
Overestimation in LLM Evaluation: A Controlled Large-Scale Study on Data
Contamination’s Impact on Machine Translation

Muhammed Yusuf Kocyigit 1 Eleftheria Briakou 2 Daniel Deutsch 2 Jiaming Luo 2 Colin Cherry 2

Markus Freitag 2

Abstract
Data contamination—the accidental consumption
of evaluation examples within the pre-training
data—can undermine the validity of evaluation
benchmarks. In this paper, we present a rigorous
analysis of the effects of contamination on lan-
guage models at 1B and 8B scales on the machine
translation task. Starting from a carefully decon-
taminated train-test split, we systematically intro-
duce contamination at various stages, scales, and
data formats to isolate its effect and measure its
impact on performance metrics. Our experiments
reveal that contamination with both source and
target substantially inflates BLEU scores, and this
inflation is 2.5× larger (up to 30 BLEU points) for
8B compared to 1B models. In contrast, source-
only and target-only contamination generally pro-
duce smaller, less consistent over-estimations. Fi-
nally, we study how the temporal distribution and
frequency of contaminated samples influence per-
formance over-estimation across languages with
varying degrees of data resources.

1. Introduction
Scaling laws have reshaped our understanding of the data
requirements for training language models (LM), leading to
a rapid expansion in data collection efforts. This expansion
has inadvertently increased the probability of evaluation data
contamination (Sainz et al., 2024): fragments or even entire
test sets are accidentally consumed within the pre-training
data, thereby invalidating the assumption that models are
evaluated on unseen data.

Although several studies have acknowledged the contamina-
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tion issue and shown that it can contribute to performance
overestimations (Zhou et al., 2023; Jiang et al., 2024; Yang
et al., 2023), we still lack a large-scale controlled anal-
ysis to better characterize the phenomenon. Concretely,
prior efforts are commonly limited to smaller scales, both
in terms of model and data (Jiang et al., 2024), treating
contamination as a fine-tuning (Yang et al., 2023) or ex-
tended pre-training problem (Zhou et al., 2023), rather than
addressing it directly in the larger-scale pre-training setting.
Meanwhile, computational and logistical constraints have
deterred large-scale, systematic experiments that would clar-
ify how contamination interacts not only with model size,
but also with training dynamics, and data composition.

In this paper, we present a controlled study to isolate and
measure the impact of contamination during pre-training un-
der diverse contamination conditions and two model scales
(1 and 8 billion parameters). For this purpose, we take ma-
chine translation (MT) test suites as our case study, covering
eight languages, thereby gaining insight into the interaction
between contamination and linguistic resource availability.

Starting with a multilingual mixture of public pre-training
corpora, we first decontaminate our train-test set splits and
train a base LM on the training data (Figure 1). Then, we
systematically introduce MT test examples into pre-training
by varying their mode (presenting source and target in isola-
tion or as full, prompted parallel texts), temporal distribu-
tion (controlling for when contamination happens), and fre-
quency (controlling for the number of contamination copies).
To efficiently explore various contamination conditions with-
out the prohibitive cost of training from scratch, we adopted
a branching strategy—resulting in more than 50% reduc-
tion in our training computational budget. Concretely, each
experiment branched from a base model checkpoint and con-
tinued training on a modified data mixture, which replaces
original samples with test contamination instances. Follow-
ing our branching strategy, we studied a total of 42 contam-
ination conditions for each model scale, by comparatively
studying the performance of contaminated and uncontam-
inated models across contaminated and non-contaminated
datasets. Our findings are summarized as follows:
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Figure 1. Large-scale contamination analysis setup: We decontaminate our train-test splits and train a baseline model. Then, insert test
data into the pre-training data and train a contaminated model branching out from the baseline checkpoint. Finally, we compare the
relative performance of the contaminated and the baseline model on contaminated and non-contaminated data.

• Contaminating source-target MT pairs inflates per-
formance on those test sets. Contaminating examples
with both source and target sides of the test data leads
to substantial performance inflation—up to 30 BLEU
points–for 8B-parameter models. On the other hand,
partial contamination (source-only or target-only) gen-
erally yields smaller and less consistent inflations, espe-
cially when the improvements are compared to results
on non-contaminated test sets (§5.1).

• The temporal distribution of contamination mat-
ters. Contaminating datasets at concentrated points
causes large performance inflation at the time of
contamination—up to 60 BLEU points—with their ef-
fects diminishing as training continues. On the other
hand, uniformly introducing contamination throughout
training has the most persistent impact (§5.2).

• The impact of contamination increases with model
scale. Larger models exhibit increased sensitivity to
even a single copy of contamination. Increasing the fre-
quency of source-target contaminated examples yields
higher performance overestimations, while source-only
or target-only contamination is less affected by the fre-
quency of contamination (§5.3).

• Contamination requires sufficient language repre-
sentation to have a measurable effect. In the absence
of language representation in the pre-training data, con-
tamination showed no measurable impact on the lan-
guages and model scales studied (§5.5). Once a certain
threshold of language representation is achieved, con-
tamination has a larger impact on language-pairs with
lower base model performance (§5.6).

2. Related Work
Prior work has studied contamination mainly by detecting
it post-hoc or training models with contaminated data to

understand its impact on model performance. The former
involves examining token probabilities (Shi et al., 2024), an-
alyzing model preferences for specific orderings (Oren et al.,
2023) or analyzing model behavior with trained reference
models to detect contamination or membership (Hisamoto
et al., 2020). The latter assesses contamination’s impact by
intentionally contaminating test sets into LLMs’ pre-training
mixtures (Jiang et al., 2024; Yang et al., 2023; Magar &
Schwartz, 2022; Zhou et al., 2023). Finally there is is also
work that suggest model developers provide the community
with search tools for downstream inspection of membership
(Marone & Durme, 2023).

We present a comparative summary of our method and pre-
vious work in Table 1. Several studies have explored the im-
pact of data contamination by extended pre-training or fine-
tuning on contaminated data (Table 1, Training Process),
leaving the generalization of their results to contamination in
pre-training an open question. Zhou et al. (2023) set up their
experiments as extended pre-training, which could overstate
contamination’s impact, as models are more susceptible to
performance inflation when contamination is introduced
later in training (Magar & Schwartz, 2022). On the other
hand, studying contamination during fine-tuning, as in Yang
et al. (2023), involves substantial training changes—from
learning rate to batch size choices— further complicating
its generalizability to pre-training.

Previous works analyze models and pre-training corpora of
limited sizes (Table 1, Model Size and Data Size), primarily
restricted by resource constraints. For example, Jiang et al.
(2024) use models ranging from 124M to 774M parameters,
while Magar & Schwartz (2022) use models with 110M
to 345M parameters. Our work contributes an analysis at
larger scales (1B and 8B parameters and 325B tokens) to
shed more light on how contamination behaves at scale.

