

000 001 002 003 004 005 COUPLING EXPERTS AND ROUTERS IN MIXTURE-OF- 006 EXPERTS VIA AN AUXILIARY LOSS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029
030
031 Traditional Mixture-of-Experts (MoE) models lack explicit constraints to ensure
032 the router’s decisions align well with the experts’ capabilities, which ultimately
033 limits model performance. To address this, we propose expert-router coupling
034 loss (ERC loss), a lightweight auxiliary loss that couples expert capabilities and
035 the router’s decisions. We treat each row of the router matrix as a cluster center
036 for the tokens assigned to a particular expert. From these centers, we create proxy
037 tokens by applying a perturbation with noise. Using these proxy tokens, the ERC
038 loss forces the router and experts to satisfy two constraints: (1) each expert ex-
039 hibits higher activation for its corresponding proxy token than for any other proxy
040 token, and (2) each proxy token elicits stronger activation in its designated expert
041 than in any other expert. This optimization leads to two key effects: each row of
042 the router matrix is an accurate representation of its expert’s capabilities, while
043 each expert develops expertise that closely match the tokens routed to it. Our ex-
044 periments involve pre-training multiple 3B-parameter MoE-LLMs on trillions of
045 tokens in total, providing detailed evidence of the ERC loss’s effectiveness. **Our**
046 **method remains effective and stable as we scale the models up to 15B parameters.**¹ Moreover,
047 the ERC loss offers flexible control and quantitative tracking of expert specializa-
048 tion levels during training, providing many valuable insights into
049 MoEs.

1 INTRODUCTION

050 Mixture-of-Experts (MoE, Shazeer et al., 2017; Fedus et al., 2022; Lepikhin et al., 2021; Zoph et al.,
051 2022) is a core architecture in modern large language models (LLMs). In MoE models, the feed-
052 forward layer is split into multiple small, specialized “experts.” A linear classifier, known as the
053 “router,” selects which experts process each input token. By activating a few experts per token, MoE
054 balances efficiency with scaled parameter counts, enabling the training of trillion-parameter models.

055 Ideally, a router should possess an accurate representation of each expert’s capabilities to enable
056 effective token routing. However, traditional MoEs offer no explicit constraints to guarantee this.
057 Without direct access to expert parameters (and therefore their true capabilities), routers resort to
058 trial-and-error learning of routing strategies, often resulting in misrouted tokens whose gradients
059 interfere with expert specialization. While some methods (Lv et al., 2025; Pham et al., 2024) in-
060 corporated all experts’ activations for routing guidance, they incur substantial computational and
061 memory costs due to denser activation. A lightweight and effective solution to better couple routing
062 decisions with true expert capabilities remains an open challenge.

063 We propose expert-router coupling loss (ERC loss), a novel auxiliary loss for MoE models that
064 tightly couples routers and experts with negligible overhead. The loss is based on interpreting the
065 router parameter matrix $\mathbf{R} \in \mathbb{R}^{n \times d}$ as cluster centers, where each row $\mathbf{R}[i]$ serves as the center for
066 the token set \mathcal{X}_i routed to expert i . The ERC loss comprises three key steps:

067 (1) Each $\mathbf{R}[i]$ is augmented with bounded random noise δ_i to obtain $\tilde{\mathbf{R}}[i]$, serving as a proxy for
068 tokens in \mathcal{X}_i . Here, δ_i is bounded by half the minimum distance between adjacent cluster centers,

069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

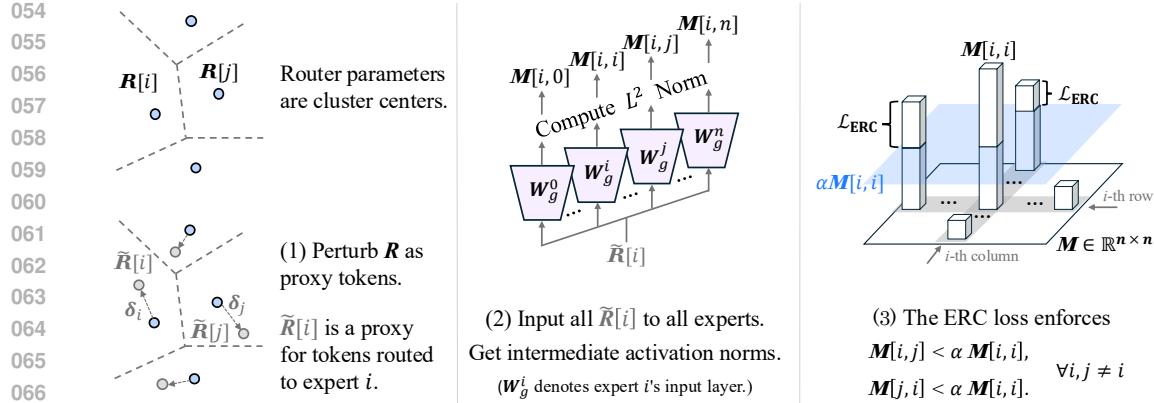


Figure 1: Three steps for computing the expert-router coupling loss.

ensuring that the noise simulates input variations within \mathcal{X}_i while preventing the crossing of cluster boundaries.

(2) Inspired by prior works (Geva et al., 2021; Liu et al., 2023; Lv et al., 2025), the intermediate activation norm serves as an indicator of how well its capabilities align with the token. We measure the intermediate activation norms of all experts that take $\tilde{R}[i]$ as input. This step produces a matrix $M \in \mathbb{R}^{n \times n}$, with $M[i, j]$ being the activation norm from expert j given input $\tilde{R}[i]$.

(3) For all $i \neq j$, the ERC loss imposes a penalty wherever the off-diagonal elements $M[i, j]$ or $M[j, i]$ exceed $\alpha M[i, i]$, where α is a scalar hyperparameter:

$$\mathcal{L}_{\text{ERC}} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j \neq i}^n (\max(M[i, j] - \alpha M[i, i], 0) + \max(M[j, i] - \alpha M[i, i], 0)).$$

Minimizing it tightly couples experts and routers through two effects:

- Expert specialization: The proxy token $\tilde{R}[i]$ elicits the strongest activation from expert i versus all other experts. This indicates that expert i is optimized to best match the features of its assigned token cluster \mathcal{X}_i .
- Precise token routing: Expert i is most activated by its designated vector $\tilde{R}[i]$ than to any other $\tilde{R}[j]$ for $j \neq i$. This demonstrates that $R[i]$ aligns well with the capabilities of expert i , ensuring that the router assigns to this expert the tokens that need it most.

We conducted large-scale pre-training experiments on models from **3B to 15B parameters**, using a total of several trillion tokens. The ERC loss not only significantly enhances model performance and narrows the performance gap with a competitive yet more computationally expensive MoE variant (Lv et al., 2025) but also retains the efficiency of vanilla MoEs.

Furthermore, building on the first effect, we establish that the ERC loss serves as a powerful tool for studying expert specialization. This property arises from two key features of the ERC loss: (1) the specialization level is explicitly controlled by α , and (2) the bound of noise δ_i provides a quantitative measure for this level. Through this lens, we reveal a trade-off between specialization and model performance. Our findings challenge some beliefs about expert specialization that were derived from small-scale experiments. These novel quantitative and qualitative analysis methods offer new pathways to advance the understanding of MoE models.

In summary, our contributions are twofold:

- (1) We propose the ERC loss, a novel auxiliary loss to effectively and efficiently strengthen expert-router coupling in MoE models.
- (2) The ERC loss provides an effective lens for studying expert specialization, offering new insights into MoE models.

108

2 BACKGROUND

110 **Mixture-of-Experts** Our description follows the prevailing SwiGLU structure used by advanced
 111 LLMs (Qwen, 2024; DeepSeek-AI, 2025; OpenAI, 2025). An MoE layer consists of n experts,
 112 where each expert i is parameterized by three matrices: $\mathbf{W}_g^i \in \mathbb{R}^{d \times D}$, $\mathbf{W}_p \in \mathbb{R}^{d \times D}$, and $\hat{\mathbf{W}}_o \in$
 113 $\mathbb{R}^{D \times d}$. The layer also includes a router with the weight matrix $\mathbf{R} \in \mathbb{R}^{n \times d}$, which takes a token
 114 $\mathbf{x} \in \mathbb{R}^d$ as input and outputs an expert weight² vector:

$$115 \quad \mathbf{w} = \text{softmax}(\mathbf{x}\mathbf{R}^\top) \in \mathbb{R}^n.$$

116 Typically, the top- K experts with the highest expert weights are selected to process the token. The
 117 processing of \mathbf{x} by expert i is given by:

$$118 \quad E_i(\mathbf{x}) = (\text{SiLU}(\mathbf{x}\mathbf{W}_g^i) \odot (\mathbf{x}\mathbf{W}_p^i)) \mathbf{W}_o^i,$$

119 where \odot denotes element-wise multiplication. The final output of the entire MoE layer is the
 120 weighted sum of the outputs of the selected experts:

$$122 \quad \sum_k^K \mathbf{w}[k] E_k(\mathbf{x}), \text{ where } k \in \text{Top-K}(\mathbf{w}).$$

125 **Expert-router coupling via denser activation** Autonomy-of-Experts (AoE; Lv et al., 2025) encodes
 126 the routing function into expert parameters. AoE factorizes \mathbf{W}_g into two r -rank matrices
 127 $\mathbf{W}_{down}^i \in \mathbb{R}^{d \times r}$ and $\mathbf{W}_{up}^i \in \mathbb{R}^{r \times D}$. Each expert processes a token up to the point after the \mathbf{W}_{down}^i
 128 projection. The expert weight vector is computed using the activation norm at this stage:

$$129 \quad \mathbf{w} = \text{softmax}(\{\|\mathbf{x}\mathbf{W}_{down}^i\| \text{ for } i = 1, \dots, n\}).$$

131 The top- K experts exhibiting the highest activation norms are selected to continue their
 132 forward computation, and the others are terminated early. This norm-based selection is
 133 justified by the fact that the activation norm of MLPs represents how well their capabilities
 134 match their inputs (Geva et al., 2021; Liu et al., 2023). The computational overhead of
 135 AoE scales with the number of tokens during both training and inference. Moreover,
 136 this inefficiency worsens as the number of experts n increases or the selection count K de-
 137 creases. These limitations hinder the scalability and practical deployment of AoE in LLMs.

