
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A SYSTEMIC REVIEW OF STATIC MEMORY ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

This review aims to evaluate and compare various static analysis tools across
multiple programming languages for memory management. The tools and tech-
niques under scrutiny include pattern matching, symbolic execution, CppCheck,
SharpChecker, FindBugs, CheckStyle, and Pylint. When examining the methods,
pattern-matching, and symbolic execution, we identified implementations using
pattern-matching and symbolic execution for each programming language. We fo-
cus on understanding the full scope of their capabilities and effectiveness in man-
aging internal and external memory components such as RAM, SRAM, PROM,
Cache, Optical Drive, etc. While static analysis tools do not directly analyze phys-
ical memory components, they are crucial in enhancing memory behavior. By de-
tecting and addressing memory-related issues early in the development process,
these tools contribute significantly to the overall quality of software systems. This
review will thoroughly examine the strengths and weaknesses of each static anal-
ysis tool, aiding in selecting the most suitable tool or combination of tools for
effective memory management across diverse programming environments.

1 INTRODUCTION

Software systems have become more complex as they must ensure their software’s reliability,
security, and management. Not upkeeping software systems may result in software defects. Those
include (Emanuelsson & Nilsson, 2008) logical or functional errors, where the program sometimes
computes incorrect values; runtime errors, where the program typically crashes; resource leaks,
where the performance of the program degrades until the program freezes or crashes; and mi-
nuscule security vulnerabilities that malicious attackers can exploit to obtain control over computers.

Various methods are employed to identify software errors and defects, using tools compiled explic-
itly for certain programming languages or implementing a feature to assist. Tools specifically com-
piled for certain languages include CppCheck for C/C++ programs, FindBugs for Java programs,
and many more. Features implemented to assist include pattern matching and specific function-
alities within a given tool. Software developers use those tools and features to mitigate the risks
mentioned earlier.

1.1 DEFINITION AND OBJECTIVES

Static analysis Rival & Yi (2020) is a technique aimed at discovering expressive properties of
program code without executing it. It shouldn’t be confused with dynamic analysis, (Ernst, 2003)
which operates by running a program and observing its outputs or executions. Static analysis
tools are (Lenarduzzi & Fabio, 2023) instruments that examine a program’s source code without
executing it to discover potential quality issues such as resource management, syntax errors, and
runtime behavior. These tools benefit developers, as they help build high-quality software, reduce
the risk of security breaches, and minimize debugging time. However, some techniques lack
scalability, and analyzing large software programs may require more advanced computational tools
to ensure accurate results, which current tools may not consistently deliver.

Our objective is to gather research on static memory analysis and identify the most efficient tools
for memory management. This work comprehensively reviews static memory analysis techniques
and tools to detect source code defects across programming languages, as presented in Table 1.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Using insights from academic research, we will develop a process to perform a complete memory
analysis on a virtual machine, covering internal (e.g., RAM, DRAM, SRAM, ROM, PROM,
EPROM, Cache) and external memory components (e.g., Optical Drive, Solid State Drives, and
Virtual memory).

Table 1: Selected static analysis tools and corresponding programming languages

Tool/Technique Developer Language C/C++ C# Java Python
Mach7 C/C++ Yes No No No

CppCheck C/C++ Yes No No No
Clang Static Analyzer C/C++ Yes No No No

Language-Independent Tool for C# C# No Yes No No
SharpChecker C# No Yes No No
Symbolic JPF Java No No Yes No

FindBugs Java No No Yes No
CheckStyle Java No No Yes No

Python CHEF Engine Python No No No Yes
Pylint Python No No No Yes

This paper is structured as follows: Section 1 covers the background of software system defects and
errors and introduces static and dynamic analysis, emphasizing the critical difference between them.
Section 2 introduces various static analysis tools and their general features. Section 3 composes
literature reviews of the innovative implementations of these tools conducted by researchers and
developers to address successes and gaps in the existing tools. Section 4 compares and contrasts
the approaches of each tool. Finally, section 5 concludes the paper by summarizing the findings,
identifying lessons learned, and describing our future work in developing our automated process.

The main contributions of this paper are as follows:

• We reinforce existing research and tools, offering a clear understanding of the current out-
look of static analysis.