Moreover, methods measuring the impact of contamination
or detecting it via model activations often assume a well-
understood pre-training mixture and that any unintended
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Method Training Process Data Control Model Size Data Size Multilingual
Zhou et al. (2023) Extended pre-training 7 1.3B, 7B NA 7
Yang et al. (2023) Fine tuning 7 7B, 13B NA 7
Magar & Schwartz (2022) Pre-training 7 110M, 345M 600M 7
Jiang et al. (2024) Pre-training 7 124M, 774M 20B, 60B 7
Ours Pre-training 3 1B, 8B 325B 3

Table 1. A comparison of related work to our experimental setup. ”Data Control” reflects whether the word checks for existing training-test
contamination. Unlike prior work, we study contamination during pre-training in a controlled, large-scale, multilingual setting.

data is absent from the corpus (Table 1, Data Control). Con-
sequently, prior work usually omits a rigorous decontamina-
tion step to establish a clean base model performance (Jiang
et al., 2024; Magar & Schwartz, 2022; Zhou et al., 2023).
However, existing work indicates that contamination fre-
quently occurs in public pre-training corpora, highlighting
the importance of careful data control (Singh et al., 2024).

Finally, past work focuses on reasoning, math, question
answering, summarization, and coding tasks to assess con-
tamination effects. To our knowledge, our study is the first
to address this issue on machine translation, allowing us
to examine contamination across a diverse set of language
resource availability (Table 1, Multilingual).

3. Large-Scale Contamination Analysis
Our experimental pipeline comprises four steps (Figure 1).
We start by searching the pre-training mixture with an n-
gram search algorithm to detect existing overlap with our
evaluation datasets (§3.1). Then, we decontaminate our
test set, and train a baseline model on the training split
(§3.2). This baseline is used as a reference, uncontaminated
model in our experiments. As a next step, we systematically
contaminate MT evaluation sets within the baseline’s pre-
training mixture by defining a wide range of contamination
conditions (§3.3). Finally, to efficiently manage the large-
scale nature of our analysis, we developed a checkpoint-
branching approach, resulting in a jungle of contaminated
checkpoints, which are compared against the baseline to
isolate the effect of contamination (§3.4).

3.1. Search and Decontaminate Test Sets

We implement an 8-gram search to find matches between the
test sets and the pre-training data. We do not normalize the
text and work with sub-word tokens instead of white space-
split text. We search for source and target contamination
separately. An example is labelled as contaminated if the
longest matching sub-sequence (Singh et al., 2024) matches
more than 70% (Chowdhery et al., 2022) of their source or
target tokens. By running this algorithm against our pre-
training mixture, we found around 10% of test examples
being already contaminated. We removed those examples

from our test sets to ensure a clean setup. Detailed statistics
are found in Appendix G.

3.2. Uncontaminated Baseline Model

Our 1B and 8B models are decoder-only transformer models
(Vaswani, 2017) trained with a casual language modelling
objective. We use a sentence piece tokenizer (Kudo, 2018)
with a vocabulary size of 256K. We use a 4, 096 token
context window and a batch size of 512 for 155K steps,
bringing our training budget to 325B tokens. The 8B and
the 1B models are trained using the same hyper-parameter
settings and data.1 During training, we track loss on the
validation set—a small random sample from the training
mixture. We use the ADAM (Kingma & Ba, 2014) optimizer
with cosine learning rate decay with a warmup phase.

3.3. Contamination Conditions

We experimented with various ways of contaminating MT
samples along three dimensions (Table 2). First, we define
different modes of contamination—one where a sample is
presented as a full, prompted2 source-target instance and
two partial contamination cases where the model is only
exposed to either the source or the target. For source-target
contamination, we introduce two additional variants by in-
jecting each side as independent, unformatted samples ei-
ther within or across different batches. Second, we vary the
temporal distribution of contaminated samples by injecting
them at different pre-training points or uniformly distribut-
ing them throughout. Third, we vary the number of times
each contaminated sample is presented to the model.

Contaminated samples are mixed with existing training data,
ensuring they are not seen in isolation. Contamination for
each setting is introduced within a pre-determined window
of training steps to enable fair comparisons.

1The selected training budget is likely too large for the 1B
model; however, keeping the training data the same for both the
8B and 1B makes isolating the impact of scale possible.

2Prompted examples are formatted by prepending the language
name in English as shown below:
“German: Diego Cocca is gut.
English: Diego Cocca is good.”

3



Overestimation in LLM Evaluation: A Controlled Large-Scale Study on Data Contamination’s Impact on Machine Translation

Parameter Values

Mode Source, Target, Full

Temporal
Distribution

Early (30% of training),
Middle (60% of training),
Late (90% of training),
Uniform (randomly
distributed between
30–90% of training)

Frequency 1 , 10 or 100 copies

Table 2. Contamination conditions studied in this work.

3.4. Checkpoint-branching

To avoid training multiple LLMs from scratch, each contam-
ination setting branches out from the baseline checkpoint
and continues pre-training by inheriting all its training hy-
perparameters (see Figure 1). Here each new branch is a
copy of the baseline model checkpoint and continues train-
ing on a modified copy of the original training data where
the only change is the added contamination data. So essen-
tially each experiment is a variant that inherits the past from
the same baseline model. This gives us two main benefits:
efficiency—by avoiding training from scratch for each con-
tamination setting, we reduced the total training budget by
53.6%, and reduced variance between contaminated and
baseline runs—allowing us for better isolating the impact
of contamination by increasing the overlap in the compared
models’ training and initialization.

4. Experimental Setup
Pre-training Data Our pre-training data are drawn from
multiple public resources. Monolingual texts are sourced
from Dolma (Soldaini et al., 2024) for English and Madlad
(Kudugunta et al., 2024) for covering non-English languages.
In addition to monolingual resources, we add parallel data
into our pre-training mixture, which has shown to be crit-
ical in enabling translation capabilities at the scales we
study (Briakou et al., 2023; Chowdhery et al., 2022; Alves
et al., 2024). Our parallel data are sourced from the WMT’23
translation task (Kocmi et al., 2023). The total size of these
datasets is about 2T tokens, which we have downsampled
for our purposes. The total pre-training mixture consists
of 325 billion tokens based on our multilingual sentence-
piece tokenizer. The different sources are mixed based on
the ratios of 60% for Dolma, 35% for Madlad, and 5% for
parallel texts. The exact token counts and Madlad languages
can be seen in Table 3. We randomly sampled from Dolma
and Madlad sources without altering their domain or lan-
guage distributions. All parallel texts from WMT are used
and up-sampled to fit our 5% parallel data budget. When we
insert contamination into the data, we try to keep the ratio

of parallel data constant by only randomly replacing less
than 5% of the examples in a batch with contamination.

Data phantomphantompha Number of Tokens
Dolma 195, 035, 136, 000
Madlad (total) 113, 770, 495, 994
↪→ RU 56, 044, 201, 738
↪→ DE 30, 535, 489, 020
↪→ JA 8, 909, 192, 431
↪→ ZH 5, 722, 035, 885
↪→ CS 5, 671, 961, 832
↪→ UK 3, 634, 722, 726
↪→ AR 1, 810, 191, 105
↪→ HE 1, 442, 701, 257
Parallel data 16, 194, 368, 006
Total 325, 000, 000, 000

Table 3. Pre-train mixture statistics (measured as token counts).

