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Abstract001

Transformers are the current architecture of002
choice for NLP, but their attention layers do not003
scale well to long contexts. Recent works pro-004
pose to replace attention with linear recurrent005
layers—this is the case for state space mod-006
els, which enjoy efficient training and infer-007
ence. However, it remains unclear whether008
these models are competitive with transformers009
in machine translation (MT). In this paper, we010
provide a rigorous and comprehensive experi-011
mental comparison between transformers and012
linear recurrent models for MT. Concretely, we013
experiment with RetNet, Mamba, and hybrid014
versions of Mamba which incorporate attention015
mechanisms. Our findings demonstrate that016
Mamba is highly competitive with transform-017
ers on sentence and paragraph-level datasets,018
where in the latter both models benefit from019
shifting the training distribution towards longer020
sequences. Further analysis show that integrat-021
ing attention into Mamba improves translation022
quality, robustness to sequence length extrapo-023
lation, and the ability to recall named entities.024

1 Introduction025

The inherent design of attention—the underlying026

mechanism of transformers—leads to quadratic027

computational costs and challenges in length gen-028

eralization (Varis and Bojar, 2021). As an alterna-029

tive, recent works propose to replace attention with030

linear recurrent approaches, which enjoy efficient031

training and inference, and obtain competitive re-032

sults in language modeling tasks (Katharopoulos033

et al., 2020; Gu et al., 2022; Peng et al., 2023; Sun034

et al., 2023a; Gu and Dao, 2023).035

In machine translation (MT), there is an increas-036

ing demand for supporting longer context lengths,037

such as paragraphs or entire documents (Fernan-038

des et al., 2021; Wang et al., 2023; Kocmi et al.,039

2023). Given this trend, it has become increasingly040

important to design models capable of efficiently041

handling longer sequences. Previous research indi- 042

cates that models like state space models (SSMs), 043

exemplified by S4 (Gu et al., 2022), still lag be- 044

hind transformers in MT (Vardasbi et al., 2023). 045

However, it remains unclear whether these findings 046

hold true for recent, more expressive variations of 047

linear recurrent models, such as RetNet (Sun et al., 048

2023a) and Mamba (Gu and Dao, 2023), especially 049

on settings that involve the use of pretrained models 050

and long context datasets. 051

In this paper, we provide a rigorous and compre- 052

hensive experimental comparison between trans- 053

formers, RetNet, Mamba, as well as hybrid ver- 054

sions of Mamba that incorporate attention mech- 055

anisms (§4). We also compare with pretrained 056

Mamba and Pythia (Biderman et al., 2023) at two 057

parameter scales, ∼400M and 1.4B. Building on ex- 058

isting literature that explores the capabilities of lin- 059

ear recurrent models in language modeling (Arora 060

et al., 2023; Jelassi et al., 2024), we further in- 061

vestigate the performance of models trained from 062

scratch in recalling context tokens during the trans- 063

lation process (§4.2). Moreover, we extend our 064

analysis by investigating the models’ ability to han- 065

dle long contexts, on paragraph-level datasets (§5), 066

along with measuring their sensitivity to different 067

sequence lengths (§5.2) and inference cost (§5.3). 068

Overall, our main findings are:1 069

• For sentence-level experiments, we show that 070

Mamba exhibits competitive performance com- 071

pared to transformers, for both trained-from- 072

scratch and pretrained models. 073

• At the paragraph level, we find that Mamba is 074

sensitive to the training distribution’s sequence 075

length and struggles with longer inputs. However, 076

shifting the distribution towards longer sequence 077

lengths helps to close the gap with transformers. 078

1Our code will be released upon acceptance.
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• We observe that integrating attention and state079

space models creates a strong model in terms of080

translation quality, robustness to sequence length081

extrapolation, and ability to recall named entities.082

2 Background083

In this section, we present an overview of trans-084

formers, and the foundation of the linear recurrent085

models covered in this paper: linear attention (Ret-086

Net) and state space models (Mamba).087

2.1 Transformers088

The key component in the transformer architecture089

is the attention mechanism, which is responsible for090

contextualizing information within and across in-091

put sequences. Concretely, given query Q ∈ Rn×d,092

key K ∈ Rn×d, and value V ∈ Rn×d matrices as093

input, where n is the sequence length and d the hid-094

den size, the single head self-attention mechanism095

is defined as follows (Vaswani et al., 2017):096

Y = softmax

(
QK⊤
√
d

)
V ∈ Rn×d. (1)097

For decoder-only models, a causal mask is used to098

ignore future tokens. Notably, the QK⊤ operation099

leads to a O
(
n2
)

cost during training, and O (n)100

during inference with caching and causal masking.101

2.2 Linear Attention102

Denote by qi,ki,vi,yi ∈ Rd respectively the (col-103

umn) vectors corresponding to the ith rows of the104

matrices Q,K,V ,Y defined above. Katharopou-105

los et al. (2020) reformulate the attention mecha-106

nism by casting the role of the softmax as a simi-107

larity function sim (q,k) = exp
(
q⊤k/

√
d
)
:108

yi =

∑n
j=1 sim(qi,kj)vj∑n
j=1 sim(qi,kj)

. (2)109

However, any kernel k(x,y) : Rd × Rd → R110

is a suitable candidate for the similarity func-111

tion (Smola and Schölkopf, 1998; Tsai et al., 2019).112

In particular, a kernel k(x,y) = ϕ(x)⊤ϕ(y),113

where ϕ : Rd → Rr is a feature map, leads to:114

yi =

∑n
j=1ϕ(qi)

⊤ϕ(kj)vj∑n
j=1ϕ(qi)

⊤ϕ(kj)
115

=

∑n
j=1 vjϕ(kj)

⊤ϕ(qi)∑n
j=1ϕ(kj)⊤ϕ(qi)

