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ABSTRACT

Differentially private (DP) neural network achieves the privacy usually at the cost of
slower convergence (and thus lower performance) than its non-private counterpart.
To analyze the difficulty of DP training, this work gives the first convergence
analysis through the lens of training dynamics and the neural tangent kernel (NTK).
We successfully characterize the effects of two key components in the DP training:
the per-sample gradient clipping (flat or layerwise) and the noise addition. Our
analysis not only initiates a general principled framework to understand the DP deep
learning with any network architecture and loss function, but also motivates a new
clipping method — the global clipping, that significantly improves the convergence,
as well as preserves the same DP guarantee and computational efficiency as the
existing method, which we term as local clipping.

Theoretically speaking, we precisely characterize the effect of per-sample clipping
on the NTK matrix and show that the noise scale of DP optimizers does not
affect the convergence in the gradient flow regime. In particular, we shed light on
several behaviors that are only guaranteed by our global clipping. For example,
the global clipping can preserve the positive semi-definiteness of NTK, which
is almost certainly broken by the local clipping; DP gradient descent (GD) with
global clipping converges monotonically to zero loss, while the convergence of
local clipping can be non-monotone; the global clipping is surprisingly effective at
learning calibrated classifiers, whereas existing DP classifiers are oftentimes over-
confident and unreliable. Notably, our analysis framework easily extends to other
optimizers, e.g., DP-Adam. We demonstrate through numerous experiments that
DP optimizers equipped with global clipping perform strongly. Implementation-
wise, the global clipping can be realized by inserting only one line of code into the
Pytorch Opacus library.

1 INTRODUCTION

Deep learning has achieved tremendous success in many applications that involve crowdsourced
information, e.g., face image, emails, financial status, and medical records. However, using such
sensitive data raises severe privacy concerns on a range of image recognition, natural language
processing and other tasks|Cadwalladr & Graham-Harrison| (2018));|[Rocher et al.[(2019); Ohm| (2009);
De Montjoye et al.[ (2013 2015). For a concrete example, researches have recently demonstrated
multiple successful privacy attacks on deep learning models, in which the attackers can re-identify
a member in the dataset using the location or the purchase record, via the membership inference
attack [Shokri et al.| (2017); (Carlini et al.|(2019). In another example, the attackers can extract a
person’s name, email address, phone number, and physical address from the billion-parameter GPT-2
Radford et al.[(2019) via the extraction attack |Carlini et al.|(2020). Therefore, many studies have
applied differential privacy (DP)|[Dwork et al.|(2006); Dwork| (2008)); Dwork et al.| (2014)); Mironov
(2017); [Duchi et al.[(2013));|Dong et al.|(2019)), a mathematically rigorous approach, to protect against
leakage of private information |Abadi et al.| (2016)); McSherry & Talwar (2007); [McMahan et al.
(2017); |Geyer et al.| (2017). To achieve this gold standard of privacy guarantee, since the seminal
work |Abadi et al.|(2016)), DP optimizers are applied to train the neural networks while preserving
the accuracy of prediction. To name a few, researchers have proposed DP-SGD |Abadi et al.|(2016);
Bassily et al.[(2014) and DP-Adam Bu et al.|(2019) for private deep learning, DP-SGLD Wang et al.
(2015); L1 et al.| (2019) for Bayesian neural network, and DP-FedSGD and DP-FedAvg [McMahan
et al.|(2017) for federated learning.
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Algorithmically speaking, DP optimizers generally have two extra steps in comparison to non-DP
standard optimizers: the per-sample gradient clipping and the random noise addition, so that DP
optimizers descend in the direction of the averaged, clipped, noisy gradient (see Figure [2). These
extra steps protect the resulting models against privacy attacks via the Gaussian mechanism (Dwork
et al., 2014, Theorem A.1), at the expense of performance degradation compared to the non-DP
deep learning, in terms of much slower convergence and lower utility. For example, state-of-the-art
CIFARI0 accuracy with DP is & 70% without pre-training Papernot et al.| (2020) (while non-DP
networks can easily achieve over 95% accuracy), and similar performance drops have been observed
on facial images, tweets, and many other datasets [Bagdasaryan et al.| (2019).