138 Pham et al. (2024) use experts' *final* output norms to supervise router logits. There is no inference
 139 overhead but the model is fully dense-activated during training, contradicting the core sparsity
 140 principle of MoE. Therefore, we include it only for background discussion, not as a baseline.

144

3 METHOD

145 After analyzing the strengths and limitations of prior work, we distill three design principles to
 146 ensure a lightweight, effective, and practically applicable enhancement for expert-router coupling in
 147 MoE-LLMs:

- 148 (1) Routers must be retained in MoE architectures to preserve routing efficiency.
- 149 (2) An auxiliary loss that enables interaction between experts and routers can strengthen their coupling.
- 150 (3) The loss must have complexity independent of the number of input tokens and must not introduce activation density beyond that of a vanilla MoE.

151 Below, we introduce expert-router coupling loss, which fulfills all these principles.

152 ²In this paper, “weight” refers to the relative contribution of each expert’s output or the strength of the loss
 153 function. Please carefully distinguish between “weight” and “parameter.”



154 Figure 2: The overview of MoE and AoE models.

162 3.1 EXPERT-ROUTER COUPLING LOSS
163

164 The expert-router coupling (ERC) loss is motivated by a clustering-based interpretation of MoE
165 routing: The routing mechanism in traditional MoE models can be interpreted as a clustering pro-
166 cess, where router parameters $\mathbf{R} \in \mathbb{R}^{n \times d}$ are viewed as n cluster centers. For any input token
167 $\mathbf{x} \in \mathbb{R}^d$, the router computes an n -dimensional logit vector representing the weight assigned to each
168 expert. Specifically, the weight for expert i is derived from the inner product between \mathbf{x} and the
169 cluster center $\mathbf{R}[i]$. When \mathbf{x} belongs to the cluster centered at $\mathbf{R}[i]$, this inner product is maximized
170 (under the premise that the rows of \mathbf{R} have comparable magnitude, which is generally the case),
171 making expert i the top choice.

172 A key advantage of this clustering view is that it enables probing an expert’s responsiveness to a
173 set of tokens without feeding every token to all experts, unlike prior methods (See §2). Instead, we
174 leverage each cluster center $\mathbf{R}[i]$ as a proxy for tokens routed to expert i (denoted as \mathcal{X}_i), enabling
175 us to derive intermediate activations and evaluate how well the expert aligns with a proxy token.

176 Our ERC loss is computed in three key steps:

177 (1) For each cluster center $\mathbf{R}[i]$, we create a perturbed proxy token $\tilde{\mathbf{R}}[i] = \mathbf{R}[i] \odot \delta_i$. $\delta_i \in \mathbb{R}^d$
178 is bounded multiplicative random noise, which we elaborate in §3.2. This noise ensures the proxy
179 generalizes to tokens in \mathcal{X}_i . **Notably, the corrupted $\tilde{\mathbf{R}}$ is used only for loss computation**; routing
180 still uses the clean \mathbf{R} to compute router logits, as in standard MoEs.

182 (2) Each proxy token is processed by the \mathbf{W}_g parameter of all n experts, yielding a total of n^2
183 intermediate activations. The L^2 norm of each activation is computed to form a matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$,
184 where $\mathbf{M}[i, j]$ corresponds to the norm from expert j given input $\tilde{\mathbf{R}}[i]$:

$$185 \mathbf{M}[i, j] = \|\tilde{\mathbf{R}}[i] \cdot \mathbf{W}_g^j\| \\ 186$$

187 (3) To enforce expert-router coupling, for all i and $j \neq i$, the ERC loss imposes two constraints,
188 where a scalar $\alpha \in [0, 1]$ determines their strength:

$$189 \mathbf{M}[i, j] < \alpha \mathbf{M}[i, i] \tag{1} \\ 190$$

$$191 \mathbf{M}[j, i] < \alpha \mathbf{M}[i, i] \tag{2}$$

192 Constraint 1 ensures the proxy token $\tilde{\mathbf{R}}[i]$ activates its corresponding expert i more than any other
193 expert j . Since tokens similar to $\mathbf{R}[i]$ are routed to expert i , and given their similarity to $\tilde{\mathbf{R}}[i]$, they
194 also elicit a stronger activation in expert i than in other experts. This strongest activation indicates
195 that expert i is optimized to develop capabilities best suited to \mathcal{X}_i (Lv et al., 2025).

197 Constraint 2 requires that expert i responds more strongly to its own proxy token $\tilde{\mathbf{R}}[i]$ than by any
198 other $\tilde{\mathbf{R}}[j]$. This ensures each $\mathbf{R}[i]$ accurately represents expert i , guaranteeing that tokens most
199 needing expert expert i are correctly routed to it.

200 As α decreases, the two constraints become stricter, thereby enforcing stronger expert-router cou-
201 pling. Additionally, α enables flexible regulation of specialization: a smaller α increases the gap
202 between $\mathbf{M}[i, i]$ and $\mathbf{M}[i, j]$, reflecting greater expert specialization as experts exhibit more differ-
203 entiated responses to the same inputs. This feature makes the ERC loss a useful tool for investigating
204 expert specialization and provides deeper insight into MoE behavior, as demonstrated in §4.2.

205 We translate these two constraints into expert-router coupling loss, formally defined as:

$$207 \mathcal{L}_{\text{ERC}} = \frac{1}{n^2} \sum_{i=1}^n \sum_{j \neq i}^n (\max(\mathbf{M}[i, j] - \alpha \mathbf{M}[i, i], 0) + \max(\mathbf{M}[j, i] - \alpha \mathbf{M}[i, i], 0)) \tag{3} \\ 208$$

210 The three steps for computing expert-router coupling loss are illustrated in Figure 1. For implemen-
211 tation details, we provide PyTorch-style pseudocode in Figure 9.

212 3.2 BOUNDED RANDOM NOISE FOR GENERATING PROXY TOKENS
213

214 The perturbed proxy token $\tilde{\mathbf{R}}[i] = \mathbf{R}[i] \odot \delta_i$ makes expert i ’s coupling generalizes effectively from
215 $\mathbf{R}[i]$ alone to \mathcal{X}_i . To ensure the perturbed point $\tilde{\mathbf{R}}_i$ remains within its original cluster, we require

216 a bounded perturbation. We therefore model the noise δ_i as a multivariate uniform distribution,
 217 $\delta_i \sim \mathcal{U}(1 - \epsilon_i, 1 + \epsilon_i)^d$. Let $j = \arg \min_{j^* \neq i} \|\mathbf{R}[i] - \mathbf{R}[j^*]\|$ be the nearest cluster center. For the
 218 noise level ϵ to be sufficient to avoid perturbing the cluster, it must satisfy:

$$\epsilon_i \leq \frac{\|\mathbf{R}[i] - \mathbf{R}[j]\|}{2\|\mathbf{R}[i]\|}. \quad (4)$$

222 The derivation of this bound is provided in Appendix A. We set ϵ_i to its maximum value, i.e., the
 223 right-hand side of this inequality. Notably, the value of ϵ_i is dynamically computed at each layer
 224 and every training step.

226 3.3 EFFICIENCY ANALYSIS

227 **Theoretical training efficiency** In a standard MoE layer, T tokens are processed by K experts,
 228 resulting in a total computational cost of $6TKDd$ FLOPs. expert-router coupling loss introduces
 229 only $2n^2Dd$ additional FLOPs, a cost that is negligible in practical pre-training setups where K is
 230 often in the millions. In contrast, AoE introduces an additional overhead of $2T(n - K)dr$ FLOPs
 231 (recall that r is AoE’s factorization rank; see §2). Given that typical MoE-LLMs operate at sparsity
 232 levels far below 25% (i.e., $n > 4K$), this overhead ratio exceeds r/D , making it prohibitive. A
 233 detailed breakdown of the FLOP calculations supporting the above theoretical analysis is provided
 234 in Appendix B.1.

235 **Empirical training overhead** The efficiency of our method is confirmed in practice. The ERC
 236 loss maintains low overhead during LLM pre-training with multiple parallelism strategies, adding
 237 only 0.2–0.8% overhead in our experiments. We provide a complete analysis of these real-world
 238 distributed conditions and measured throughputs in Appendix B.2.

239 **Overhead-free inference** Our method incurs no additional inference overhead as the auxiliary
 240 loss is not applied. However, AoE retains the same forward computation, carrying over the associated
 241 overhead.