116

=
S⊤ϕ(qi)

z⊤ϕ(qi)
, (3)117

where S =
∑n

j=1ϕ(kj)v
⊤
j ∈ Rr×d and z = 118∑n

j=1ϕ(kj) ∈ Rr. Notably, if initial states are 119

initialized as S0 = 0r×d and z0 = 0r, intermedi- 120

ate states can be computed in a recurrent fashion: 121

Si = Si−1 + ϕ(ki)v
⊤
i , 122

zi = zi−1 + ϕ(ki). (4) 123

Since we can reuse the same Si and zi for all 124

queries, this recurrent variant offers a O (n) com- 125

plexity during training and enjoys a O (1) complex- 126

ity for inference.2 127

Retentive Networks (RetNet). Sun et al. (2023a) 128

set ϕ as the identity function, i.e., k(q,k) = q⊤k, 129

ignore the normalizer in Equation 2, and introduce 130

an exponential decay mask γ, leading to: 131

Si = γSi−1 + kiv
⊤
i , 132

yi = S⊤
i qi. (5) 133

This formulation effectively biases the attention 134

mechanism to focus on closer token interactions. 135

RetNet also uses XPos (Sun et al., 2023b), a relative 136

positional encoding method, to improve its context 137

extrapolation abilities. 138

2.3 State Space Models (SSMs) 139

SSMs (Gu et al., 2020) provide an alternative 140

sequence mixing layer by processing sequences 141

x1, ...,xn, where each xi ∈ Rd, through a linear 142

recurrence. Letting Hi ∈ Rr×d denote the “state” 143

at the ith time step, a discrete SSM is defined as 144

follows:3 145

Hi = AHi−1 + bx⊤
i , 146

yi = H⊤
i c, (6) 147

where A ∈ Rr×r, b ∈ Rr, and c ∈ Rr are (dis- 148

crete) parameters.4 Since the same parameters are 149

used for both relevant and irrelevant inputs, this 150

model is deemed input-independent, which, in turn, 151

2In practice, however, this recurrent view is not paral-
lelizable, leading to chunkwise-recurrent variations for train-
ing (Hua et al., 2022; Sun et al., 2023a; Yang et al., 2024).

3A discretization step is needed in order to obtain discrete
parameters. For example, a possible method for this step is
the zero-order hold rule, used by Mamba (Gu and Dao, 2023).

4The SSM equations are commonly written independenty
for each input dimension j ∈ [d] as

h
(j)
i = Ah

(j)
i−1 + bx

(j)
i , y

(j)
i = c⊤h

(j)
i ,

with A, b, and c shared across input dimensions. This is
equivalent to (6), where the j th-column of Hi equals h(j)

i .
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makes the model unable to reset or overwrite its152

hidden states. S4 (Gu et al., 2022) is an instance of153

this model, which enjoys a O (n log n) time com-154

plexity during training, and O (1) during inference.155

Vardasbi et al. (2023) shows that S4 still under-156

performs transformers for MT. Finally, note the157

similarity between Eq. 5 and Eq. 6: RetNets can158

be seen as state space models with A = γI and159

data-dependent b and c.160

Mamba. To make the SSM parameters data-161

dependent, Mamba (Gu and Dao, 2023) introduces162

a selection mechanism that uses learnable linear163

projections over x prior to the discretization step,164

effectively making all parameters dependent on the165

ith input. This leads to:166

Hi = Ai ⊙Hi−1 +Bi ⊙Xi,167

yi = H⊤
i ci, (7)168

where Xi = 1rx
⊤
i ∈ Rr×d is an r-sized stack of169

the input, Ai ∈ Rr×d represents d diagonal matri-170

ces of size r × r, Bi ∈ Rr×d, ci ∈ Rr, and ⊙ is171

the Hadamard product. Note that, unlike S4, where172

the same A and B parameters are shared across173

all hidden dimensions 1 ≤ h ≤ d, Mamba de-174

fines Ai and Bi with a shape of (. . . , d), allowing175

for unique parameters in each hidden dimension.176

While this formulation makes Mamba more expres-177

sive, it disrupts the convolutional approach used for178

training in S4. To address this, Gu and Dao (2023)179

propose an efficient IO-aware and parallelizable180

associative scan algorithm for training (Smith et al.,181

2023). Nonetheless, the recurrent view can still be182

used for inference with a O (1) time complexity.183

3 Experimental Setup184

We conduct experiments with transformers,185

RetNet, and Mamba for MT in §4 and §5. In this186

section, we detail the sentence and paragraph-level187

datasets used in our experiments, along with the188

settings for our models, which are trained in two189

distinct regimes: from scratch, or finetuned from190

a pretrained checkpoint.191

3.1 Datasets192

For sentence-level experiments, we focus on193

WMT14 DE→EN and WMT16 RO→EN for194

consistency with previous works (Vardasbi et al.,195

2023), using the standard training, validation196

and test splits. For paragraph level, we use the197

more recent WMT23 dataset (Kocmi et al., 2023),198

DATASET # SAMPLES # TOKENS

IWSLT17 (DE↔EN) 200K 45.2 ± 29.5
WMT16 (RO↔EN) 610K 58.9 ± 31.1
WMT14 (DE↔EN) 4.5M 62.1 ± 45.6
WMT23-6M (DE↔EN) 6M 58.4 ± 32.9

WMT23-CAT-5 (DE↔EN) 2M 171.3 ± 134.9
WMT23-CAT-10 (DE↔EN) 1M 312.4 ± 282.3

Ted Talks Val. (DE↔EN) 995 268.5 ± 189.6
WMT23 Test (DE→EN) 549 135.1 ± 147.7
WMT23 Test (EN→DE) 557 185.2 ± 188.2

Table 1: Sentence and paragraph-level datasets statistics.