Empirically, many works have evaluated the effects of noise scale, batch size, clipping norm, learning
rate, and network architecture on the privacy-accuracy trade-off /Abadi et al.| (2016); |[Papernot et al.
(2020). However, despite the prevalent usage of DP optimizers, there is only limited understanding
about their convergence behavior from a theoretical viewpoint Chen et al.[(2020); Bu et al.| (2022),
which is necessary to understand and improve the deep learning with differential privacy.

Our Contributions In this work, we establish a principled framework to analyze the dynamics of
DP deep learning, which helps demystify the phenomenon of the privacy-accuracy trade-off.

* We characterize the general training dynamics of deep learning with DP gradient methods (e.g.
DP-GD and DP-Adam; see (4.2))). We show a fundamental influence of the DP training on the
NTK matrix, which causes the convergence to worsen.

* We successfully separate the per-sample gradient clipping and noise addition in the continuous
time analysis, showing that the clipping only affects the convergence but not the privacy, and that
the noise only affects the privacy but not the convergence.

* On top of our convergence analysis, we propose a novel global clipping method that shares the
same privacy guarantee and efficiency as the existing clipping. This leads to a mix-up training
strategy that applies both clippings interchangeably.

* We demonstrate via numerous experiments that the global clipping significantly improve the loss
convergence. Interestingly, our clipping effectively mitigates the calibration issue of existing DP
classifiers, which usually exacerbates the “over-confidence” in non-DP models.

* Our global clipping is easy-to-code (see Appendix [D) and generalizable to arbitrary optimizers,
network architectures, loss functions, and tasks.

2  WARMUP: CONVERGENCE OF NON-PRIVATE GRADIENT DESCENT

We start by reviewing the standard, non-DP Gradient Descent (GD) for arbitrary neural network
and arbitrary loss that can be represented as a sum of per-sample losses. In particular, we analyze
the training dynamics of a neural network using the neural tangent kernel (NTK) matri

Suppose a neural network f is governed by weights w, with samples x; and labels y; (i = 1, ..., n).
Denote the prediction by f; = f(x;, w), and the per-sample loss by ¢; = £(f(x;, W), y;) for
some loss function ¢. We define the objective function L to be the average of per-sample losses

L(w) = % i (f(x;, W), y;). The discrete gradient descent, with a step size 7, can be written as:

wk+1)=w(k)— ng—VLVT. The corresponding gradient flow, i.e., the ordinary differential equation
(ODE) describing the weight updates with infinitely small step size  — 0 in the continuous time, is

then: w(t) = —g—fvT = — 13", Vwl;(t). Applying the chain rules to the gradient flow, we obtain
the following general dynamics of the loss L,
. 0L oLoL"  oLofof'oL' oL . OL'
L=—w=-—+— =—-———“——- — =—-——H({)— ,
ow ow Ow of owow Of of of
where g—; = %(g—%, sy %) € R and the Gram matrix H(t) := g—vag—va-r € R™*" is known as

the NTK matrix, which is positive semi-definite and crucial to analyzing the convergence behavior.

'"We emphasize that our analysis works on any neural networks, not limited to the infinitely wide or
over-parameterized ones. Put differently, we don’t assume the NTK matrix H to be deterministic nor nearly
time-independent, as was the case in|Arora et al.|(2019a)); Lee et al.| (2019);|Du et al.|(2018)); |Allen-Zhu et al.
(2019); |Zou et al.|(2020); Fort et al.| (2020); |Arora et al. (2019b).
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To give a concrete example, let ¢ be the MSE loss £;(w) = (f(z;,w) — y;)? and Lysg =
LS~ ti(w) = L3°(fi — yi)? then Lysg = —4(f — y) "H(t)(f — y)/n®. Furthermore, if
H(¢) is positive definite, the MSE loss Lysg — 0 exponentially fast Du et al.{(2018); Allen-Zhu et al.
(2019); Zou et al.|(2020) , the cross-entropy loss Lcg — 0 at rate O(1/t) and any loss convex in the
prediction L = )", ¢;/n converges to 0|Allen-Zhu et al.[(2019).