Evaluation Data We evaluate our models on both non-
contaminated and contaminated datasets. All tests are run
with the same prompt format. The contaminated datasets are
sourced from WMT 2023, covering 10 language pairs:EN-
DE, EN-RU, EN-CS, EN-UK, EN-HE, DE-EN, RU-EN, UK-
EN, HE-EN, and CS-UK. As our non-contaminated tests we
use WMT 2024(Kocmi et al., 2024) for the five overlapping
language-pairs with our contaminated sets (EN-DE, EN-RU,
EN-UK, EN-CS, and CS-UK). Moreover, we include three
low-resource languages, Achinese in Arabic script,3 Wolof
and Yoruba from FLORES (Goyal et al., 2022), which we
assume are fairly zero resources within our pre-training
data. During our decontamination stage, 681 examples from
WMT’23 are removed, leaving us with 9, 491 examples and
900 examples from FLORES are removed, leaving us with
2, 136 examples.

Evaluation Metrics We evaluate translation quality us-
ing both string-based metrics—BLEU (the main paper)
(Papineni et al., 2002) and top-performing learned neural
metrics—MetricX (Appendix B) (Juraska et al., 2023) as as-
sessed by the WMT metric shared task (Freitag et al., 2023).

5. Results
Main Findings We present an overview of our results in
Figure 2, which shows the absolute BLEU score differences
between contamination models of different flavors, each
compared against the baseline, uncontaminated model on
the WMT’23 contaminated datasets. Several clear trends
emerge. First, contaminating both source and target in a
prompted format (Full) into the training data—regardless of

3We chose Achinese in Arabic script to check if the script made
any difference on the impact of contamination.
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Figure 2. Box plot of BLEU differences of contaminated vs. uncontaminated models across WMT’23 language-pairs, for 1B (left) and 8B
(rights) model sizes. Contaminating paired source-target instances (full) consistently inflates translation performance across languages,
with larger effects on the 8B model. Source-only and target-only contamination does not inflate performance consistently.

when contamination happens during training or how many
times the contaminated instances are seen by the model—
consistently inflates model performance. Second, this in-
flation becomes more pronounced as model size increases.
For the 1B model, maximum performance over-estimates
hover around 9 BLEU points, while for the 8B model, they
can reach up to 30 BLEU points. In fact, under Full contami-
nation, the 8B model’s performance inflation is, on average,
2.5× as large as that of the 1B model.

Figure 2 also shows that source-only or target-only contam-
ination does not universally boost BLEU scores across the
languages studied. Although some settings yield positive
mean and median improvements, these gains are neither
consistent nor on the same scale as those observed with Full
contamination. In other words, contamination involving
only one side of the parallel data appears to be less critical
from an evaluation standpoint.

5.1. Are performance over-estimations actually
over-estimations?

The contaminated MT test examples are arguably a high-
quality source of parallel texts. Therefore, it is reasonable
to ask: to what extent does the increased performance come
from contamination inflation rather than genuine improve-
ments in the model’s translation capabilities? If the latter
was true, we would expect the performance improvements
to generalize to other test sets of the same task that are not
contaminated. To account for this, we evaluate our models
on the WMT’24 non-contaminated test sets.

Figure 3 shows how the improvement differences are dis-
tributed across the five language pairs shared between
WMT’23 and WMT’24, for each contamination setting. This
comparison helps contextualise the contaminated improve-
ments we discussed in Section 5. First, we notice that
models exposed to source-only or target-only contamination
show negligible improvement differences across the con-
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Figure 3. Box plot of BLEU improvement differences of contam-
inated vs. uncontaminated models between WMT’23 - WMT’24.
Contaminating source-targe examples yields higher performance
“improvements” on contaminated vs. non-contaminated datasets.

taminated and non-contaminated test sets. This indicates
that partial contamination does not fundamentally distort
performance estimates, at least at the scales we studied.
In contrast, for models exposed to Full contamination, we
notice that the average improvements on the contaminated
datasets are up to 26 BLEU points larger than those observed
in the non-contaminated sets. Finally, increasing the fre-
quency of contaminated examples consistently increases the
performance gap between the two contrasted datasets.

5.2. How does the temporal distribution of
contamination impact performance inflation?

As discussed in §2, previous works studied contamination
in extended pre-training or fine-tuning settings. However,
as shown in Figure 4, the temporal distribution of contami-
nation, i.e., the time-step(s) at which a pre-training model is
exposed to contamination, impacts the inflation we observe
at the end of pre-training. Concretely, we notice that the
earlier the contamination is introduced, the larger the im-
mediate spike in performance. As training continues, those
earlier momentary spikes are rapidly wearing off, with their

Figure 4. BLEU score throughout training for German to English
in WMT’23 for the 8B model, Full contamination and 100 Copies.
Earlier contamination causes larger performance peaks, while later
contamination causes lower spikes but higher eventual perfor-
mance gaps. Uniform contamination tends to yield the highest
final performance gains and no sharp peaks.

ultimate effect being way smaller than their initial intensity,
i.e., a spike of ∼ 70 BLEU points is mapped to ∼ 40 points
after ∼ 100K steps. As a result, observing contaminated
data later during training has a bigger footprint than early
exposure, which questions whether studying contamination
within extended pre-training or fine-tuning settings exagger-
ates its measurable impact in real pre-training scenarios.4

A potential explanation for this behaviour is that the learn-
ing rate is set to a higher value in earlier stages since it is
decayed during training—a trend also noticed in Magar &
Schwartz (2022).

Furthermore, we observe that uniform contamination— con-
taminated examples being uniformly spread out during pre-
training instead of being presented within concentrated time
steps—results in larger performance inflation across all tem-
poral settings, even the one where contamination is exposed
late at pre-training. This finding has important implications,
given that uniform contamination reflects a more realistic
contamination scenario in the wild, and randomizing the
pre-training data order is common practice.

5.3. How does the frequency of contamination impact
performance inflation?

Figure 5 presents how the performance of the contaminated
models improves on the contaminated datasets as the fre-
quency of contamination increases. As seen, for particular
language pairs (dashed lines), performance inflation follows
a Λ-Shaped curve, in line with what is observed in prior

4We also show that this trend is general across other language
pairs, number of copies and model size in Appendix C.
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works (Jiang et al., 2024). Although some languages follow
this trend, most of them do not. On average, for Full con-
tamination, the inflation from contamination increases with
the number of copies. On the other hand, partial contamina-
tion exhibits a different trend as the performance does not
improve with increased number of contamination copies.

Figure 5. Percent improvement for different contamination meth-
ods for increasing number of copies for the 8B model. The dot-
ted lines are the percentage improvements per language pair in
WMT’23. The solid lines are the mean improvement per method.
Performance inflation increases with more copies of Full contami-
nation, while additional copies of source- or target-only contami-
nation do not significantly alter the overall impact.