243 4 EXPERIMENTS

245 4.1 EXPERIMENTAL SETTINGS

247 We compare the ERC-loss-augmented MoE against both the vanilla MoE and AoE baselines. All
 248 models are trained from scratch with 3B parameters. This parameter size is chosen because it repre-
 249 sents the largest scale at which we could successfully train the AoE model under our available
 250 resources. Our implementation is based on OLMoE (Muenninghoff et al., 2025). The models com-
 251 prise 12 layers with $d = 1536$ and $D = 768$. Each Transformer (Vaswani et al., 2017) layer
 252 has 16 attention heads and $n = 64$ experts, where $K = 8$ experts are selected per token. For
 253 the AoE model, we set $r = 512$ to ensure consistent total parameter count. The number of ac-
 254 tivated parameters is 500M. Each model is trained on 500B tokens from the open-source dataset
 255 dolmap-v1.5-sample (Soldaini et al., 2024), using a batch size of 3 million tokens. We use the
 256 AdamW optimizer (Loshchilov & Hutter, 2019) with $(\beta_1, \beta_2) = (0.9, 0.95)$, a weight decay of 0.1,
 257 and a learning rate of 4e-4 with a cosine schedule decaying to 4e-5. A load balancing loss (Fedus
 258 et al., 2022) with a weight of 0.01 is applied consistently in all experiments.

259 For simplicity, the loss weight of the ERC loss is fixed at 1, and we use $\alpha = 1$ by default if not
 260 specified.

261 We evaluate LLMs on following tasks: ARC-Challenge (Clark et al., 2018), CommonsenseQA (Tal-
 262 mor et al., 2019), COPA (Roemmele et al., 2011), BoolQ (Clark et al., 2019), HellaSwag (Zellers
 263 et al., 2019), OpenbookQA (Mihaylov et al., 2018), SciQ (Welbl et al., 2017), Social IQa (Sap et al.,
 264 2019), WinoGrande (Sakaguchi et al., 2021), and MMLU (Hendrycks et al., 2021a).

266 4.2 PERFORMANCE, EFFICIENCY, AND LOAD BALANCING

268 Figure 3(a) reports the average accuracy across all tasks and task-specific results are presented in
 269 Figure 10. It shows that the ERC-loss-augmented MoE achieves stable performance gains, which
 significantly outperforms the vanilla MoE and narrows the gap between AoE and MoE.

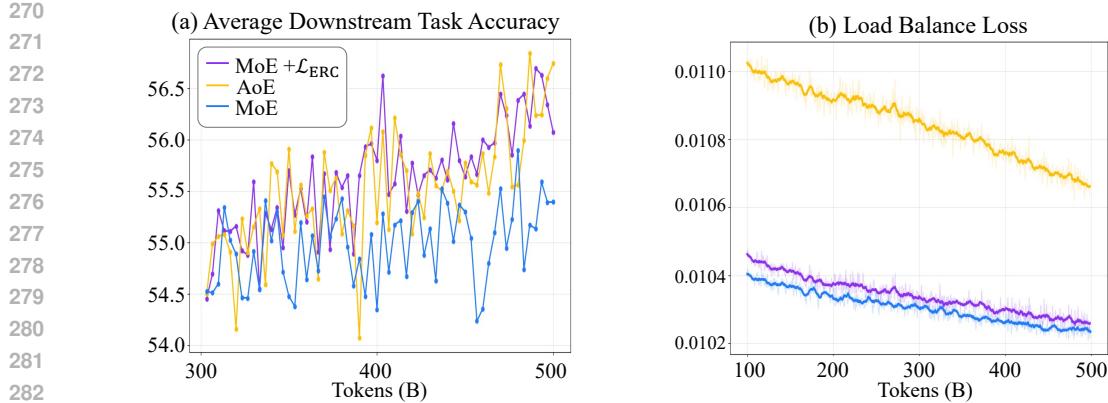


Figure 3: The 3B-parameter MoE model augmented with ERC loss achieves substantial and stable performance gains, while maintaining comparable load balancing to the baseline. [For detailed task-specific results, please refer to Figure 10.](#)

Table 1: [Scaling to 15B parameters: ERC loss improves performance on more challenging benchmarks.](#)

	MMLU	C-Eval	MMLU-Pro	AGI-Eval	BBH	MATH	GSM8K	TriviaQA
MoE	63.2	67.5	31.0	42.0	44.3	25.7	45.2	47.2
MoE + \mathcal{L}_{ERC}	64.6	69.0	31.9	44.2	45.6	26.1	45.8	49.1

In terms of efficiency, MoE models with and without ERC loss have nearly identical throughput and memory costs. By contrast, AoE requires **1.6**× more training hours and **1.3**× higher memory usage, limiting further scaling due to impractical training times and out-of-memory issues.

Expert-router coupling loss is compatible with the load balancing loss. As shown in Figure 3(b), the difference in load balancing loss between MoE combined with \mathcal{L}_{ERC} and the vanilla MoE is on the order of 10^{-5} . This difference is negligible given that the overall load balancing loss magnitude remains around 10^{-2} . By comparison, the loss difference between AoE and vanilla MoE is approximately 4×10^{-4} . Although this difference is still small relative to the overall loss magnitude, it is notably larger than the difference exhibited by ours.

4.3 VALIDATING ERC LOSS IN 15B-PARAMETER MOES

We scale models to 15 billion parameters by increasing n to 256 (keeping $K=8$) and doubling the model depth. This configuration results in a total of 15B parameters with approximately 700M activated. Other training hyper-parameters largely follow the setup in Section 4.1. As a large-scale, high-sparsity model, the AoE method failed to train due to overly costly and is thus omitted from comparison. Table 1 shows that the benefits of the ERC loss persist across various public benchmarks more challenging than those used for 3B models, including MMLU (Hendrycks et al., 2021a), C-Eval (Huang et al., 2023), MMLU-Pro (Wang et al., 2024b), AGI-Eval (Zhong et al., 2024), BBH (Suzgun et al., 2023), MATH (Hendrycks et al., 2021b), GSM8K (Cobbe et al., 2021), and TriviaQA (Joshi et al., 2017). The consistent performance improvements demonstrate that our method effectively addresses the expert-router decoupling problem even at scale. Throughout this large-scale training, we observed no loss spikes or abnormal gradients.

4.4 THE ERC LOSS IS AN EFFECTIVE TOOL FOR EXPLORING EXPERT SPECIALIZATION

With the ERC loss, experts are more specialized, as they exhibit greater discrimination between tokens they process and those they do not, compared to the ERC loss is not used. An intuitive demonstration of this specialization comes from visualizing expert parameters. Following (Yang et al., 2025), we use t-SNE (van der Maaten & Hinton, 2008) to project each row of W_g^i (where $i \bmod 8 = 0$) from layer 6 (the middle depth) onto a 2D point. As shown in Figure 4, experts in vanilla

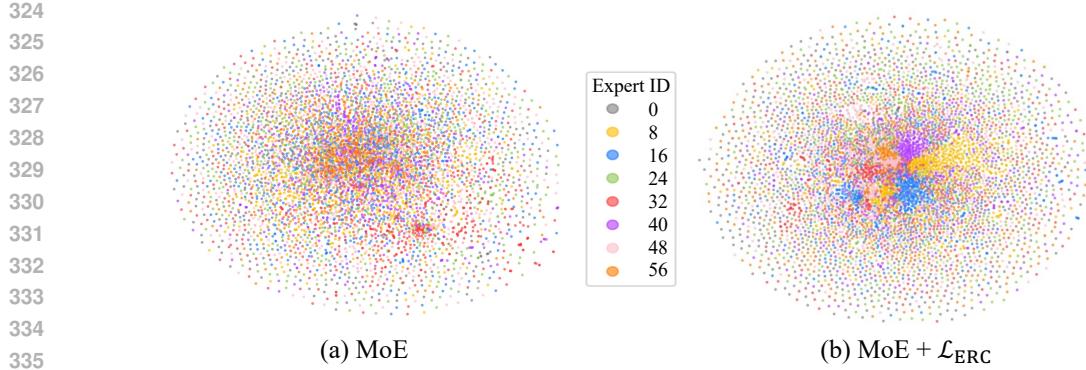


Figure 4: t-SNE projections of W_g in MoE experts trained without and with the ERC loss. Our ERC loss provides greater expert specialization.

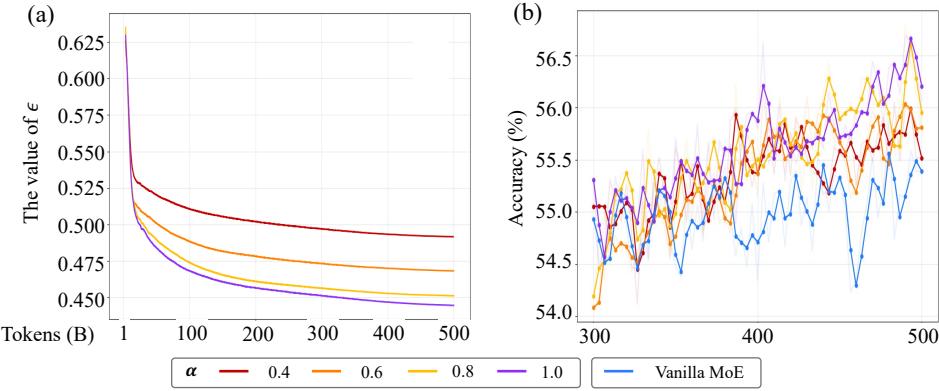


Figure 5: (a) Since routers are deeply coupled with experts, the distance between neighboring cluster centers (i.e., the maximum noise level ϵ) quantitatively reflects changes in expert specialization during training, which is controlled by α . (b) Downstream performance across different values of α .

MoE lack specialization, as their parameter features do not form meaningful clusters. By contrast, MoE enhanced with the ERC loss exhibits distinct clusters, indicating specialized capabilities.

Beyond merely promoting specialization, the ERC loss can also serve as a powerful tool for exploring it. We show this capability through two features below and [an example use case in Section 4.5](#).

