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ABSTRACT

Traditional Mixture-of-Experts (MoE) models lack explicit constraints to ensure
the router’s decisions align well with the experts’ capabilities, which ultimately
limits model performance. To address this, we propose expert-router coupling
loss (ERC loss), a lightweight auxiliary loss that couples expert capabilities and
the router’s decisions. We treat each row of the router matrix as a cluster center
for the tokens assigned to a particular expert. From these centers, we create proxy
tokens by applying a perturbation with noise. Using these proxy tokens, the ERC
loss forces the router and experts to satisfy two constraints: (1) each expert ex-
hibits higher activation for its corresponding proxy token than for any other proxy
token, and (2) each proxy token elicits stronger activation in its designated expert
than in any other expert. This optimization leads to two key effects: each row of
the router matrix is an accurate representation of its expert’s capabilities, while
each expert develops expertise that closely match the tokens routed to it. Our ex-
periments involve pre-training multiple 3B-parameter MoE-LLMs on trillions of
tokens in total, providing detailed evidence of the ERC loss’s effectiveness. Our
method remains effective and stable as we scale the models up to 15B parame-
ters.1 Moreover, the ERC loss offers flexible control and quantitative tracking of
expert specialization levels during training, providing many valuable insights into
MoEs.

1 INTRODUCTION

Mixture-of-Experts (MoE, Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2021; Zoph et al.,
2022) is a core architecture in modern large language models (LLMs). In MoE models, the feed-
forward layer is split into multiple small, specialized “experts.” A linear classifier, known as the
“router,” selects which experts process each input token. By activating a few experts per token, MoE
balances efficiency with scaled parameter counts, enabling the training of trillion-parameter models.

Ideally, a router should possess an accurate representation of each expert’s capabilities to enable
effective token routing. However, traditional MoEs offer no explicit constraints to guarantee this.
Without direct access to expert parameters (and therefore their true capabilities), routers resort to
trial-and-error learning of routing strategies, often resulting in misrouted tokens whose gradients
interfere with expert specialization. While some methods (Lv et al., 2025; Pham et al., 2024) in-
corporated all experts’ activations for routing guidance, they incur substantial computational and
memory costs due to denser activation. A lightweight and effective solution to better couple routing
decisions with true expert capabilities remains an open challenge.

We propose expert-router coupling loss (ERC loss), a novel auxiliary loss for MoE models that
tightly couples routers and experts with negligible overhead. The loss is based on interpreting the
router parameter matrix R ∈ Rn×d as cluster centers, where each row R[i] serves as the center for
the token set Xi routed to expert i. The ERC loss comprises three key steps:

(1) Each R[i] is augmented with bounded random noise δi to obtain R̃[i], serving as a proxy for
tokens in Xi. Here, δi is bounded by half the minimum distance between adjacent cluster centers,

1Red text highlights new experiments added during the rebuttal period. Blue text indicates the original
content that has been slightly modified.
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Figure 1: Three steps for computing the expert-router coupling loss.

ensuring that the noise simulates input variations within Xi while preventing the crossing of cluster
boundaries.

(2) Inspired by prior works (Geva et al., 2021; Liu et al., 2023; Lv et al., 2025), the intermediate
activation norm serves as an indicator of how well its capabilities align with the token. We measure
the intermediate activation norms of all experts that take R̃[i] as input. This step produces a matrix
M ∈ Rn×n, with M [i, j] being the activation norm from expert j given input R̃[i].

(3) For all i ̸= j, the ERC loss imposes a penalty wherever the off-diagonal elements M [i, j] or
M [j, i] exceed αM [i, i], where α is a scalar hyperparameter:

LERC =
1

n2

n∑
i=1

n∑
j ̸=i

(max (M [i, j]− αM [i, i], 0) + max (M [j, i]− αM [i, i], 0)) .

Minimizing it tightly couples experts and routers through two effects:

• Expert specialization: The proxy token R̃[i] elicits the strongest activation from expert i
versus all other experts. This indicates that expert i is optimized to best match the features
of its assigned token cluster Xi.

• Precise token routing: Expert i is most activated by its designated vector R̃[i] than to any
other R̃[j] for j ̸= i. This demonstrates that R[i] aligns well with the capabilities of expert
i, ensuring that the router assigns to this expert the tokens that need it most.

We conducted large-scale pre-training experiments on models from 3B to 15B parameters, using a
total of several trillion tokens. The ERC loss not only significantly enhances model performance and
narrows the performance gap with a competitive yet more computationally expensive MoE variant
(Lv et al., 2025) but also retains the efficiency of vanilla MoEs.

Furthermore, building on the first effect, we establish that the ERC loss serves as a powerful tool
for studying expert specialization. This property arises from two key features of the ERC loss:
(1) the specialization level is explicitly controlled by α, and (2) the bound of noise δi provides a
quantitative measure for this level. Through this lens, we reveal a trade-off between specialization
and model performance. Our findings challenge some beliefs about expert specialization that were
derived from small-scale experiments. These novel quantitative and qualitative analysis methods
offer new pathways to advance the understanding of MoE models.

In summary, our contributions are twofold:

(1) We propose the ERC loss, a novel auxiliary loss to effectively and efficiently strengthen expert-
router coupling in MoE models.

(2) The ERC loss provides an effective lens for studying expert specialization, offering new insights
into MoE models.
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2 BACKGROUND

Mixture-of-Experts Our description follows the prevailing SwiGLU structure used by advanced
LLMs (Qwen, 2024; DeepSeek-AI, 2025; OpenAI, 2025). An MoE layer consists of n experts,
where each expert i is parameterized by three matrices: W i

g ∈ Rd×D, Wp ∈ Rd×D, and Wo ∈
R

D×d. The layer also includes a router with the weight matrix R ∈ Rn×d, which takes a token
x ∈ Rd as input and outputs an expert weight2 vector:

w = softmax(xR⊤) ∈ Rn.