5.4. How is contamination format impacting
performance inflation?

Contaminated data can be presented within pre-training mix-
tures in different formats depending on a variety of reasons,
starting from how they naturally occur on the web to how
curated data are pre-processed before consumed by LLMs.
When it comes to contamination of source-target MT ex-
amples, we have so far explored the special case where
the contaminated dataset is consumed as Full, formatted
examples in the same prompt format used at test time. How-
ever, test data on the Internet is not necessarily stored in that
same format, while source and target texts can be maintained
in separate files, which means that source-target pairs can
be contaminated as unpaired examples. To simulate such
scenarios, we create two variations of source-target contam-
ination: starting from a given source-target text; we insert
each side as a separate, unpaired example into the same
batch (named Source and Target, Batched) or in different
batches (named Source and Target, Split).

Figure 6 compares these two settings with the prompted
format (Source and Target, Prompted also named Full) and

Figure 6. Average percentage performance overestimation for dif-
ferent ways of contaminating the target text (late contamination
with 1 copy). Contaminating both the source and target as separate
examples, whether within the same batch or at different positions
during training, can cause greater performance inflation than con-
taminating only the target. Contaminating prompted source-target
examples leads to the highest performance inflation.

the case where we only contaminate the target text which we
add as an additional reference point. Comparing with these
baselines, we see that both the Split and Batched settings
perform better than target-only contamination however, the
prompted format still results in higher inflation. Comparing
Split and Batched, we see that consuming the unpaired
texts within the same batch causes larger performance over
estimations compared to spreading them across different
batches, even though the examples are not presented as
paired, prompted translation texts. We also observe that
the additional performance inflation caused by Batched and
especially Split contamination compared to target-only con-
tamination is larger for the 8B model than the 1B model.

5.5. How does contamination impact performance of
near zero-resourced languages?

To understand the impact of contamination for lan-
guages with no intentional language representation dur-
ing pre-training, we contaminate MT examples from three
languages—Achenese, Wolof and Yoruba—sampled from
FLORES. We note that we intentionally do not include any
monolingual or parallel data for those languages in our pre-
training mixtures.

For these language pairs, we observed no performance in-
flation from contamination (Table 4). Even right at the
contamination, the BLEU score increased only by 1 to, at
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Contam. Copies Ace-En Yo-En Wo-En
7 NA 0.095 1.445 1.521
3 1 0.328 1.204 1.417
3 10 0.558 1.361 1.633
3 100 0.722 1.345 1.776

Table 4. BLEU scores for non-contaminated and contaminated mod-
els on zero-resourced languages for 8B models. Contaminating
test sets for languages with no representation during pre-training
does not result in any performance inflation.

most, 3 points for both the 8B and 1B models, as seen in
Appendix D. This suggests that gains from contamination
require the model having some of representation in that
language, at least at the scales investigated in this work.

5.6. How does contamination impact performance into
versus out of English directions?

Figure 7 illustrates the percentage BLEU score improve-
ments grouped by out and into English translation directions
(En→X and X→En, respectively). As shown, contamina-
tion has a more significant impact on the En→X translation
direction compared to X→En, for all Full contamination
settings. While we present percent improvements, the abso-
lute improvements are also larger for the En→X direction
for almost all cases. Considering the results from Section
5.5, one could naturally expect the model to benefit more
in the X→En since it has better performance and hence bet-
ter representations in English. Contrarily, we observe that
the model can benefit more from contamination in En→X,
where the original performance is lower. These results, to-
gether with our findings from Section 5.5, show that while
a certain level of representation is necessary to benefit from
contamination, the performance gains do not continue to
constantly increase as model capabilities improve, high-
lighting the complex relationship between base model ca-
pabilities and the effects of contamination. This finding
highlights the complex relationship between contamination
and the availability of language resources and demonstrates
how previously observed model behaviors under well re-
sourced settings (English) might fall short when moving to
multilingual settings.

6. Limitations and Discussion
Drawing definitive conclusions on whether contamination
matters is very challenging due to sources of variance that
are challenging to control for. Initialization seed, data order-
ing, among others, introduce variance into the analysis. In
an ideal world, one would run each contamination experi-
ment for multiple random seeds of the model and data orders.
However, resource constraints deem this setup impractical.

Figure 7. Average percentage BLEU score improvement for two
performance groups, En→X and X→En. Performance improve-
ments for the En→X are higher compared to the X→En direction.

Despite those challenges, our experimental setup takes steps
to control for variance as much as possible. For instance,
we fixed the order of the data and the model initialization.
While these deterministic systems helped minimize random
variations between runs and allowed us to isolate the impact
of contamination, they also imposed certain limitations on
our findings. Specifically, our results are based on a sin-
gle canonical ordering of the training dataset and a single
initialization of the two models used in the experiments.

Another source of variation we observed was between dif-
ferent checkpoints (stopping points). This pattern is further
elaborated in the Appendix D, where the model’s perfor-
mance can vary for different language pairs between dif-
ferent training steps. This makes interpreting individual
data points for language pairs at the end of training more
challenging. To tackle this problem, we focused on analyz-
ing meaningful aggregates and general trends rather than
changes and variations for individual language pairs.

One challenge this introduced is that changes in BLEU score
across different scales do not correspond to comparable dif-
ferences in quality. This aggregated BLEU scores across dif-
ferent value ranges can be tricky and must be done carefully.
To tackle this problem, we either use the same language
pairs in all aggregates that are compared at a single experi-
ment or when we split language pairs, we group language
pairs that are on similar BLEU scales together. We also
compare average BLEU changes when comparing WMT’23
and WMT’24 performances but acknowledge the caveat ex-
plained here.

Additionally all our experiments are done using decoder-
only transformer models. We chose this architecture due to
its prevalence however our findings may not generalize to
other transformer types or architectures such as LSTMs. Fi-
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nally, our experiments on models with up to 8B parameters
indicate that the impact of contamination grows with model
size, although this trend is not guaranteed to hold for larger
models.

7. Conclusion
In this work, we study the impact of contamination on
large language model pre-training, with a focus on the task
of machine translation. Our work employs a checkpoint-
branching strategy that allows us to efficiently scale up
our study to 46 contamination conditions across two-model
scales, 1 and 8 billion parameters, and 13 language-pairs.
The key experimental results include that (1) contaminating
both the source and target text leads to substantial perfor-
mance inflation; (2) when the contamination is observed dur-
ing training influences the size of its impact, with uniform
contamination having the biggest effect; (3) larger models
benefit more from contamination, and (4) contamination
requires sufficient language representation to have a measur-
able effect. This work sheds light on the nuanced ways in
which data contamination affects model performance, and
underscores the need for more reliable evaluation practices
in large language model development.

Impact Statement
We recognize that the experiments in this paper required
significant computational resources, which came with an en-
vironmental cost due to high energy consumption. We do try
to tackle this by implementing a checkpoint branching ap-
proach however the experiments still require a large amount
of compute. This was necessary to ensure robust and mean-
ingful results, we hope that our findings will help reduce the
need for repeated experiments in the future. By making our
results available, we aim to contribute to the field in setting
up better evaluation practices and support researchers in
building on our work more efficiently, ultimately lowering
the environmental footprint of similar studies in the long
term.