which contains ∼300M training samples and 199

∼1K test samples incorporating multi-sentence 200

passages. In order to obtain a small high-quality 201

subset for training, we exclude ParaCrawl and 202

CommonCrawl samples from the original dataset 203

and clean the remaining data. Our cleaning process 204

includes three steps. First, we identify and remove 205

samples in incorrect languages via langdetect5. 206

Second, we eliminate duplicates. Third, we 207

rank the samples using COMETKIWI-22 (Rei 208

et al., 2022b) a state-of-the-art translation quality 209

estimator, and keep only the top 6M samples. We 210

call the refined dataset WMT23-6M. Datasets 211

statistics are shown in Table 1. 212

3.2 Models 213

We make a broad selection of models spanning both 214

trained-from-scratch and finetuned versions. In 215

the first setting, we compare standard transformers, 216

linear recurrent models, and also hybrid approaches 217

that integrate attention into Mamba. For finetuned 218

models, we experiment with released Pythia and 219

Mamba checkpoints. We describe each model next. 220

3.2.1 Standard Models 221

Transformers. We select two variants of the 222

transformer model as baselines: a base encoder- 223

decoder formulation and a modern decoder-only 224

version. The Transformer Enc-Dec. model, as 225

described in the original paper (Vaswani et al., 226

2017), has 77M parameters, and uses sinusoidal 227

positional embeddings and standard ReLU activa- 228

tions. The second variant, Transformer++, is a 229

decoder-only formulation incorporating recent ad- 230

vancements, such as rotary positional embeddings 231

(Su et al., 2023) and the SwiGLU layer (Shazeer, 232

2020). Specifically, we use the LLaMA architec- 233

ture (Touvron et al., 2023), adjusting the embed- 234

ding dimension to match the parameter count of 235

5https://github.com/Mimino666/langdetect
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the base transformer (79M), consistent with the236

version employed in (Gu and Dao, 2023).237

Linear recurrent models. We select two rep-238

resentative recurrent models, RetNet (Sun et al.,239

2023a) and Mamba (Gu and Dao, 2023). Both240

models are tested with 77M parameters to approx-241

imately match the number of parameters in the242

transformer models.243

3.2.2 Hybrid Models244

Previous work has shown that incorporating atten-245

tion into linear recurrent models leads to strong246

performance in language modeling (Fu et al., 2023;247

Arora et al., 2024; De et al., 2024). Therefore, we248

aim to examine if this is also the case for MT by249

exploring three hybrid variants, detailed next.250

Mamba-MHA. The simplest hybrid formulation251

involves replacing some of the Mamba layers with252

attention. Some natural questions then arise: how253

many attention layers are needed, and where to254

place them? After careful ablations, detailed in Ap-255

pendix B, we use two attention layers placed at the256

middle and at the output of the network, resembling257

the hybrid version of H3 (Fu et al., 2023).258

Mamba-Local. While aiming to achieve robust259

performance, the introduction of full attention to260

Mamba disrupts its efficiency gains. Thus, we con-261

sider local attention variants such as sliding win-262

dow attention (Beltagy et al., 2020; Child et al.,263

2019), employed in recent hybrid models (Arora264

et al., 2024; De et al., 2024). We use a window size265

of 64 based on the average sequence length shown266

in Table 1 and ablations in Appendix B.267

Mamba Enc-Dec. Lastly, inspired by the S4-268

based encoder-decoder model from Vardasbi et al.269

(2023), we replace the self-attention mechanism270

in transformers with a Mamba block and keep the271

cross-attention component intact. In terms of com-272

plexity, since this variant computes attention over273

the source sentence, it incurs an additional O
(
n2
)

274

cost for training and O (n) for inference.275

3.2.3 Pretrained Models276

In order to fairly evaluate the relative performance277

between pretrained models, we need to ensure con-278

sistency between their pretraining data. Taking this279

into account, we consider two strong models pre-280

trained on The Pile (Gao et al., 2020): Pythia (Bi-281

derman et al., 2023), a modern transformer, and282

Mamba, a modern SSM. Note, however, that Pythia283

was pretrained on more tokens than Mamba (see Ta- 284

ble 6), hence the comparison might be slightly unfa- 285

vorable to Mamba. We experiment with two model 286

scales, small (S) and medium (M). Concretely, we 287

experiment with Pythia 410M and 1.4B, and with 288

Mamba 370M and 1.4B. 289

3.3 Training and Evaluation 290

For models trained from scratch, we follow the set- 291

tings proposed in (Vardasbi et al., 2023), whereas 292

for pretrained models, we follow the finetuning set- 293

tings used by Mamba (Gu and Dao, 2023). For 294

decoder-only models, we pass a concatenation of 295

the source and target sequences separated by a 296

special token as input. We evaluate all models 297

with BLEU (Post, 2018)6 and COMET (Rei et al., 298

2022a).7 We base our analysis on the latter, given 299

its strong correlation with human judgments on sen- 300

tence and paragraph-level data (Freitag et al., 2022, 301

2023). More training details can be found in §A. 302

4 Sentence-level Translation 303

We start by evaluating our standard, hybrid, and 304

finetuned models on the sentence-level WMT16 305

RO↔EN and WMT14 DE↔EN datasets. Results 306

can be found in Table 2 in terms of BLEU and 307

COMET. Next, we discuss the key findings. 308

4.1 Discussion 309

Mamba is competitive when trained from 310

scratch. Mamba, a decoder-only model, not only 311

outperforms a decoder-only transformer (Trans- 312

former++) across the board, but also an encoder- 313

decoder transformer (Transf. Enc-Dec) in the larger 314

WMT14 for both DE↔EN language pairs. This cre- 315

ates a contrast with the S4 results obtained by Var- 316

dasbi et al. (2023). We hypothesize that Mamba’s 317

good results are due to its data-dependent state 318

updates (Eq. 7), which allows for more precise in- 319

formation retention in its hidden state. On the other 320

hand, RetNet’s performance is generally subpar 321

compared to other models, likely due to its strong 322

locality bias (induced by γ in Eq. 5), which may 323

hinder performance in MT, a task where the source 324

input servers as a prefix to the translation, and it 325

requires “focused attention” during decoding. 326

Attention benefits Mamba. By including atten- 327

tion layers in Mamba’s architecture, we find that 328

Mamba-MHA, which employs only two attention 329

6SacreBLEU signature: |1|mixed|no|13a|exp|
7huggingface.co/Unbabel/wmt22-comet-da
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WMT16 WMT14

