROPT(xt−1,−∆t, ηs, t).
11: end for

Our findings are reproducible using the open-source federated learning framework FLSim (FLSim
Authors, 2022). Informed by these findings, we present several recommendations for future research
on federated optimization.

2 PROBLEM FORMULATION AND THE FEDOPT FRAMEWORK

We consider the following standard optimization formulation of federated training. We seek to find
model parameters w that solve the problem,

min
w∈Rd

f(w) :=

m∑
i=1

piFi(w) (1)

where m is the total number of clients, the function Fi measures the average loss of a model with
parameters w on the ith client’s training data, and pi > 0 is the weight given to client i. Usually pi is
taken to be proportional to the number of samples at client i so that the optimization problem gives
equal weight to all training samples. The goal is to find a model that fits all clients’ data well on
(weighted) average. In FL, only client i can evaluate Fi and its gradient.

All of the methods we consider in this study can be expressed in the general FEDOPT framework
introduced in Reddi et al. (2020); see Algorithm 1. At round t, the server sends its last model
xt−1 to a cohort of clients. Each client in the cohort performs E epochs of local training starting
from xt−1 using CLIENTOPT with client learning rate ηc, producing a local model yEi . Then each
client communicates the difference ∆t

i between their local model and the server model, where
∆t

i := xt−1 − yEi . The server computes a weighted average ∆t of the client updates (line 9 in Alg. 1)
and updates its own model via xt+1 = SERVEROPT(xt,∆t, ηs, t), where SERVEROPT(xt,∆t, ηs, t)
is a first-order optimizer, ηs is the server learning rate, and t is the round number.

3 EXPERIMENTAL SETUP

3.1 DATASETS, MODELS, AND TASKS

We experiment on four FL benchmark datasets: CIFAR-10, FEMNIST, Stack Overflow, and Reddit.
All datasets have a natural non-IID partitioning of the data except for CIFAR-10, which we partition
using a Dirichlet distribution with α ∈ [0.1, 1.0, 10]. We train Squeezenet and ResNet18 models
for CIFAR-10 and FEMNIST, and DistilGPT2 and CharLM models for Stackoverflow and Reddit
pushift.io. See Appendix A.1 for additional information. We run each experiment with three different
seeds and report the average. We tune client and server learning rates ηℓ and ηg, and the proximal
penalty parameter µ for FEDPROX with a hyperparameter sweep. Each client update runs one local
epoch with fixed batch size per task, and we perform 1050 rounds of training for Stackoverflow,
1000 rounds of training for CIFAR-10, and 1082 training rounds for FEMNIST. For additional

3

Published as a conference paper at ICLR 2023

implementation details, see Appendix A.2. We use the open-source federated learning simulation
framework FLSim FLSim Authors (2022).

3.2 INITIALIZATION STRATEGIES

We consider two initialization strategies: random initialization and supervised pre-training.

Random initialization. Most prior federated optimization works use random weights to initialize
the model. We can use the same random initialization strategies used in the standard (centralized)
training of deep networks for each model (Iandola et al., 2016; HuggingFace, 2019; He et al., 2016;
Kim et al., 2016).

Supervised pre-training. In many FL applications, pre-training can be done on a large non-private
proxy dataset available at the server. To facilitate easily reproducing our results, we use publicly
available pre-trained models or pre-train on public data. For tasks using Squeezenet and ResNet18,
we use the version of the model pre-trained on ImageNet, available in the PyTorch Torchvision
library.1 For tasks using DistilGPT2, we use the model weights provided in the HuggingFace library
that has been distilled from a pre-trained GPT2,2 and for tasks using CharLM, we pre-train the model
on WikiText-103 (Merity et al., 2016) (see Appendix B.1 for details).