This paper contributes to advancing Machine Learning.
While our work may have also have broader societal im-
plications, we do not believe any specific concerns need to
be highlighted here.
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ingrı́msson, S., and Zouhar, V. Findings of the WMT24
general machine translation shared task: The LLM era
is here but MT is not solved yet. In Haddow, B.,
Kocmi, T., Koehn, P., and Monz, C. (eds.), Proceed-
ings of the Ninth Conference on Machine Translation,
pp. 1–46, Miami, Florida, USA, November 2024. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/2024.wmt-1.1. URL https://aclanthology.
org/2024.wmt-1.1.

Kudo, T. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text
processing. arXiv preprint arXiv:1808.06226, 2018.

Kudugunta, S., Caswell, I., Zhang, B., Garcia, X., Xin,
D., Kusupati, A., Stella, R., Bapna, A., and Firat, O.
Madlad-400: a multilingual and document-level large
audited dataset. In Proceedings of the 37th International
Conference on Neural Information Processing Systems,

NIPS ’23, Red Hook, NY, USA, 2024. Curran Associates
Inc.

Magar, I. and Schwartz, R. Data contamination: From
memorization to exploitation, 2022. URL https://
arxiv.org/abs/2203.08242.

Marone, M. and Durme, B. V. Data portraits: Recording
foundation model training data, 2023. URL https:
//arxiv.org/abs/2303.03919.

Oren, Y., Meister, N., Chatterji, N., Ladhak, F., and
Hashimoto, T. B. Proving test set contamination in black
box language models, 2023. URL https://arxiv.
org/abs/2310.17623.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a
method for automatic evaluation of machine translation.
In Isabelle, P., Charniak, E., and Lin, D. (eds.), Proceed-
ings of the 40th Annual Meeting of the Association for
Computational Linguistics, pp. 311–318, Philadelphia,
Pennsylvania, USA, July 2002. Association for Computa-
tional Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

Sainz, O., Garcı́a-Ferrero, I., Jacovi, A., Campos, J. A.,
Elazar, Y., Agirre, E., Goldberg, Y., Chen, W.-L., Chim,
J., Choshen, L., D’Amico-Wong, L., Dell, M., Fan, R.-
Z., Golchin, S., Li, Y., Liu, P., Pahwa, B., Prabhu, A.,
Sharma, S., Silcock, E., Solonko, K., Stap, D., Surdeanu,
M., Tseng, Y.-M., Udandarao, V., Wang, Z., Xu, R., and
Yang, J. Data contamination report from the 2024 conda
shared task, 2024. URL https://arxiv.org/abs/
2407.21530.

Shi, W., Ajith, A., Xia, M., Huang, Y., Liu, D., Blevins,
T., Chen, D., and Zettlemoyer, L. Detecting pretraining
data from large language models, 2024. URL https:
//arxiv.org/abs/2310.16789.

Singh, A. K., Kocyigit, M. Y., Poulton, A., Esiobu, D.,
Lomeli, M., Szilvasy, G., and Hupkes, D. Evaluation data
contamination in llms: how do we measure it and (when)
does it matter?, 2024. URL https://arxiv.org/
abs/2411.03923.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K., Dumas,
J., Elazar, Y., Hofmann, V., Jha, A., Kumar, S., Lucy,
L., Lyu, X., Lambert, N., Magnusson, I., Morrison,
J., Muennighoff, N., Naik, A., Nam, C., Peters, M.,
Ravichander, A., Richardson, K., Shen, Z., Strubell,
E., Subramani, N., Tafjord, O., Walsh, E., Zettlemoyer,
L., Smith, N., Hajishirzi, H., Beltagy, I., Groeneveld,
D., Dodge, J., and Lo, K. Dolma: an open corpus of
three trillion tokens for language model pretraining re-
search. In Ku, L.-W., Martins, A., and Srikumar, V.

10

https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059
https://aclanthology.org/2023.wmt-1.63
https://aclanthology.org/2023.wmt-1.63
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://aclanthology.org/2023.wmt-1.1
https://aclanthology.org/2023.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2303.03919
https://arxiv.org/abs/2303.03919
https://arxiv.org/abs/2310.17623
https://arxiv.org/abs/2310.17623
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2407.21530
https://arxiv.org/abs/2407.21530
https://arxiv.org/abs/2310.16789
https://arxiv.org/abs/2310.16789
https://arxiv.org/abs/2411.03923
https://arxiv.org/abs/2411.03923


Overestimation in LLM Evaluation: A Controlled Large-Scale Study on Data Contamination’s Impact on Machine Translation

(eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 15725–15788, Bangkok, Thailand,
August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.840. URL https:
//aclanthology.org/2024.acl-long.840.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Yang, S., Chiang, W.-L., Zheng, L., Gonzalez, J. E., and
Stoica, I. Rethinking benchmark and contamination for
language models with rephrased samples, 2023. URL
https://arxiv.org/abs/2311.04850.

Zhou, K., Zhu, Y., Chen, Z., Chen, W., Zhao, W. X., Chen,
X., Lin, Y., Wen, J.-R., and Han, J. Don’t make your llm
an evaluation benchmark cheater, 2023. URL https:
//arxiv.org/abs/2311.01964.

A. Appendix: Method of Contamination and
Examples

In Table 5 we present the different method of contamination
we insert into the pre-training data and how they are format-
ted. We use an example from German to English task. The
first three methods are used for the main experiments while
method 4 and 5 are used in the subsection 5.4

11

https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://arxiv.org/abs/2311.04850
https://arxiv.org/abs/2311.01964
https://arxiv.org/abs/2311.01964


Overestimation in LLM Evaluation: A Controlled Large-Scale Study on Data Contamination’s Impact on Machine Translation

Method Definition Example

Full Example

Insert the source and tar-
get text for all examples as
separate formatted examples.
Each example is presented
exactly as they would appear
during testing.

German: Diego Cocca wird neuer National-
trainer von Mexiko
English: Diego Cocca will become the new
national team trainer for Mexico

Just Source

Insert just the source text
without any formatting
as separate examples The
source texts are presented as
standalone examples int the
pretraining data.

Diego Cocca wird neuer Nationaltrainer
von Mexiko

Just Target

Insert just the target text with-
out any formatting as sep-
arate examples The target
texts are presented as stan-
dalone examples int the pre-
training data.

Diego Cocca will become the new national
team trainer for Mexico

Source with Target Split

Source and Target are
prompted just like Just
Source and Just Target, but
the examples the source and
target are inserted in separate
locations.

Diego Cocca wird neuer Nationaltrainer
von Mexiko
...

Diego Cocca will become the new national
team trainer for Mexico

Source with Target Batched

Source and Target are
prompted just like Just
Source and Just Target, The
source and target for the
same example are consumed
as separete inputs in the
same batch.

Diego Cocca wird neuer Nationaltrainer
von Mexiko
Diego Cocca will become the new national
team trainer for Mexico

Table 5. The types of formatting done for the contamination inserted into the pre-training corpora.

B. Appendix: MetricX Counterparts of Main
Figures

We present a MetricX counterpart of the main figures in
the results section in below. In Figure 8 we present the
MetricX improvements per contamination method. Here
our observations are similar to that of the main section.
We observe that the improvements for the larger model are
much higher. We also see that Full contamination improves
performance across the board while source-only and target-
only contamination don’t show consistent over-performance.
The difference in performance gain with the larger model
is smaller when observed with MetricX this is likely due to
the limited scale MetricX is measured.