Typically, the top-K experts with the highest expert weights are selected to process the token. The
processing of x by expert i is given by:

Ei(x) =
(
SiLU(xW i

g)⊙ (xW i
p)
)
W i

o ,

where ⊙ denotes element-wise multiplication. The final output of the entire MoE layer is the
weighted sum of the outputs of the selected experts:

K∑
k

w[k]Ek(x), where k ∈ Top-K(w).

Expert-router coupling via denser activation Autonomy-of-Experts (AoE; Lv et al., 2025) en-
codes the routing function into expert parameters. AoE factorizes Wg into two r-rank matrices
W i

down ∈ Rd×r and W i
up ∈ Rr×D. Each expert processes a token up to the point after the W i

down
projection. The expert weight vector is computed using the activation norm at this stage:

w = softmax
(
{∥xW i

down∥ for i = 1, . . . , n}
)
.

(a) Mixture-of-Experts (b) Autonomy-of-Experts

Router

x

w

𝑬𝟏 𝑬𝟑𝑬𝟐

x

𝑬𝟑𝑬𝟏 𝑬𝟐

wCompute
𝑳𝟐 Norm &

Softmax

Used
Param.

Unused
Param.

Figure 2: The overview of MoE and AoE models.

The top-K experts exhibiting the highest ac-
tivation norms are selected to continue their
forward computation, and the others are ter-
minated early. This norm-based selection is
justified by the fact that the activation norm
of MLPs represents how well their capabili-
ties match their inputs (Geva et al., 2021; Liu
et al., 2023). The computational overhead of
AoE scales with the number of tokens dur-
ing both training and inference. Moreover,
this inefficiency worsens as the number of ex-
perts n increases or the selection count K de-
creases. These limitations hinder the scalability
and practical deployment of AoE in LLMs.

Pham et al. (2024) use experts’ final output norms to supervise router logits. There is no infer-
ence overhead but the model is fully dense-activated during training, contradicting the core sparsity
principle of MoE. Therefore, we include it only for background discussion, not as a baseline.

3 METHOD

After analyzing the strengths and limitations of prior work, we distill three design principles to
ensure a lightweight, effective, and practically applicable enhancement for expert-router coupling in
MoE-LLMs:

(1) Routers must be retained in MoE architectures to preserve routing efficiency.

(2) An auxiliary loss that enables interaction between experts and routers can strengthen their cou-
pling.

(3) The loss must have complexity independent of the number of input tokens and must not introduce
activation density beyond that of a vanilla MoE.

Below, we introduce expert-router coupling loss, which fulfills all these principles.
2In this paper, “weight” refers to the relative contribution of each expert’s output or the strength of the loss

function. Please carefully distinguish between “weight” and “parameter.”
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3.1 EXPERT-ROUTER COUPLING LOSS

The expert-router coupling (ERC) loss is motivated by a clustering-based interpretation of MoE
routing: The routing mechanism in traditional MoE models can be interpreted as a clustering pro-
cess, where router parameters R ∈ Rn×d are viewed as n cluster centers. For any input token
x ∈ Rd, the router computes an n-dimensional logit vector representing the weight assigned to each
expert. Specifically, the weight for expert i is derived from the inner product between x and the
cluster center R[i]. When x belongs to the cluster centered at R[i], this inner product is maximized
(under the premise that the rows of R have comparable magnitude, which is generally the case),
making expert i the top choice.

A key advantage of this clustering view is that it enables probing an expert’s responsiveness to a
set of tokens without feeding every token to all experts, unlike prior methods (See §2). Instead, we
leverage each cluster center R[i] as a proxy for tokens routed to expert i (denoted as Xi), enabling
us to derive intermediate activations and evaluate how well the expert aligns with a proxy token.

Our ERC loss is computed in three key steps:

(1) For each cluster center R[i], we create a perturbed proxy token R̃[i] = R[i] ⊙ δi. δi ∈ Rd

is bounded multiplicative random noise, which we elaborate in §3.2. This noise ensures the proxy
generalizes to tokens in Xi. Notably, the corrupted R̃ is used only for loss computation; routing
still uses the clean R to compute router logits, as in standard MoEs.

(2) Each proxy token is processed by the Wg parameter of all n experts, yielding a total of n2

intermediate activations. The L2 norm of each activation is computed to form a matrix M ∈ Rn×n,
where M [i, j] corresponds to the norm from expert j given input R̃[i]:

M [i, j] =
∥∥R̃[i] ·W j

g

∥∥
(3) To enforce expert-router coupling, for all i and j ̸= i, the ERC loss imposes two constraints,
where a scalar α ∈ [0, 1] determines their strength:

M [i, j] < αM [i, i] (1)

M [j, i] < αM [i, i] (2)

Constraint 1 ensures the proxy token R̃[i] activates its corresponding expert i more than any other
expert j. Since tokens similar to R[i] are routed to expert i, and given their similarity to R̃[i], they
also elicit a stronger activation in expert i than in other experts. This strongest activation indicates
that expert i is optimized to develop capabilities best suited to Xi (Lv et al., 2025).

Constraint 2 requires that expert i responds more strongly to its own proxy token R̃[i] than by any
other R̃[j]. This ensures each R[i] accurately represents expert i, guaranteeing that tokens most
needing expert expert i are correctly routed to it.