3.3 ALGORITHMS

We compare federated training with five different CLIENTOPT strategies:

SGD clients perform standard stochastic gradient descent updates;

Proximal (Li et al., 2018) clients perform FEDPROX-style local updates; FEDPROX was originally
proposed to reduce client drift due to heterogeneity;

Normalized Averaging (Wang et al., 2020) clients use FEDNOVA-style updates and aggregation to
compensate for data imbalance across clients;

MIMELITE (Karimireddy et al., 2021) clients make use of an optimizer state (e.g., momentum
buffer) from the server during local updates to reduce drift due to data heterogeneity;

GD clients perform full-batch gradient updates; in this case, the update ∆t
i returned to the server is a

full-batch gradient on client i’s local training set evaluated at model parameters xt−1.

At the server, we consider three strategies for SERVEROPT. In all strategies, the server treats the
averaged update ∆t as a gradient.

SGD the server updates the global model using stochastic gradient descent; when CLIENTOPT is
also SGD, this is equivalent to FEDAVG (McMahan et al., 2016).

SGD with momentum the server updates the global model using SGD with momentum; when
CLIENTOPT is SGD, this is equivalent to FEDAVGM (Hsu et al., 2019).

Adam the server updates the global model using the Adam optimizer; when CLIENTOPT is SGD,
this is equivalent to FEDADAM (Reddi et al., 2020).

The method commonly referred to as FEDSGD (McMahan et al., 2017) is obtained when CLIENTOPT
is full-batch gradient descent (GD) and SERVEROPT is SGD, with ηc = 1 and E = 1.

We focus on the above choices for CLIENTOPT and SERVEROPT because they are reflective of the
most widely-cited federated optimization methods, and they also represent a diverse set of possible
choices available to the practitioner seeking to deploy cross-device federated training at scale.

3.4 IMPLEMENTATION AND TUNING

We use three different seeds and report the average of each experiment. Hyperparameter tuning is
done for each algorithm, model, and dataset, with parameters including client and server learning

1https://github.com/pytorch/vision
2https://huggingface.co/distilgpt2

4

Published as a conference paper at ICLR 2023

0 200 400 600 800 1000
Round

5

10

15

20

25

Ac
cu

ra
cy

Stack Overflow

Pretrained
Random

200 400 600 800 1000
Round

5

10

15

20

Ac
cu

ra
cy

Stack Overflow CharLM

Pre-trained
Random

200 400 600 800
Round

16

18

20

22

24

Ac
cu

ra
cy

Reddit CharLM

Pre-trained
Random

0 500 1000 1500 2000
Round

20

40

60

Ac
cu

ra
cy

CIFAR-10 = 0.1

Pretrained
Random

0 100 200 300 400 500
Round

20

40

60

80

Ac
cu

ra
cy

CIFAR-10 = 0.1 ResNet-18

Pre-trained
Random

0 200 400 600 800 1000
Round

20

40

60

80

Ac
cu

ra
cy

FEMNIST

Pretrained
Random

200 400 600 800
Round

70.0

72.5

75.0

77.5

80.0

82.5

Ac
cu

ra
cy

FEMNIST ResNet-18

Pre-trained
Random

Figure 2: While prior works ignore the importance of initialization, using pre-trained models should
be the first step for any practical deployment to save on communication bandwidth and achieve high
model accuracy. This figure shows the advantage of using a pre-trained model for four tasks. For
Stack Overflow and Reddit, we use DistilGPT2. For CIFAR-10 and FEMNIST, we use SqueezeNet.

rates ηℓ and ηg , and the proximal penalty parameter µ for FEDPROX. Unless otherwise specified, we
perform one local epoch with fixed batch size per task for each client update. For Stackoverflow, we
perform 1050 training rounds. For CIFAR-10, we perform 1000 training rounds. For FEMNIST, we
perform 1082 training rounds. Our experiments are implemented using the open-source federated
learning simulation framework FLSim FLSim Authors (2022). Further implementation details can be
found in Appendix A.2.

4 THE IMPACT OF PRE-TRAINING IN FL

In this section, we illustrate the benefits of pre-training in the federated setting and how pre-training
can impact federated optimization algorithms behavior.