We also present how the MetricX values change over the
cours of training for one language pair in Figure 9 and how
the number of copies impacts performance over-estimations
for MetricX 10.

Finally we also present our analysis in §5.6 in MetricX and

show that our general findings hold true for MetricX as well
as BLEU
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Figure 8. Box plot of absolute MetricX (lower is better) improvements for all 10 WMT’23 Language Pairs for 1B and 8B Model. Notice
the scales of the X-axis is different for different model sizes. The methods on the Y-axis are sorted based on the mean improvement for
the 1B model. Methods above the red line demonstrate positive mean and median (central line in the box plot) improvements for the
language pairs that are considered. Since lower is better for MetricX, a larger negative score in this plot means a bigger improvement.
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Figure 9. MetricX (lower is better) score throughout training for
German to English in WMT’23 for the 8B model, Full contamina-
tion and 100 Copies.

Figure 10. Percent improvement for different contamination meth-
ods for increasing number of copies. Dotted lines are the percent-
age improvements per language pair in WMT’23. The solid lines
are the mean improvement per method.

Figure 11. Average percentage MetricX score improvement for
two performance groups.
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C. Appendix: Position of Contamination
We also share some analysis on the position of contamina-
tion. We summarize the impact of contamination for Full
contamination in early, middle, late and uniform contamina-
tion for 1,10 and 100 copies in Figure 12. This representa-
tion also supports the findings of Section 5.2.

The same data can also be analyzed from the position of
WMT’24. In this case this isn’t contamination but high-
quality task-related data. So Figure 13 can be read from the
position of generalization from high quality data. Though
these findings should be interpreted cautiously, we see some
interesting patterns.

First inserting more copies has diminishing impact espe-
cially after 10 copies. When including high quality data
later in the stage both improves generalization performance
at the time of seeing the data as well as at the end of train-
ing. This could be a function of the model being under/over
trained and over trained models seem to be benefiting more
from high quality data. This holds both if stop training after
seeing the high quality data or if we keep on training on
other data as well.

This pattern can also be observed when we look at the per-
formance over training plots in Appendix D and Appendix
E. We see that the peaks in WMT’23 are highest in early
contamination while the peaks in WMT’24 are highest with
late contamination. This suggests that an overtrained model
generalizes better from high quality data compared to a com-
paratively undertrained model even if the learning rate is
smaller.

Finally uniformly spreading high quality data seems to give
the highest generalization improvements. However this
could similarly be a result of gradient clipping applied when
the test data is introduced in a single location.
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]

Figure 12. The performance improvement right after the contamination and performance improvement at the end of training for WMT23
language pairs. We show that our observations in Section 5.2 hold true in general for all WMT’23 langauge pairs and number of copies.
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]

Figure 13. The performance improvement right after the contamination and performance improvement at the end of training for WMT24
language pairs. In this context we can read this plot in the context of adding high-quality data into the pre-training mixture to see how
it improves performance. We observe that inserting it early causes neither large instantaneous performance boosts nor does it cause it
large performance differences in the eventual performance. For late contamination we see that both the peaks are higher and the eventual
performance boost is also more finally with uniform contamination the eventual performance gain is the highest. We also observe that for
figure 4 the difference between 10 and 100 copies was much larger while for here we see that there isn’t much difference between 10 and
100 copies which is natural.
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D. Appendix: BLEU Scores Through training
plots

Below we present the BLEU score across training for all the
language pairs that are present in WMT’23 and the FLORES
langauge paris that we have included in the contamination.
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Figure 14. BLEU scores through training for 100 Copies of Full contamination
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Figure 15. BLEU scores through training for 10 Copies of Full contamination
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Figure 16. BLEU scores through training for 1 Copies of Full contamination
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E. Appendix: Results of WMT24
Experiments

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 17.39 17.77 17.66 18.43 24.01 24.02 24.39 25.13
Ru 10.57 10.86 11.12 11.69 13.23 13.94 13.90 15.43
Uk 11.40 11.42 11.28 12.31 18.93 18.86 19.68 20.82
Ja 12.38 13.92 14.22 15.50 17.60 19.30 20.71 19.89
Zh 5.74 6.18 6.36 6.46 5.53 5.65 5.83 6.43

X→ Y
Cs, Uk 14.40 14.59 14.69 15.28 22.62 22.60 22.58 23.82

Table 6. WMT’24 (Non Contaminated Dataset) Absolute Values
with Confidence Intervals by Language Pair for 1B and 8B Models,
Late Contamination, 1 Copy

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 17.39 17.48 17.63 17.58 24.01 24.26 24.54 25.05
Ru 10.57 11.04 11.19 11.12 13.23 13.46 13.61 14.48
Uk 11.40 11.54 11.41 11.83 18.93 18.88 19.05 19.84
Ja 12.38 12.71 13.98 14.32 17.60 16.55 15.91 17.04
Zh 5.74 5.96 6.65 6.40 5.53 5.80 5.82 6.07

X→ Y
Cs, Uk 14.40 14.88 14.64 14.81 22.62 22.27 22.45 23.39

Table 7. WMT’24 (Non Contaminated Dataset) Absolute Values
with Confidence Intervals by Language Pair for 1B and 8B Models,
Middle Contamination, 1 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 17.39 17.99 17.80 18.64 24.01 23.77 24.14 25.87
Ru 10.57 10.93 11.36 12.11 13.23 13.84 14.26 16.64
Uk 11.40 11.34 11.79 12.61 18.93 18.73 19.74 21.91
Ja 12.38 14.46 13.94 15.19 17.60 18.99 19.27 20.36
Zh 5.74 6.07 6.55 7.47 5.53 5.64 6.09 7.27

X→ Y
Cs, Uk 14.40 14.56 14.89 15.91 22.62 22.56 22.79 24.43

Table 8. WMT’24 (Non Contaminated Dataset) Absolute Values
with Confidence Intervals by Language Pair for 1B and 8B Models,
Late Contamination, 10 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 17.39 17.34 17.18 17.83 24.01 24.18 24.40 25.56
Ru 10.57 10.68 10.71 11.57 13.23 13.37 13.83 14.99
Uk 11.40 11.51 11.38 11.76 18.93 18.86 18.99 19.90
Ja 12.38 13.58 14.59 16.53 17.60 16.81 18.22 18.42
Zh 5.74 5.95 6.03 6.33 5.53 5.37 5.71 6.00

X→ Y
Cs, Uk 14.40 14.37 14.56 14.96 22.62 22.52 22.86 24.21

Table 9. WMT’24 (Non Contaminated Dataset) Absolute Values
with Confidence Intervals by Language Pair for 1B and 8B Models,
Middle Contamination, 10 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 17.39 17.90 18.12 19.19 24.01 23.82 23.80 26.14
Ru 10.57 11.08 11.31 12.24 13.23 13.97 14.00 16.88
Uk 11.40 11.64 11.83 12.91 18.93 18.90 19.93 21.86
Ja 12.38 12.71 13.95 14.64 17.60 17.86 20.47 21.42
Zh 5.74 5.98 5.98 7.54 5.53 5.62 5.82 7.38