As α decreases, the two constraints become stricter, thereby enforcing stronger expert-router cou-
pling. Additionally, α enables flexible regulation of specialization: a smaller α increases the gap
between M [i, i] and M [i, j], reflecting greater expert specialization as experts exhibit more differ-
entiated responses to the same inputs. This feature makes the ERC loss a useful tool for investigating
expert specialization and provides deeper insight into MoE behavior, as demonstrated in §4.2.

We translate these two constraints into expert-router coupling loss, formally defined as:

LERC =
1

n2

n∑
i=1

n∑
j ̸=i

(max (M [i, j]− αM [i, i], 0) + max (M [j, i]− αM [i, i], 0)) (3)

The three steps for computing expert-router coupling loss are illustrated in Figure 1. For implemen-
tation details, we provide PyTorch-style pseudocode in Figure 9.

3.2 BOUNDED RANDOM NOISE FOR GENERATING PROXY TOKENS

The perturbed proxy token R̃[i] = R[i]⊙ δi makes expert i’s coupling generalizes effectively from
R[i] alone to Xi. To ensure the perturbed point R̃i remains within its original cluster, we require

4
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a bounded perturbation. We therefore model the noise δi as a multivariate uniform distribution,
δi ∼ U(1− ϵi, 1 + ϵi)

d. Let j = argminj∗ ̸=i ∥R[i]−R[j∗]∥ be the nearest cluster center. For the
noise level ϵ to be sufficient to avoid perturbing the cluster, it must satisfy:

ϵi ≤
∥R[i]−R[j]∥

2∥R[i]∥
. (4)

The derivation of this bound is provided in Appendix A. We set ϵi to its maximum value, i.e., the
right-hand side of this inequality. Notably, the value of ϵi is dynamically computed at each layer
and every training step.

3.3 EFFICIENCY ANALYSIS

Theoretical training efficiency In a standard MoE layer, T tokens are processed by K experts,
resulting in a total computational cost of 6TKDd FLOPs. expert-router coupling loss introduces
only 2n2Dd additional FLOPs, a cost that is negligible in practical pre-training setups where K is
often in the millions. In contrast, AoE introduces an additional overhead of 2T (n −K)dr FLOPs
(recall that r is AoE’s factorization rank; see §2). Given that typical MoE-LLMs operate at sparsity
levels far below 25% (i.e., n > 4K), this overhead ratio exceeds r/D, making it prohibitive. A
detailed breakdown of the FLOP calculations supporting the above theoretical analysis is provided
in Appendix B.1.

Empirical training overhead The efficiency of our method is confirmed in practice. The ERC
loss maintains low overhead during LLM pre-training with multiple parallelism strategies, adding
only 0.2–0.8% overhead in our experiments. We provide a complete analysis of these real-world
distributed conditions and measured throughputs in Appendix B.2.

Overhead-free inference Our method incurs no additional inference overhead as the auxiliary
loss is not applied. However, AoE retains the same forward computation, carrying over the associ-
ated overhead.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We compare the ERC-loss-augmented MoE against both the vanilla MoE and AoE baselines. All
models are trained from scratch with 3B parameters. This parameter size is chosen because it rep-
resents the largest scale at which we could successfully train the AoE model under our available
resources. Our implementation is based on OLMoE (Muennighoff et al., 2025). The models com-
prise 12 layers with d = 1536 and D = 768. Each Transformer (Vaswani et al., 2017) layer
has 16 attention heads and n = 64 experts, where K = 8 experts are selected per token. For
the AoE model, we set r = 512 to ensure consistent total parameter count. The number of ac-
tivated parameters is 500M. Each model is trained on 500B tokens from the open-source dataset
dolmap-v1.5-sample (Soldaini et al., 2024), using a batch size of 3 million tokens. We use the
AdamW optimizer (Loshchilov & Hutter, 2019) with (β1, β2) = (0.9, 0.95), a weight decay of 0.1,
and a learning rate of 4e-4 with a cosine schedule decaying to 4e-5. A load balancing loss (Fedus
et al., 2022) with a weight of 0.01 is applied consistently in all experiments.

For simplicity, the loss weight of the ERC loss is fixed at 1, and we use α = 1 by default if not
specified.

We evaluate LLMs on following tasks: ARC-Challenge (Clark et al., 2018), CommonsenseQA (Tal-
mor et al., 2019), COPA (Roemmele et al., 2011), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), OpenbookQA (Mihaylov et al., 2018), SciQ (Welbl et al., 2017), Social IQa (Sap et al.,
2019), WinoGrande (Sakaguchi et al., 2021), and MMLU (Hendrycks et al., 2021a).

4.2 PERFORMANCE, EFFICIENCY, AND LOAD BALANCING

Figure 3(a) reports the average accuracy across all tasks and task-specific results are presented in
Figure 10. It shows that the ERC-loss-augmented MoE achieves stable performance gains, which
significantly outperforms the vanilla MoE and narrows the gap between AoE and MoE.

5
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Figure 3: The 3B-parameter MoE model augmented with ERC loss achieves substantial and stable
performance gains, while maintaining comparable load balancing to the baseline. For detailed task-
specific results, please refer to Figure 10.

Table 1: Scaling to 15B parameters: ERC loss improves performance on more challenging bench-
marks.

MMLU C-Eval MMLU-Pro AGI-Eval BBH MATH GSM8K TriviaQA

MoE 63.2 67.5 31.0 42.0 44.3 25.7 45.2 47.2
MoE + LERC 64.6 69.0 31.9 44.2 45.6 26.1 45.8 49.1

In terms of efficiency, MoE models with and without ERC loss have nearly identical throughput
and memory costs. By contrast, AoE requires 1.6× more training hours and 1.3× higher memory
usage, limiting further scaling due to impractical training times and out-of-memory issues.

