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Abstract

Bisimulation metrics are powerful tools for measuring similarities between stochas-1

tic processes, and specifically Markov chains. Recent advances have uncovered that2

bisimulation metrics are, in fact, optimal-transport distances, which has enabled the3

development of fast algorithms for computing such metrics with provable accuracy4

and runtime guarantees. However, these recent methods, as well as all previously5

known methods, assume full knowledge of the transition dynamics. This is often6

an impractical assumption in most real-world scenarios, where typically only sam-7

ple trajectories are available. In this work, we propose a stochastic optimization8

method that addresses this limitation and estimates bisimulation metrics based9

on sample access, without requiring explicit transition models. Our approach is10

derived from a new linear programming (LP) formulation of bisimulation metrics,11

which we solve using a stochastic primal-dual optimization method. We provide12

theoretical guarantees on the sample complexity of the algorithm and validate its13

effectiveness through a series of empirical evaluations.14

1 Introduction15

Computing similarity metrics between stochastic processes is an important mathematical problem16

with numerous promising use cases in diverse areas such as mathematical finance, computational17

neuroscience, biology, and computer science. Within machine learning, potential applications include18

representation learning for dynamical systems and reinforcement learning [Zhang et al., 2021, Chen19

and Pan, 2022], fitting and comparing sequence models [Xu et al., 2020, Tao et al., 2024] or prediction20

tasks on graph-structured data [Titouan et al., 2019, Brugère et al., 2024]. While there exist several21

rigorous frameworks for defining such similarity metrics and studying their properties, computing22

them typically requires full knowledge of the probability law of the processes to compare, which is23

not available in just about any case of practical interest. In this paper, we address this problem by24

developing methods for estimating similarity metrics for a family of stochastic processes, based only25

on sample streams and without requiring any prior information about the underlying process laws.26

We focus on a family of similarity metrics known as bisimulation metrics, originating from theoretical27

computer science for purposes of formal verification of computer programs [Park, 1981, Milner,28

1989, Desharnais et al., 1999, van Breugel and Worrell, 2001]. This notion of process similarity29

has gained popularity within reinforcement learning (RL), where its potential for learning state30

representations has been recognized by the early works of Givan et al. [2003] and Ferns et al. [2004]31

and the possibility of using it as a basis of practical methods for representation learning has been32

explored in a long line of subsequent works [Castro, 2020, Zhang et al., 2021, Chen and Pan, 2022,33

Kemertas and Jepson, 2022]. Another popular framework for studying similarities between structured34

probability distributions is that of optimal transport (OT, cf. Villani, 2009), which has received35

serious attention within machine learning in the last decade, largely owing to the work of Cuturi36

[2013]. Very recently, Calo et al. [2024] pointed out that bisimulation metrics also fall within the37

family of OT distances, which not only allowed them to connect two distinct areas of mathematics38
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but also import tools from the literature of computational optimal transport [Peyré and Cuturi, 2019]39

and develop more efficient methods for computing bisimulation metrics. We refer to Appendix A of40

Calo et al. [2024] for more historical details on the two extensive lines of literature on bisimulation41

metrics and optimal transport for stochastic processes.42

In this paper, we extend this line of work and show that recasting bisimulation metrics as OT43

distances allows not only computational advances, but the development of a rigorous theory for44

statistical estimation of similarity metrics between stochastic processes. In particular, we build on45

the foundations laid down by Calo et al. [2024] and derive a new stochastic optimization algorithm46

for estimating bisimulation metrics based on sample observations only, and provide its complete47

computational and sample-complexity analysis for finite Markov chains. A core technical contribution48

is a new linear-program formulation of bisimulation metrics, which we solve via a stochastic saddle-49

point optimization method. For two Markov chains with state spaces X and Y , the algorithm is50

guaranteed to return an ε-accurate estimate of the true similarity metric after Õ(|X | |Y| (|X | +51

|Y|)/ε2) iterations, with each iteration making use of a single sample transition from each of the52

two chains, and costing Θ(|X |2 |Y|2) computation. This is the first result of its kind: no previous53

methods have successfully addressed this problem either in practice or in theory. A more detailled54

discussion about related work is available in Appendix A.55

The rest of the paper is organized as follows. After formally defining our problem in Section 2, we56

describe the foundations of our new algorithm and describe it in detail in Section 3. We state our main57

theoretical results in Section 4, where we also outline the main ideas of the analysis. We complement58

these with some empirical studies of the newly proposed method in Section 5, and conclude with a59

discussion of the results and open problems in Section 6.60
Notation. For a finite set S, we use ∆S to denote the set of all probability distributions over S.61

For two sets X and Y , we will often write XY = X × Y to abbreviate their direct product. We62

will denote infinite sequences by x̄ = (x0, x1, . . .) and for any n the corresponding subsequences as63

x̄n = (x0, . . . , xn).64

2 Preliminaries65

We study the problem of measuring distances between pairs of finite Markov chains. Specifically, we66

consider two stationary Markov processes MX = (X , PX , ν0,X ) and MY = (Y, PY , ν0,Y), where67

• X and Y are the state spaces with finite cardinality,68

• PX : X → ∆X and PY : Y → ∆Y are the transition kernels that specify the evolution of states as69

PX (x′|x) = P [Xt+1 = x′|Xt = x] and PY(y
′|y) = P [Yt+1 = y′|Yt = y] (for all time indices t70

and state pairs x, x′ and y, y′),71

• ν0,X ∈ ∆(X ) and ν0,Y ∈ ∆(Y) are the initial-state distributions which specify the states at time72

t = 0 as X0 ∼ ν0,X and Y0 ∼ ν0,y .73

Without loss of generality, we will assume that ν0,X and ν0,Y are both Dirac measures respectively74

supported on some fixed x0 and y0, and use ν0 = ν0,X ⊗ ν0,Y to denote the joint distribution of75

the pair of initial states (X0, Y0) (which is of course a Dirac measure on x0, y0). For each n ≥ 0,76

the objects above define a sequence of joint distributions P [(X0, X1, . . . , Xn) = (x0, x1, . . . , xn)]77

and P [(Y0, Y1, . . . , Yn) = (y0, y1, . . . , yn)]. These distributions in turn define the laws of the infinite78

sequences X = (X0, X1, . . .) and Y = (Y0, Y1, . . .) via Kolmogorov’s extension theorem. With79

a slight abuse of notation we use MX and MY to denote the corresponding measures satisfying80