Feature 1: α enables a controllable investigation into optimal specialization. In the ERC loss, α governs the coupling strength between experts and the router. When $\alpha = 0$, the ERC loss encourages $\mathbf{R}[i]$ to be orthogonal to the parameters of other experts, thereby maximizing specialization. Conversely, when $\alpha \rightarrow 1$, the loss permits smaller differences in how all experts' responsiveness to $\mathbf{R}[i]$, thus reducing specialization. Notably, $\alpha = 1$ only weakens the ERC loss's constraints to their maximum extent; it still retains a degree of specialization stronger than the spontaneously emerged specialization in a vanilla MoE model.

Feature 2: ϵ provides a quantitative measure for specialization. The noise level ϵ exhibits a strong correlation with α , and it can reflect changes in expert specialization throughout the training process. This correlation exists because as α increases, experts are allowed to be more homogeneous. This growing homogeneity among experts, in turn, reduces the separation between the cluster centers in the router as they are tightly coupled. A smaller separation between cluster centers ultimately derives a smaller ϵ . Thus, ϵ is a quantitative metric tracking expert specialization.

Experiments and discussion. The following experiments support these two features. In Figure 5(a), we plot ϵ at each training step across a parameter search over $\alpha \in \{0.4, 0.6, 0.8, 1.0\}$. Consistent with our analysis, increasing α which reduces expert specialization indeed leads to a corresponding decrease in ϵ . Note that measuring router cluster distance is uninformative in vanilla

378 MoE training without the ERC loss, as the router and experts are uncoupled and cluster distances do
 379 not reflect expert capability dynamics. We further compared downstream task performance across
 380 different values of α . Figure 5(b) shows that all tested α values outperform the vanilla MoE model.
 381 This not only confirms the robust effectiveness of the ERC loss but also demonstrates that the spe-
 382 cialization spontaneously formed by vanilla MoE models is inadequate.

383 Several previous studies (Guo et al., 2025; Liu et al., 2024; Hendawy et al., 2024) 384 have suggested that enforcing orthogonality among experts can enhance MoE performance.
 385 However, these claims are primarily based on small-scale 386 fine-tuning experiments conducted on well-pretrained mod-
 387 els. As shown in Figure 5(b), pursuing extreme orthog-
 388 onality is not advisable, as model performance degrades
 389 with stricter ERC loss constraints. This highlights a trade-
 390 off between promoting expert specialization and main-
 391 taining effective collaboration, a balance that is underdiscussed
 392 in previous works. More intuitively, while our ERC loss
 393 can achieve expert orthogonality by setting $\alpha = 0$, we ob-
 394 serve that this strict constraint can even impair convergence
 395 during large-scale pre-training (Figure 6). These findings
 396 challenge the applicability and effectiveness of strict expert
 397 orthogonality in large-scale pre-training settings, suggest-
 398 ing that the orthogonality obtained during fine-tuning may
 399 merely make experts specialized for a specific domain more
 400 distinct. In Appendix C.3, we further show that the lack of
 401 “perfect” orthogonality among router embeddings is also
 402 not a critical weakness for pre-training MoE models.

403 4.5 HOW SPECIALIZED SHOULD EXPERTS BE? AN EARLY EXPLORATION ACROSS SPARSITY 404

405 While $\alpha = 1$ was optimal for the MoE sparsity settings and architectural hyperparameters discussed
 406 above, the peak performance at $\alpha = 0.8$ in Figure 5 suggests that other values may yield better
 407 results under different model configurations. This raises a question: How specialized should experts
 408 be? More concretely, how should α be tuned for different model architectures to achieve better
 409 performance?

410 An intuition is that when the MoE is very sparse (with a small K/n), the selected combination of
 411 experts must be generalist enough to cover the diverse requirements of processing any given token.
 412 Over-specialization (an α that is too small) risks that this small set of experts cannot adequately
 413 handle the input, thereby hurting performance. Conversely, when K/n is large, the system can
 414 afford to include more specialized experts, as their collective capacity is more likely to cover the
 415 input’s needs.

416 To validate this, we pre-trained models with $n = 64$ ex-
 417 perts, varying $K \in \{4, 8, 16\}$ and $\alpha \in \{0.4, 0.6, 0.8, 1.0\}$.
 418 For each (K, α) pair, we trained on 100B tokens. All other
 419 hyper-parameters followed Section 4.1, and we report the
 420 average downstream score across in Figure 7. The results
 421 confirm our intuition: for $K = 4$ and 8, $\alpha = 1.0$ performs
 422 best; while $\alpha = 0.6$ is acceptable for $K=16$.

423 Based on these findings, we provide a practical guideline
 424 for tuning α when applying the ERC loss to custom models.
 425 Given that industrial MoEs operate with high sparsity (e.g.,
 426 $K/n \ll 8/64$), we recommend using $\alpha = 1$ as a robust
 427 default, requiring no further tuning. For research on smaller
 428 models or denser activations, $\alpha = 1.0$ remains a safe and
 429 convenient choice, while $\alpha < 1$ may yield more benefits but
 430 requires case-specific tuning. Furthermore, this experiment
 431 confirms that the ERC loss serves as a tool for studying
 432 specialization, thus supporting the claims in Section 4.4.

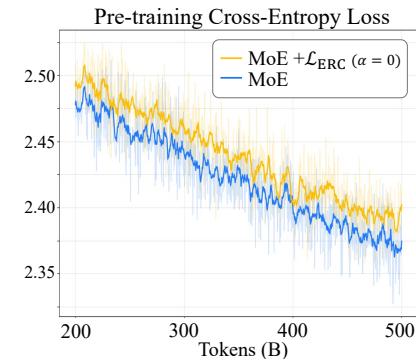


Figure 6: Enforcing expert orthogonality ($\alpha = 0$) impairs convergence.

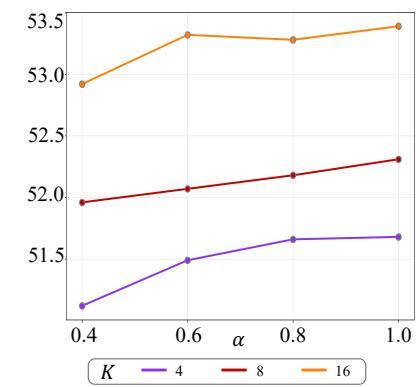


Figure 7: Downstream performance versus MoE sparsity (K/n) and α .

432
433434 4.6 ABLATION STUDIES
435

436 Our ablation studies: (1) explain our rationale for selecting $\|\tilde{R}W_g\|$ to compute M as the default
437 choice; (2) demonstrate that the random noise δ enables the generalization of coupling; (3) show
438 that the ERC loss cannot be reduced to geometric constraints applied to experts or routers separately
439 (e.g., router embedding orthogonality); (4) discuss the impact of $\alpha > 1$; and (5) verify that the model
440 decreases the ERC loss by learning meaningful coupling rather than by manipulating parameter
441 norms. Due to page limits, we include these experiments in Appendix C.

442
443

5 RELATED WORKS

444

445 **Auxiliary loss for MoEs** Auxiliary losses are crucial for training large-scale MoE models. Most
446 studies have proposed auxiliary losses to address load balancing challenges (Fedus et al., 2022;
447 Qiu et al., 2025; Wang et al., 2024a); Zoph et al. (2022) introduced the z-loss, which penalizes
448 excessively large logits in the gating network to enable stable training. Our ERC loss is the first
449 tailored to strengthen the expert-router coupling. Other related auxiliary losses enhancing expert
specialization or orthogonality are discussed below.

450

451 **Expert specialization** Dai et al. (2024) introduced a shared expert to handle general capabilities,
452 encouraging the others to be more specialized. Guo et al. (2025) proposes an auxiliary loss to
453 minimize the pairwise projections of the selected top- K experts' outputs for each token, reducing
454 expert overlap but incurring high cost due to K^2 cosine similarity calculations per token. Other
455 methods scale the number of tiny experts to millions, making each expert more atomic and thus
456 more specialized (Yang et al., 2025; Park et al., 2025; He, 2024), but are memory-bounded. Beyond
457 efficiency, these methods face three major limitations: (1) no quantitative control over specialization
458 degree; (2) no exploration of the specialized-generalized ability trade-off; and (3) failure to
459 strengthen expert-router coupling. Our method addresses all three, both efficiently and effectively.

460

461 Some works (Guo et al., 2025; Liu et al., 2024; Hendawy et al., 2024) maximize specialization by
462 training orthogonal experts, but their evaluations are limited to small-scale fine-tuning (or reinforcement
463 learning). In contrast, our ERC loss allows for orthogonality when $\alpha = 0$, yet we find this
value hinders convergence during pre-training, with optimal performance achieved at $\alpha \gg 0$. These
464 results challenge the practicality of expert orthogonality in large-scale pre-training.

465

466 **Contrastive learning** Constraints 1 and 2 bear similarity to contrastive learning (Chen et al.,
467 2020; van den Oord et al., 2019; Khosla et al., 2020). In MoE research, Luo et al. (2024) applied
468 contrastive learning to expert outputs, encouraging specialization. Baidu-ERNIE-Team (2025) en-
469 forces router embedding orthogonality. However, naively applying contrastive learning to either
470 routers or experts leaves the weak expert-router coupling unaddressed.

471

6 CONCLUSIONS

472

473 The weak coupling between router decisions and expert capabilities limits MoE models in multiple
474 important aspects. We propose expert-router coupling loss that tightly couples router parameters
475 with their corresponding experts. The proposed ERC loss improves MoE-based LLMs on down-
476 stream tasks while incurring negligible training overhead. In addition, it exhibits several desirable
477 properties that not only provide deeper insight into the behavior of MoE models but also offer a
478 promising tool for future research on expert specialization.