Expert-router coupling loss is compatible with the load balancing loss. As shown in Figure 3(b),
the difference in load balancing loss between MoE combined with LERC and the vanilla MoE is on
the order of 10−5. This difference is negligible given that the overall load balancing loss magnitude
remains around 10−2. By comparison, the loss difference between AoE and vanilla MoE is approx-
imately 4 × 10−4. Although this difference is still small relative to the overall loss magnitude, it is
notably larger than the difference exhibited by ours.

4.3 VALIDATING ERC LOSS IN 15B-PARAMETER MOES

We scale models to 15 billion parameters by increasing n to 256 (keeping K=8) and doubling the
model depth. This configuration results in a total of 15B parameters with approximately 700M
activated. Other training hyper-parameters largely follow the setup in Section 4.1. As a large-
scale, high-sparsity model, the AoE method failed to train due to overly costly and is thus omitted
from comparison. Table 1 shows that the benefits of the ERC loss persist across various public
benchmarks more challenging than those used for 3B models, including MMLU (Hendrycks et al.,
2021a), C-Eval (Huang et al., 2023), MMLU-Pro (Wang et al., 2024b), AGI-Eval (Zhong et al.,
2024), BBH (Suzgun et al., 2023), MATH (Hendrycks et al., 2021b), GSM8K (Cobbe et al., 2021),
and TriviaQA (Joshi et al., 2017). The consistent performance improvements demonstrate that our
method effectively addresses the expert-router decoupling problem even at scale. Throughout this
large-scale training, we observed no loss spikes or abnormal gradients.

4.4 THE ERC LOSS IS AN EFFECTIVE TOOL FOR EXPLORING EXPERT SPECIALIZATION

With the ERC loss, experts are more specialized, as they exhibit greater discrimination between
tokens they process and those they do not, compared to the ERC loss is not used. An intuitive
demonstration of this specialization comes from visualizing expert parameters. Following (Yang
et al., 2025), we use t-SNE (van der Maaten & Hinton, 2008) to project each row of W i

g (where i
mod 8 = 0) from layer 6 (the middle depth) onto a 2D point. As shown in Figure 4, experts in vanilla

6
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Figure 4: t-SNE projections of Wg in MoE experts trained without and with the ERC loss. Our ERC
loss provides greater expert specialization.
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Figure 5: (a) Since routers are deeply coupled with experts, the distance between neighboring cluster
centers (i.e., the maximum noise level ϵ) quantitatively reflects changes in expert specialization
during training, which is controlled by α. (b) Downstream performance across different values of α.

MoE lack specialization, as their parameter features do not form meaningful clusters. By contrast,
MoE enhanced with the ERC loss exhibits distinct clusters, indicating specialized capabilities.

Beyond merely promoting specialization, the ERC loss can also serve as a powerful tool for explor-
ing it. We show this capability through two features below and an example use case in Section 4.5.

Feature 1: α enables a controllable investigation into optimal specialization. In the ERC loss,
α governs the coupling strength between experts and the router. When α = 0, the ERC loss encour-
ages R[i] to be orthogonal to the parameters of other experts, thereby maximizing specialization.
Conversely, when α → 1, the loss permits smaller differences in how all experts’ responsiveness to
R[i], thus reducing specialization. Notably, α = 1 only weakens the ERC loss’s constraints to their
maximum extent; it still retains a degree of specialization stronger than the spontaneously emerged
specialization in a vanilla MoE model.

Feature 2: ϵ provides a quantitative measure for specialization. The noise level ϵ exhibits a
strong correlation with α, and it can reflect changes in expert specialization throughout the training
process. This correlation exists because as α increases, experts are allowed to be more homo-
geneous. This growing homogeneity among experts, in turn, reduces the separation between the
cluster centers in the router as they are tightly coupled. A smaller separation between cluster centers
ultimately derives a smaller ϵ. Thus, ϵ is a quantitative metric tracking expert specialization.

Experiments and discussion. The following experiments support these two features. In Fig-
ure 5(a), we plot ϵ at each training step across a parameter search over α ∈ {0.4, 0.6, 0.8, 1.0}.
Consistent with our analysis, increasing α which reduces expert specialization indeed leads to a
corresponding decrease in ϵ. Note that measuring router cluster distance is uninformative in vanilla
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MoE training without the ERC loss, as the router and experts are uncoupled and cluster distances do
not reflect expert capability dynamics. We further compared downstream task performance across
different values of α. Figure 5(b) shows that all tested α values outperform the vanilla MoE model.
This not only confirms the robust effectiveness of the ERC loss but also demonstrates that the spe-
cialization spontaneously formed by vanilla MoE models is inadequate.

Several previous studies (Guo et al., 2025; Liu et al., 2024; Hendawy et al., 2024)
have suggested that enforcing orthogonality among experts can enhance MoE performance.

200 500400300

Pre-training Cross-Entropy Loss

MoE +ℒ!"# (𝛼 = 0)
MoE

Tokens (B)

2.50

2.45

2.40

2.35

Figure 6: Enforcing expert orthogo-
nality (α = 0) impairs convergence.

However, these claims are primarily based on small-scale
fine-tuning experiments conducted on well-pretrained mod-
els. As shown in Figure 5(b), pursuing extreme orthog-
onality is not advisable, as model performance degrades
with stricter ERC loss constraints. This highlights a trade-
off between promoting expert specialization and maintain-
ing effective collaboration, a balance that is underdiscussed
in previous works. More intuitively, while our ERC loss
can achieve expert orthogonality by setting α = 0, we ob-
serve that this strict constraint can even impair convergence
during large-scale pre-training (Figure 6). These findings
challenge the applicability and effectiveness of strict expert
orthogonality in large-scale pre-training settings, suggest-
ing that the orthogonality obtained during fine-tuning may
merely make experts specialized for a specific domain more
distinct. In Appendix C.3, we further show that the lack of
“perfect” orthogonality among router embeddings is also
not a critical weakness for pre-training MoE models.