MX (x̄n) = P
[
Xn = x̄n

]
and MY(ȳn) = P

[
Y n = ȳn

]
for any x̄ ∈ X∞, ȳ ∈ Y∞ and n ≥ 0.81

Our goal is to compute optimal transport distances between infinite-horizon Markov chains. To82

this end, we will suppose access to a ground cost (or ground metric) c : XY → R+ that quantifies83

the (dis-)similarity between each state x ∈ X and y ∈ Y as c(x, y). For any two sequences84

x̄ = (x0, x1, . . .) ∈ XN and ȳ = (y0, y1, . . .) ∈ YN, we define the discounted total cost85

cγ(x̄, ȳ) =

∞∑
t=0

γtc(xt, yt),

where γ ∈ (0, 1) is the discount factor (which emphasizes earlier differences between the two86

sequences, and serves to make sure that the distance is well-defined). As is usual in the optimal-87

transport literature, we will define the distance between the two stochastic processes MX and MY by88

minimizing the expected cost over a suitable class of couplings of the two joint distributions.89
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Formally, a coupling of MX and MY is defined as a stochastic process on the joint space90

X × Y whose law is defined for all n as MX ,Y(xn, yn) = P
[
Xn = xn, Y n = yn

]
and satisfies91 ∑

yn∈Yn MX ,Y(xnyn) = MX (xn) and
∑

xn∈Xn MX ,Y(xn, yn) = MY(yn). We denote the set of92

all couplings by Π, and call a coupling MX ,Y ∈ Π bicausal if and only if it satisfies93 ∑
y∈Y

MX ,Y(xy|x̄n−1ȳn−1) = MX (x|x̄n−1) and
∑
x∈X

MX ,Y(xy|x̄n−1ȳn−1) = MY(y|ȳn−1),

respectively for all x and y, and for all n. The set of all bicausal couplings will be denoted by Πbc.94

Intuitively, this is the class of couplings that respect the temporal structure of the Markov chains95

and only allow the distribution of each state Xt+1 (resp. Yt+1) to be influenced by the past state96

pairs
(
Xt, Y t

)
. The optimal transport distance between the two Markov chains MX and MY is then97

defined as98

dγ(MX ,MY) = inf
π∈Πbc

∫
cγ(X,Y ) dπ(X,Y ), (1)

with the dependence on the cost function c suppressed for simplicity of notation. Following the99

observation made by Calo et al. [2024], we will frequently refer to this distance as the bisimulation100

metric between MX and MY .101

3 Bisimulation metrics from sample streams102

As observed by Calo et al. [2024], the bisimulation metric in (1) can be rewritten in terms of103

occupancy couplings. The occupancy coupling associated with the bicausal coupling π ∈ Πbc is a104

distribution µπ ∈ ∆XYXY with entries105

µπ(x, y, x′, y′) = (1− γ)

∞∑
t=0

γtPπ [Xt = x, Yt = y,Xt+1 = x′, Yt+1 = y′] ,

where Pπ [·] denotes the probability law induced by the coupling π. Introducing the notation106

〈µ, c〉 =
∑

x,y,x′,y′ µ(x, y, x′, y′)c(x, y), this means that the original optimization problem defining107

the distance can be obviously rewritten as a linear function of µπ as108

dγ(MX ,MY) = inf
π∈Πbc

〈µπ, c〉 . (2)

Calo et al. [2024] identified a set of linear constraints on µπ that are satisfied if and only if π ∈ Πbc,109

which has effectively reduced the problem of computing the distance to a linear program (LP). This110

formulation is closely related to the standard LP formulation of optimal control in Markov decision111

processes, where the primal variables are commonly called occupancy measures (see, e.g., Chapter112

6.9 in Puterman, 1994). As shown by Calo et al. [2024], one of the linear constraints satisfied by any113

valid occupancy µ is the following flow condition:114 ∑
x′,y′

µ(x, y, x′, y′) = γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y) + (1− γ)ν0(x, y) (∀x, y ∈ XY). (3)

Unfortunately, their other constraints explicitly feature the transition kernels PX and PY , which115

ultimately makes their LP unsuitable as a basis for stochastic optimization. Indeed, optimizing their116

LP via primal, dual, or primal-dual methods would require having at least a generative model of117

PX and PY that allows sampling from PX (·|x) and PY(·|y) at arbitrary states x and y. In practice118

however, such models are rarely available and one has to make do with samples drawn directly from119

a stream of states generated by the two chains. We address this limitation by reformulating their120

linear constraints in a form that eliminates the transition kernels PX and PY from the constraints,121

and replaces them with a joint state-next-state distribution from each chain that can be sampled from122

efficiently. In what follows, we first introduce our new LP formulation, and then provide a primal-dual123

stochastic optimization algorithm to approximately solve the resulting optimization problem along124

with its performance guarantees.125

3.1 A new LP formulation of bisimulation metrics126

Our reformulation is based on the following observations. First, notice that any valid occupancy127

coupling has to arise as a coupling of the marginal occupancy measures of the two chains MX and128
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MY , defined respectively for each x, x′ and y, y′ as129

νX (x, x′) = (1− γ)
∑∞

t=0 γ
tP [Xt = x,Xt+1 = x′],

νY(y, y
′) = (1− γ)

∑∞
t=0 γ

tP [Yt = y, Yt+1 = y′].