3 DIFFERENTIALLY PRIVATE GRADIENT METHODS AND GLOBAL CLIPPING

We now introduce the DP optimizers: one popular optimizer is the DP-SGD |Song et al.| (2013));
Chaudhuri et al.|(2011)); /Abadi et al.| (2016); Bu et al.|(2019)) in Algorithmﬂ] and more optimizers
such as DP-Adam can be found in Appendix [F| In contrast to the standard SGD, the DP-SGD
has two unique steps: the per-sample clipping (to bound the sensitivity of per-sample gradients)
and the random noise addition (to guarantee the privacy of models), both are discussed in details
via the Gaussian mechanism in Lemma[5.2] Some choices of clipping methods include the local
clipping |Abadi et al.| (2016) and the automatic clipping [Bu et al.| (2022)), which are illustrated in
Figure[I] Notice that empirical observations have found that optimizers with the per-sample clipping
(even when no noise is present) have much worse convergence and accuracy than their non-private
counterparts |Abadi et al.| (2016); Bagdasaryan et al.|(2019); Kurakin et al.[(2022).

Algorithm 1 DP-SGD (with local or global flat per-sample clipping)
Parameters: initial weights wy, learning rate 7, subsampling probability p, number of iterations 7,
noise scale o, clipping norm R.
fort=0,...,7T—1do
Subsample a batch I; C {1,...,n} from training set with probability p

fori € I, do
o = Vul(f (@i, we). i)
Opt10n 1: Clocar,i = min {1, R/ ||vti) 2} > Local clipping factor (existing)
Option 2: Cyiopar,i = ]I{||vt1) |l < R} > Global clipping factor (ours)
DI A > Clip the gradient
Vi 2161 ot > Sum over batch
Wil ¢ Wy — II:\ (Vt +oR-N(0, I)) > Gaussian mechanism and Descent
We propose a new clipping method, namely the global clip- :: —— no clipping
ping as in Option 2 of Algorithm [} where the clipping 7 local clipping

—— global clipping
---- automatic clipping

tor

operation takes place on all per-sample gradients that pass € 125
the screening procedure. The global clipping is similar to the o100
batch clipping as all clipped per-sample gradients share the — §o7s1
same clipping factor 1. At the high level, the idea of global 0501
clipping is to mitigate the bias introduced by the clipping, S

which in turn can preserve the positive semi-definiteness of 000

the NTK matrix for large R (see Theorem 2)). Figure 1: Ch”;{;;"g';&;:‘c"t‘i’gnngr? R=41)
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Figure 2: Illustration of global (upper) and local per-sample clipping (lower) in Algonthml 1} The
black arrowed lines are three per-sample gradients. Red and grey circles mean small R and large R.
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4 CONVERGENCE ANALYSIS OF DP OPTIMIZERS

In this section, we analyze the weight and loss dynamics of DP optimizers with the local or global
per-sample clipping, denoted in the subscript, e.g., DP-SGDj4¢q; and DP-SGD g;0p4;. Our narrative
here focuses on the most widely used DP-GD for the sake of simplicity, and our analysis generalizes to
other full-batch DP optimizers such as DP-HeavyBall, DP-RMSprop, and DP-Adam in Appendix [F]

4.1 EFFECT OF NOISE ADDITION ON CONVERGENCE

Our first result is easy yet surprising: the gradient flow of a noisy GD (@) is the same as that of
a deterministic GD without the noise (.2). Put differently, the noise addition has no effect on the
convergence of DP optimizers in the continuous time analysis.

To elaborate this point, we consider the DP-GD with Gaussian noise, as in Algorithm [I]
n
k+1)=w(k) — 2 (Y VwbiCi+oR-N(0,1) ] . 4.1
w(k+1) ()”(iv +oR-N( )) 4.1

Notice that this general formula covers both the non-DP GD (0 = 0 and C; = 1) and DP-GD with
local or global clipping (0 # 0 and arbitrary R). Through Fact[d.1]and its proof in Appendix [B] we
show that the gradient flow of (4.1)) is the same ODE regardless of the value of o.