4.5 HOW SPECIALIZED SHOULD EXPERTS BE? AN EARLY EXPLORATION ACROSS SPARSITY

While α = 1 was optimal for the MoE sparsity settings and architectural hyperparameters discussed
above, the peak performance at α = 0.8 in Figure 5 suggests that other values may yield better
results under different model configurations. This raises a question: How specialized should experts
be? More concretely, how should α be tuned for different model architectures to achieve better
performance?

An intuition is that when the MoE is very sparse (with a small K/n), the selected combination of
experts must be generalist enough to cover the diverse requirements of processing any given token.
Over-specialization (an α that is too small) risks that this small set of experts cannot adequately
handle the input, thereby hurting performance. Conversely, when K/n is large, the system can
afford to include more specialized experts, as their collective capacity is more likely to cover the
input’s needs.

53.0

53.5

52.5
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51.5

0.4 0.6 0.8 1.0
84 16

𝛼
𝐾

Figure 7: Downstream performance
versus MoE sparsity (K/n) and α.

To validate this, we pre-trained models with n = 64 ex-
perts, varying K ∈ {4, 8, 16} and α ∈ {0.4, 0.6, 0.8, 1.0}.
For each (K,α) pair, we trained on 100B tokens. All other
hyper-parameters followed Section 4.1, and we report the
average downstream score across in Figure 7. The results
confirm our intuition: for K = 4 and 8, α = 1.0 performs
best; while α = 0.6 is acceptable for K=16.

Based on these findings, we provide a practical guideline
for tuning α when applying the ERC loss to custom models.
Given that industrial MoEs operate with high sparsity (e.g.,
K/n ≪ 8/64), we recommend using α = 1 as a robust
default, requiring no further tuning. For research on smaller
models or denser activations, α = 1.0 remains a safe and
convenient choice, while α < 1 may yield more benefits but
requires case-specific tuning. Furthermore, this experiment
confirms that the ERC loss serves as a tool for studying
specialization, thus supporting the claims in Section 4.4.
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4.6 ABLATION STUDIES

Our ablation studies: (1) explain our rationale for selecting ∥R̃Wg∥ to compute M as the default
choice; (2) demonstrate that the random noise δ enables the generalization of coupling; (3) show
that the ERC loss cannot be reduced to geometric constraints applied to experts or routers separately
(e.g., router embedding orthogonality); (4) discuss the impact of α > 1; and (5) verify that the model
decreases the ERC loss by learning meaningful coupling rather than by manipulating parameter
norms. Due to page limits, we include these experiments in Appendix C.

5 RELATED WORKS

Auxiliary loss for MoEs Auxiliary losses are crucial for training large-scale MoE models. Most
existing work in this area focuses primarily on enhancing training stability. For instance, many
studies have proposed auxiliary losses to address load balancing challenges (Fedus et al., 2022;
Qiu et al., 2025; Wang et al., 2024a); Zoph et al. (2022) introduced the z-loss, which penalizes
excessively large logits in the gating network to enable stable training. Our ERC loss is the first
tailored to strengthen the expert-router coupling. Other related auxiliary losses enhancing expert
specialization or orthogonality are discussed below.

Expert specialization Dai et al. (2024) introduced a shared expert to handle general capabili-
ties, encouraging the others to be more specialized. Guo et al. (2025) proposes an auxiliary loss to
minimize the pairwise projections of the selected top-K experts’ outputs for each token, reducing
expert overlap but incurring high cost due to K2 cosine similarity calculations per token. Other
methods scale the number of tiny experts to millions, making each expert more atomic and thus
more specialized (Yang et al., 2025; Park et al., 2025; He, 2024), but are memory-bounded. Beyond
efficiency, these methods face three major limitations: (1) no quantitative control over specializa-
tion degree; (2) no exploration of the specialized-generalized ability trade-off; and (3) failure to
strengthen expert-router coupling. Our method addresses all three, both efficiently and effectively.

Some works (Guo et al., 2025; Liu et al., 2024; Hendawy et al., 2024) maximize specialization by
training orthogonal experts, but their evaluations are limited to small-scale fine-tuning (or reinforce-
ment learning). In contrast, our ERC loss allows for orthogonality when α = 0, yet we find this
value hinders convergence during pre-training, with optimal performance achieved at α ≫ 0. These
results challenge the practicality of expert orthogonality in large-scale pre-training.

Contrastive learning Constraints 1 and 2 bear similarity to contrastive learning (Chen et al.,
2020; van den Oord et al., 2019; Khosla et al., 2020). In MoE research, Luo et al. (2024) applied
contrastive learning to expert outputs, encouraging specialization. Baidu-ERNIE-Team (2025) en-
forces router embedding orthogonality. However, naively applying contrastive learning to either
routers or experts leaves the weak expert-router coupling unaddressed.

6 CONCLUSIONS

The weak coupling between router decisions and expert capabilities limits MoE models in multiple
important aspects. We propose expert-router coupling loss that tightly couples router parameters
with their corresponding experts. The proposed ERC loss improves MoE-based LLMs on down-
stream tasks while incurring negligible training overhead. In addition, it exhibits several desirable
properties that not only provide deeper insight into the behavior of MoE models but also offer a
promising tool for future research on expert specialization.