Indeed, valid occupancy couplings respectively satisfy the coupling condition130 ∑
y,y′ µπ(x, x′, y, y′) = νX (x, x′) and

∑
x,x′ µπ(x, x′, y, y′) = νY(y, y

′) (4)

for all x, x′ and y, y′. Second, the conditional occupancies induced by a bicausal coupling π satisfy131

µπ(x′, y|x) = PX (x′|x)µπ(y|x) and µπ(x, y′|y) = PY(y
′|y)µπ(x|y),

due to the requirement of causality that the conditional law of Yt given Xt (resp. Xt given Yt) should132

be independent of the future state Xt+1 (resp. Yt+1). By multiplying both sides of these equations by133 ∑
x′ νX (x, x′) and

∑
y′ νY(y, y

′), we obtain134 ∑
y′ µπ(x, x′, y, y′) = νX (x, x′)µπ(y|x) and

∑
x′ µπ(x, x′, y, y′) = νY(y, y

′)µπ(x|y). (5)

Summing both sides for all y and x respectively recovers the coupling conditions of Equation (4).135

In this sense, both the causality and coupling conditions can be recovered by the single set of136

equations (5). The following key result shows that, together with the flow constraints of Equation (3),137

this system of equations provides a complete characterization of occupancy couplings.138

Proposition 1. The distribution µ is the induced occupancy coupling of a bicausal coupling π ∈ Πbc139

if and only if there exist λX ∈ RYX
+ and λY ∈ RXY

+ such that the following equations hold:140 ∑
x′,y′

µ(x, y, x′, y′) = γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y) + (1− γ)ν0(x, y) (∀x, y ∈ XY) (6)

∑
y′

µ(x, y, x′, y′) = νX (x, x′)λX (y|x) (∀x, x′, y ∈ XXY) (7)

∑
x′

µ(x, y, x′, y′) = νY(y, y
′)λY(x|y) (∀x, y, y′ ∈ XYY). (8)

Furthermore, if the equations are satisfied for some µ, λX and λY , we also have
∑

y λX (y|x) = 1141

and
∑

x λY(x|y) = 1 for all x and y.142

Thus, the set of equations (6)–(8) uniquely identifies the complete set of occupancy couplings. In143

particular, whenever the constraints are satisfied for some µ, there exists a bicausal coupling π144

inducing µ as its occupancy coupling, and conversely all occupancy couplings satisfy the above145

equations. Further important side results can be read out from the proof, provided in Appendix B.146

3.2 A stochastic primal-dual method147

An immediate consequence of Proposition 1 is that the OT distance between MX and MY can148

be written as the solution of the minimization problem of Equation (2) with respect to µπ as the149

optimization variable, subject to the constraints (6)–(8). Equivalently, it can be written as a saddle150

point of the associated Lagrangian defined as151

L(µ, λ;α, V ) =
∑

xyx′y′

µ(x, y, x′, y′) (c(x, y) + αX (x, x′, y) + αY(x, y, y
′) + γV (x′, y′)− V (x, y))

−
∑
xx′y

νX (x, x′)λX (y|x)αX (x, x′, y)−
∑
xyy′

νY(y, y
′)λY(x|y)αY(x, y, y

′)

+ (1− γ)
∑
xy

ν0(x, y)V (x, y), (9)

where αX ∈ RXXY and αY ∈ RXYY are the Lagrange multipliers associated with constraints (7)152

and (8), and V ∈ RXY are the multipliers for the flow constraint (6). Indeed, by the Lagrange153

multiplier theorem, the optimal value of the original LP can be written as dγ(MX ,MY) =154

minµ,λ maxα,V L(µ, λ;α, V ). Importantly, the gradients of the Lagrangian with respect to dual155

variables αX and αY can be written as expectations with respect to the occupancy measures νX156

and νY , which suggests that the objective may be amenable to stochastic optimization given sample157

access to these distributions.158
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Algorithm 1 SOMCOT
Input: c, η, β, γ, K
Initialize: µ1 = U(XYXY), λX (·|x) = U(Y)
for all x, λY(·|y) = U(X ) for all y, α = 0, V = 0.
For k = 1, 2, . . . ,K:
• Sample Xk, X

′
k ∼ νX and Yk, Y

′
k ∼ νY ,

• compute gradient estimators via Eqs. (14)–(19),
• update primal parameters via Eqs. (20)–(22),
• update dual parameters via Eqs. (23)–(25).
Output: µK = 1

K

∑K
k=1 µk.

Inspired by this observation, we propose a159

primal-dual stochastic optimization algorithm160

that aims to approximate the saddle point of161

the Lagrangian. In particular, we will suppose162

that we have sampling access to the occupancy163

measures νX and νY and use these samples to164

construct stochastic gradient estimators for in-165

crementally updating the primal and dual vari-166

ables via variants of stochastic gradient descent-167

ascent. Concretely, the algorithm proceeds in168

a sequence of iterations k = 1, 2, . . . ,K, up-169

dating the primal variables µk, λX ,k and λY,k via stochastic mirror descent (SMD) with entropic170

regularization and the dual variables Vk, αX ,k and αY,k via stochastic gradient ascent (SGA). We171

describe the gradient-estimation procedures and the update rules below, and provide a high-level172

pseudocode as Algorithm 1. For brevity, we will refer to the algorithm as SOMCOT, for Stochastic173

Optimization for Markov Chain Optimal Transport. Further details about the derivation of SOMCOT174

and a more detailed pseudocode can be found in Appendix C.175

The output. The algorithm terminates after K rounds, and produces the average of the primal176

iterates µK = 1
K

∑K
k=1 µk as output. From this, an estimate of the distance can be computed as177

d̂γ(MX ,MY) = 〈µK , c〉. Averaging the output variables is motivated by the design of SOMCOT as a178

primal-dual method and its theoretical analysis, and it also helps stabilize the quality of the solution.179

Indeed, primal-dual methods are prone to instability and oscillations, which are smoothed out very180

effectively by averaging. We discuss the role of this step and other practical improvements to the181

algorithm in Section 5 below, and provide further comments on the potential usefulness of other side182

products computed by SOMCOT for downstream tasks.183

4 Analysis184

The following theorem is our main theoretical result about the performance of our algorithm.185

Theorem 1. Suppose that ‖c‖∞ ≤ 1. Let µK = 1
K

∑K
k=1 µk be the output of SOMCOT, let µ∗ be186

the optimal occupancy coupling achieving the minimum in Equation (2), and set the learning rates as187

η =

√
log(|X |2 |Y|2)(1− γ)2

K
, ηX =

√
|X | log |Y| (1− γ)2

K
, ηY =

√
|Y| log |X | (1− γ)2

K
,

188

βX =

√
|X |2 |Y|

(1− γ)2K
, βY =

√
|X | |Y|2

(1− γ)2K
, β =

√
|X | |Y|

(1− γ)2K
.