479

STATEMENTS ON ETHICS, REPRODUCIBILITY, AND LLM USAGE

480

481 Our research does not raise ethical issues. For reproducibility, we used public data and code, and
482 provide algorithm code in Figure 9. We used LLMs solely for typo checking.

483

484

485

486 REFERENCES
487

488 Baidu-ERNIE-Team. Ernie 4.5 technical report, 2025.

489 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
490 for contrastive learning of visual representations, 2020. URL <https://arxiv.org/abs/2002.05709>.

491

492 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
493 Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
494 Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of
495 the North American Chapter of the Association for Computational Linguistics: Human Lan-
496 guage Technologies, Volume 1 (Long and Short Papers)*, pp. 2924–2936, Minneapolis, Min-
497 nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
498 <https://aclanthology.org/N19-1300/>.

499

500 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
501 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
502 2018. URL <https://arxiv.org/abs/1803.05457>.

503

504 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
505 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
506 Schulman. Training verifiers to solve math word problems, 2021. URL <https://arxiv.org/abs/2110.14168>.

507

508 Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
509 Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
510 Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specializa-
511 tion in mixture-of-experts language models, 2024. URL <https://arxiv.org/abs/2401.06066>.

512

513 DeepSeek-AI. Deepseek-v3 technical report, 2025. URL <https://arxiv.org/abs/2412.19437>.

514

515 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
516 models with simple and efficient sparsity. *Journal of Machine Learning Research*, 23(120):1–39,
517 2022. URL <http://jmlr.org/papers/v23/21-0998.html>.

518

519 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers
520 are key-value memories. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott
521 Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
522 guage Processing*, pp. 5484–5495, Online and Punta Cana, Dominican Republic, November
523 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.446. URL
524 <https://aclanthology.org/2021.emnlp-main.446>.

525

526 Hongcan Guo, Haolang Lu, Guoshun Nan, Bolun Chu, Jialin Zhuang, Yuan Yang, Wenhao Che,
527 Sicong Leng, Qimei Cui, and Xudong Jiang. Advancing expert specialization for better moe,
528 2025. URL <https://arxiv.org/abs/2505.22323>.

529

530 Xu Owen He. Mixture of a million experts, 2024. URL <https://arxiv.org/abs/2407.04153>.

531

532 Ahmed Hendawy, Jan Peters, and Carlo D’Eramo. Multi-task reinforcement learning with mixture
533 of orthogonal experts. In *The Twelfth International Conference on Learning Representations*,
534 2024. URL <https://openreview.net/forum?id=aZH1dM3GOX>.

535

536 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
537 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the Interna-
538 tional Conference on Learning Representations (ICLR)*, 2021a.

539

540 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
541 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
542 2021b.

540 Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
 541 Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval: A multi-
 542 level multi-discipline chinese evaluation suite for foundation models. In *Advances in Neural*
 543 *Information Processing Systems*, 2023.

544 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
 545 supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
 546 (eds.), *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*
 547 (*Volume 1: Long Papers*), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
 548 putational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

550 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
 551 Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In
 552 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-*
 553 *ral Information Processing Systems*, volume 33, pp. 18661–18673. Curran Associates, Inc.,
 554 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf.

555 Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
 556 Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with con-
 557 ditional computation and automatic sharding. In *International Conference on Learning Repre-*
 558 *sentations*, 2021. URL <https://openreview.net/forum?id=qrwe7XHTmYb>.

559 Boan Liu, Liang Ding, Li Shen, Keqin Peng, Yu Cao, Dazhao Cheng, and Dacheng Tao. Diversifying
 560 the mixture-of-experts representation for language models with orthogonal optimizer, 2024. URL
 561 <https://arxiv.org/abs/2310.09762>.

562 Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
 563 Ce Zhang, Yuandong Tian, Christopher Ré, and Beidi Chen. Deja vu: contextual sparsity for
 564 efficient llms at inference time. In *Proceedings of the 40th International Conference on Machine*
 565 *Learning*, ICML’23. JMLR.org, 2023.

566 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-*
 567 *ence on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

568 Tongxu Luo, Jiahe Lei, Fangyu Lei, Weihao Liu, Shizhu He, Jun Zhao, and Kang Liu. Moelora:
 569 Contrastive learning guided mixture of experts on parameter-efficient fine-tuning for large lan-
 570 guage models, 2024. URL <https://arxiv.org/abs/2402.12851>.

571 Ang Lv, Ruobing Xie, Yining Qian, Songhao Wu, Xingwu Sun, Zhanhui Kang, Di Wang, and
 572 Rui Yan. Autonomy-of-experts models. In *Forty-second International Conference on Machine*
 573 *Learning*, 2025. URL <https://openreview.net/forum?id=8BIDrYWCeg>.

574 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 575 electricity? a new dataset for open book question answering, 2018. URL <https://arxiv.org/abs/1809.02789>.

576 Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
 577 Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
 578 Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
 579 Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe:
 580 Open mixture-of-experts language models, 2025. URL <https://arxiv.org/abs/2409.02060>.

581 OpenAI. Gpt-oss series, 8 2025. URL <https://openai.com/index/introducing-gpt-oss/>.

582 Jungwoo Park, Ahn Young Jin, Kee-Eung Kim, and Jaewoo Kang. Monet: Mixture of monoseman-
 583 tic experts for transformers. In *The Thirteenth International Conference on Learning Repre-*
 584 *sentations*, 2025. URL <https://openreview.net/forum?id=10gw1SHY3p>.

594 Quang Pham, Giang Do, Huy Nguyen, TrungTin Nguyen, Chenghao Liu, Mina Sartipi, Binh T.
 595 Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, and Nhat Ho. Competesmoe – effective
 596 training of sparse mixture of experts via competition, 2024.

597

598 Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng
 599 Liu, Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing
 600 loss for training specialized mixture-of-expert models. In Wanxiang Che, Joyce Nabende, Eka-
 601 terina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meet-
 602 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5005–5018,
 603 Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
 604 251-0. doi: 10.18653/v1/2025.acl-long.249. URL <https://aclanthology.org/2025.acl-long.249/>.

605

606 Qwen. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

607

608 Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S. Gordon. Choice of plausible alternatives:
 609 An evaluation of commonsense causal reasoning. In *2011 AAAI Spring Symposium Series*, 2011.

610 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 611 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

612

613 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
 614 monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
 615 aojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
 616 guage Processing and the 9th International Joint Conference on Natural Language Processing
 617 (EMNLP-IJCNLP)*, pp. 4463–4473, Hong Kong, China, November 2019. Association for Com-
 618 putational Linguistics. doi: 10.18653/v1/D19-1454. URL <https://aclanthology.org/D19-1454>.

619

620 Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
 621 ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
 622 experts layer. In *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=B1ckMDqlg>.

623

624 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Arthur,
 625 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
 626 Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 627 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
 628 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
 629 Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
 630 and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
 631 Research. *arXiv preprint*, 2024.

632

633 Mirac Suzgun, Nathan Scales, Nathanael Schärlí, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
 634 Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging BIG-bench
 635 tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan Boyd-Graber,
 636 and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL
 637 2023*, pp. 13003–13051, Toronto, Canada, July 2023. Association for Computational Linguis-
 638 tics. doi: 10.18653/v1/2023.findings-acl.824. URL <https://aclanthology.org/2023.findings-acl.824/>.

639

640 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 641 tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 642 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 643 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 644 and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
 645 putational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

646

647 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 648 tive coding, 2019. URL <https://arxiv.org/abs/1807.03748>.

648 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-
649 chine Learning Research*, 9(86):2579–2605, 2008. URL <http://jmlr.org/papers/v9/vandermaaten08a.html>.
650

651 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
652 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
653 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
654 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
655 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.
656

657 Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load
658 balancing strategy for mixture-of-experts, 2024a. URL <https://arxiv.org/abs/2408.15664>.
659

660 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
661 Ren, Aaran Arulraj, Xuan He, Ziyuan Jiang, et al. Mmlu-pro: A more robust and challenging
662 multi-task language understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024b.
663

664 Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science ques-
665 tions. In Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), *Proceedings of
666 the 3rd Workshop on Noisy User-generated Text*, pp. 94–106, Copenhagen, Denmark, Septem-
667 ber 2017. Association for Computational Linguistics. doi: 10.18653/v1/W17-4413. URL
668 <https://aclanthology.org/W17-4413/>.
669

670 Xingyi Yang, Constantin Venhoff, Ashkan Khakzar, Christian Schroeder de Witt, Puneet K. Dok-
671 naria, Adel Bibi, and Philip Torr. Mixture of experts made intrinsically interpretable. In *Forty-
672 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=6QERrXMP2>.
673

674 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
675 machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Márquez
676 (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*,
677 pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
678 18653/v1/P19-1472. URL <https://aclanthology.org/P19-1472/>.
679

680 Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
681 Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating foundation
682 models. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the Association
683 for Computational Linguistics: NAACL 2024*, pp. 2299–2314, Mexico City, Mexico, June 2024.
684 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.149. URL
685 <https://aclanthology.org/2024.findings-naacl.149/>.
686

687 Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
688 William Fedus. St-moe: Designing stable and transferable sparse expert models, 2022. URL
689 <https://arxiv.org/abs/2202.08906>.
690

691

692

693

694

695

696

697

698

699

700

701

702 **A DETERMINING THE MAXIMUM MULTIPLICATIVE NOISE LEVEL**
 703

704 δ_i is a random vector where each component $\delta_{i,k}$ follows a uniform distribution $\mathcal{U}(1 - \epsilon, 1 + \epsilon)$, and
 705 all components are mutually independent. The perturbed point is given by:

706 $\tilde{\mathbf{R}}_i = (\delta_{i,1}(\mathbf{R}_{i,1}), \delta_{i,2}(\mathbf{R}_{i,2}), \dots, \delta_{i,d}(\mathbf{R}_{i,d}))$

708 To ensure that $\tilde{\mathbf{R}}_i$ remains in the same cluster as \mathbf{R}_i , it must satisfy:

710 $\|\tilde{\mathbf{R}}_i - \mathbf{R}_i\|^2 < \|\tilde{\mathbf{R}}_i - \mathbf{R}_j\|^2,$

711 where $j = \arg \min_{j^* \neq i} \|\mathbf{R}[i] - \mathbf{R}[j]\|$.