RO→EN EN→RO DE→EN EN→DE

MODEL SIZE BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Trained from scratch
Transf. Enc-Dec 77M 29.2 74.8 22.0 78.6 27.4 78.6 22.3 77.1
Transformer++ 79M 26.4 72.6 21.7 72.7 26.9 79.0 22.8 77.9
RetNet 77M 26.4 72.4 19.9 76.0 23.4 74.7 19.6 71.7
Mamba 77M 27.0 73.8 21.4 77.9 27.5 80.2 22.4 77.8

Mamba-MHA 78M 28.5 75.1 21.7 78.3 27.4 80.6 23.2 79.9
Mamba-Local 78M 25.9 73.9 20.9 76.9 27.2 80.1 23.2 79.5
Mamba Enc-Dec 82M 28.5 74.4 22.7 77.9 27.2 80.0 21.6 78.8

Finetuned
Pythia-S 410M 33.4 82.0 24.1 85.8 30.9 83.6 25.2 84.0
Mamba-S 370M 34.1 83.2 24.2 86.4 29.8 83.3 25.0 83.2
Pythia-M 1.4B 33.9 83.2 24.9 87.1 32.2 84.5 26.7 84.9
Mamba-M 1.4B 33.8 83.1 24.5 86.2 31.9 84.5 26.5 84.2

Table 2: Sentence-level results in terms of BLEU and COMET for models trained from scratch (top) and models
finetuned from a pretrained checkpoint (bottom). Bold represents top results; underline represents second-best.

layers, is able to outperform both transformers330

and Mamba for almost all language pairs. While331

Mamba-Local retains constant inference complex-332

ity via windowed attention, it is not as strong as333

the full attention variant. Finally, Mamba Enc-334

Dec’s performance is also competitive, falling just335

short of Mamba-MHA and echoing the S4 encoder-336

decoder findings of Vardasbi et al. (2023).337

Pretraining improves all models. We note a338

large COMET gap, roughly 4-8 COMET points,339

between the finetuned models and those trained340

from scratch for all language pairs. This is ex-341

pected, since not only are these models bigger, but342

they also have strong data-driven priors, which are343

beneficial in downstream tasks (Amos et al., 2024).344

Larger models achieve top results. For small345

models, Mamba outperforms Pythia for RO↔EN in346

terms of COMET and BLEU. However, Pythia is347

superior on the larger DE↔EN datasets. Moving348

to larger models, we note that Mamba improves349

COMET scores by ∼1 point on EN↔DE while350

dropping only 0.1-0.2 on EN↔RO datasets. On the351

other hand, Pythia improves results consistently for352

all language pairs with a larger model size, outper-353

forming or matching the results of other models.354

On average, we find that both their gaps decrease355

when moving from smaller to medium-sized mod-356

els but Pythia benefits more in terms of COMET. It357

is worth noting that Mamba is pretrained on fewer 358

samples than Pythia (see Table 6) and that the im- 359

pact of pretraining data quality can also play a role 360

in downstream task performance. 361

4.2 Recall of Named Entities 362

Following our discussion of sentence-level transla- 363

tion, we now focus on how well these models recall 364

context tokens during translation. Inspired by prior 365

studies investigating the recall of context tokens in 366

language modeling with state space models (Arora 367

et al., 2023; Jelassi et al., 2024), we conduct a sim- 368

ilar experiment for MT. Unlike language modeling, 369

where token patterns often recur within a near con- 370

text, MT presents a challenge due to the distinct 371

spelling of words across languages. Therefore, we 372

focus on the recall of named entities (NEs) that ap- 373

pear verbatim in both source and target sentences, 374

using NLTK for NE recognition (Bird, 2006). 375

We assess the models’ ability to recall NEs from 376

the WMT16 RO→EN dataset according to their fre- 377

quency in the training set, as illustrated in Figure 1. 378

The results reveal a clear correlation between NE 379

frequency and their chance to be recalled in the 380

translation process, as more frequent NEs are re- 381

called more often. Notably, we note a disparity in 382

performance with unseen entities, which provides 383

a more illustrative view of recall ability. In this 384

respect, transformers and Mamba perform on par, 385
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Figure 1: Recall in recovering named entities on the WMT16 RO→EN dataset by their training set frequency: unseen
entities do not appear in the training data, while regular and frequent entities appear [1, 16) and 16+ times.

while RetNet shows inferior results. As before,386

the hybrid models are promising, with Mamba-387

MHA outperforming all models, followed closely388

by Mamba Enc-Dec.389

5 Paragraph-level translation390

While Mamba shows competitive performance with391

transformers on sentence-level datasets (see Ta-392

ble 2), it was originally designed to handle long393

sequences. Thus, we now turn our attention to394

paragraph-level datasets. This allows us to study395

the models’ sensitivity to long sequence lengths396

along with their robustness in handling sequences397

that are longer than the ones seen during training.8398

To this end we focus on the WMT23-6M dataset399

(§3.1), from which the training and test sets are400

composed of sentence and paragraph-level pas-401

sages, respectively. In order to see the impact of402

training on long sequences, we propose to artifi-403

cially construct multi-sentence datasets, which we404

call WMT23-CAT-N . Our procedure is as follows:405

1. We first retain the original training samples from406

WMT23-6M with a probability of 50%.407

2. Next, for the remaining part, we concatenate N408

random training samples.409

This approach ensures that we consistently main-410

tain a 50% ratio between single-sentence and multi-411

sentence samples. For validation, we sample412

1-to-10-sentence passages from the TED Talks413

dataset (Cettolo et al., 2012). Statistics for CAT-N414

datasets can be found in Table 1. COMET scores on415

the WMT23 EN↔DE test sets are shown in Table 3.416

We provide additional BLEU scores in Table 8 in417

Appendix D. Next, we discuss our key findings.418

8We dropped RetNet and Mamba-Local as they already
achieve poor results on long sentence-level inputs (see Fig. 3).