Then, the following bound is satisfied with probability at least 1− δ:189

|〈µK − µ∗, c〉| = O
(

1√
K(1− γ)

(√
|X | |Y| (|X |+ |Y|) +

√
(|X |+ |Y|) log (1/δ)

))
.

Equivalently, for any ε > 0, the output satisfies |〈µK − µ∗, c〉| ≤ ε with probability at least 1− δ if190

the number of iterations is at least K ≥ K0 = O
(

|X ||Y|(|X |+|Y|)+(|X |+|Y|) log(1/δ)
(1−γ)2ε2

)
.191

A perhaps surprising feature of the sample-complexity guarantee is that it scales with the state spaces192

as |X | |Y| (|X |+ |Y|) instead of the full dimensionality of the decision variables, |X |2 |Y|2. Note193

however that each iteration has a computational cost scaling with this full dimensionality. The scaling194

in terms of ε is optimal up to logarithmic factors, as can be deduced from well-known lower bounds195

for the static OT problem (see, e.g., Klatt et al. 2020). Finally, we note that the big-O notation only196

hides numerical constants, and the bound features no problem-dependent factors whatsoever.197

We provide the main idea of the proof below, and relegate the full analysis to Appendix D. The main198

technical idea is to relate the estimated transport cost 〈µK , c〉 to the true optimal transport cost via199
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the analysis of the duality gap associated with the sequence of iterates computed by the algorithm.200

The duality gap GK(µ∗, λ∗;α∗, V ∗) against a set of comparator points (µ∗, λ∗;α∗, V ∗) satisfies201

GK(µ∗, λ∗;α∗, V ∗) =
1

K

K∑
k=1

(L(µk, λk;α
∗, V ∗)− L(µ∗, λ∗;αk, Vk)) . (10)

As is standard for analysis of primal-dual methods, the duality gap can be decomposed into the sum202

of the regrets of the minimizing player controlling µ and λ, and the maximizing player controlling203

α and V , which can be controlled using the well-established of online learning [Cesa-Bianchi and204

Lugosi, 2006, Orabona, 2019]. For the analysis, we will pick the comparator points as follows. For205

the primal variables, we let µ∗ be the occupancy coupling achieving the minimum in Equation (2)206

and let the λ∗ variables be the conditional distributions of Y |X and X|Y under the joint distribution207

µ∗. For the dual variables, we choose208

(α∗, V ∗) = arg max
α∈Dα,V ∈DV

1

K

K∑
k=1

L(µk, λk;α, V ),

where DV = B∞(0, 2
1−γ ) and Dα = B∞(0, 6

1−γ ) are the projection domains for each variable.209

Under these choices, the error can be upper bounded as follows.210

Lemma 1. |〈µK − µ∗, c〉| ≤ GK(µ∗, λ∗, α∗, V ∗).211

The proof of this lemma makes up the bulk of the analysis, and is thus relegated to Appendix D.1. It212

then remains to upper-bound the regrets of the two sets of players, which is routine work that we213

execute in Appendix D.3.214

5 Experiments215

We performed a suite of numerical experiments to study the empirical behavior of our newly proposed216

algorithm, as well as to illustrate some potential applications that are enabled by our method. Due217

to space restrictions, we only show a small portion of the results here, and refer the reader to218

Appendix G for additional results and implementation details (most notably a detailed discussion on219

hyperparameter-tuning).220

Several of the experiments are conducted with a family of processes we call block Markov chains,221

motivated by the framework of block Markov decision processes (or block MDPs, Du et al. 2019).222

This framework is commonly studied in the context of representation learning for reinforcement223

learning, where a standard postulate is that the dynamics of the environment are governed by a224

simple latent structure. Block Markov chains formalize this setting by assuming the existence of225

a latent Markov chain with a small discrete state space, with each latent state generating a unique226

set of observations. Formally, we emulate the block structure by fixing a low-dimensional chain227

MX and another chain MY that is a copy of MX up to an additional irrelevant noise variable. In our228

experiments, we let MX be a uniform random walk on the state space X = {1, 2, . . . , n} and MY229

is a Markov chain on the state space X × {1, 2, . . . , B}, with the value in {1, 2, . . . , B} generated230

uniformly at random. In all experiments, we use a sparse cost function that only allows to clearly231

distinguish between states x = 1 and x = n, and treats all other states as identical.232

Representation learning. Within the family of block Markov processes, the task of representation233

learning is equivalent to finding the mapping between the latent states and the observations and vice234

versa. Our method is very well suited for this task, thanks to the following curious observation.235

Besides the estimated coupling µK and the associated cost, the algorithm outputs other values that236

are potentially useful. Among these, the variables λX = 1
K

∑K
k=1 λX ,k and λY = 1

K

∑K
k=1 λY,k237

are particularly interesting for purposes of representation, as these conditional distributions can be238

interpreted as an encoder-decoder pair, with λX (·|x) and λY(·|y) giving the respective conditional239

distributions of Y |X = x and X|Y = y under the estimate of the optimal coupling. To illustrate240

the potential usefulness of these maps, we conducted a set of experiments on block Markov chains241

with parameters n = 10 and B = 5, and show the encoder-decoder pairs computed by SOMCOT242

in Figure 1. Notably, the algorithm does not make use of any prior structural knowledge of the243

environment: each individual state y is treated as a separate state. Despite this and the very limited244

information revealed by the cost function, a block structure is clearly identified by SOMCOT after245

sufficiently many samples.246
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Figure 1: Encoder-decoder maps learned by the algorithm in a block Markov chain example (n = 10,
B = 5) for sample sizes 1000, 10000 and 100000.