713 Expanding the squared norms on both sides of the inequality yields:

714
$$\|\tilde{\mathbf{R}}_i - \mathbf{R}_i\|^2 = \sum_{k=1}^d (\delta_{i,k} - 1)^2 (\mathbf{R}_{i,k})^2$$

718
$$\|\tilde{\mathbf{R}}_i - \mathbf{R}_j\|^2 = \sum_{k=1}^d (\delta_{i,k} \mathbf{R}_{i,k} - \mathbf{R}_{j,k})^2$$

721 Substituting into the inequality and simplifying gives:

722
$$\sum_{k=1}^d [2\delta_{i,k}(\mathbf{R}_{i,k}(\mathbf{R}_{j,k} - \mathbf{R}_{i,k}) + (\mathbf{R}_{i,k}^2 - \mathbf{R}_{j,k}^2)) < 0$$

726 To ensure this inequality holds for all realizations of δ_i , we consider the worst-case scenario that
 727 maximizes the left-hand side. Define:

728
$$A_k = 2\mathbf{R}_{i,k}(\mathbf{R}_{j,k} - \mathbf{R}_{i,k}), \quad B = \sum_{k=1}^d (\mathbf{R}_{i,k}^2 - \mathbf{R}_{j,k}^2),$$

731 so the inequality becomes:

732
$$\sum_{k=1}^d A_k \delta_{i,k} + B < 0. \tag{5}$$

735 The worst-case $\delta_{i,k}$ is chosen to maximize $\sum A_k \delta_{i,k}$:

737
$$\delta_{i,k} = \begin{cases} 1 + \epsilon & \text{if } A_k > 0, \\ 1 - \epsilon & \text{if } A_k < 0. \end{cases}$$

739 Substituting these values gives:

741
$$\sum_{k=1}^d A_k + \epsilon \sum_{k=1}^d |A_k| + B < 0. \tag{6}$$

744 Now simplify $\sum A_k + B$:

746
$$\begin{aligned} \sum A_k + B &= 2 \sum \mathbf{R}_{i,k} \mathbf{R}_{j,k} - 2 \sum \mathbf{R}_{i,k}^2 + \sum \mathbf{R}_{i,k}^2 - \sum \mathbf{R}_{j,k}^2 \\ &= 2 \sum \mathbf{R}_{i,k} \mathbf{R}_{j,k} - \sum \mathbf{R}_{i,k}^2 - \sum \mathbf{R}_{j,k}^2 \\ &= - \left(\sum \mathbf{R}_{i,k}^2 - 2 \sum \mathbf{R}_{i,k} \mathbf{R}_{j,k} + \sum \mathbf{R}_{j,k}^2 \right) \\ &= -\|\mathbf{R}_i - \mathbf{R}_j\|^2 \end{aligned} \tag{7}$$

752 Substituting equation 7 into equation 6 yields:

754
$$-\|\mathbf{R}_i - \mathbf{R}_j\|^2 + 2\epsilon \sum_{k=1}^d |\mathbf{R}_{i,k}(\mathbf{R}_{j,k} - \mathbf{R}_{i,k})| < 0$$

756 Solving for ϵ gives:

$$\epsilon_{\max} < \frac{\|\mathbf{R}_j - \mathbf{R}_i\|^2}{2 \sum_{k=1}^d \|\mathbf{R}_{i,k}(\mathbf{R}_{j,k} - \mathbf{R}_{i,k})\|}$$

760 However, computing the denominator of this expression is relatively complex. To balance the efficiency
761 of loss calculation, we instead adopt a tighter upper bound for ϵ .

762 By the Cauchy-Schwarz Inequality, the following relationship holds:

$$\sum_{k=1}^d \|\mathbf{R}_{i,k}(\mathbf{R}_{j,k} - \mathbf{R}_{i,k})\| \leq \|\mathbf{R}_i\| \cdot \|\mathbf{R}_j - \mathbf{R}_i\|$$

767 Thus, we have:

$$\epsilon_{\max} = \frac{\|\mathbf{R}_j - \mathbf{R}_i\|^2}{2 \sum_{k=1}^d \|\mathbf{R}_{i,k}(\mathbf{R}_{j,k} - \mathbf{R}_{i,k})\|} \geq \frac{\|\mathbf{R}_j - \mathbf{R}_i\|^2}{2 \|\mathbf{R}_i\| \cdot \|\mathbf{R}_j - \mathbf{R}_i\|} = \frac{\|\mathbf{R}_j - \mathbf{R}_i\|}{2 \|\mathbf{R}_i\|}$$

771 The term on the right-hand side of the final inequality is the value of ϵ we used in the main text. This
772 choice ensures that the perturbed $\tilde{\mathbf{R}}[i]$ remains closer to $\mathbf{R}[i]$ than to any other $\mathbf{R}[j \neq i]$ at all times.
773

774 B EFFICIENCY ANALYSIS

777 Appendix B.1 analyzes the ideal FLOPs cost breakdown of the vanilla MoE, as well as the overhead
778 introduced by AoE and ERC loss. Appendix B.2 discusses efficiency with consideration of the
779 multiple parallelism strategies used in real-world MoE pre-training. Both analyses demonstrate the
780 practicality of our method.

781 B.1 FLOPs COST BREAKDOWN OF THREE METHODS

783 **MoE forward** Each expert in a MoE layer involves the following operations, with their respective
784 FLOP counts:

- 786 • Two matrix multiplications of dimension $T \times d$ with $d \times D$, accounting for $4Tdd$ FLOPs.
787 These correspond to the linear transformations parameterized by \mathbf{W}_g and \mathbf{W}_p .
- 788 • One element-wise multiplication of $T \times D$ tensors and one SiLU activation applied to a
789 $T \times D$ tensor. The computational cost of these operations is negligible compared to the
790 matrix multiplications.
- 791 • One matrix multiplication of dimension $T \times D$ with $D \times d$, contributing $2Tdd$ FLOPs.
792 This corresponds to the linear transformation parameterized by \mathbf{W}_o .

794 Summing these components gives a total of $6Tdd$ FLOPs per expert. For K experts processing T
795 tokens, the total computational cost is therefore $6KTdd$ FLOPs.

796 **Computational overhead of AoE** AoE factorizes the expert matrix $\mathbf{W}_g \in \mathbb{R}^{D \times d}$ into two low-
797 rank matrices of rank r . To maintain the same number of parameters as the original matrix, we
798 require $dr + Dr = Dd$, which gives $r = \frac{Dd}{d+D}$.

800 The change in FLOPs compared to an MoE is:

$$802 T \left(\underbrace{2ndr}_{\text{All experts use } \mathbf{W}_{\text{down}}} + \underbrace{2KDr}_{\text{Top-}K \text{ experts use } \mathbf{W}_{\text{up}}} - \underbrace{2Kd}_{\text{Top-}K \text{ experts use original } \mathbf{W}_g} \right),$$

805 where T is the number of tokens. Substituting the value of r and simplifying leads to an extra
806 computational cost of:

$$807 2T(n - K)dr.$$

809 **Computational overhead of expert-router coupling loss** It introduces n^2 matrix multiplications,
810 each operating on tensors of shape $1 \times d$ and $d \times D$. In total, this results in $2n^2Dd$ extra FLOPs.

810
811 B.2 THROUGHPUTS UNDER MULTIPLE PARALLELISM STRATEGIES812
813 We now assess the overhead of the ERC loss in a realistic large-scale pre-training setup that employs
814 both data parallelism (DP) and expert parallelism (EP). As derived in our previous analysis, the
815 computational cost of the ERC loss is equivalent to a forward pass on $n^2/3$ tokens. When distributed
816 across devices, the costs are:817
818 • Base MoE forward: $K \cdot T / \text{dp_size}$
819 • ERC overhead: $n \cdot (n / \text{ep_size}) / 3$ 820 Consider training our 15B-parameter model with the configuration: $K = 8$, $T = 3 \times 10^6$, $n = 256$,
821 $\text{dp_size} = 64$, and $\text{ep_size} = 8$. In this scenario, the ERC overhead constitutes a mere 0.72% of
822 the base model’s forward pass cost. This theoretical estimate is consistent with our empirical mea-
823 surements: we observe a throughput of 62.03B tokens/day for the baseline versus 61.52B tokens/day
824 for our model, representing only a 0.82% reduction. With a smaller $n = 64$, as in our 3B models
825 trained with $\text{dp_size}=32$ and $\text{ep_size}=1$ (i.e., EP disabled), the overhead ratio drops further to
826 0.18%. This analysis confirms the practical efficiency of our method.