STATEMENTS ON ETHICS, REPRODUCIBILITY, AND LLM USAGE

Our research does not raise ethical issues. For reproducibility, we used public data and code, and
provide algorithm code in Figure 9. We used LLMs solely for typo checking.
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A DETERMINING THE MAXIMUM MULTIPLICATIVE NOISE LEVEL

δi is a random vector where each component δi,k follows a uniform distribution U(1− ϵ, 1+ ϵ), and
all components are mutually independent. The perturbed point is given by:

R̃i = (δi,1(Ri,1), δi,2(Ri,2), . . . , δi,d(Ri,d))

To ensure that R̃i remains in the same cluster as Ri, it must satisfy:

∥R̃i −Ri∥2 < ∥R̃i −Rj∥2,
where j = argminj∗ ̸=i ∥R[i]−R[j]∥.

Expanding the squared norms on both sides of the inequality yields:

∥R̃i −Ri∥2 =

d∑
k=1

(δi,k − 1)2(Ri,k)
2

∥R̃i −Rj∥2 =
d∑

k=1

(δi,kRi,k −Rj,k)
2

Substituting into the inequality and simplifying gives:
d∑

k=1

[2δi,k(Ri,k(Rj,k −Ri,k) + (R2
i,k −R2

j,k)] < 0

To ensure this inequality holds for all realizations of δi, we consider the worst-case scenario that
maximizes the left-hand side. Define:

Ak = 2Ri,k(Rj,k −Ri,k), B =

d∑
k=1

(R2
i,k −R2

j,k),

so the inequality becomes:
d∑

k=1

Akδi,k +B < 0. (5)

The worst-case δi,k is chosen to maximize
∑

Akδi,k:

δi,k =

{
1 + ϵ if Ak > 0,

1− ϵ if Ak < 0.

Substituting these values gives:
d∑

k=1

Ak + ϵ

d∑
k=1

|Ak|+B < 0. (6)

Now simplify
∑

Ak +B:∑
Ak +B = 2

∑
Ri,kRj,k − 2

∑
R2

i,k +
∑

R2
i,k −

∑
R2

j,k

= 2
∑

Ri,kRj,k −
∑

R2
i,k −

∑
R2

j,k

= −
(∑

R2
i,k − 2

∑
Ri,kRj,k +

∑
R2

j,k

)
= −∥Ri −Rj∥2

(7)

Substituting equation 7 into equation 6 yields:

−∥Ri −Rj∥2 + 2ϵ

d∑
k=1

|Ri,k(Rj,k −Ri,k)| < 0

14
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Solving for ϵ gives:

ϵmax <
∥Rj −Ri∥2

2
∑d

k=1 ∥Ri,k(Rj,k −Ri,k)∥

However, computing the denominator of this expression is relatively complex. To balance the effi-
ciency of loss calculation, we instead adopt a tighter upper bound for ϵ.

By the Cauchy-Schwarz Inequality, the following relationship holds:
d∑

k=1

∥Ri,k(Rj,k −Ri,k)∥ ≤ ∥Ri∥ · ∥Rj −Ri∥

Thus, we have:

ϵmax =
∥Rj −Ri∥2

2
∑d

k=1 |(Ri,k(Rj,k −Ri,k)∥
≥ ∥Rj −Ri∥2

2∥Ri∥ · ∥Rj −Ri∥
=

∥Rj −Ri∥
2∥Ri∥

The term on the right-hand side of the final inequality is the value of ϵ we used in the main text. This
choice ensures that the perturbed R̃[i] remains closer to R[i] than to any other R[j ̸= i] at all times.

B EFFICIENCY ANALYSIS

Appendix B.1 analyzes the ideal FLOPs cost breakdown of the vanilla MoE, as well as the overhead
introduced by AoE and ERC loss. Appendix B.2 discusses efficiency with consideration of the
multiple parallelism strategies used in real-world MoE pre-training. Both analyses demonstrate the
practicality of our method.

B.1 FLOPS COST BREAKDOWN OF THREE METHODS

MoE forward Each expert in a MoE layer involves the following operations, with their respective
FLOP counts:

• Two matrix multiplications of dimension T × d with d×D, accounting for 4TdD FLOPs.
These correspond to the linear transformations parameterized by Wg and Wp.

• One element-wise multiplication of T × D tensors and one SiLU activation applied to a
T × D tensor. The computational cost of these operations is negligible compared to the
matrix multiplications.

• One matrix multiplication of dimension T × D with D × d, contributing 2TDd FLOPs.
This corresponds to the linear transformation parameterized by Wo.

Summing these components gives a total of 6TdD FLOPs per expert. For K experts processing T
tokens, the total computational cost is therefore 6KTdD FLOPs.

Computational overhead of AoE AoE factorizes the expert matrix Wg ∈ RD×d into two low-
rank matrices of rank r. To maintain the same number of parameters as the original matrix, we
require dr +Dr = Dd, which gives r = Dd

d+D .

The change in FLOPs compared to an MoE is:

T

 2ndr︸ ︷︷ ︸
All experts useWdown

+ 2KDr︸ ︷︷ ︸
Top-K experts useWup

− 2KDd︸ ︷︷ ︸
Top-K experts use original Wg

 ,

where T is the number of tokens. Substituting the value of r and simplifying leads to an extra
computational cost of:

2T (n−K)dr.