6 Discussion247

In this work, we have explored the use of stochastic methods to compute distances between Markov248

chains. This is still a largely unexplored field, and we believe the results presented here open the door249

to many interesting advances. We outline some of these future research directions we consider to be250

the most promising.251

Most importantly, it remains unclear how to properly scale our algorithm to larger problems with252

potentially infinite state spaces. While we believe that our bounds cannot be improved significantly253

in the case of finite state spaces, addressing infinite state spaces should be possible under appropriate254

structural assumptions. One may take direct inspiration from the OT literature to extend our approach255

to these settings. For instance, parametrizing the dual variables via kernels or neural networks has256

been shown to be an effective approach to solve static OT problems (cf. Genevay et al. 2016, Seguy257

et al. 2018), and extending this idea to our setting is straightforward. The real challenge seems to258

be approximating the primal variables, which correspond to (conditional) probability distributions,259

which are not straightforward to parametrize via modern architectures (at least as long as one is260

interested in theoretically sound methods). We leave the investigation of this very interesting question261

open for future work.262

Among all applications of optimal transport for Markov chains, its use in representation learning263

for RL is particularly interesting to us. Many previous works on this domain have highlighted264

the potential of bisimulation metrics for learning state abstractions, but all theoretically sound265

previous methods for computing such distances required full knowledge of the transition kernels.266

Removing this need brings us closer to realizing this potential. The experiments presented here267

demonstrate the effectiveness of bisimulation metrics in capturing symmetries and latent dynamics of268

Markov chains directly from sampled trajectories, both in random walks and discretized classical269

control environments. Incorporating function approximation along the lines mentioned above could270

significantly enhance these applications.271

Besides the already-mentioned interpretation of the variables λx and λy as encoder-decoder maps,272

there are other side products of SOMCOT that can prove useful for representation learning. Most273

notably, the optimal dual variables αX and αY correspond to the derivatives of the distance with274

respect to the state-transition distributions νX and νY , which is a fact that can prove extremely useful275

for the development of practical methods. Indeed, notice that these distributions themselves are276

differentiable with respect to the transition kernels, which altogether allows one to backpropagate277

through the OT distance as a loss function in representation learning tasks. Successful implementation278

of this idea may lead to strong theoretically sound alternatives to empirically successful methods such279

as MuZero [Schrittwieser et al., 2020]. This latter method uses a loss function remarkably similar to280

our OT distance, albeit with some limitations that disallow its application to stochastic environments281

(cf. Jiang 2024). Once again, we leave this direction for future work.282
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A Related work397

As mentioned in the introduction, the problem we study in this paper has been extensively studied in398

(at least) two major research communities. Within the optimal-transport community, the problem399

of computing distances between stochastic processes has been studied under the names “adapted”,400

“causal” or “bicausal” optimal transport [Pflug and Pichler, 2012, Lassalle, 2018, Backhoff-Veraguas401

et al., 2017, Eckstein and Pammer, 2024]. Considering the special case of Markov chains (as we do402

in the present paper), Moulos [2021], O’Connor et al. [2022] and Brugère et al. [2024] proposed403

approximate dynamic programming algorithms based on the observation that computing OT distances404

between Markov chains can be reduced to a problem of optimal control in Markov decision processes.405

Calo et al. [2024] developed a novel linear programming framework for computing OT distances406

between Markov chains, and showed that such distances are equivalent to bisimulation metrics.407

However, previous approaches in this line of work all assume known transition dynamics.408

Within the theoretical computer science community, the study of bisimulation metrics progressed409

quite differently: after an initial flurry of foundational works of Desharnais et al. [1999], van410

Breugel and Worrell [2001] and Desharnais et al. [2002], surprisingly few studies have addressed411

computational matters (one rare example being the work of Chen et al. [2012]). Several recent works412

in reinforcement learning aim to learn approximate bisimulation metrics from sample transitions413

using deep learning [Castro, 2020, Zhang et al., 2021, Chen and Pan, 2022, Kemertas and Jepson,414

2022]. However, these approximate bisimulation metrics are not well-founded in theory and as a415

consequence, do not enjoy the theoretical guarantees of the original metrics. In contrast, the stochastic-416

optimization method we develop in this paper is firmly rooted in a theoretical understanding of the417

problem and comes with provable computational and sample-complexity guarantees.418

The use of stochastic solvers to compute OT distances has been explored in several past works, mostly419

in the context of static optimal transport between probability distributions. A good part of these420

methods are based on the observation that the static OT problem is formulated as a linear program, and421

the associated unconstrained dual optimization problem directly lends itself to numerical optimization.422

This view has been exploited by works like Genevay et al. [2016], Arjovsky et al. [2017], and Seguy423

et al. [2018], with some rigorous performance guarantees provided by Ballu et al. [2020]. Another424

line of work makes use of Monte Carlo estimates of OT distances [Genevay et al., 2018, Fatras et al.,425

2019, 2021, Mensch and Peyré, 2020]. To our knowledge, the idea of computing OT distances via426

stochastic primal-dual methods as we do in the present work has not been explored in this literature,427

and thus our contribution may be of independent interest within this context as well.428

B Equivalence of the LP formulation and the bisimulation metric429

In this section we prove Proposition 1, which together with Equation (2) implies that the novel LP430

formulation is equivalent to Equation (1) for computing the bisimulation metric. Our proof uses431

the linear programming formulation of Calo et al. [2024] as a starting point. Concretely, Calo et al.432

[2024] prove that µ is the induced occupancy coupling of a bicausal coupling π ∈ Πbc if and only if433

µ satisfies the following set of constraints:434 ∑
x′,y′

µ(x, y, x′, y′) = γ
∑
x′,y′

µ(x′, y′, x, y) + (1−γ)ν0(x, y) (∀x, y ∈ X×Y), (11)

∑
y′

µ(x, y, x′, y′) =
∑
x′′,y′

µ(x, y, x′′, y′)PX (x′|x) (∀x, y, x′ ∈ X×Y×X ), (12)

∑
x′

µ(x, y, x′, y′) =
∑
x′,y′′

µ(x, y, x′, y′′)PY(y
′|y) (∀x, y, y′ ∈ X×Y×Y). (13)

Importantly, the above constraints provide a complete characterization of occupancy couplings: not435

only do occupancy couplings satisfy all equations, but any µ satisfying the three linear systems of436

equations above is a valid occupancy coupling (cf. Lemma 1 in Calo et al., 2024).437