5.1 Discussion 419

Concatenation helps. Our strategy of concate- 420

nating sentences proves beneficial for almost all 421

models, as COMET scores tipically improve with 422

the CAT-5 and CAT-10 datasets, whether models 423

are trained from scratch or finetuned. Among mod- 424

els trained from scratch, Transformer Enc-Dec, 425

Mamba-MHA, and Mamba Enc-Dec show substan- 426

tial improvements, with Mamba Enc-Dec achiev- 427

ing the best overall results. For finetuned models, 428

concatenation benefits larger models; Mamba-M 429

outperforms Pythia-M in DE→EN but underper- 430

forms in EN→DE. Interestingly, for both train- 431

ing regimes, the concatenation strategy can lead 432

to COMET gains of up to 5 points. 433

Finetuning outperforms training from scratch. 434

Finetuned models consistently achieve higher 435

COMET scores, with larger models attaining the 436

top results overall. Similar to sentence-level experi- 437

ments, Pythia outperforms Mamba when trained on 438

the original, WMT23-6M dataset. However, both 439

Pythia and Mamba benefit from our concatenation 440

strategy. While these results indicate that our con- 441

catenation strategy helps in translating long inputs, 442

it remains unclear whether performance on short 443

inputs is compromised or if the models can handle 444

longer inputs than those seen during training. We 445

investigate these issues next. 446

5.2 Sensitivity to Input Length 447

Based on the previous observations, we notice that 448

performance between models varies considerably 449

after being exposed to different sequence lengths 450

during training. In this subsection, we investi- 451

gate how robust each model is to length distribu- 452

tion shifts between training and test. Results are 453

shown in Figure 2 for both training regimes on the 454

WMT23 DE→EN dataset. Results are consistent 455

for EN→DE, shown in Figure 4, Appendix C. 456
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DE→EN EN→DE

MODEL SIZE ORIG. CAT5 CAT10 ORIG. CAT5 CAT10

Trained from scratch
Transf. Enc-Dec 77M 72.4 74.6 69.6 65.2 70.3 70.3
Transformer++ 79M 70.7 73.6 72.8 64.8 69.1 68.8
Mamba 77M 70.0 73.3 72.3 63.3 67.5 67.8

Mamba-MHA 78M 72.7 74.2 74.5 67.0 68.6 69.7
Mamba Enc-Dec 82M 70.7 73.8 75.6 65.3 71.0 70.1

Finetuned
Pythia-S 410M 77.4 78.4 79.0 76.7 77.8 77.1
Mamba-S 370M 77.2 78.2 78.3 72.4 74.2 73.1
Pythia-M 1.4B 76.2 78.6 79.4 75.8 77.4 79.0
Mamba-M 1.4B 74.6 79.6 79.5 73.4 77.5 77.3

Table 3: Paragraph-level results in terms of COMET for models trained from scratch (top) and models finetuned
from a pretrained checkpoint (bottom) on WMT23 EN↔DE test set, according to the training dataset: original
WMT23-6M, WMT23-CAT-5 and WMT23-CAT-10. Bold represents top results; underline represents second-best.
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Figure 2: Sensitivity to input length, measured by the number of sources tokens, on the WMT23 DE→EN datset, for
models trained from scratch (top) and finetuned from a pretrained checkpoint (bottom).

Discussion. When training on WMT23-6M, we457

observe a decline in performance for all models on458

long sequences, affecting both trained-from-scratch459

and finetuned variants. Interestingly, this degrada-460

tion is evident in Mamba, as expected due to its461

finite hidden state capacity. However, it is also chal-462

lenging for transformers despite their relative posi-463

tional embeddings. Moreover, both finetuned and464

hybrid models exhibit more consistent performance465

across different sequence lengths, even on the origi-466

nal sentence-level dataset, suggesting a more robust467

capability for dealing with long-context inputs.468

Overall, our concatenation approach has largely 469

mitigated the performance issues with long in- 470

puts present in models trained on WMT23-6M, as 471

models trained on CAT datasets produce higher- 472

quality translations for longer sequences. This 473

improvement is uniform across all models, with 474

CAT-10 yielding consistently better translations in 475

the longest bin (257+ tokens). However, the CAT- 476

10 dataset seems to reduce translation quality for 477

shorter samples in some models, though this ef- 478

fect is minimal or absent in hybrid and finetuned 479

models. We further examine the ability to extrap- 480
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512 1024

MODEL T (S) M (GB) T (S) M (GB)

Pythia-S 11.52 2.472 25.80 3.934
Mamba-S 10.38 0.839 20.59 1.607
Pythia-M 14.88 4.789 40.41 7.841
Mamba-M 10.29 0.913 20.31 1.668

Table 4: Average time (T) and maximum allocated mem-
ory (M) of 30 inference runs with batch size 16 on
WMT23 DE→EN.