X→ Y
Cs, Uk 14.40 15.14 14.69 16.62 22.62 22.67 22.81 24.80

Table 10. WMT’24 (Non Contaminated Dataset) Absolute Values
with Confidence Intervals by Language Pair for 1B and 8B Models,
Late Contamination, 100 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 17.39 17.30 17.34 18.02 24.01 24.08 24.16 25.38
Ru 10.57 10.95 11.17 11.58 13.23 13.49 13.60 14.81
Uk 11.40 11.46 10.99 11.42 18.93 18.94 18.96 20.40
Ja 12.38 12.90 17.61 15.33 17.60 17.25 16.35 17.82
Zh 5.74 5.48 6.31 7.01 5.53 5.72 5.31 6.22

X→ Y
Cs, Uk 14.40 14.55 14.30 15.37 22.62 22.46 22.73 24.06

Table 11. WMT’24 (Non Contaminated Dataset) Absolute Values
with Confidence Intervals by Language Pair for 1B and 8B Models,
Middle Contamination, 100 Copies
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Figure 17. WMT’24 BLEU scores through training for 100 Copies of Full contamination

Figure 18. WMT’24 BLEU scores through training for 10 Copies of Full contamination
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Figure 19. WMT’24 BLEU scores through training for 1 Copies of Full contamination
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F. Appendix: Impact of Full contamination
on WMT’23 Language Pairs

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 5.83 4.86 4.88 4.76 3.64 3.63 3.35 3.27
Ru 6.10 5.96 6.04 5.77 4.93 5.04 5.50 4.31
Cs 7.30 7.26 7.33 6.86 4.50 4.82 4.53 4.19
Uk 8.15 8.29 8.12 7.70 5.27 5.02 4.76 3.89
He 10.62 9.96 9.97 9.79 5.54 5.54 5.30 4.91
Ja 10.27 10.54 10.40 9.85 5.67 5.17 5.27 4.59

X→ EN
De 7.34 7.08 7.11 6.67 5.21 5.09 5.11 4.37
Ru 9.61 8.76 8.71 8.40 6.97 7.13 6.94 5.59
Uk 11.11 11.70 12.14 11.18 8.11 7.89 7.71 7.57
He 8.95 9.24 9.28 8.88 5.26 5.67 5.45 5.26
Zh 7.86 8.17 7.55 7.50 5.52 5.34 5.51 4.73
Ja 10.36 9.90 9.87 9.96 8.45 8.60 8.74 7.79

X→ Y
Cs, Uk 11.01 10.68 10.64 10.46 6.06 6.71 6.32 4.75

Table 12. Absolute MetricX (lower is better) by Language Pair for
1B and 8B Models, Late Contamination, 1 Copy

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 5.83 5.05 4.90 4.38 3.64 3.68 3.37 2.38
Ru 6.10 5.98 6.10 5.23 4.93 4.99 5.07 3.31
Cs 7.30 7.14 7.16 6.08 4.50 4.65 4.44 3.04
Uk 8.15 8.18 7.90 6.63 5.27 5.08 4.91 3.10
He 10.62 9.59 9.84 8.95 5.54 5.30 5.24 3.98
Ja 10.27 10.22 9.85 8.85 5.67 5.43 5.12 3.51

X→ EN
De 7.34 7.01 7.15 6.07 5.21 4.94 4.96 3.75
Ru 9.61 8.75 8.87 7.30 6.97 7.46 7.04 4.56
Uk 11.11 11.88 12.39 10.86 8.11 8.54 8.15 6.76
He 8.95 8.93 9.55 7.63 5.26 5.49 5.46 4.04
Zh 7.86 7.45 7.58 6.94 5.52 5.38 5.21 4.28
Ja 10.36 10.14 10.00 9.06 8.45 8.59 8.72 6.52

X→ Y
Cs, Uk 11.01 10.72 10.93 9.52 6.06 6.78 6.38 3.50

Table 13. Absolute MetricX (lower is better) by Language Pair for
1B and 8B Models, Late Contamination, 10 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 5.83 5.22 5.22 4.23 3.64 3.51 3.53 2.21
Ru 6.10 6.00 6.12 4.80 4.93 5.06 4.88 3.01
Cs 7.30 7.10 7.19 5.84 4.50 4.76 4.47 2.65
Uk 8.15 8.19 8.18 5.90 5.27 4.85 4.40 2.76
He 10.62 9.86 10.08 8.76 5.54 5.54 5.16 3.41
Ja 10.27 10.29 10.24 8.66 5.67 5.27 4.88 3.02

X→ EN
De 7.34 7.11 7.01 5.60 5.21 4.98 4.99 3.56
Ru 9.61 8.80 8.85 7.19 6.97 7.01 6.80 4.28
Uk 11.11 12.25 11.78 9.96 8.11 8.22 7.82 5.00
He 8.95 8.86 9.08 7.42 5.26 5.56 5.46 3.12
Zh 7.86 7.50 7.84 6.54 5.52 5.26 5.89 4.28
Ja 10.36 9.84 10.02 8.88 8.45 8.44 8.36 6.32

X→ Y
Cs, Uk 11.01 11.10 10.68 9.36 6.06 6.75 5.84 3.04

Table 14. Absolute MetricX (lower is better) by Language Pair for
1B and 8B Models, Late Contamination, 100 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 21.71 21.59 21.52 23.37 30.95 31.95 32.11 34.34
Ru 13.42 13.89 13.88 14.78 15.42 14.53 14.77 16.97
Cs 14.06 14.65 14.57 15.67 22.65 23.75 24.28 25.65
Uk 12.94 12.60 12.83 13.59 21.96 21.16 21.42 24.31
He 9.72 10.00 10.02 10.69 18.27 18.76 18.51 20.02
Ja 4.47 5.04 5.51 5.23 4.97 5.11 4.90 4.79

X→ EN
De 26.46 26.21 26.02 27.32 33.59 34.03 33.87 37.15
Ru 22.55 22.96 22.99 23.87 28.41 27.60 27.92 30.50
Uk 20.23 20.17 19.31 20.33 27.55 28.23 26.65 28.20
He 25.05 25.14 24.41 26.68 38.62 37.53 37.88 40.99
Zh 11.31 11.34 11.57 12.70 19.81 18.93 19.31 21.44
Ja 4.97 5.22 5.53 5.83 10.42 9.89 10.32 12.40

X→ Y
Cs, Uk 11.24 11.68 11.32 12.03 20.39 19.44 19.51 22.67

Table 15. Absolute BLEU by Language Pair for 1B and 8B Models,
Late Contamination, 1 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 21.71 21.82 21.30 25.60 30.95 31.57 33.09 40.64
Ru 13.42 13.84 13.76 16.93 15.42 14.25 15.08 22.56
Cs 14.06 14.46 14.80 17.57 22.65 23.18 24.82 33.93
Uk 12.94 12.28 13.44 16.19 21.96 21.84 23.40 31.58
He 9.72 9.94 10.36 12.33 18.27 18.42 19.42 25.43
Ja 4.47 5.14 6.13 6.46 4.97 5.66 4.57 8.39