• By reviewing the existing literature, we highlight the strengths and weaknesses of different
static analysis tools and methodologies’ effectiveness in memory management, as proper
memory management can ensure efficiency, stability, security, data integrity, and scalability
in a program.

• We provide a foundation for future studies by laying out what has already been explored,
giving practitioners potential areas for further investigation and implementation.

2 METHODOLOGIES

2.1 WHAT MAKES A GOOD STATIC ANALYSIS TOOL?

As previously mentioned, the primary purpose of a static analysis tool is to discover runtime errors,
resource leaks, and security vulnerabilities without executing the code. However, finding a tool that
identifies all defects without limitations is challenging. One common issue is the prevalence of false
positives (i.e., reporting non-issues) and false negatives (i.e., missing actual problems). Managing
and detecting these is crucial, but many tools do not explicitly label them as functionalities. Instead,
they address these through configurable settings, algorithm improvements from user feedback, and
data-flow or path-sensitive analysis integration that allows a user to determine the feasibility of a
path and optimize resource usage.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Symbolic Execution Tree referenced from RTEHunter.

2.2 STATIC ANALYSIS TOOLS

2.2.1 PATTERN MATCHING

Pattern matching is a technique that (Ferrara, 2023) for checking if an expression conforms to a
particular pattern by examining a series of case expressions. Static analysis tools (Wen, 2024) utilize
pattern matching alongside techniques such as symbolic execution and separation logic to identify
issues such as poor use of language constructs and violation of coding guidelines. Identifying
those issues helps (par, 2024) prevent defects such as resource leaks, performance and security
issues, and API misuse. Tools that implement pattern matching, like CppCheck, have been observed
by developers in its earlier versions (Gulabovska & Porkolab, 2019) to report relatively low false
positives and identified that well-written regular expressions are more effortless to predict. An
implementation that we reviewed to use pattern-matching was Mach7.

2.2.2 CPPCHECK

CppCheck (Moerman, 2018) is an open-source tool similar to C++test, which is capable of analyzing
C and C++ code with simple control flow analysis. While CppCheck cannot filter certain defects
through command-line flags, it offers useful features like sorting defect reports by severity and
analyzing entire code bases using a compilation database that can manually remove the need to
provide paths to all source files.

2.2.3 SYMBOLIC EXECUTION

Symbolic execution (Păsăreanu & Visser, 2009) is a notable static analysis technique that uses sym-
bolic values to represent program inputs rather than initialized data, allowing for the manipulation of
program expressions symbolically. It is considered highly powerful as it (Gulabovska & Porkolab,
2019) leverages program structure, type systems, and data-flow information while following
function calls. Symbolic execution can handle complex constructs such as recursive data structures,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

arrays, preconditions, and multithreading. However, when applied to programs with loops or
recursion, it can result in an unbounded number of execution paths, leading to resource-intensive
processes. Those results occur because loops and recursion can generate infinite possible states. As
a result, symbolic execution may not terminate due to the explosion of configurations. 1

Additionally, the analysis state is tracked using an exploded graph, which can grow exponentially in
size due to program control branches (i.e., conditions). To mitigate the resource cost, constraints or
heuristics are introduced to limit exploration depth or prioritize paths, ensuring efficient execution.

Tools that we observed to implement symbolic execution were the Clang Static Analyzer (CSA),
the Language-Independent Tool for Symbolic Execution in C#, Symbolic JPF, and the Python
CHEF Engine using Symbolic Execution.

2.2.4 SHARPCHECKER

SharpChecker is a static analysis tool (Koshelev & Belevanstev, 2017) that can detect 30 differ-
ent types of bugs through parsing, data-flow analysis, and (the most significant) context and path-
sensitive intraprocedural analysis. SharpChecker employs the Roslyn infrastructure to work with C#
build system files and compile a program’s source code. SharpChecker only uses the part of Roslyn
that is responsible for parsing a project and solution files to determine a set of files for building a
given program or library and to set an adequate environment.