Fact 4.1. For all 0 > 0, the gradient descent in (4.1) corresponds to the continuous gradient flow

dw(t) = %Zivw&(t)ci(t)dt. (4.2)

This result indeed aligns the conventional wisdorrﬂ of tuning the clipping norm R first (e.g. setting
o = 0.0 or small) then the noise scale o, since the convergence is not sensitive to o (see Figure 3).

Test Loss
g

Train Loss
Test Accuracy

0 10 20 30 40 50 60 o 10 20 30 40 50 60 o 10 20 30 40 50 60
Epoch Epoch Epoch

Figure 3: Performance of DP-SGDj,,; with various noise o on CIFAR10, using same setting as in
Section Notice that when o = 0 and no clipping is applied, the test accuracy =~ 62%.

Remark 4.2. Our proof of Fact[d.1]in Appendix [B]shows that the independence on ¢ holds true for
general DP optimizer besides DP-GD, e.g. DP-Adam.

4.2 EFFECT OF PER-SAMPLE CLIPPING ON NTK MATRIX

We move on to analyze the effect of the per-sample clipping on the DP training (#.2)). It has
been empirically observed that the per-sample clipping results in worse convergence and accuracy
even without the noise Bagdasaryan et al.[|(2019). We highlight that the NTK matrix is the key to
understanding the convergence behavior and that the clipping affects NTK through its linear algebra
properties, especially the positive semi-definiteness.

Definition 4.3. For a (not necessarily symmetric) matrix A, it is
1. positive in quadratic form if and only if z " Az > 0 for every non-zero x;
2. positive in eigenvalues if and only if all eigenvalues of A are non-negative.

These two positivity definitions are equivalent for a symmetric or Hermitian matrix, but not so for
non-symmetric matrices. We illustrate this difference in Appendix [A] with some concrete examples.
Next, we introduce two styles of per-sample clippings. Both can be implemented locally or globally.

2See https://github.com/pytorch/opacus/blob/master/tutorials/building_
image_classifier.ipynbland (Kurakin et al.; 2022, Section 3.3).


https://github.com/pytorch/opacus/blob/master/tutorials/building_image_classifier.ipynb
https://github.com/pytorch/opacus/blob/master/tutorials/building_image_classifier.ipynb
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Flat Clipping The DP-GD described in Algorithm [I]and (.1)), with the gradient flow (4.2), is
equipped with the flat clipping McMahan et al.| (2018). In words, the flat clipping upper bounds the
entire gradient vector by a norm R. Using the chain rules, we get

. 0L 1 oL OL"
where C(t) = diag(Cy, - - -, Cy,) is the clipping factor matrix at time ¢.

Layerwise Clipping. We additionally analyze another widely used clipping — the layerwise clipping
Abadi et al.| (2016); McMahan et al.|(2017); Phan et al.|(2017)). Unlike the flat clipping, the layerwise
clipping upper bounds the r-th layer’s gradient vector by a layer-dependent norm R,., as demonstrated
in Algorithm 2] Therefore, the DP-GD and its gradient flow with this layerwise clipping are:
wi(k+1) =w, (k) = 2 (3, Vw, liCiy + 0R, - N(0,1)) and w,.(t) = =1 3. Vy, ,C; .. Then
the loss dynamics is obtained by the chain rules:

: oL oL oL
L= —W, = — —H,C.— | 44
XT: aw, Z af T of @4
where the layerwise NTK matrix H,. = %%T, and C,.(t) = diag(C1 -+, Cpr)-

In short, from @.3)) and @.4), the per-sample clipping precisely changes the NTK matrix from
H = )" H,, in standard non-DP deep learning, to HC in DP training with flat clipping, and to
>, H,C, in DP training with layerwise clipping. Subsequently, we will show that this breaks the
NTK’s positivity and worsens the convergence of DP training.