X→ EN
De 26.46 26.11 26.43 29.96 33.59 33.69 34.71 42.60
Ru 22.55 23.03 22.99 26.67 28.41 27.41 28.07 34.38
Uk 20.23 19.93 19.44 22.37 27.55 27.53 26.65 34.72
He 25.05 25.11 25.06 31.50 38.62 37.95 39.00 49.90
Zh 11.31 11.05 11.64 14.38 19.81 19.41 19.62 27.25
Ja 4.97 5.61 5.90 7.27 10.42 10.29 10.76 17.11

X→ Y
Cs, Uk 11.24 11.15 11.82 14.89 20.39 19.29 20.12 29.12

Table 16. Absolute BLEU by Language Pair for 1B and 8B Models,
Late Contamination, 10 Copies

1B Model 8B Model
Baseline Source Target Full Baseline Source Target Full

EN→ X
De 21.71 21.24 21.20 28.70 30.95 31.09 33.13 47.55
Ru 13.42 13.74 14.80 19.15 15.42 14.54 15.53 27.61
Cs 14.06 14.73 15.57 19.93 22.65 22.86 26.02 44.86
Uk 12.94 12.24 13.70 18.83 21.96 22.18 24.02 40.30
He 9.72 10.05 10.27 13.61 18.27 18.11 20.23 33.56
Ja 4.47 4.67 5.92 5.98 4.97 6.71 4.48 9.87

X→ EN
De 26.46 26.36 27.11 32.06 33.59 33.47 35.66 47.56
Ru 22.55 23.13 23.49 28.08 28.41 27.63 28.66 38.08
Uk 20.23 20.59 20.20 23.11 27.55 27.57 27.68 40.71
He 25.05 24.65 24.74 34.11 38.62 36.72 39.94 59.93
Zh 11.31 11.39 11.37 15.96 19.81 19.16 19.62 32.56
Ja 4.97 5.15 5.77 8.82 10.42 10.23 11.34 22.94

X→ Y
Cs, Uk 11.24 11.35 11.75 17.63 20.39 18.88 21.23 37.34

Table 17. Absolute BLEU by Language Pair for 1B and 8B Models,
Late Contamination, 100 Copies

G. Appendix: Search and Decontamination
For the search and decontamination step we search the tok-
enized pre-training corpus with the bpe tokenized examples.
We first split the evaluation examples into 8-grams and then
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search each 8-gram. Once we find all matches for all 8-
grams in the pre-training corpora we extend each match to
the left and right as much as we can. Then we take the longer
token match similar to Singh et al. (2024). Once we have
the longest match we calculate the number of overlapping
tokens. We use the overlapping percentage of tokens in both
the source and target field to filter examples as contaminated
or not.

Decontaminating these examples could be done by either
removing the relevant examples from the training data or
removing these examples from the test set. After analyzing
the overlap statistics we choose to do the latter and decon-
taminate our test set by removing these examples from the
test set.

First we present histograms of contamination scores for all
language pairs in WMT’23 and the three language pairs
from FLORES that we use in our testing. Here we observe
that language pairs from FLORES have more contamination
compared to language pairs from WMT’23. Second we
observe that contamination in WMT’23 seems to be mostly
partial. While the relationship with partial contamination
and performance is still studied, for practical reasons we
followed an pre-established cutoff of 0.7 that was introduced
by Chowdhery et al. (2022).

When we check for the threshold in any field source or target
and analyze the test sets we see in Figure 20 that the actual
examples that are contaminated are around 10% of the test
data where most of these examples are what we can call
single field contamination(contamination in just source or
just target) There is a small subset of examples where we
see both the source and the target is contaminated. When
we analyzed this subset we observed that they are generally
simple sentence structures that can frequently occur on the
internet. In Table 18 we are presenting some examples that
are in this group.

We also check the WMT’24 test data and the contamination
level with our main corpus and find that 162 examples are
contaminated in their source field above the threshold 0.7
and we remove these examples from the WMT’24 test data
that we use for our experiments.

Figure 20. Riverplot of clean, contaminated and different forms of
contamination for the threshold 0.7.
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Figure 21. Histogram of contamination scores. Here the scores are calculates as max(ssource, starget) where ssource is the percentage
of overlapping tokens with the longest contamination that contains any tokens from the source field and starget similarly for target.
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Indx Source Target
1 schwarze, lange Haare mit Pferdeschwanz long, black hair with a ponytail
2 Sieben Leichtverletzte nach Auffahrunfall auf A5 Seven slightly injured in rear-end collision on A5
3 Schlossplatz Stuttgarter gedenken der Opfer der

Erdbebenkatastrophe
Schlossplatz Stuttgart commemorate the victims of
the earthquake disaster

4 3D Drucker Prusa i3 DIY 3D Printer Prusa i3 DIY
5 Photos from my visit to Ghana in 2011. Fotografie z mé návštěvy Ghany v roce 2011.
6 Was it the 2012 Apple Maps disaster? Byla to katastrofa pro Apple Maps v roce 2012?
7 OLIVIER DOULIERY/AFP via Getty Images OLIVIER DOULIERY / AFP prostřednictvı́m

služby Getty Images
8 For more information see our Privacy Policy. Dalšı́ informace naleznete v našich Zásadách

ochrany soukromı́.
9 First medical aid is also provided on a round-the-

clock basis.
Prvnı́ lékařská pomoc je poskytována nepřetržitě.

10 Follow Metro Sport for the latest news on Face-
book, Twitter and Instagram.

Sledujte Metro Sport a jeho nejnovějšı́ zprávy na
Facebooku, Twitteru a Instagramu.

11 This is the best way to earn the press’s trust. Ten nejlepšı́ způsob, jak si zı́skat důvěru tisku.
12 Follow him on Instagram: @awr hawkins. Sledujte ho na Instagramu: @awr hawkins.
13 Reach him directly at awrhawkins@breitbart.com. Obraťte se přı́mo na něj na adrese

awrhawkins@breitbart.com.
14 It handed him a nine-month suspended sentence

and a fine.
Soud mu uložil devı́timěsı́čnı́ podmı́něný trest a
pokutu.

15 I give this book 10 stars! Této knize dávám 10 hvězdiček!
16 Good, but would like to find something better Dobré, ale chtělo by to najı́t něco lepšı́ho
17 Good umbrella, would buy it again if I had to Dobrý deštnı́k, koupil bych si ho znovu, kdybych

musel
18 but it happens enough to be annoying. ale stává se to docela často na to, aby to bylo

nepřı́jemné.
19 Nothing like the previous Stylo phones, MASSIVE

DISAPPOINTMENT.
Nic jako předchozı́ telefony Stylo, VELKÉ ZK-
LAMÁNÍ.

20 Some Super Bowl Commercials I Can’t Wait to
See

Einige Super Bowl-Werbespots, die ich unbedingt
sehen will

Table 18. Examples where both source and target are contaminated above the 0.7 threshold.
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