2.2.5 FINDBUGS

FindBugs (Lenarduzzi & Fabio, 2023) is a static analysis tool mainly used to evaluate Java byte
code. However, the tool’s capability goes beyond that, as it can also highlight the exact position
of an issue if the tool is provided the source code. The analysis is performed by detecting bug
patterns that, according to FindBugs (Shen, 2011), can arise due to complex language features,
misunderstood API features, misunderstood invariants when code undergoes modification during
maintenance, and garden variety mistakes. Then, these bug patterns are categorized into nine cate-
gories: bad practice, correctness, experimental, internalization, malicious code vulnerability,
multi-threaded, performance, security, and dodgy code. Per their observations, Shen et al.
categorize three main ranking options for FindBugs’ error reports as sorting reports in alphabetical
order (e.g., bug patterns, packages), sorting reports in severity (i.e., assigning each error report a
priority value of low, medium, or high), and sorting reports through user designation (i.e., allows
users to manually designate each bug report according to categories (e.g., needing further study, not
a bug, etc.).

Despite the number of ranking methods in FindBugs, users still face the risks of false positives and
high inspection costs when dealing with large-scale software systems. Thus, FindBugs’ developers
(Shen, 2011) have two main goals for FindBugs:

1. The developers want to achieve a low false positive rate, particularly in correctness cate-
gories, which are primarily used to identify genuine errors in software systems.

2. Error reports of the same bug pattern(s) or bug kind(s) should ideally have the same desig-
nation since it would facilitate the management of error reports in groups.

FindBugs has been succeeded by SpotBugs. SpotBugs continued the legacy of FindBugs by pro-
viding advanced bug detection capabilities, with improvement and support for newer versions of
Java.

1A symbolic execution tree (Păsăreanu & Visser, 2009) represents the potential execution paths a program
can follow during symbolic execution. Each tree node corresponds to a program state, and transitions between
nodes represent program actions or changes in state, as seen in Fig. 1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2.2.6 CHECKSTYLE

CheckStyle (Yeboah & Popoola, 2023) is an open-source tool for evaluating Java code quality. De-
velopers can use CheckStyle via a command-line tool or integrate it with Ant (i.e., Java library and
command-line tool). CheckStyle processes code based on a configured set of checks, supporting
standard configurations like Google Java Style and Sun Java Style while allowing personalized
configurations as well. The checks are classified into 14 categories: annotations, block checks, class
design, coding, headers, imports, Javadoc comments, metrics, miscellaneous, modifiers, naming
conventions, regexp, size violations, and whitespace. Check violations (Lenarduzzi & Fabio, 2023)
are grouped under two severity levels: error (actual problems) and rule (potential issues requiring
verification).

2.2.7 PYLINT

Pylint (Gulabovska & Porkolab, 2019) is a static analysis tool for Python, capable of detecting logi-
cal errors, producing warnings regarding specific coding standards, offering details about code com-
plexity, and suggesting refactoring. It leverages abstract syntax trees (AST) to manipulate source
code and provides a range of code analysis and transformation pathways. 2

2.3 DATASET

The first part of the project consists of a preliminary analysis of the chosen static analysis tools
to determine which tool or tools is most efficient in managing the memory of a virtual machine.
The dataset comprises open-source projects written in Java, C/C++, C#, and Python. However, the
evaluations of each tool will be derived from the findings and results of existing implementations,
providing insights into the capabilities and limitations of these tools across various programming
languages.

3 LITERATURE REVIEW

In this section, we summarize the implementations of each tool and explore the similarities and
differences of how one tool is typically applied compared to another.

3.1 MACH7

Introduced by Solodkyy (2013), they presented a functional-style pattern matching for C++ built
as an ISO C++11 library, called Mach7. They intended their solution to support the introduction
of new patterns, ensure type safety, and provide a unified syntax for hierarchical data types. They
performed several independent studies of their pattern-matching solution to test its efficiency and
impact on the compilation process (i.e., transforming readable C++ code into machine-executable
instructions).

3.1.1 CPPCHECK

Penttila (2014) analyzes the capability of CppCheck in analyzing C/C++ programs. He observed
some of the functionalities for CppCheck using abstract syntax tree analysis, data-flow analysis,
severity categorization, and an inconclusive flag check that can be enabled for specific checks.