olate to even longer sentences (up to 2048 tokens)481

than those seen during training in §C, finding that482

finetuned versions of Mamba are more robust than483

Pythia when trained on CAT-10.484

5.3 Inference Cost485

In §2 we covered the theoretical time complex-486

ity of our models in training and inference time.487

Here, we examine the wallclock time and memory488

usage of Pythia and Mamba in a realistic setting489

where inputs are WMT23 DE→EN test samples,490

and outputs continue to be generated until they491

reach exactly L ∈ {512, 1024} tokens. Table 4492

shows that Mamba’s memory usage is significantly493

lower than Pythia’s, with gaps of ∼ 3-5x overall.494

The wallclock time difference is not as notable495

but still substantial, especially for larger models,496

where Mamba-M is 2x faster than Pythia-M for497

L = 1024. In other words, Mamba-M through-498

puts ∼806 tokens/s while Pythia-M outputs ∼405499

tokens/s, aligning with (Gu and Dao, 2023).9500

6 Related Works501

Linear recurrent models for MT. Our work is502

closely related to (Vardasbi et al., 2023), which503

compares SSMs and transformers. Furthermore,504

they also experiment with hybrid architectures com-505

posed of S4 and attention layers, an approach that506

has since become common (Arora et al., 2024; De507

et al., 2024; Glorioso et al., 2024). In this work, we508

experiment with more recent linear recurrent mod-509

els and their respective hybrid versions while also510

including larger and pretrained variants. Our analy-511

sis further includes investigating each model’s abil-512

ity to recall named entities, along with measuring513

translation performance across different sequence514

lengths on paragraph-level datasets. In contrast to515

Vardasbi et al. (2023)’s results showing that S4 lags516

behind transformer baselines in MT tasks, we ob-517

serve that Mamba, a modern SSM, is competitive518

9Computed as batch-size × L/wallclock-time.

with transformers on sentence and paragraph-level 519

datasets, whether trained from scratch or fine-tuned 520

from a pretrained checkpoint, especially in the first 521

setting when equipped with attention mechanisms. 522

Linear recurrent models’ limitations. Recent 523

works show that Mamba struggles in tasks that in- 524

volve recalling context tokens (Arora et al., 2023; 525

Jelassi et al., 2024), such as the synthetic Multi- 526

Query Associative Recall task. In MT, however, 527

context tokens (source and translation prefix) are 528

not often replicated in the output (translation). In 529

this work, we study this phenomenon with named 530

entities and analyze the recall ability of transform- 531

ers and linear recurrent models in §4.2. 532

Sentence concatenation Kondo et al. (2022); 533

Varis and Bojar (2021) analyze transformers’ gen- 534

eralization towards sequence length. They show 535

that transformers are susceptible to the training dis- 536

tribution of context length and that concatenating 537

multiple sentences can improve the translation of 538

longer sentences. Specifically, Kondo et al. (2022) 539

augment the original data with samples contain- 540

ing concatenations of two random sentences, while 541

Varis and Bojar (2021) concatenate up to six sen- 542

tences. While these studies focused on sentence- 543

level translation with sequence lengths up to 120 544

tokens, in this work, we extend the analysis to much 545

longer sequences and test on paragraph-level data 546

from the WMT2023 dataset. 547

7 Conclusion 548

We set out to evaluate recent linear recurrent 549

models, particularly RetNet and Mamba, in MT 550

tasks while thoroughly comparing them to trans- 551

former baselines and hybrid models, which com- 552

bine Mamba and attention. We find that Mamba 553

models are competitive with transformers, both 554

when they are trained from scratch and when they 555

are finetuned from a pretrained checkpoint; how- 556

ever, the performance delta is smaller in the latter 557

regime. Our paragraph-level experiments reveal 558

that models are hindered by the mismatch in the 559

training and test length distributions; however, a 560

simple concatenation approach helps to mitigate 561

the issue. We find that hybrid models are only 562

slightly affected by this issue while also being com- 563

petitive or outperforming transformers. Finally, we 564

note that Mamba models also exhibit a faster run- 565

time and consume less memory than transformers. 566
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Limitations567

We point out some limitations of the presented568

study. First, one limitation is that we refrain from569

pretraining the hybrid models due to the high as-570

sociated compute costs. To this effect, while our571

trained-from-scratch results are promising, validat-572

ing them with a larger scale and strong language573

priors would strengthen our claim of their good574

performance. Secondly, our experiments (§C.3)575

appear to indicate larger models are more robust576

to sequence length issues. Nonetheless, we limited577

our study to models with parameter scales between578

370M and 1.4B since, in preliminary sentence-level579

experiments, translation quality gains plateaued at580

the latter scale.581

In another direction, we mainly rely on auto-582

mated metrics for evaluating translation quality,583

which might not fully capture the accuracy of the584

translation. We alleviate this fault by considering585

the recollection of NEs in translations (§4.2). Fur-586

thermore, our experiments in §5.2 do not have a587

notion of translation difficulty, which might help588

explain the differences between models and asso-589

ciated datasets in different length buckets (albeit590

sentence length and difficulty may be connected).591

Potential Risks592

Translation biases and error modes inherent in593

transformed-based LLMs could also be manifested594

in the linear recurrent models studied in this paper.595

Careful evaluation and mitigation strategies, such596

as detecting and overcoming hallucinations (Guer-597

reiro et al., 2023; Dale et al., 2023), can alleviate598

these risks and ensure models’ responsible use. It599

should also be noted that although SSMs are po-600

tentially more energy efficient than transformer-601

based models, they still pose energy consumption602

concerns, particularly due to the large size of the603

models.604
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A Implementation and Training Details891