827 C ABLATION STUDIES

828 C.1 COMPUTING \mathbf{M} WITH DIFFERENT ACTIVATIONS829
830 We considered five candidates for calculating \mathbf{M} : using the norms of (a) $\tilde{\mathbf{R}}\mathbf{W}_g$, (b) $\tilde{\mathbf{R}}\mathbf{W}_p$, (c)
831 $\text{SiLU}(\tilde{\mathbf{R}}\mathbf{W}_g)$, (d) the post-SwiGLU activations (i.e., $\text{SiLU}(\tilde{\mathbf{R}}\mathbf{W}_g) \odot \tilde{\mathbf{R}}\mathbf{W}_p$), and (e) experts’ final
832 outputs (i.e., $(\text{SiLU}(\tilde{\mathbf{R}}\mathbf{W}_g) \odot \tilde{\mathbf{R}}\mathbf{W}_p)\mathbf{W}_o$). As shown in Figure 8 C.1, $\tilde{\mathbf{R}}\mathbf{W}_g$ is the most effective
833 among all alternatives. While using the final output achieves comparable performance, it incurs a
834 higher cost. We therefore adopt $\tilde{\mathbf{R}}\mathbf{W}_g$ as our default choice.835 C.2 RANDOM NOISE δ ENABLES THE GENERALIZATION OF COUPLING836
837 The random noise δ allows $\tilde{\mathbf{R}}[i]$ to better capture the samples within \mathcal{X}_i . To validate its impor-
838 tance, we conducted an ablation study where we trained an MoE with the ERC loss but removed
839 δ . Specifically, we computed \mathbf{M} directly using the original \mathbf{R} instead of the noise-augmented $\tilde{\mathbf{R}}$.
840 As shown in Figure 8 C.2, removing δ greatly degrades performance. This is because the coupling
841 between routers and experts becomes overfitted to \mathbf{R} , failing to generalize to the real inputs that
842 $\mathbf{R}[i]$ ’s represent.

843 C.3 COMPARISON WITH CONTRASTIVE REGULARIZATION SOLELY ON ROUTERS

844
845 In Section 4.4, we showed that overly strict contrastive regularization on experts can be detrimental
846 during pre-training. Here, we extend this analysis to contrastive regularization applied solely to
847 routers. We compare our ERC loss with the router orthogonalization loss (Baidu-ERNIE-Team,
848 2025), which requires $\hat{\mathbf{R}}$ (the row-wise normalization of \mathbf{R}) to satisfy:

849
850
$$\hat{\mathbf{R}}\hat{\mathbf{R}}^\top = \mathbf{I}.$$

851
852 As shown in Figure 8 C.3, the orthogonalization loss yields only limited gains. We attribute this
853 to our finding that the router embeddings in our baseline MoE model are already nearly orthogonal,
854 with an average absolute cosine similarity of 0.15. This value corresponds to angles between router
855 embeddings mostly ranging from $\arccos(0.15) = 81^\circ$ to $\arccos(-0.15) = 99^\circ$. Notably, we do not
856 imply that all MoEs always have nearly orthogonal router embeddings, as this may depend on the
857 data or specific architecture; we report this only as a characteristic of our models, which explains
858 the limited gains from the orthogonalization loss.859
860 This result further demonstrates that weak coupling between routers and experts is a more critical
861 issue than imperfect orthogonality in router embeddings. The significant gains from ERC, even
862 when applied to a baseline with already near-orthogonal routers, provide clear evidence.

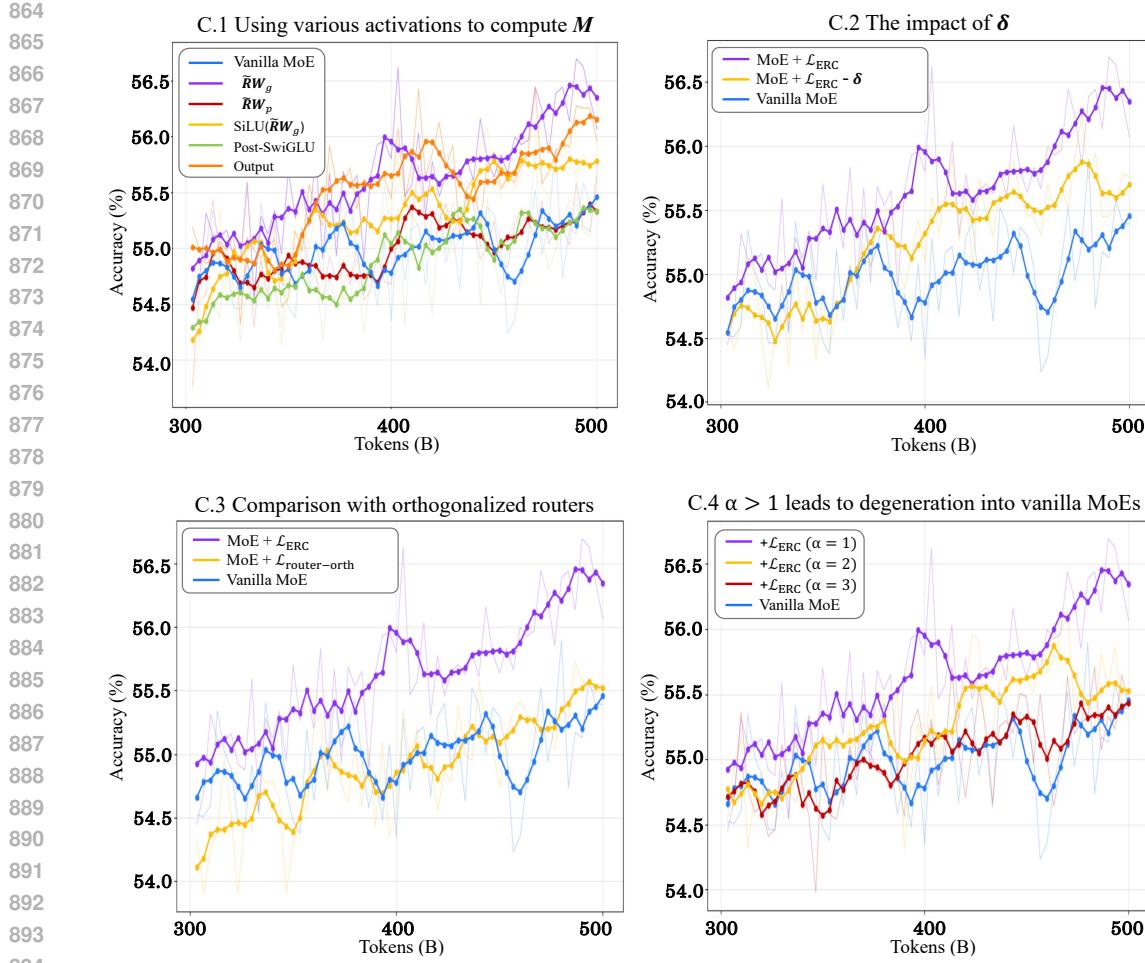


Figure 8: Results of ablation studies C.1, C.2, C.3 and C.4. For detailed task-specific results, please refer to Figure 10.

Furthermore, it is important to note that even if both routers and experts are orthogonalized, there is no guarantee that each $\mathbf{R}[i]$ will be aligned with \mathbf{W}_g^i . Therefore, the ERC loss cannot be reduced to contrastive techniques applied individually to routers or experts, such as orthogonalization loss.

C.4 WHAT HAPPENS IF $\alpha > 1$?

Some readers might be interested in the value of α at which the ERC loss degenerates to no effective constraints, and the trained model consequently degenerates to a vanilla MoE. For our baseline MoE, we seek the minimum α that zeros the ERC loss computed from the \mathbf{M} matrices of the last checkpoint. Table 2 shows that achieving zero ERC loss across all layers requires $\alpha = 5$ in our pre-trained vanilla MoE baseline. This provides direct evidence that the router-expert coupling in the vanilla MoE is very weak.

We further pre-trained 3B MoE models with the ERC loss at α values of 2 and 3. It is important to note that this experiment is to only demonstrate the effects of loosening the ERC constraints. We do not recommend using $\alpha > 1$ in practice, as it contradicts our core motivation: the router and experts will shift from a state of no mismatch toward looser coupling constraints, ultimately causing the model to degenerate into a vanilla MoE. As shown in Figure 8 C.4, the model with $\alpha = 2$ yields only limited improvement, while the model with $\alpha = 3$ shows almost no improvement over the vanilla MoE.

918
 919 Table 2: Post-hoc ERC loss evaluation of the vanilla MoE across α values. For a clear and concise
 920 demonstration, the loss values in this table are computed using the original \mathbf{R} rather than $\tilde{\mathbf{R}}$, making
 921 the results deterministic.

Layer	Value of α				
	1	2	3	4	5
0	0.87	0.69	0.26	0.00	0.00
1	0.42	0.28	0.10	0.00	0.00
2	0.45	0.19	0.00	0.00	0.00
3	0.25	0.15	0.00	0.00	0.00
4	0.28	0.08	0.00	0.00	0.00
5	0.24	0.22	0.00	0.00	0.00
6	0.22	0.15	0.00	0.00	0.00
7	0.21	0.13	0.00	0.00	0.00
8	0.15	0.05	0.00	0.00	0.00
9	0.16	0.00	0.00	0.00	0.00
10	0.21	0.09	0.00	0.00	0.00
11	0.50	0.44	0.20	0.20	0.00

941 C.5 DO MODELS REDUCE ERC LOSS THROUGH MANIPULATING PARAMETER NORMS?

943 This is a frequent question, as some readers assume that simply increasing or decreasing the norms
 944 of certain router embeddings or experts will increase the diagonal entries of \mathbf{M} , thereby reducing
 945 the ERC loss. Below, we (1) explain that any attempt to reduce one term of the ERC loss by
 946 manipulating norms will simultaneously increase other terms, and (2) present detailed parameter
 947 norms as evidence.