3.1.2 CLANG STATIC ANALYZER

Kovacs & Porkolab (2019) introduces symbolic execution in C/C++ programs by focusing on
the methods used by CSA. They implemented a module called Inner Pointer Checker that tracts
raw inner pointers of strings and recognizes operations on the string that may corrupt the inner buffer.

2An abstract syntax tree is a data structure used to reason about the grammar of a programming language
in the context of the instructions provided in the given source code. Static analysis tools utilize abstract syntax
trees for tasks such as linting, refactoring, and optimization.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Balogh & Szalay (2024) reviewed CSA by analyzing reports from five products: Linux, FreeBSD,
SerenityOS, systemd, and QEMU. They examined reports with both short and long bug paths. They
found that longer bug paths made bugs harder to understand, indicating a more significant diver-
gence between the analyzer’s assumptions and reality. While they identified many true positives,
such as in QEMU’s switch statement, they also encountered numerous false positives, especially
in low-level system software, where memory manipulation is complex for the current checkers to
model. Despite this, the ”core.” checkers, essential for building exploded graphs, cannot be disabled
without compromising analysis accuracy. However, the unix.Malloc checker, which struggles with
dynamic memory handling in low-level code, can be safely disabled. Ultimately, Balogh and Szalay
recommend keeping most default checkers in v6.22.1 but suppressing particular ”core.” checkers
like core.NullDereference due to their high false positive rate in low-level contexts.

3.1.3 LANGUAGE-INDEPENDENT TOOL FOR C#

In the implementation made by Arusoaie (2015), we are presented with a language-independent
symbolic execution framework for C# programs using Reachability Logic, featuring a special rule
called Circularity for handling loops and recursion. They identify that it may have performance
limitations compared to language-specific tools. Still, it counteracts that by offering a generic and
robust tool for automated symbolic execution and program verification to ensure soundness through
the Circularity Principle.

3.1.4 SHARPCHECKER

(Ignatyev & Mitrofanov, 2024) introduce large language models (LLMs) and identify that no known
industrial static analysis tools successfully utilize LLMs for error detection. So, for their proposed
approach, they conduct an initial evaluation of the applicability of LLMs in real-world projects on
an existing set of 2230 tests. The tests were designed explicitly for SharpChecker.

3.1.5 SYMBOLIC JPF

Păsăreanu & Visser (2009) developed a source-to-source translation method that introduces non-
determinism and supports path condition manipulation in Java programs, allowing Java PathFinder
(JPF), a model-checking tool to explore the symbolic execution tree of an analyzed program, to
perform symbolic execution by exploring symbolic state spaces. To simplify the process, they de-
veloped the Symbolic JPF framework, which enables symbolic execution directly on Java bytecodes
without requiring code transformation, effectively finding errors in safety properties and generating
test inputs. This approach helps address issues in Java programs related to safety and correctness.

3.1.6 FINDBUGS

Holsinger (2008) set up an assessment of FindBugs, where they applied the tool to the open-source
Java project, JEdit. They use this assessment to determine FindBugs’ strengths and weaknesses in
detecting false positives and true positives.

3.1.7 CHECKSTYLE

Oskouei & Kalıpsız (2018) used CheckStyle to identify defects in four open-source projects written
in Java programs. The projects chosen are development projects from the company, Sahand Iran,
with various development efforts and sizes. An experienced developer carefully examined each
warning FindBugs generated to determine its validity as a defect.

3.1.8 PYTHON CHEF ENGINE

Bucur (2014) used CHEF, a tool that executes the target program by symbolically executing the
interpreter’s binary while exploiting inferred knowledge about the program’s high-level structure,
to develop a symbolic execution engine for Python. They began their testing phase by evaluating
two engines on 11 popular Python library packages that generated up to 1000 times more test cases
than applying plain symbolic execution on the interpreter executable. The tests generated acquired
good coverage results and detected several bugs. They also compared the Python engine to other
implementations.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.1.9 PYLINT

Kiska (2021) used Pylint to determine its effect on given test cases. Examining the gathered results
focuses on whether the tool discovered a specified error or resulted in a false positive or negative.
We selected five of the twenty test cases that Kiska evaluated to observe and discuss: checking for an
invalid number of arguments, membership support, undefined arguments, function argument type,
and unused or missing imports.