4.3 PER-SAMPLE CLIPPING WITH SMALL R BREAKS NTK POSITIVITY

We start with the analysis of per-sample clipping when R is small, which is the prevailing choice |De
et al.| (2022); [Li et al.[(2021). We show that the DP-GD with small R breaks the traditional positive
semi-definiteness of the NTK matrix — it is not symmetric and maybe non-positive in the quadratic
form (see Appendix [A).

Theorem 1. For an arbitrary neural network and a loss convex in f, suppose we clip the per-sample
gradients in the gradient flow of DP-GD, and assume H(t) > 0, then:

1. The flat clipping has the loss dynamics in , with NTK matrix H(t)C(t), which is not symmetric
and may be non-positive in quadratic form, but is positive in eigenvalues.

2. The layerwise clipping has the loss dynamics in (#.4), with NTK matrix 3, H,.(t)C,.(t), which
is not symmetric and may be non-positive in quadratic form and in eigenvalues.

3. For both flat and layerwise clipping, the loss L(t) may not decrease monotonically.

4. If the loss L(t) converges, for the flat clipping, it converges to O; for the layerwise clipping, it
may converge to a non-zero value.

We prove Theorem|[T]in Appendix[B] The symmetry of NTK is almost surely broken by the per-sample
clipping unless R is so large that the clipping does not happen. If furthermore the positive definiteness
of NTK is broken, the loss convergence may be compromised, as depicted in Figure [9]and Figure

4.4 PER-SAMPLE CLIPPING WITH LARGE R IMPROVES CONVERGENCE

We now consider the large R regime. In the extreme case, if ||11ti) || < R for all ¢ and all 4, then global
clipping is equivalent to local clipping: Cyiobai = Clocat = 1 because the clipping does not happen.
In this case, DP-GD is essentially GD with additional Gaussian noise (also known as the gradient
langevin dynamics; GLDﬂ and the gradient flow of DP-GD from (4.2) is the same as the non-DP GD:
for flat or layerwise clipping, dw(t) = — 13",V £;(t)dt and L= —%H%T. Hence we obtain
the following result for DP training with large R.

Theorem 2. For an arbitrary neural network and a loss convex in f, suppose we clip the per-sample
gradients in the gradient flow of DP-GD such that ||U§Z) ll2 < R, and assuming H(t) > 0, then:

3Note that GLD is widely applied to train Bayesian neural networks, whose capability of uncertainty
quantification implies the amazing calibration of DP training in Section@
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1. The flat (resp. layerwise) clipping has loss dynamics in {.3)) (resp. {#.4)), with NTK matrix
H(t) = >, H,(t) that is symmetric and positive definite.

2. For both flat and layerwise clipping, the loss L(t) decreases monotonically to 0.

We prove Theorem 2]in Appendix [B] Our findings from Theorem[T]and Theorem 2]are visualized in
the left plot of Figure[IT]and summarized in Table I]

Clipping type NTK Symmetric Positive in Positive in Loss Monotone | To zero
matrix NTK quadratic form | eigenvalues | convergence | loss decay loss
No clipping H=) H, v v v v v v
Large Rclipping | H=)" H, v v v v v v
Small R clipping HC X X 4 X X 4
(Flat)
Small R clipping | >, H,C, X X X X X X
(Layerwise)

Table 1: Effects of per-sample clippings on DP gradient flow. Here “Yes/No" means guaranteed or
not and the loss refers to the training set. “Loss convergence" is conditioned on H(t) > 0.

However, too large R also means too much noise (proportional to o R) in the gradient descent
(@.1), hence worsens the accuracy in practice (see Figure [7] (right)). Hence, we demonstrate the
difference between global clipping and local clipping when R is moderately large. Using the setting
in Section[6.2] we empirically observe that global clipping has better convergence than local clipping
at the same clipping norm R = 75.

—— DP-5GDjyca, flat
22 DP-SGDgiopar, flat

Test Accuracy

—— DP-5GDjocq, flat
01s{ DP-SGDgiopa, flat

0 10 40 50 0 1 40 50

Ao O
Figure 4: Test performance of global and local clippings on CIFAR10.