Pre-training changes the ranking of federated optimization algorithms. If one sorts federated
optimization methods based on their performance when starting from a random initialization, the order
is substantially different from when using a pre-trained initialization. We focus on nine combinations
of SERVEROPT and CLIENTOPT, only using local update methods for CLIENTOPT and excluding
full-batch gradient descent. We show the change in performance in Figure 1.

First, observe that the span of final accuracies is much smaller when starting from a pre-trained model.
Second, all methods starting with pre-trained models achieve a better accuracy after the same number
of steps compared to random models. Lastly, observe that the order of methods changes depending
on the initialization. Although no particular method dominates across all workloads in Figure 1,
FEDADAM with SGD for CLIENTOPT performs consistently well when starting from a pre-trained
model, especially on the two larger language modeling workloads, Stack Overflow and Reddit, and
so we focus on studying FEDADAM-SGD below.

Faster convergence to better accuracy when starting from a pre-trained model. Figure 2
shows that, as one would hope, when starting from a pre-trained model, it is possible to achieve
much better accuracy after a fixed number of steps than when starting federated training from a
random initialization. Note that the initial accuracy is not always substantially higher than a random
initialization (See Table 2).

Pre-training closes the accuracy gap between non-IID and IID. We study how pre-training and data
heterogeneity affect convergence without system heterogeneity by fixing the number of local epochs
to Ei = 1. We compare FEDADAM-SGD under IID and Non-IID data splits. In Figure 4, we report
the average accuracy for FedAdam (Reddi et al., 2020) on the four datasets. As expected, randomly
initialized models perform much worse than their pre-trained counterparts, and IID partitions yield
better quality than non-IID. Surprisingly, the gap between models trained on IID data and models
trained on non-IID data is significantly smaller when starting with pre-trained weights. Moreover,

5

Published as a conference paper at ICLR 2023

A
cc
ur
ac
y

50

60

70

80

Pre-trained Random

Non-IID IID

CIFAR-10

A
cc

ur
ac

y

18
20
22
24
26

Pre-trained Random

Non-IID IID

Stack Overflow

A
cc
ur
ac
y

90

91

92

93

Pre-trained Random

Non-IID IID

FEMNIST

A
cc
ur
ac
y

0

10

20

30

Pre-trained Random

Non-IID IID

Reddit

Figure 4: The average accuracy on 3 different seeds for FEDADAM trained on IID and non-IID data.
For CIFAR-10 Non-IID, we generate 100 non-IID clients using a Dirichlet(0.1). For other three
datasets, we use the natural non-IID client partitions.

FedAvg FedAvgM FedAdam

67.0

68.0

69.0

70.0

CI
FA

R-
10

 P
re

tr
ai

ne
d

SGD Proximal Nova MimeLite

66.0

68.0

70.0

72.0

74.0

76.2

76.5

76.8

77.0

77.2

77.5
FedAvg FedAvgM FedAdam

40.0

42.5

45.0

47.5

50.0

CI
FA

R-
10

 R
an

do
m

SGD Proximal Nova MimeLite

42.5

45.0

47.5

50.0

52.5

52.0

54.0

56.0

58.0

60.0

62.0
FedAvg FedAvgM FedAdam

86.0

87.0

88.0

89.0

90.0

91.0

FE
M

N
IS

T
Pr

et
ra

in
ed

SGD Proximal Nova MimeLite

89.0

90.0

91.0

92.0

89.0

90.0

91.0

92.0
FedAvg FedAvgM FedAdam

82.5

85.0

87.5

90.0

92.5

FE
M

N
IS

T
Ra

nd
om

SGD Proximal Nova MimeLite

88.0

88.5

89.0

85.2

85.4

85.6

85.8

86.0

Figure 5: System heterogeneity results comparing FedAvg, FedAvgM and FedAdam with various
client optimizers. We simulate system heterogeneity by randomly select 30% of clients per round
to perform time-varying local epochs Ei ∼ U(1, 5), the same approach as in Wang et al. (2020).
FedProx and FedNova correspond to FedAvg with Proximal client optimizer and normalized averaging
(NOVA), respectively. We repeat each experiment for 3 different seeds and report the average.