All experiments were carried on Nvidia RTX892

A6000 GPUS with 48GB VRAM, and the train-893

ing framework is constructed around PyTorch894

Lightning.10 To train and generate translations in895

batches, we use a left-padding strategy. However,896

for Mamba, additional functionality is required to897

avoid processing padding tokens. To address this,898

we zero out inputs before and after convolution899

at the positions of the padding tokens and sac-900

rifice some efficiency by using the slow path in901

Mamba11. Notably, during inference, the slow path902

affects only the initial processing of the prompt903

and does not impact the actual generation. More-904

over, we added Dropout (Srivastava et al., 2014) to905

Mamba blocks, which was missing in the original906

implementation. Specifically, dropout is applied907

after the last linear projection of the Mamba block.908

Additionally, following the findings in (Vardasbi909

et al., 2023), we calculate cross-entropy loss only910

for target tokens. During training, we use greedy911

decoding and select the top model using BLEU912

as the validation metric, as it is faster to compute913

in comparison to COMET. For inference, we use914

beam search with a beam size of 5. Due to the915

time-consuming nature of our experiments, we re-916

port the results of a single run for all experiments.917

The overall model structure and hyperparameters918

across both training regimes, from-scratch (§A.1)919

and finetuning (§A.2), are shown in Table 5. Fur-920

thermore, all models were trained with bfloat16921

precision.922

A.1 Training from Scratch923

Regarding tokenization, we leverage the Hugging-924

Face tokenizers library12 and construct a separate925

BPE tokenizer (Sennrich et al., 2016) per dataset.926

The total vocabulary size is 32000 tokens. We927

carried out a hyperparameter search to select ap-928

propriate dropout values, learning rates and archi-929

tectural decisions, with the latter two detailed in930

Table 5. We employ a dropout of 0.3 and 0.1931

for both WMT14 and the different variations of932

WMT23. Other hyperparameters were kept intact.933

Concretely, we use the Inverse Square Root learn-934

ing rate scheduler (Vaswani et al., 2017) with 4000935

warmup steps and a weight decay of 0.001.936

10https://lightning.ai/docs/pytorch/
11https://github.com/state-spaces/mamba/

issues/216
12https://github.com/huggingface/tokenizers

MODEL SIZE LR L H D FFN

Trained from scratch
Transf. Enc-Dec 77M 4e-4 6-6 8 512 2048
Transf.++ 79M 4e-4 12 8 496 1984
RetNet 77M 1e-3 12 4 512 1024
Mamba 77M 1e-3 24 - 610 -

Mamba-MHA 78M 7e-4 24 8 624 -
Mamba-Local 78M 7e-4 24 8 624 -
Mamba Enc-Dec 82M 7e-4 8-6 8 512 2048

Finetuned
Pythia-S 410M 1e-5 24 16 1024 4096
Mamba-S 370M 3e-4 24 - 1024 -
Pythia-M 1.4B 1e-5 24 16 2048 8192
Mamba-M 1.4B 3e-4 24 - 2048 -

Table 5: Detailing the full set of hyperparameters for
the different models. Encoder-Decoder models have
their number of layers separated by each module. LR
represents the Learning Rate; L represents the number
of layers; H is the number of Attention Heads; D is
the model dimension; FFN is the size of the inner feed-
forward network.

MODEL SIZE
TRAINING

TOKENS
CONTEXT
TOKENS

Pythia-S 410M 300B 2048
Pythia-M 1.4B 300B 2048
Mamba-S 370M 7B 2048
Mamba-M 1.4B 26B 2048

Table 6: Pre-training details. All models were pretrained
on The Pile (Gao et al., 2020).

A.2 Finetuning Pretrained Checkpoints 937

We employ pretrained models and corresponding 938

tokenizers from the Huggingface library. Table 6 939

shows the number of tokens and the size of the 940

context window used during pretraining. For fine- 941

tuning, in all experiments, we use a dropout of 942

0.1 with the exception of WMT16 EN↔RO, where 943

dropout varies from 0.1 to 0.3. Moreover, we use 944

weight decay only in Mamba-M, with a value of 945

2 · 10−4. Additionally, learning rates and models’ 946

attributes are shown in Table 5. 947

A.3 Inference Cost 948

For the inference cost experiments, we mea- 949

sure overall wallclock time using cuda events 950

and cuda synchronization from torch.cuda 951

module. The overall time includes the en- 952

tire generation pipeline. Moreover, we use 953

torch.cuda.max_memory_allocated to mea- 954

sure memory usage. 955

12

https://lightning.ai/docs/pytorch/
https://github.com/state-spaces/mamba/issues/216
https://github.com/state-spaces/mamba/issues/216
https://github.com/huggingface/tokenizers


DE→EN EN→DE

BLEU COMET BLEU COMET

Mamba-MHA
Interleaved 30.81 77.98 24.40 72.48
L1,11 30.52 78.10 24.99 73.76
L11,23 30.81 78.30 24.40 73.94

Mamba-Local
Interleaved - w64 28.85 76.76 23.61 72.10
L11,23 - w16 29.37 77.19 24.12 72.88
L11,23 - w32 28.24 76.44 23.20 72.22
L11,23 - w64 29.40 77.56 24.41 72.98
L11,23 - w128 30.49 77.98 24.85 73.58

Table 7: Hybrid models ablations with BLEU and
COMET scores on the IWSLT17 dataset. Different
window sizes are denoted as w{16, 32, 64, 128}. Inter-
leaved refers to alternating Mamba and attention layers.
L1,11 and L11,23 refer to placing attention in layers 2 -
N/2 and N/2 - N , respectively.

B Hybrid Models Ablation956

Building on the shortcomings of linear models957

(Akyürek et al., 2024; Arora et al., 2023; Jelassi958

et al., 2024), we designed hybrid models to com-959

plement SSMs with attention mechanisms. In this960

section, we ablate the design choices leading to the961

construction of our hybrid models. These experi-962

ments were conducted using the IWSLT17 DE↔EN963

dataset (Cettolo et al., 2017). Results are shown in964

Table 7.965

Since our Mamba-MHA model replaces a set of966

Mamba layers with attention modules, we ablated967

various configurations to determine the optimal968

number and placement of attention layers. Our969

analysis of COMET scores indicated that incor-970

porating two attention layers significantly boosted971

performance, aligning with findings in previous972

studies (Fu et al., 2023). The placement of these973

layers had a minimal effect, leading us to select974

the configuration with layers at positions N/2 and975

N for further experiments due to its consistently976

higher COMET scores.977

In the case of Mamba-Local, which uses a slid-978

ing window attention, we explored various win-979

dow sizes. Our experiments revealed that perfor-980

mance generally improved with window size in a981

linear way. Ultimately, a 128-token window nearly982

matched full attention performance, and two layers983

of 64-token windowed attention provided a good984

balance between performance and efficiency for985

our experiments.986
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Figure 3: COMET scores per sequence length on
WMT14 DE→EN for trained-from-scratch models.