5 PRIVACY ANALYSIS OF DP OPTIMIZERS

In this section we define DP mathematically and prove that DP optimizers using the global clipping
have the same privacy guarantee as those using the local clipping. Notice that for the privacy analysis,
we work with the general DP optimizers, including those with mini-batches.

Definition 5.1. A randomized algorithm M is (g, ¢)-differentially private (DP) if for any neighboring
datasets S, S’ differ by an arbitrary sample, and for any event F,

P[M(S) € E] < e°P[M (S') € E] +6. 5.1
A common approach to guarantee DP when approximating a function g is via additive noise calibrated
to g’s sensitivity [Dwork et al.|(2006). This is known as the Gaussian mechanism and widely used in
DP deep learning.
Lemma 5.2 (Theorem A.1 |Dwork et al.| (2014); Theorem 2.7 Dong et al.| (2019)). Define the {5
sensitivity of any function g to be Ag = supg g |g(S) — g(S")||2 where the supreme is over all
neighboring (S, S"). Then the Gaussian mechanism §(S) = g(S) + oAg - N(0,1) is (¢, 6)-DP for
some € depending on (o, n,p,?).

For the same differentially private mechanism, different privacy accountants (e.g., Moments ac-
countant Abadi et al.| (2016)); (Canonne et al.| (2020), Gaussian differential privacy (GDP) Dong
et al.|(2019); Bu et al.| (2019), Fourier accountant |Koskela et al.|(2020)) accumulate the privacy risk
e(o,n,p, o, T) differently over T iterations. The next result shows that using global clipping is as
private as using local clipping, independent of the choice of the privacy accountant.

Theorem 3. DP optimizers with the local or global clipping are equally (€, 0)-DP.

While a DP model by definition is resilient to all types of privacy attacks, we illustrate that
DP-SGD g;0pq1 offers similar privacy protection to DP-SGDj,,; against the membership inference
attacks (MIA) in Figure[5] MIA is a common privacy attack by which the attacker aims to determine
whether a given data point belongs to the sensitive training set|Shokri et al.|(2017). In our setting, the
black-box attacker uses logistic regression with only access to the prediction logits and labels. The
privacy vulnerability is characterized as the attack model’s AUC (lower is preferred).

6
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Figure 5: Attack model’s ROC-AUC on CIFAR10 in Section Left: non-DP overall AUC, 0.717;
DP-SGDjocai, 0.644; DP-SGD gj0pq1, 0.648. Right: AUC on subsets of samples by label classes.

6 NUMERICAL RESULTS

We highlight that the global clipping works with any DP optimizers (e.g., DP-Adam, DP-RMSprop,
DP-FTRLKairouz et al.|(2021)), DP-SGD-JLBu et al.|(2021a)), etc.) that employ the local clipping,
with no additional computational complexity (discussed in Appendix [D). Empirically, DP optimizers
with global clipping improve over existing DP optimizers on the convergence of training and gen-
eralization losses. We thus reveal a novel phenomenon that DP optimizers play important roles in
producing well-calibrated and reliable models.

In M-class classification problems, we denote the probability prediction for the i-th sample as
m; € RM so that f(x;) = argmax(r;), then the accuracy is 1{ f(z;) = y; }. The confidence, i.e., the
probability associated with the predicted class, is Pi = maxfy: 1[mi]x and a good calibration means
the confidence is close to the accuracyﬂ Formally, we employ three popular calibration metrics from
Naeini et al.|(2015)): the test loss, i.e. the negative log-likelihood (NLL), the Expected Calibration
Error (ECE), and the Maximum Calibration Error (MCE):

Ep, [[BG @) = wlPo=p) =l max [P((@) = il = p) — 3]

14001 ---- Accuracy ZZ:Z ===+ Accuracy 14001 ---- Accuracy
9 1200] " Avg Confidence; 4] 7000 —— Avg Confidence 91200 " Avg Confidence
ot —— DP-SGDgopar = —— DP-AdamW,ioar ot —— DP-SGDgiopar
£ 1000 E 6000 DP-AdamWioca! E 1000 DP-SGDjocar
£ £ £
wz, . 1002 snlinpnl II|||” 20: ...|||||.|.||lII||I||
® " Gfidence T Gndence Y Gonfidence
Figure 6: Confidence histograms on CIFAR 10 (left), SNLI (middle), and MNIST (right).
ECE % MCE %
non-DP | DP local | DP global | non-DP | DP local | DP global
CIFARI10 | 13.9 20.0 3.3 20.9 32.0 9.9
SNLI 13.0 22.0 17.6* 34,7 62.5 28.9*
MNIST 0.8 2.5 0.5 21.1 50.2 22.8