pre-training reduces the negative effects of data heterogeneity (i.e., client drift). As a result, we
observe that (see Figure 3) when training from a pre-trained model, increasing the number of local
updates does not degrade the final accuracy, in contrast to training from a random model

A
cc

ur
ac

y

60

65

70

75

80

E = 1 E = 2 E = 4 E = 8

Pre-trained Random

Figure 3: The accuracy for CIFAR-10
using ResNet-18 with increasing number
of local epochs.

FEDADAM GD is as effective as FEDADAM SGD with
pre-training. The seminal work of McMahan et al. (2016)
shows that taking local SGD steps before server averaging
reduces communication by 10-100× compared to taking
a full batch gradient step. To understand how pre-training
impacts this comparison, we compare FEDADAM with
SGD and FEDADAM with GD. While local SGD can
reduce communication, the saving is much less when the
models are initialized with pre-trained weights compared
to random weights. Figure 9 in the Appendix shows that
with pre-trained initialization, using GD at the client can
yield almost the same result as taking local SGD steps.

Pre-training reduces the impact of system heterogene-
ity. To study the impact of pre-training on system hetero-
geneity, we follow the setup described in (Li et al., 2018;
Wang et al., 2020). We sample 30% of clients uniformly
at random, and client i performs Ei local epochs where
Ei ∼ U(1, 5) while the remaining 70% of the clients perform Ei = 1 epochs; this models the setting
where clients have different processing capabilities and they perform as much work as they can within
a given time limit. Figure 5 shows that FEDADAM-SGD consistently outperforms other methods
specifically designed for system heterogeneity (NOVA, PROXIMAL, MIMELITE) when starting from a
pre-trained model. Apparently using an adaptive optimizer at the server is sufficient to correct for the
negative effects of systems heterogeneity when starting from a pre-trained model. On the other hand,
when starting from a random initialization, optimizers specifically designed for system heterogeneity
(i.e., FEDNOVA) outperform SGD (Figure 5 right). Moreover, the accuracy gap between algorithms is
more pronounced in the random initialization setting, whereas in the pre-trained setting, all algorithms
converge to more similar accuracies. Our results suggest that pre-training may reduce the need for
algorithms that try to correct system heterogeneity.

6

Published as a conference paper at ICLR 2023

0 100 200 300 400 500
Round

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
Lo

ss

Random
Pretrained

0 100 200 300 400 500
Round

0

2000

4000

6000

Di
st

an
ce

 fr
om

 In
iti

al
 M

od
el

Random
Pretrained

0 100 200 300 400 500
Round

20

30

40

50

60

70

Ev
al

 A
cc

ur
ac

y

Random
Pretrained

0 100 200 300 400 500
Round

4

5

6

7

8

Gr
ad

ie
nt

 D
iv

er
sit

y

Random
Pretrained

0 100 200 300 400 500
Round

0.0

0.2

0.4

0.6

Co
sin

e(
t,

t
1)

Random
Pretrained

0 100 200 300 400 500
Round

0

2000

4000

6000

L2
 D

ist
an

ce
 fr

om
 F

in
al

 M
od

el

Random
Pretrained

Figure 6: Training and gradient statistics of a Resnet18 on CIFAR-10 with Dirichlet distribution
with parameter 0.1. Top row: Train loss of global model; train accuracy of global model; evaluation
accuracy of global model; evaluation loss of global model. Bottom row: Gradient diversity of client
updates; cosine similarity between client updates; L2 distance of server weights from their final
values at the end of training.

5 UNDERSTANDING WHY PRE-TRAINING HELPS FEDERATED OPTIMIZATION

While pre-training unsurprisingly speeds up convergence, the reason for the speedup is less apparent.
In this section, we examine why pre-training is beneficial to federated learning.