To prove the proposition it is sufficient to show that µ satisfies Equations (6)–(8) if and only if it438

satisfies Equations (11)–(13). Equation (6) is identical to Equation (11), and thus we are left with439

showing that Equations (7) and (8) are equivalent to Equations (12) and (13), respectively. We will440

show the first of these claims, and note that the second claim will follow by symmetry. Within441
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the proof, we will repeatedly make use of the shorthand notation νX (x) =
∑

x′ νX (x, x′) and the442

easy-to-see fact that PX (x′|x) = νX (x, x′)/νX (x).443

First, let us assume that µ ∈ RX×Y×X×Y satisfies Equation (12). Then, it is easy to check that444

Equation (7) is satisfied with the choice λX (y|x) =
∑

x′,y′ µ(x, y, x′, y′)/νX (x), making use of445

the relation between νX and PX stated above. Conversely, assume that µ, λX satisfy Equation (7).446

Summing both sides over x′ gives
∑

x′,y′ µ(x, y, x′, y′) = νX (x)λX (y|x), which can be plugged447

back into Equation (7) to obtain448 ∑
y′

µ(x, y, x′, y′) = νX (x, x′)λX (y|x) = PX (x′|x)νX (x)λX (y|x) = PX (x′|x)
∑
x′,y′

µ(x, y, x′′, y′),

thus confirming that Equation (12) is indeed satisfied.449

For the last part, let us define µX as µX (x, x′) =
∑

y,y′ µ(x, y, x′, y′) for each (x, x′) whenever450

Equations (6)–(8) are satisfied. As per the above argument, Equations (3) and (12) are also satisfied,451

and thus summing both equations over y yields452 ∑
x′

µX (x, x′) = γ
∑
x′

µX (x′, x) + (1− γ)ν0,X (x),

µX (x, x′) = PX (x′|x)
∑
x′′

µX (x, x′′).

A standard argument (provided as Lemma 12 in Appendix F) shows that the unique solution to this453

system of equations is equal to the marginal occupancy measure νX . This implies454 ∑
y

λX (y|x) =
∑
y

∑
x′,y′ µ(x, y, x′, y′)

νX (x)
=

∑
x′ µX (x, x′)

νX (x)
=

∑
x′ νX (x, x′)

νX (x)
= 1,

which concludes the proof.455

C Further details about the algorithm456

In this section we describe some further details about the derivation of our algorithm (SOMCOT) that457

were omitted from the main text. Algorithm 2 provides a full pseudocode for SOMCOT.458

The gradient estimators. For constructing the gradient estimators needed for the updates, we first459

sample transitions (Xk, X
′
k) ∼ νX and (Yk, Y

′
k) ∼ νY from the marginal occupancy measures of460

MX and MY , and let Fk denote the record of all transition data drawn until the end of round k. The461

primal updates are defined in terms of the following gradient estimates:462

gk,µ(x, y, x
′, y′) = c(x, y)− αX ,k(x, x

′, y)− αY,k(x, y, y
′) + γVk(x

′, y′)− Vk(x, y) (14)

g̃k,λX (y|x) = 1{
Xk,X′

k=x,x′
}αX ,k(x, x

′, y) (15)

g̃k,λY (x|y) = 1{
Yk,Y ′

k=y,y′
}αY,k(x, y, y

′). (16)

Clearly, we have gk,µ = ∇µL(µk, λk;αk, Vk). Furthermore, it is easy to check that463

E [ g̃k,λX | Fk−1] = ∇λXL(µk, λk;αk, Vk) and E [ g̃k,λY | Fk−1] = ∇λYL(µk, λk;αk, Vk). Simi-464

larly, we can define the gradient estimates for the dual variables as465

g̃k,αX (x, x
′, y) =

∑
y′

µk(x, y, x
′, y′)− 1{

Xk,X′
k=x,x′

}λX ,k(y|x) (17)

g̃k,αY (x, y, y
′) =

∑
x′

µk(x, y, x
′, y′)− 1{

Yk,Y ′
k=y,y′

}λY,k(x|y) (18)

gk,V (x, y) =
∑
x′y′

µk(x, y, x
′, y′)− (1− γ)ν0(x, y)− γ

∑
x̂,ŷ

µk(x̂, ŷ, x, y), (19)

which are again easily seen to satisfy E [ g̃k,αX | Fk−1] = ∇αXL(µk, λk;αk, Vk), E [ g̃k,αY | Fk−1] =466

∇αYL(µk, λk;αk, Vk) and gk,V = ∇V L(µk, λk;αk, Vk).467
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The update rules. The primal variables are updated via stochastic mirror descent with appropriately468

chosen entropic regularization functions. For µ, the updates are given as469

µk+1(x, y, x
′, y′) =

µk(x, y, x
′, y′) exp(−ηgk,µ(x, y, x′, y′))∑

x̂ŷx̂′ŷ′ µk(x̂, ŷ, x̂′, ŷ′) exp(−ηgk,µ(x̂, ŷ, x̂′, ŷ′))
, (20)

with η > 0 being a stepsize parameter, and the λX variables are updated as470

λX ,k+1(y|x) =
λX ,k(y|x) exp(−ηX g̃k,λX (y|x))∑
ŷ λX ,k(ŷ|x) exp(−ηX g̃k,λX (ŷ|x))

, (21)

λY,k+1(x|y) =
λY,k(x|y) exp(−ηY g̃k,λY (x|y))∑
x̂ λY,k(x̂|y) exp(−ηY g̃k,λY (x̂|y))

, (22)

with respective stepsize parameters ηX , ηY > 0. Note that due to the design of the gradient estimators,471

each iteration only needs to update these variables locally at λX (·|Xk) and λY(·|Yk) at the sampled472

states Xk and Yk. For the dual variables, we define ΠD as the orthogonal projection operator onto a473

convex set D, and implement the following projected stochastic gradient ascent updates:474

αX ,k+1 = ΠDα
[αX ,k − βX g̃k,αX ] , (23)

αY,k+1 = ΠDα
[αY,k − βY g̃k,αY ] , (24)