Computational overhead of expert-router coupling loss It introduces n2 matrix multiplications,
each operating on tensors of shape 1× d and d×D. In total, this results in 2n2Dd extra FLOPs.
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B.2 THROUGHPUTS UNDER MULTIPLE PARALLELISM STRATEGIES

We now assess the overhead of the ERC loss in a realistic large-scale pre-training setup that employs
both data parallelism (DP) and expert parallelism (EP). As derived in our previous analysis, the
computational cost of the ERC loss is equivalent to a forward pass on n2/3 tokens. When distributed
across devices, the costs are:

• Base MoE forward: K · T / dp size

• ERC overhead: n · (n / ep size) / 3

Consider training our 15B-parameter model with the configuration: K = 8, T = 3× 106, n = 256,
dp size = 64, and ep size = 8. In this scenario, the ERC overhead constitutes a mere 0.72% of
the base model’s forward pass cost. This theoretical estimate is consistent with our empirical mea-
surements: we observe a throughput of 62.03B tokens/day for the baseline versus 61.52B tokens/day
for our model, representing only a 0.82% reduction. With a smaller n = 64, as in our 3B models
trained with dp size=32 and ep size=1 (i.e., EP disabled), the overhead ratio drops further to
0.18%. This analysis confirms the practical efficiency of our method.

C ABLATION STUDIES

C.1 COMPUTING M WITH DIFFERENT ACTIVATIONS

We considered five candidates for calculating M : using the norms of (a) R̃Wg , (b) R̃Wp, (c)
SiLU(R̃Wg), (d) the post-SwiGLU activations (i.e., SiLU(R̃Wg) ⊙ R̃Wp), and (e) experts’ final
outputs (i.e., (SiLU(R̃Wg) ⊙ R̃Wp)Wo). As shown in Figure 8 C.1, R̃Wg is the most effective
among all alternatives. While using the final output achieves comparable performance, it incurs a
higher cost. We therefore adopt R̃Wg as our default choice.

C.2 RANDOM NOISE δ ENABLES THE GENERALIZATION OF COUPLING

The random noise δ allows R̃[i] to better capture the samples within Xi. To validate its impor-
tance, we conducted an ablation study where we trained an MoE with the ERC loss but removed
δ. Specifically, we computed M directly using the original R instead of the noise-augmented R̃.
As shown in Figure 8 C.2, removing δ greatly degrades performance. This is because the coupling
between routers and experts becomes overfitted to R, failing to generalize to the real inputs that
R[i]s represent.

C.3 COMPARISON WITH CONTRASTIVE REGULARIZATION SOLELY ON ROUTERS

In Section 4.4, we showed that overly strict contrastive regularization on experts can be detrimental
during pre-training. Here, we extend this analysis to contrastive regularization applied solely to
routers. We compare our ERC loss with the router orthogonalization loss (Baidu-ERNIE-Team,
2025), which requires R̂ (the row-wise normalization of R) to satisfy:

R̂R̂⊤ = I.

As shown in Figure 8 C.3, the orthogonalization loss yields only limited gains. We attribute this
to our finding that the router embeddings in our baseline MoE model are already nearly orthogonal,
with an average absolute cosine similarity of 0.15. This value corresponds to angles between router
embeddings mostly ranging from arccos(0.15) = 81° to arccos(-0.15) = 99°. Notably, we do not
imply that all MoEs always have nearly orthogonal router embeddings, as this may depend on the
data or specific architecture; we report this only as a characteristic of our models, which explains
the limited gains from the orthogonalization loss.

This result further demonstrates that weak coupling between routers and experts is a more critical
issue than imperfect orthogonality in router embeddings. The significant gains from ERC, even
when applied to a baseline with already near-orthogonal routers, provide clear evidence.
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Figure 8: Results of ablation studies C.1, C.2, C.3 and C.4. For detailed task-specific results, please
refer to Figure 10.

Furthermore, it is important to note that even if both routers and experts are orthogonalized, there is
no guarantee that each R[i] will be aligned with W i

g . Therefore, the ERC loss cannot be reduced to
contrastive techniques applied individually to routers or experts, such as orthogonalization loss.

C.4 WHAT HAPPENS IF α > 1?

Some readers might be interested in the value of α at which the ERC loss degenerates to no effective
constraints, and the trained model consequently degenerates to a vanilla MoE. For our baseline
MoE, we seek the minimum α that zeros the ERC loss computed from the M matrices of the last
checkpoint. Table 2 shows that achieving zero ERC loss across all layers requires α = 5 in our
pre-trained vanilla MoE baseline. This provides direct evidence that the router-expert coupling in
the vanilla MoE is very weak.

We further pre-trained 3B MoE models with the ERC loss at α values of 2 and 3. It is important to
note that this experiment is to only demonstrate the effects of loosening the ERC constraints. We
do not recommend using α > 1 in practice, as it contradicts our core motivation: the router and
experts will shift from a state of no mismatch toward looser coupling constraints, ultimately causing
the model to degenerate into a vanilla MoE. As shown in Figure 8 C.4, the model with α = 2 yields
only limited improvement, while the model with α = 3 shows almost no improvement over the
vanilla MoE.
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Table 2: Post-hoc ERC loss evaluation of the vanilla MoE across α values. For a clear and concise
demonstration, the loss values in this table are computed using the original R rather than R̃, making
the results deterministic.

Layer
Value of α

1 2 3 4 5

0 0.87 0.69 0.26 0.00 0.00
1 0.42 0.28 0.10 0.00 0.00
2 0.45 0.19 0.00 0.00 0.00
3 0.25 0.15 0.00 0.00 0.00
4 0.28 0.08 0.00 0.00 0.00
5 0.24 0.22 0.00 0.00 0.00
6 0.22 0.15 0.00 0.00 0.00
7 0.21 0.13 0.00 0.00 0.00
8 0.15 0.05 0.00 0.00 0.00
9 0.16 0.00 0.00 0.00 0.00

10 0.21 0.09 0.00 0.00 00.00
11 0.50 0.44 0.20 0.20 0.00

C.5 DO MODELS REDUCE ERC LOSS THROUGH MANIPULATING PARAMETER NORMS?