4 DISCUSSION

4.1 C/C++

4.1.1 COMPARISONS: MACH7, CPPCHECK, AND THE CLANG STATIC ANALYZER

CppCheck and CSA allow custom checks, extendable frameworks, or modules to enhance code
analysis and can detect issues such as dead code and uninitialized variables. Mach7 and CSA
are made to implement standard static analysis techniques (e.g., pattern matching and symbolic
execution).

Mach7, CppCheck, and CSA enhance code quality through different analysis methods: Mach7
relies on pattern matching, CppCheck uses data-flow analysis, and CSA uses symbolic execution.
CppCheck amplifies error detection by categorizing errors and integrating a flag to alert for more
checks in checks that would increase false positives. However, CppCheck doesn’t provide as many
checkers as CSA and executes them quickly.

We discussed two different observations/implementations of CSA: Kovacs et al. introduced a new
module to enhance an established checker in CSA, and Balogh and Szalay evaluated the established
checkers on different test cases. Balogh and Szalay observed that CSA has difficulty detecting false
positives, especially in low-level contexts. At the same time, Kovacs et al. attempted to reduce false
positives by enhancing their specialized checks. In evaluating CSA, Balogh and Szalay conclude
that CSA offers comprehensive reporting, but long bug paths may hinder user comprehension and
require more resources to analyze the code. On the other hand, Kovacs et al.’s approach aims to
simplify bug tracing by providing more context on specific memory issues by implementing new
modules.

4.2 C#

4.2.1 COMPARISONS: LANGUAGE-INDEPENDENT TOOL USING SYMBOLIC EXECUTION
AND SHARPCHECKER

Arusoaie’s language-independent tool aims to be broadly applicable. We assume that this in-
cludes implementing path-sensitive analysis, which can accurately track the state of the current
program across different execution paths and is a standard analysis method in tools integrated with
symbolic execution. Koshelev et al., as well, utilize path-sensitive analysis in SharpChecker for
intra-procedural analysis, as it (Koshelev & Belevanstev, 2017) allows one to detect bugs such as
resource leaks, NULL dereferences, and type casting errors.

In contrast, Arusoaie’s framework aims for a language-independent approach to make it applicable
to various programming languages, not just C#. Simultaneously, SharpChecker is tailored explicitly
for C#, leveraging language-specific features. SharpChecker is more efficient for C# but lacks the
flexibility of a language-independent framework.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 JAVA

4.3.1 COMPARISONS: SYMBOLIC JPF, FINDBUGS, CHECKSTYLE

Symbolic JPF employs path-sensitive analysis, while FindBugs and CheckStyle rely on pattern
matching, balance thoroughness, and stylistic checks without deep-path exploration (path-sensitive
analysis). FindBugs offers a broad range of defect detection with a good balance of performance
and meticulousness in Java bytecode. CheckStyle focuses on upkeeping code quality style and
standard checks, ensuring a program’s maintainability, not its functional accuracy, like Symbolic
JPF.

4.3.2 FINDBUGS (NOW SPOTBUGS)

As previously mentioned, FindBugs, discontinued in 2015, was succeeded by SpotBugs, which in-
herited its features while adding new functionalities, bug detectors, and support for modern Java
versions (Java 17 and beyond). SpotBugs retains FindBugs’ existing bug detectors but introduces
new categories like EXPERIMENTAL and SECURITY. It also enhances support for custom plug-
ins, allowing users to tailor the tool to their specific analysis needs. This transition reflects FindBugs
developers’ success in creating a platform with a low false positive rate, particularly in correctness
categories. It refines bug patterns for greater accuracy, focusing on detectors like CORRECTNESS
and MT CORRECTNESS. It also assigns specific designations to each bug to help developers pri-
oritize issues.

4.4 PYTHON

4.4.1 COMPARISONS: PYTHON CHEF ENGINE AND PYLINT

The Python CHEF Engine and Pylint identify logical and syntax errors, using test cases to examine
their ability to detect runtime issues. While they differ in their analysis methods, Python CHEF
Engine uses path-sensitive analysis, and Pylint employs AST analysis, both of which offer extensive
program coverage. Pylint is more experienced in handling false positives and negatives, making it
suitable for routine code checks and detecting common mistakes. At the same time, Python CHEF
Engine is ideal for thoroughly testing critical applications where reliability and correctness are the
main factors.