Vk+1 = ΠDV
[Vk − βgk,V ] , (25)

where DV = B∞(0, 2
1−γ ) and Dα = B∞(0, 6

1−γ ) are the projection domains for each variable, and475

β, βX , βY > 0 are the stepsize parameters.476

At a high level, the algorithm aims to find the saddle point of the Lagrangian (9) by performing477

primal-dual updates for the two sets of variables (µ, λ) and (α, V ), referred to as minimizing and478

maximizing players, respectively (or often simply call them min and max players). Both sets of479

players maintain a sequence of iterates (µk, λk) and (αk, Vk), which are updated using versions of480

online stochastic mirror descent, described below in detail. For the updates, the µ and λ players move481

in the direction of the negative gradient of the Lagrangian evaluated at (µk, λk;αk, Vk), and the α482

and V players move in the direction of the positive gradient.483

Since some of these gradients involve the occupancy measures νX and νY , they cannot be computed484

exactly without perfect knowledge of these distributions. However, since the dependence on νX and485

νY is always linear, it is straightforward to obtain unbiased gradient estimators given only sample486

access to the chains MX and MY . We provide a detailed guide for sampling from these distributions487

in Appendix C.4.488

The remainder of the section provides a detailed derivation of the gradients and update rules used489

in each iteration. We begin by introducing the Mirror Descent algorithm that forms the basis of the490

update rules for each variable.491

C.1 Online Stochastic Mirror Descent492

Online Stochastic Mirror Descent (OSMD) is an algorithm for the problem of online linear optimiza-493

tion, where in a sequence of rounds k = 1, 2, . . . ,K, the following steps are repeated:494

1. The online learner picks a decision zk taking values in the vector space Z ,495

2. the environment picks a linear function gk : Z → R,496

3. the online learner incurs loss 〈gk, zk〉,497

4. the online learner observes an unbiased estimate g̃k ∈ Z∗ of the loss function.498

The sequence of steps above defines a filtration (Fk)k, and the loss estimate g̃k is assumed to satisfy499

E [ g̃k| Fk−1] = gk. Typically, the vectors gk are subgradients of a sequence of convex loss functions,500

and thus we will often refer to them with this term, and also call the vectors g̃k stochastic subgradients501

(or simply stochastic gradients). OSMD computes a sequence of updates based on these noisy gradient502

estimates and a convex and differentiable distance-generating function Ψ : Z → R. Concretely,503

OSMD operates with the Bregman divergence BΨ of Ψ, defined for each pair z, z′ ∈ Z as504

BΨ(z‖z′) = Ψ(z)−Ψ(z′)− 〈∇Ψ(z′), z − z′〉.
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Algorithm 2 Stochastic Optimization for Markov Chain Optimal Transport (SOMCOT)

Require: Convex sets DαX ⊂ RX×X×Y ,DαY ⊂ RX×Y×Y ,DV ⊂ RX×Y ,
Initial values µ1, λX ,1, λY,1, αX ,1, αY,1, V1,
Learning rates η, ηX , ηY , βX , βY , β > 0.

1: for k = 1, . . .K − 1 : do
2: Step 1: Draw samples from the Markov chains
3: Receive (Xk, X

′
k) ∼ νX , (Yk, Y

′
k) ∼ νY

4: Step 2: Compute gradients or stochastic gradients
5: gk,µ(x, y, x

′, y′)← c(x, y)− αX ,k(x, x
′, y)− αY,k(x, y, y

′) + γVk(x
′, y′)− Vk(x, y)

6: g̃k,λX (y|x)← 1{Xk=x}αX ,k(x,X
′
k, y)

7: g̃k,λY (x|y)← 1{Yk=y}αY,k(x, y, Y
′
k)

8: g̃k,αX (x, x
′, y)←

∑
y′ µk(x, y, x

′, y′)− 1{Xk,X′
k=x,x′}λX ,k(y|x)

9: g̃k,αY (x, y, y
′)←

∑
x′ µk(x, y, x

′, y′)− 1{Yk,Y ′
k=y,y′}λY,k(x|y)

10: gk,V (x, y)←
∑

x′,y′ µk(x, y, x
′, y′)− (1− γ)ν0(xy)− γ

∑
x̂,ŷ µk(x̂, ŷ, x, y)

11: Step 3: Update primal variables
12: µk+1(x, y, x

′, y′) ∝ µk(x, y, x
′, y′) exp(−ηgk,µ(x, y, x′, y′))

13: λX ,k+1(y|x) ∝ λX ,k(y|x) exp(−ηX g̃k,λX (y|x))
14: λY,k+1(x|y) ∝ λY,k(x|y) exp(−ηY g̃k,λY (x|y))
15: Step 4: Update dual variables
16: αX ,k+1 ← ΠDαX

(αX ,k − βX g̃k,αX )

17: αY,k+1 ← ΠDαY
(αY,k − βY g̃k,αY )

18: Vk+1 ← ΠDV
(Vk − βgk,V )

19: end for
20: Output µK = 1

K

∑K
k=1 µk.

OSMD starts with an initial point z1 ∈ Z , and computes each subsequent iterate using the recursive505

update rule506

zk+1 = arg min
z∈Z

〈g̃k, z〉+
1

η
BΨ(z‖zk), (26)

where η > 0 is called the learning rate.507

Each of the update rules used by SOMCOT follows from instantiating OSMD with a specific decision508

space Z , a distance-generating function Ψ and a noisy subgradient estimator. Concretely, we will509

make use of the following instances and corresponding update rules of MD, whose derivations are510

available in standard textbooks (e.g. Orabona 2019).511

Proposition 2. When Z = Rd and Ψ is the squared Euclidean norm defined as Ψ(z) = 1
2 ‖z‖

2
2 for512

each z ∈ Z , the OSMD update reduces to the projected stochastic gradient descent update rule513

zk+1 = ΠZ(zk − ηg̃k),

where ΠZ is the orthogonal projection onto the set Z defined as ΠZ(x) = arg miny∈Z ‖x− y‖2.514

Proposition 3. When Z = ∆X is the probability simplex on a finite set X and Ψ is the negative515

entropy defined as Ψ(p) =
∑

x p(x) log p(x), p ∈ ∆X , the OSMD update reduces to516

pk+1(x) =
pk(x)e

−ηg̃k(x)∑
y pk(y)e

−ηg̃k(y)
(∀x ∈ X ).