This is a frequent question, as some readers assume that simply increasing or decreasing the norms
of certain router embeddings or experts will increase the diagonal entries of M , thereby reducing
the ERC loss. Below, we (1) explain that any attempt to reduce one term of the ERC loss by
manipulating norms will simultaneously increase other terms, and (2) present detailed parameter
norms as evidence.

The term M [i, j] can be expressed as ∥R[i]∥∥W j
g ∥ cos θi,j , where θi,j denotes the angle between

R[i] and W j
g . Scaling up ∥W i

g∥ decreases the loss from i-th row in M (as the second term below
increases):

∥R[i]∥∥W j
g ∥ cos θi,j − ∥R[i]∥∥W i

g∥ cos θi,i
However, simultaneously, it increases the loss term from every j ̸= i rows (as the first term below
increases):

∥R[j]∥∥W i
g∥ cos θj,i − ∥R[j]∥∥W j

g ∥ cos θj,j .

This logic is symmetric: any attempt to manipulate the norms of R or Wg (whether increasing or
decreasing them) to reduce one part of the loss will increase another. This property ensures that the
overall ERC loss is minimized only when the router embedding norms are kept comparable and a
meaningful coupling is established between routers and their experts.

As shown in the first four columns of Table 3, the average parameter norms for models trained
with and without the ERC loss are comparable. Meanwhile, the lower standard deviation under the
ERC loss reflects more consistent norms across both router embeddings and experts. In the last two
columns of the table, we present the ERC loss for each model. The ERC loss is significantly higher
in the baseline model despite its similar average parameter norms.
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Table 3: The first four columns show parameter norms for models trained with and without ERC loss,
while the last two show the corresponding layer-wise ERC loss. These results show that MoE + LERC
learns a meaningful coupling, rather than trivially minimizing the loss through norm manipulation.
All values are evaluated on the last checkpoint.

Layer
∥R[i]∥ ∥W i

g∥ LERC Values

Baseline +LERC Baseline +LERC Baseline +LERC

0 1.85±0.39 1.67±0.31 25.46±3.93 24.14±3.02 0.87 0.00

1 1.25±0.13 1.13±0.12 30.14±0.68 29.42±0.69 0.42 0.00

2 1.17±0.12 1.07±0.09 30.63±0.77 29.88±0.76 0.45 0.00

3 1.10±0.08 1.01±0.07 30.18±0.77 29.42±0.78 0.25 0.00

4 1.03±0.08 0.89±0.05 30.59±1.21 29.88±1.09 0.28 0.00

5 0.93±0.08 0.87±0.06 30.33±1.13 29.86±1.06 0.24 0.00

6 0.86±0.08 0.83±0.07 30.65±1.15 29.82±1.11 0.22 0.00

7 0.82±0.07 0.75±0.06 30.56±1.20 29.96±1.16 0.21 0.00

8 0.77±0.06 0.76±0.06 30.46±1.02 29.82±0.88 0.15 0.00

9 0.80±0.07 0.74±0.06 30.58±0.88 29.86±0.79 0.16 0.00

10 0.74±0.08 0.69±0.06 30.80±1.03 30.16±0.89 0.21 0.00

11 0.80±0.14 0.73±0.10 32.03±1.46 31.50±1.26 0.50 0.00
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1 import torch
2 import torch.nn as nn
3 import PseudoExpertClass
4

5 class MoE(nn.Module):
6

7 def __init__(self, args):
8 super().__init__()
9

10 self.experts = PseudoExpertClass(args)
11 self.R = torch.nn.Parameter(torch.empty(
12 args.n, args.d))
13

14 self.alpha = args.alpha
15

16 def erc_loss(self, M):
17 row_diff = (M - self.alpha * torch.diag(M).unsqueeze(1))
18 row_diff_clamped = torch.clamp(row_diff, min=0.0)
19

20 col_diff = (M - self.alpha * torch.diag(M).unsqueeze(0))
21 col_diff_clamped = torch.clamp(col_diff, min=0.0)
22

23 mask = torch.ones_like(A) - torch.eye(A.size(0), device=A.device)
24 total_diff = (row_diff_clamped + col_diff_clamped) * mask
25

26 return total_diff.mean()
27

28 def get_noisy_router(self, R):
29 with torch.no_grad():
30 norm_R = torch.norm(R, dim=1)
31 distances = torch.cdist(R, R, p=2)
32 distances.fill_diagonal_(float(’inf’))
33 min_dist, _ = torch.min(distances, dim=1)
34 eps = min_dist / 2 / norm_R
35

36 low = (1 - eps).unsqueeze(1)
37 high = (1 + eps).unsqueeze(1)
38 noise = torch.rand_like(R)
39 return (low + noise * (high - low)) * R
40

41 def forward(self, x):
42

43 erc_loss = 0.0
44 if self.training:
45 R = self.get_noisy_router(self.R)
46 M = torch.norm(torch.einsum(’jDd,id->ijD’, self.experts.Wg,

R), dim=-1)
47 erc_loss = self.erc_loss(M)
48

49 logits = x.view(-1, x.shape[-1]) @ self.R.T
50 scores = logits.softmax(dim=-1)
51 expert_weights, expert_indices = torch.topk(scores, dim=-1)
52

53 return self.experts(x, expert_weights, expert_indices), erc_loss

Figure 9: Pseudo code for expert-router coupling loss in PyTorch.
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Figure 10: Task-specific downstream results for previous experiments.
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