Table 2: Calibration metrics ECE and MCE by non-DP (no clipping) and DP optimizers. *Note that
the SNLI’s DP global indeed uses the mix-up training described in Section@

6.1 MNIST IMAGE DATA WITH CNN MODEL

On the MNIST dataset, which contains 60000 training samples and 10000 test samples of 28 x 28
grayscale images in 10 classes, we use the standard CNN in the DP librariefk}oogle; Facebook
(see Appendix [E-T] for architecture) and train with DP-SGD. In Figure [7] both clippings result in
(2.32,1075)-DP, similar test accuracy (96% for local and 95% for global), though the global clipping
leads to smaller loss (or NLL). In Figure[7} we demonstrate how R affects the performance of global
clipping, ceteris paribus.

In Figure@ the reliability diagram |DeGroot & Fienberg (1983)); Niculescu-Mizil & Caruanal(2005)
displays the accuracy as a function of confidence. Graphically speaking, a calibrated classifier
is expected to have blue bins close to the diagonal black dotted line. While the non-DP model is

* An over-confident classifier, when predicting wrong at one data point, only reduces its accuracy a little but
increases its loss significantly due to large — log(,, ), since too little probability is assigned to the true class.

5See lhttps://github.com/tensorflow/privacy/tree/master/tutorials| in Tensor-
flow and https://github.com/pytorch/opacus/blob/master/examples|in Pytorch.


https://github.com/tensorflow/privacy/tree/master/tutorials
https://github.com/pytorch/opacus/blob/master/examples
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Figure 7: Loss (left) and accuracy (right) on MNIST with 4-layer CNN under batch size 256,
g = ]-~]-777local = 015, Rlocal = l,nglobal = 00007, Rglobal = 210, (6,5) = (232, 1075).
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Figure 8: Reliability diagrams for non-DP (left), global (middle), local clipping(right) on MNIST.

generally over-confident and thus not calibrated, the global clipping effectively achieves nearly perfect
calibration, thanks to its Bayesian learning nature. In contrast, the classifier with local clipping is not
only mis-calibrated, but also falls into ‘bipolar disorder’: it is either over-confident and inaccurate, or
under-confident but highly accurate. This disorder is observed to different extent in all classification
experiments in this paper.

6.2 CIFAR10 IMAGE DATA WITH CNN MODEL
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Figure 9: Loss (left and middle) and accuracy (right) on CIFAR10 with 5-layer CNN under batch
size 250, 0 = 1.3, (6, (5) = (1.96, 10_5). For flat clipping, Rglobal =175, Nglobal = 0.0007, Ripcar =
1.5, Miocar = 0.05. For layerwise clipping, [Rgiobq1 = 1.5 for weights, 0.3 for biases; Rjocqr = 1.5
for weights and biases.

CIFARI1O0 is a more challenging image dataset, containing 50000/10000 training/test samples _of
32 x 32 color images in 10 classes. We use the CNN on Pytorch CIFAR10 tutoriaﬂ (see Appendix
for architecture) and train with DP-SGD without pre-training (unlike [Abadi et al.| (2016)); Xu et al.|
, which pretrain on CIFAR100). Both clippings result in (1.96, 10~°)-DP and the test accuracy
(local: 47.6%; global: 43.5%; non-DP: 61.3%) is comparable with state-of-the-art in
(2020), which is around 47% at this privacy budget. Clearly from Figure 9] global clipping has better
convergence and similar accuracy than local clipping. Especially, local layerwise clipping can be
unstable, as indicated by Theoremm Notice that for classification tasks, the inconsistency between
the optimization loss (cross-entropy) and the performance measure (accuracy) is not uncommon and
even exaggerated in Section[6.3]

As indicated by the higher losses or NLL, the confidence histogram in Figure[I4]shows the distribution
of prediction confidence and validates that DP-SGD;,.,; results in poorly calibrated classifiers on
CIFARIO (i.e., its 75.3% confidence is significantly higher than the actual 47.6% accuracy) while
DP-SGD ;0541 is much more well-calibrated.