Pre-training helps align client updates. To better understand why pre-training alleviates the
heterogeneity challenge, we first investigate the gradient diversity of the updates received from
different clients. We adopt the notion introduced in Yin et al. (2017), adapted here to apply to client
updates ∆i (whereas Yin et al. (2017) focus specifically on gradients gi):

GradientDiversity({∆i : i ∈ St}) =
∑

i∈St ||∆i||2

||
∑

i∈St ∆2
i ||

.

In Figure 6, we plot the gradient diversity of client updates ∆i at each round for FEDADAM. In
the pre-trained setting, client updates have significantly lower gradient diversity (see the bottom
left plot in Figure 6). This suggests that when starting from a pre-trained model, the client local
model changes are more similar to each other. On the other hand, clients local model changes from
randomly initialized weights are almost orthogonal, suffering more from the client drift problem.
In addition, when looking at the cosine similarity of consecutive aggregated update vectors in time
(bottom middle), we see that consecutive updates point more consistently in a similar direction at the
beginning of training when starting from a pre-trained model.

From the top middle and bottom right plots in Figure 6, we see that the pre-trained model starts
closer to the final result. We also examine the largest eigenvalue of the Hessian matrix (i.e., local
Lipshitz constant or smoothness) at the beginning of training, a larger value of which suggests a
harder-to-optimizer loss surface. To compute the Hessian matrix, We examine the largest eigenvalue
of the Hessian matrix at initialization, round 0, using Power Iteration from PyHessian by Yao et al.
(2020). In Table 1, one can observe that pre-trained models always lead to smaller eigenvalues on
different datasets.

Initial loss for pre-trained versus random models. Table 2 shows that pre-training does not always
lead to lower initial loss. For Squeezenet 1.0 on CIFAR-10 and ResNet-18 on FEMNIST, the initial
loss of the randomly initialized models are lower pre-trained models. However, pre-trained model
still converges faster as illustrated in Figure 2.

7

Published as a conference paper at ICLR 2023

CIFAR-10 FEMNIST Stack Overflow Reddit

Pre-trained 661.99 26.29 151.05 647.19
Random 4843.13 355.51 185.02 1309.68

Table 1: The top eigenvalue of the Hessian matrix for each dataset between the pre-trained and
random initialized models.

CIFAR-10 FEMNIST

Squeezenet 1.0 ResNet-18 Squeeze 1.0 ResNet-18
Pre-trained 2.71 1.07 3.99 6.58
Random 1.90 1.11 4.31 4.17

Stack Overflow Reddit

CharLM DistilGPT2 CharLM DistilGPT2
Pre-trained 6.78 4.93 5.15 6.34
Random 7.71 9.82 8.61 9.99

Table 2: Loss at beginning of training for various model architectures and datasets. The initial loss of
the pretrained model is not always lower than that of a random initialization.

Connection to theory. Here, we present the existing optimization theory for FEDAVG and discuss how
pre-training helps to improve the model convergence. Following the formulation in Section 3, suppose
that there are total m clients, jointly optimizing a global objective function f(w) =

∑m
i=1 piFi(w),

and that each client’s local loss function Fi(w) is L-Lipschitz smooth. For ease of presentation, we
assume that all clients participate in training and perform K local SGD updates at each round. Then,
under standard assumptions, one can show that after R communication rounds, the expected gradient
norm satisfies (see Theorem V in Karimireddy et al. (2020)):

E
∥∥∇f(x̄R)

∥∥2 ≤ O(√
F√

RKm
+

F 2/3ζ2/3

R2/3

)
, (2)

where w̄R represents a weighted sampled model from all previous rounds, ζ is a measure of data
heterogeneity, and F = f(x0)− f∗ denotes the gap between the initial loss value and the optimal
loss value.

In addition, in order for FEDAVG to achieve theO(1/
√
RKm) asymptotic convergence rate, previous

works (Wang et al., 2021; Woodworth et al., 2020; Karimireddy et al., 2020; Wang and Joshi, 2021)
showed that the number of local updates K should be upper bounded as follows:

K ≤ O
(

R1/3

F 1/3ζ4/3m

)
. (3)

Clearly, if F becomes smaller starting from a pre-trained model, one can use a larger number of local
updates. This corroborates our empirical observations in Figure 3.