948 The term $\mathbf{M}[i, j]$ can be expressed as $\|\mathbf{R}[i]\| \|\mathbf{W}_g^j\| \cos \theta_{i,j}$, where $\theta_{i,j}$ denotes the angle between
 949 $\mathbf{R}[i]$ and \mathbf{W}_g^j . Scaling up $\|\mathbf{W}_g^i\|$ decreases the loss from i -th row in \mathbf{M} (as the second term below
 950 increases):

$$951 \quad \|\mathbf{R}[i]\| \|\mathbf{W}_g^j\| \cos \theta_{i,j} - \|\mathbf{R}[i]\| \|\mathbf{W}_g^i\| \cos \theta_{i,i}$$

953 However, simultaneously, it increases the loss term from every $j \neq i$ rows (as the first term below
 954 increases):

$$955 \quad \|\mathbf{R}[j]\| \|\mathbf{W}_g^i\| \cos \theta_{j,i} - \|\mathbf{R}[j]\| \|\mathbf{W}_g^j\| \cos \theta_{j,j}.$$

957 This logic is symmetric: any attempt to manipulate the norms of \mathbf{R} or \mathbf{W}_g (whether increasing or
 958 decreasing them) to reduce one part of the loss will increase another. This property ensures that the
 959 overall ERC loss is minimized only when the router embedding norms are kept comparable and a
 960 meaningful coupling is established between routers and their experts.

961 As shown in the first four columns of Table 3, the average parameter norms for models trained
 962 with and without the ERC loss are comparable. Meanwhile, the lower standard deviation under the
 963 ERC loss reflects more consistent norms across both router embeddings and experts. In the last two
 964 columns of the table, we present the ERC loss for each model. The ERC loss is significantly higher
 965 in the baseline model despite its similar average parameter norms.

966
 967
 968
 969
 970
 971

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987

988
 989 **Table 3: The first four columns show parameter norms for models trained with and without ERC loss,**
 990 **while the last two show the corresponding layer-wise ERC loss. These results show that MoE + \mathcal{L}_{ERC}**
 991 **learns a meaningful coupling, rather than trivially minimizing the loss through norm manipulation.**
 992 **All values are evaluated on the last checkpoint.**

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	Layer	993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010		993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010		993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	
		993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010	993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
0	0	1.85±0.39	1.67±0.31	25.46±3.93	24.14±3.02	0.87	0.00
1	1	1.25±0.13	1.13±0.12	30.14±0.68	29.42±0.69	0.42	0.00
2	2	1.17±0.12	1.07±0.09	30.63±0.77	29.88±0.76	0.45	0.00
3	3	1.10±0.08	1.01±0.07	30.18±0.77	29.42±0.78	0.25	0.00
4	4	1.03±0.08	0.89±0.05	30.59±1.21	29.88±1.09	0.28	0.00
5	5	0.93±0.08	0.87±0.06	30.33±1.13	29.86±1.06	0.24	0.00
6	6	0.86±0.08	0.83±0.07	30.65±1.15	29.82±1.11	0.22	0.00
7	7	0.82±0.07	0.75±0.06	30.56±1.20	29.96±1.16	0.21	0.00
8	8	0.77±0.06	0.76±0.06	30.46±1.02	29.82±0.88	0.15	0.00
9	9	0.80±0.07	0.74±0.06	30.58±0.88	29.86±0.79	0.16	0.00
10	10	0.74±0.08	0.69±0.06	30.80±1.03	30.16±0.89	0.21	0.00
11	11	0.80±0.14	0.73±0.10	32.03±1.46	31.50±1.26	0.50	0.00

1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

```

1026
1027
1028
1029
1030 1 import torch
1031 2 import torch.nn as nn
1032 3 import PseudoExpertClass
1033 4
1034 5 class MoE(nn.Module):
1035 6
1036 7     def __init__(self, args):
1037 8         super().__init__()
1038 9
103910     self.experts = PseudoExpertClass(args)
104011     self.R = torch.nn.Parameter(torch.empty(
104112         args.n, args.d))
104213
104314     self.alpha = args.alpha
104415
104516     def erc_loss(self, M):
104617         row_diff = (M - self.alpha * torch.diag(M).unsqueeze(1))
104718         row_diff_clamped = torch.clamp(row_diff, min=0.0)
104819
104920         col_diff = (M - self.alpha * torch.diag(M).unsqueeze(0))
105021         col_diff_clamped = torch.clamp(col_diff, min=0.0)
105122
105223         mask = torch.ones_like(A) - torch.eye(A.size(0), device=A.device)
105324         total_diff = (row_diff_clamped + col_diff_clamped) * mask
105425
105526         return total_diff.mean()
105627
105728     def get_noisy_router(self, R):
105829         with torch.no_grad():
105930             norm_R = torch.norm(R, dim=1)
106031             distances = torch.cdist(R, R, p=2)
106132             distances.fill_diagonal_(float('inf'))
106233             min_dist, _ = torch.min(distances, dim=1)
106334             eps = min_dist / 2 / norm_R
106435
106536             low = (1 - eps).unsqueeze(1)
106637             high = (1 + eps).unsqueeze(1)
106738             noise = torch.rand_like(R)
106839             return (low + noise * (high - low)) * R
106940
107041     def forward(self, x):
107142
107243         erc_loss = 0.0
107344         if self.training:
107445             R = self.get_noisy_router(self.R)
107546             M = torch.norm(torch.einsum('jDd,id->ijD', self.experts.Wg,
107647             R), dim=-1)
107748             erc_loss = self.erc_loss(M)
107849
107950             logits = x.view(-1, x.shape[-1]) @ self.R.T
108051             scores = logits.softmax(dim=-1)
108152             expert_weights, expert_indices = torch.topk(scores, dim=-1)
108253
108354             return self.experts(x, expert_weights, expert_indices), erc_loss

```

Figure 9: Pseudo code for expert-router coupling loss in PyTorch.

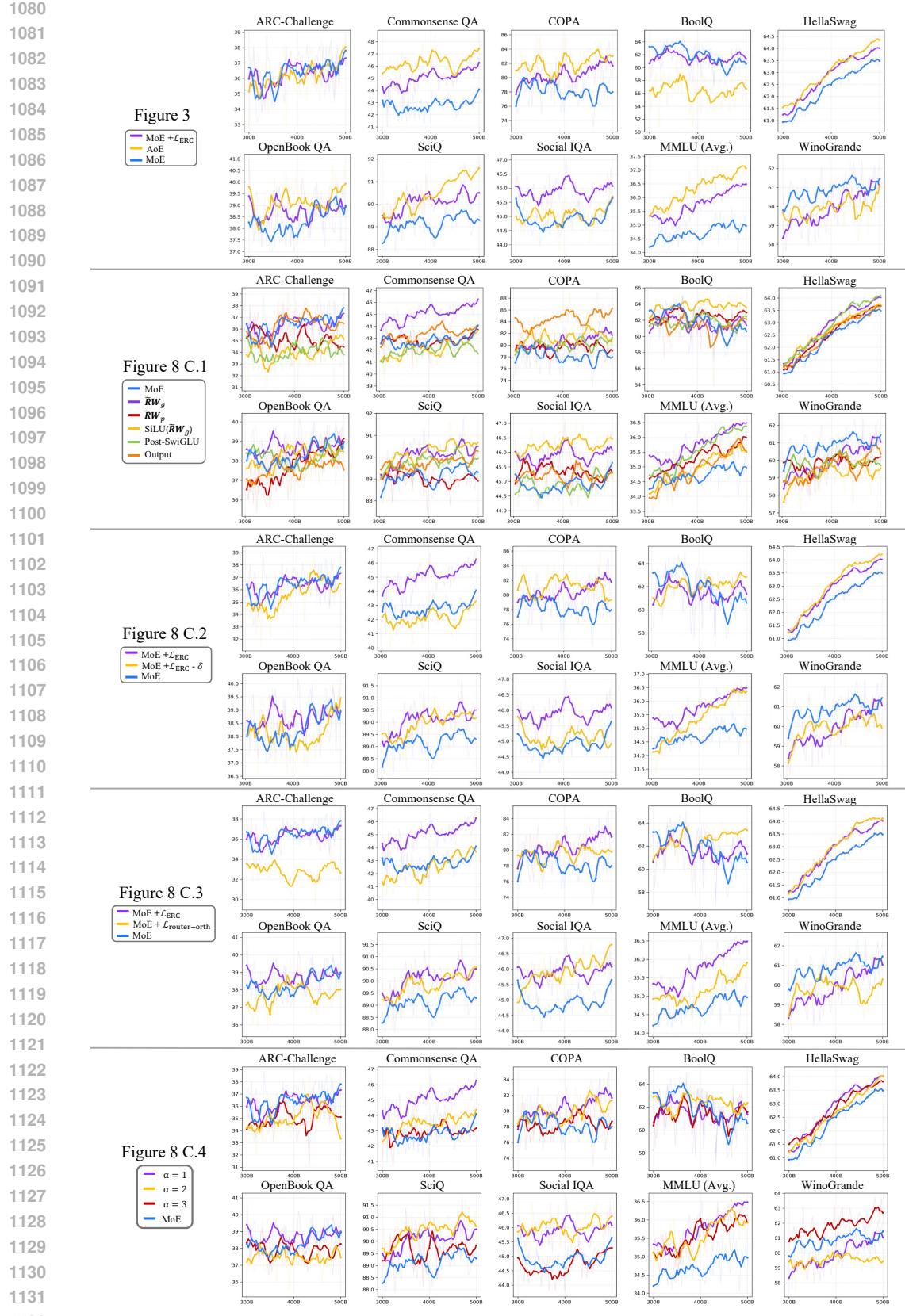


Figure 10: Task-specific downstream results for previous experiments.