5 CONCLUSION

The tools we observed, shown in Table 1, revealed that five of the ten static analysis tools (e.g., Cp-
pCheck, FindBugs, CheckStyle, Pylint, SharpChecker) we reviewed were independent tools. At the
same time, the other five (e.g., Mach7, Clang Static Analyzer, Symbolic JPF, Language-Independent
Tool, Python CHEF Engine) were implemented as solutions using features of the techniques: pattern
matching and symbolic execution to make up for functionalities that the current tools did not possess.

However, there is a significant difference between the two identified techniques– pattern matching
and symbolic execution. Pattern matching is commonly used in static analysis tools that identify
specific bug patterns (e.g., CppCheck, FindBugs, SharpChecker) and uphold common coding
standards. Those are valuable applications of pattern matching, but those applications are also
limited. Pattern matching can detect common bug patterns only if predefined, making it easier
to dismiss undefined ones. On the other hand, symbolic execution, while also utilized by static
analysis tools, is more used as an implementation or branch of a tool rather than a function.

The other static analysis tools, while effective in identifying their designated issues, lack some
crucial functions for memory management and error detection, making them unsuitable for a fully
efficient static analysis tool. For instance, CheckStyle, despite preventing some common errors
by enforcing coding standards that maintain readability and consistency, does not significantly
contribute to memory management. FindBugs’ detection of memory issues is limited to recogniz-
able patterns, making it ineffective in detecting unknown bug patterns and upholding code quality.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

CppCheck, while effective in detecting a wide range of memory-related issues (e.g., memory leaks,
array-bound errors), is lacking due to its generation of false positives, a common problem for static
analysis tools. Pylint, although helpful in maintaining code quality, like CheckStyle, cannot perform
deep memory analysis and, therefore, cannot detect memory management issues like memory leaks.

Overall, our objective was to gather research on static memory analysis and identify the most effi-
cient tools to utilize in our automated process to perform a memory analysis on a virtual machine.
From our findings and observations, symbolic execution is the most effective technique because it
is helpful in memory management and can be implemented with various static analysis tools. How-
ever, in terms of developing our automated process, it seems that it would be best to utilize symbolic
execution with another static analysis so that a broader range of potential memory issues could be
addressed.

5.1 LESSONS LEARNED

Quite a few lessons have been learned in researching and examining the static analysis tools:

• We now understand the limits of static analysis more in-depth. Static analysis tools have
proven worthwhile but are limited, as they can discover potential issues in source code
pre-runtime but not all problems, especially those involving dynamic behavior.

• A few of the tools we observed, like CppCheck and CheckStyle, while differing in language
support, are similar in functionality, like upholding coding standards. Style issues detected
in CppCheck for C/C++ source code could also be detected in CheckStyle but for Java
source code.

• The capabilities of each static analysis tool vary, as one may be more helpful in enforcing
coding standards, while another may be more useful in detecting memory leaks. There is a
more effective tool, but there is no right tool as some projects may require a combination
of tools and others with just one specific feature.

5.2 FUTURE WORK

Our future work will extend the concept of static memory analysis to a VM (virtual machine). We
will develop an automated process to perform a complete memory analysis on a virtual machine. We
will examine various aspects of its memory, including Internal (e.g., RAM, DRAM, SRAM, ROM,
PROM, EPROM, Cache) and External (e.g., Optical Drive, Solid State Drives, virtual memory).
We will also identify any memory-related issues the tools detect (e.g., uninitialized variables and
memory leaks). We will compare and contrast the results and develop multiple data visualizations
to improve understanding.

REFERENCES

What is static code analysis? a comprehensive overview. Parasoft, 2024.

Andrei Arusoaie. A generic framework for symbolic execution: theory and applications. Inria,
2015.

Á. Balogh and R. Szalay. On the applicability of static analysis for system software using
codechecker. 7th International Conference on Software and System Engineering (ICoSSE), pp.
15–22, 2024.

Kinder Johannes Candea George Bucur, Stefan. Prototyping symbolic execution engines for inter-
preted languages. ACM Conferences, pp. 239–254, 2014.

Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static analysis tools. Science
Direct, 217:5–21, 2008.

Michael Ernst. Static and dynamic analysis: Synergy and duality. WODA 2003, pp. 24–27, 2003.

Pietro Ferrara. Static type analysis of pattern matching by abstract interprettion. Formal Techniques
for Distributed Systems, 6117:186–200, 2023.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Hristina Gulabovska and Zoltan Porkolab. Survey on static analysis tools of python programs.
In Proceedings of the SQAMIA 2019: 8th Workshop of Software Quality, Analysis, Monitoring,
Improvement, and Applications, 2508, 2019.

Fulzele Snehal Ramteke Smita Tamagawa Ken Wesaratchakit Sahawut Holsinger, Lyle. Prevent vs.
findbugs application and evaluation. Carnegie Mellon University, 2008.

Shimchik N. V. Panov D. D. Ignatyev, V. N. and A. A. Mitrofanov. Large language models in source
code static analysis. Ivannikov Memorial Workshop (IVMEM), pp. 28–35, 2024.

Jakub Kiska. Static analysis of python code. Theses, 2021.

Ignatiev V. N. Borzilov A. I. Koshelev, V. K. and A. A. Belevanstev. Sharpchecker: Static analysis
tool for c programs. Springer, 43:268–276, 2017.

Horvath Gabor Kovacs, Reka and Zoltan Porkolab. Detecting c++ lifetime errors with symbolic
execution. ACM Conferences, pp. 1–6, 2019.

Percorelli Fabiano Saarimaki Nyyti Lujan Savanna Lenarduzzi, Valentina and Palomba Fabio. A
critical comparison on six static analysis tools: Detection, agreement, and precision. Journal of
Systems and Software, 2023.

Jonathan Moerman. Evaluating the performance of open source static analysis tools. Radboud
University, 2018.

Elmira Hassani Oskouei and Oya Kalıpsız. Comparing bug finding tools for java open source soft-
ware. figshare. figshare, 2018.

Elias Penttila. Improving c++ software quality with static code analysis. Aaltodoc Repository, 2014.

Corina Păsăreanu and Willem Visser. A survey of new trends in symbolic execution for software
testing and analysis. International Journal on Software Tools for Technology Transfer, 11:339–
353, 2009.

Xavier Rival and Kwangkeun Yi. Introduction to static analysis. The MIT Press, 2020.

Fang Jianhong Zhao Jianjun Shen, Haihao. Efindbugs: Effective error ranking for findbugs. IEEE
Fourth International Conference on Software Testing, Verification, and Validation, 2011.

Reis Gabriel Dos Stroustrup Bjarne Solodkyy, Yuriy. Open pattern matching for c++. ACM Confer-
ences, pp. 33–42, 2013.

Cai Yuandao Zhang Bin Su Jie Xu Zhiwu Liu Dugang Qin Shengchao Ming Zhong Cong Tian Wen,
Cheng. Automatically inspecting thousands of static bug warnings with large language model:
How far are we? ACM Conferences, 18, 2024.

Jones Yeboah and Saheed Popoola. Efficacy of static analysis tools for software defect detection on
open-source projects. Cornell University, 2023.

10


	Introduction
	Definition and Objectives

	Methodologies
	What Makes a Good Static Analysis Tool?
	Static Analysis Tools
	Pattern Matching
	CppCheck
	Symbolic Execution
	SharpChecker
	FindBugs
	CheckStyle
	Pylint

	Dataset

	Literature Review
	Mach7
	CppCheck
	Clang Static Analyzer
	Language-Independent Tool for C#
	SharpChecker
	Symbolic JPF
	FindBugs
	CheckStyle
	Python CHEF Engine
	Pylint


	Discussion
	C/C++
	Comparisons: Mach7, CppCheck, and the Clang Static Analyzer

	C#
	Comparisons: Language-Independent Tool using Symbolic Execution and SharpChecker

	Java
	Comparisons: Symbolic JPF, FindBugs, CheckStyle
	FindBugs (now SpotBugs)

	Python
	Comparisons: Python CHEF Engine and Pylint


	Conclusion
	Lessons Learned
	Future Work