When starting from a pre-trained model, the initial gap F is sometimes reduced, as observed in
Table 2. As a result, the optimization error upper bound (2) will be smaller, i.e., we get better
worst-case performance. However a lower initial loss is not always observed in our experiments, so
this does not fully explain our observations, suggesting that we may need to re-think the convergence
theory of local update methods.

6 RECOMMENDATIONS

In this work, we study the effects of pre-training on federated optimization methods. Our results
inform the following recommendations:

1. When evaluating FL algorithms, researchers should experiment with both pre-trained (if available)
and random weights, as the initialization can clearly impact the relative performance of different
methods, and both initialization schemes may be relevant to practice.

8

Published as a conference paper at ICLR 2023

2. When deploying FL to a production environment, using adaptive server optimizers such as
FEDADAM together with SGD at the client is a simple and competitive approach when it is possible
to start from a pre-trained model.

3. When there is public data to pre-train a model, the impact of heterogeneity can be reduced. Thus,
when focusing on heterogeneity, it may be worth considering whether or not proxy data is available
for pre-training to motivate the application considered.

7 RELATED WORK

Transfer learning. Model initialization can significantly impact training and final performance.
Previous work studying the loss landscape of deep networks observed significant differences between
the landscape around a random initialization and the landscape later in training. In particular, later
in training, the loss can be much more “well-behaved” (Li et al., 2017; Frankle et al., 2020; 2019).
Fine-tuning from pre-trained models is common practice in natural language processing and computer
vision, yielding strong performance on many tasks (Radford et al., 2019; Dosovitskiy et al., 2020;
Devlin et al., 2018; He et al., 2019).

Federated Optimization. While a significant amount of research focused on various aspects of
FL, including communication-efficiency McMahan et al. (2016), data and systems heterogeneity Li
et al. (2018); Wang et al. (2020), and faster convergence rate . Nearly all previous work in this field
neglect the importance of initialization. In our work, we study the impact of initialization on federated
optimization in the cross-device setting. We defer the interested reader to surveys of Kairouz et al.
(2019) and Wang et al. (2021) for additional background.

Pre-training in Federated Learning. Few studies have investigated pre-trained models in federated
learning, including Pillutla et al. (2022); Hsu et al. (2020); Zhao et al. (2018); Lin et al. (2021);
Stremmel and Singh (2021); Tan et al. (2022). While Zhao et al. (2018) found pre-training does not
alleviate the effect of heterogeneity, Tan et al. (2022) focuses on effectively learning from pre-trained
models, and Chen et al. (2022); Weller et al. (2022); Chen et al. (2022) focused on synthetically
partitioned data and proposed pre-training methods with synthetic data. Our work fills a gap by
comparing random initialization and pre-training, which other studies Pillutla et al. (2022); Hsu et al.
(2020); Lin et al. (2021); Stremmel and Singh (2021) did not address. We systematically investigate
both forms of heterogeneity and evaluate 15 SOTA federated optimization algorithms across visual
and language tasks. Our study offers theoretical and empirical evidence supporting the benefits of
pre-training in FL

8 CONCLUSION AND LIMITATIONS

Limitations. Depending on the application, it may not be possible to get public data, in which
case random initialization may be the only option. Nevertheless, we believe there is sufficient
prevalence and importance of applications where public data is available for this study to be of broad
interest. When public data is available, it may not necessarily reflect the distribution of all users in the
population. Consequently, pre-training using public data may introduce bias, which warrants further
study, including methods to detect and mitigate such bias. Moreover, we only consider one warm-start
initialization strategy: supervised pre-training. Several other possibilities are worth investigating,
including meta-learning the warm-start initialization and self-supervised pre-training.