C Exploring Length-related Issues 987

C.1 Preliminary Sentence-level Experiments 988

Before experimenting with paragraph-level data, 989

we analyze how our trained-from-scratch models 990

perform on different sequence lengths. To this 991

end, we study their sensitivity to input length when 992

trained and tested on WMT14 DE→EN. The results 993

are shown in Figure 3. While all models show a 994

deterioration in performance as sequence length 995

increases, this effect is more pronounced for Trans- 996

former++, RetNet, and Mamba-Local, with a sig- 997

nificant drop in performance for samples longer 998

than 64 tokens. 999

C.2 Sensitivity to Input Length 1000

Following the discussion in §5.2, we further inves- 1001

tigate the sensitivity of our models to input length 1002

using the WMT23 EN→DE test set, with results 1003

shown in Figure 4. Notably, our takeaways re- 1004

main broadly the same: concatenating samples 1005

in the training data is indeed helpful when han- 1006

dling longer sequences, and models trained on 1007

the WMT23-CAT-10 dataset are much better in 1008

the longer bin (257+) with minimal translation 1009

quality degradation in shorter samples. However, 1010

when considering each of the training datasets’ his- 1011

tograms in Figure 5, we can observe that models 1012

have been exposed to the longest samples during 1013

training, even if in low quantities. This implies that 1014

the previous experiments do not represent an extrap- 1015

olation setting, where inference is done on longer 1016

sequence lengths than those seen during training. 1017

We cover extrapolation to longer sequences next. 1018

C.3 Extrapolation to Longer Sequences 1019

Following the previous discussion, to further ex- 1020

plore the impact of sequence length on our models, 1021

13
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Figure 4: Sensitivity to input length, measured by the number of sources tokens, on the WMT23 EN→DE datset, for
models trained from scratch (top) and finetuned from a pretrained checkpoint (bottom).

we create a new test set sampled from TED Talks1022

DE→EN passages that is much larger (2200 sam-1023

ples) and contains much longer sequences. The1024

source length distribution can be seen in Figure 51025

(bottom right). After evaluating our models in this1026

dataset, we plot COMET scores per sentence length1027

in Figure 6. Note that the dashed vertical line rep-1028

resents the bin containing the longest sentences the1029

model has been exposed to during training.1030

Discussion. We observe some interesting behav-1031

ior: when training from scratch, the translation1032

quality of Transformer++, Mamba, and Mamba-1033

MHA falls sharply when handling 769+ tokens,1034

whereas Mamba Enc-Dec excels even in pure ex-1035

trapolation settings on the longest inputs. With1036

the finetuned models, we also see decreasing trans-1037

lation quality over longer sequences, consistent1038

with previous experiments. Nonetheless, Mamba1039

models show a more robust trend. In particular,1040

Mamba-M extrapolates well to longer sequences1041

when trained on CAT-10. For example, for models1042

trained on CAT-10, the best COMET score for in-1043

puts longer than 1024 tokens for Pythia-M is ∼68,1044

while Mamba-M is able to achieve a score of ∼75.1045

The gap increases and reaches almost 20 points as1046

we increase the sequence length.1047

D Full Paragraph-Level Results1048

For completeness, we report paragraph-level results1049

in terms of BLEU and COMET for all language1050

pairs and models in Table 8.1051

E AI assistants 1052

We have used Github Copilot13 during code devel- 1053

opment, and ChatGPT14 during paper writing for 1054

paraphrasing or polishing original contents. 1055

13https://github.com/features/copilot
14https://chat.openai.com/

14

https://github.com/features/copilot
https://chat.openai.com/
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Figure 6: Sensitivity to input length, measured by the number of sources tokens, on the Ted Talks DE→EN dataset,
for models trained from scratch (top) and finetuned from a pretrained checkpoint (bottom). The dashed vertical line
represents the bin containing the longest sentence in the training set.
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DE→EN EN→DE

MODEL TRAINING DATA BLEU COMET BLEU COMET

Trained from scratch
Transformer Enc-Dec

WMT23-6M

25.4 72.4 22.4 65.2
Transformer++ 21.6 70.7 20.2 64.8
Mamba 19.0 70.0 15.8 63.3
Mamba-MHA 23.9 72.7 23.2 67.0
Mamba Enc-Dec 22.7 70.7 21.5 65.3

Transformer Enc-Dec

WMT23-CAT-5

30.8 74.6 29.9 70.3
Transformer++ 28.9 73.6 28.1 69.1
Mamba 26.1 73.3 23.8 67.5
Mamba-MHA 29.5 74.2 23.5 68.6
Mamba Enc-Dec 27.3 73.8 29.1 71.0
Transformer Enc-Dec

WMT23-CAT-10

28.3 69.6 29.3 70.3
Transformer++ 29.8 72.8 29.1 68.8
Mamba 25.9 72.3 25.5 67.8
Mamba-MHA 27.8 74.5 25.9 69.7
Mamba Enc-Dec 31.4 75.6 30.1 70.1

Finetuned
Mamba-S

WMT23-6M

21.8 77.2 21.4 72.4
Pythia-S 23.9 77.4 25.9 76.7
Mamba-M 20.7 74.6 22.5 73.4
Pythia-M 26.0 76.2 25.2 75.8

Mamba-S

WMT23-CAT-5

24.3 78.2 23.3 74.2
Pythia-S 27.0 78.4 28.6 77.8
Mamba-M 26.4 79.6 27.5 77.5
Pythia-M 25.8 78.6 27.5 77.4

Mamba-S

WMT23-CAT-10

25.6 78.3 22.5 73.1
Pythia-S 26.8 79.0 29.3 77.1
Mamba-M 32.5 79.5 27.5 77.3
Pythia-M 33.4 79.4 33.9 79.0

Table 8: Paragraph-level results in terms of BLEU and COMET on the WMT23 EN↔DE test set.
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