%Seehttps://pytorch.org/tutorials/beginner/blitz/cifarl0_tutorial.html|
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6.3 SNLI TEXT DATA WITH BERT AND MIX-UP TRAINING
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Figure 10: Loss (left), accuracy (middle) and calibration after switching clipping (right) on SNLI
with pre-trained BERT, batch size 32, 7 = 0.0005,0 = 0.4, R = 0.1, (¢,6) = (1.25,1/550152).

Stanford Natural Language Inference (SNLI) |Z| is a collection of human-written English sentence
paired with one of three classes: entailment, contradiction, or neutral. The dataset has 550152
training samples and 10000 test samples. We use the pre-trained BERT (Bidirectional Encoder
Representations from Transformers) on Opacus tutoriaﬂ which gives a state-of-the-art privacy-
accuracy result. Our BERT contains 108M parameters and we only train the last Transformer encoder,
which has 7M parameters, using DP-AdamW. In particular, we use a mix-up training: for global
clipping, we in fact train BERT with DP-SGD,.; for 3 epochs (51.5 x 102 iterations) and then use
DP-SGDg;pq: for an additional 2500 iterations. In other words, 95% of the training is done with
local clipping but the last 5% is done with global clipping. For local clipping, DP-SGD; is used
for the entire training process of 54076 iterations.

Surprisingly, the existing DP optimizer does not minimize the loss at all, yet the accuracy still improves
along the training. We again observe that global clipping has significantly better convergence than
the local clipping (observe that when turned to global clipping in the last 2500 iterations, the test loss
or NLL decreases significantly from 1.79 to 1.08; while keeping the local clipping does not reduce
the losses). The resulting global model also has similar accuracy (local: 74.1%; global: 73.1%; as a
benchmark, non-DP: 85.4%), same privacy guarantee, and much better calibration in comparison to
the local clipping (see Figure [T6]and Table[2). We remark that all hyperparameters are exactly the
same as in the Opacus tutorial.

—— DP-SGDgjobal
6.4 REGRESSION TASKS DP-SGDocal

=+=non-DP SGD

On regression tasks, the performance measure and the loss
function are unified as MSE. Figure [T1] shows that global
clipping is comparable if not better than local clipping. We
experiment on the Wine Quality (1599 samples, 11 features)
and California Housing data (20640 samples, 8 features). Ad- -

Test Loss
5

ditional experimental details are available in Appendix [E-4] " eration
Figure 11: Performance of DP-GD
7 DISCUSSION on the Wine Quality dataset.

In this paper, we establish a continuous dynamics for DP deep

learning, based on the NTK matrix, that applies to general

neural network architectures, loss functions, and optimization "

algorithms. We show that in the continuous time, the noise hf_":"———avw~m
only affects the privacy but not the convergence, whereas the 0 ~
per-sample clipping only affects the convergence but not the —— DP-Adamyosar )
privacy. We then propose the global clipping method, as an DP-Adamiecar Teay
alternative to the existing local clipping. Hence, one may | = "omPPAdam

apply two clippings interchangeably during the training — a ‘°" Epoch

strategy we refer to as mix-up training. With large clipping Figure 12: Performance of DP-Adam
norm, our global clipping significantly outperforms the local = on California Housing dataset.

clipping by obtaining lower loss and better calibration, while
preserving comparable prediction accuracy. Our study sheds light on how the clipping method can
fundamentally change the behavior of DP learning, thus encouraging future designs in this direction.

"We use SNLI 1.0 from https://nlp.stanford.edu/projects/snli/,
8See https://github.com/pytorch/opacus/blob/master/tutorials/building_
text_classifier.ipynb.
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