Conclusion. In this paper, we present a thorough empirical analysis of initialization on federated
learning by evaluating it on twelve federated learning algorithms across four vision and text tasks.
We find that pre-training on public data can recover most of the accuracy drop from heterogeneity.
We show that client updates starting from pre-trained weights have higher cosine similarity, which
explains why initializing with pre-trained weights can speed up convergence and achieve high
accuracy even in heterogeneous settings. We further show that using simple SGD locally can be as
good as other local optimizers.

9

Published as a conference paper at ICLR 2023

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and Venkatesh
Saligrama. Federated learning based on dynamic regret. In International Conference on Learning
Representations, 2021.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
han, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. arXiv
preprint arXiv:1812.01097, 2018.

Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei Shen, and Wei-Lun Chao. On pre-training for
federated learning. arXiv preprint arXiv:2206.11488, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

FLSim Authors. Federated learning simulator (flsim). 2022.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. CoRR, abs/1912.05671, 2019. URL http://
arxiv.org/abs/1912.05671.

Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training.
CoRR, abs/2002.10365, 2020. URL https://arxiv.org/abs/2002.10365.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking ImageNet pre-training. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classification with real-world
data distribution. In European Conference on Computer Vision, pages 76–92. Springer, 2020.

HuggingFace. Distilgpt2. 2019. URL https://huggingface.co/distilgpt2.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pages 5132–5143. PMLR, 2020.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Shashank J. Reddi, Sebastian U.
Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic algorithms in
federated learning. 2021.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In Thirtieth AAAI conference on artificial intelligence, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

10

Published as a conference paper at ICLR 2023

Hao Li, Zheng Xu, Gavin Taylor, and Tom Goldstein. Visualizing the loss landscape of neural nets.
CoRR, abs/1712.09913, 2017. URL http://arxiv.org/abs/1712.09913.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Mahdi Soltanolkotabi,
Xiang Ren, and Salman Avestimehr. Fednlp: Benchmarking federated learning methods for natural
language processing tasks. arXiv preprint arXiv:2104.08815, 2021.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning
of deep networks using model averaging. arXiv preprint arXiv:1602.05629, 2016.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In International
Conference on Artificial Intelligence and Statistics, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed, Michael Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personalization. arXiv preprint arXiv:2204.03809,
2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and H Brendan McMahan. Adaptive federated optimization. arXiv preprint
arXiv:2003.00295, 2020.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25:2951–2959, 2012.

Joel Stremmel and Arjun Singh. Pretraining federated text models for next word prediction. In Future
of Information and Communication Conference, pages 477–488. Springer, 2021.

Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Federated learning from
pre-trained models: A contrastive learning approach. arXiv preprint arXiv:2209.10083, 2022.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of
local-update sgd algorithms. Journal of Machine Learning Research, 22, 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in neural information
processing systems, 33:7611–7623, 2020.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-Shedivat,
Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field guide to federated
optimization. arXiv preprint arXiv:2107.06917, 2021.

Orion Weller, Marc Marone, Vladimir Braverman, Dawn Lawrie, and Benjamin Van Durme. Pre-
trained models for multilingual federated learning. arXiv preprint arXiv:2206.02291, 2022.

Blake E Woodworth, Kumar Kshitij Patel, and Nati Srebro. Minibatch vs local sgd for heterogeneous
distributed learning. Advances in Neural Information Processing Systems, 33:6281–6292, 2020.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data),
pages 581–590. IEEE, 2020.

11

Published as a conference paper at ICLR 2023

Dong Yin, Ashwin Pananjady, Maximilian Lam, Dimitris S. Papailiopoulos, Kannan Ramchandran,
and Peter L. Bartlett. Gradient diversity empowers distributed learning. CoRR, abs/1706.05699,
2017. URL http://arxiv.org/abs/1706.05699.

Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. FedPD: A federated learning
framework with adaptivity to non-iid data. IEEE Transactions on Signal Processing, 69:6055–6070,
2021.

Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
learning with non-iid data. arXiv preprint arXiv:1806.00582, 2018.

12