Proposition 4. When Z = ∆Y|X is the conditional simplex on finite sets X and Y and Ψ is the total517

negative entropy Ψ(p) =
∑

x,y p(y|x) log p(y|x), p ∈ ∆Y|X , the OSMD update reduces to518

pk+1(y|x) =
pk(y|x)e−ηg̃k(y|x)∑
ȳ pk(ȳ|x)e−ηg̃k(ȳ|x)

(∀x, y ∈ XY).

C.2 Primal updates519

In this section we derive the gradients and update rules of the primal variables µ and λX . The gradient520

and update rule of λY follow by symmetry.521
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For µ, first notice that any valid occupancy coupling µ is an element of the simplex ∆XYXY : summing522

the flow constraint in (6) over x and y immediately yields
∑

x,y,x′,y′ µ(x, y, x′, y′) = 1. Thus, it is523

natural to enforce this constraint throughout the execution of the algorithm and use OSMD with the524

entropy regularizer given in Proposition 3. In order to derive the update rule, it remains to compute525

the gradients of the Lagrangian with respect to µ, which is given as526

∂L
∂µ

[µ, λ;α, V ](x, y, x′, y′) = c(x, y)− αX (x, x′, y)− αY(x, y, y
′) + γV (x′, y′)− V (x, y). (27)

In each iteration k, the algorithm computes the gradient gk,µ = ∂L
∂µ [µk, λX ,k, λY,k;αX ,k, αY,k, Vk],527

which can be used as the unbiased estimator g̃k. Altogether, this yields the update rule on line 12 of528

Algorithm 2.529

As for the λX variables, notice that Proposition 1 implies that λX belongs to the conditional simplex530

∆Y|X = {λ ∈ RY×X
+ ,∀x ∈ X ,

∑
y λ(y|x) = 1}. Thus, it is natural to use the total negative entropy531

as regularization function (as suggested in Proposition 4). For selecting the update direction, we note532

that the gradient of the Lagrangian with respect to λX is533

∂L
∂λX

[µ, λ;α, V ](y|x) =
∑
x′

νX (x, x′)αX (x, x′, y) = EX,X′∼νX

[
1{X=x}αX (x,X ′, y)

]
. (28)

Thus, we can obtain a stochastic gradient estimate g̃k,λX of ∂L
∂λX

[µk, λX ,k, λY,k;αX ,k, αY,k, Vk]534

by sampling a transition (Xk, X
′
k) from νX and setting g̃k,λX = 1{Xk=x}αX ,k(x,X

′
k, y). Putting535

things together, this yields the update rules on lines 13–14 of Algorithm 2.536

C.3 Dual updates537

We now move our attention to the dual variables. Again, we will derive the gradients and update538

rules for αX and V , and the gradient and update rule for αY follow by symmetry. Since we are539

maximizing over the dual variables which are not restricted to any simplex, we update them using540

projected (stochastic) gradient ascent, which is why the gradients are negated below. The feasible sets541

for the dual variables are chosen to enable using Lemma 2 for bounding the estimation error—see542

Appendix D.1 for details.543

The gradient of the Lagrangian with respect to αX is defined as544

∂L
∂αX

[µ, λ;α, V ](x, x′, y) = −

∑
y′

µ(x, y, x′, y′)− νX (x, x′)λX (y|x)


= −EXk,X′

k∼νX

∑
y′

µ(x, y, x′, y′)− 1{Xk,X′
k=x,x′}λX (y|x)

 .

Our algorithm will use the update direction g̃k,αX (x, x
′, y) =

∑
y′ µk(x, y, x

′, y′) −545

1{Xk,X′
k=x,x′}λX ,k(y|x). We will apply OSMD to update αX using a learning rate βX and the546

regularizer in Proposition 2, which yields the update rule on lines 16–17 of Algorithm 2.547

The gradient of the Lagrangian with respect to V is given by548

∂L
∂V

[µ, λ;α, V ](xy) = −

∑
x′,y′

µ(x, y, x′, y′)− (1− γ)ν0(x, y)− γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y)

 .

We use the update direction gk,V =
∑

x′,y′ µk(x, y, x
′, y′)− (1−γ)ν0(x, y)−γ

∑
x̂,ŷ µk(x̂, ŷ, x, y)549

and apply OSMD to update V using a learning rate β and the regularizer in Proposition 2, which550

yields the update rule on line 18 of Algorithm 2.551

C.4 Sampling from νX and νY552

A key step in constructing our gradient estimators (and thus running our algorithm) is drawing553

samples from the occupancy measures νX and νY . Here we provide further details about how to554

perform this operation in practice.555
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In order to generate a sample from the occupancy measure, we let G be a geometric random variable556

with mean 1
1−γ , and recall the definition of the marginal occupancy measure νX to write557

νX (x, x′) = (1− γ)

∞∑
t=0

γtP [Xt = x,Xt+1 = x′] =

∞∑
t=0

P [G = t]P [Xt = x,Xt+1 = x′]

= P [XG = x,XG+1 = x′] .

Thus, one can obtain independent samples from νX by first sampling a geometric stopping time G,558

sample a sequence (X0, X1, . . . , XG, XG+1), and keep the last pair of states XG, XG+1.559

We remark that the task of sampling from an occupancy measure is common in reinforcement560

learning, and in particular it is necessary for correctly implementing policy gradient methods. To561

avoid sampling an entire sequence in each iteration, it is standard practice to replace samples from the562

occupancy measure with arbitrary sample trajectories generated by the Markov chain. Specifically, it563

is common to ignore discounting and draw samples directly from trajectories in which consecutive564

state pairs are no longer independent. We expect that, like most other RL algorithms, our method is565

also resilient to such abuse, and can be fed with sample pairs drawn from longer trajectories without566

resets or throwing away samples to ensure independence.567

D Analysis568

This section provides the complete details for the proof of our main result, Theorem 1. Throughout569

the analysis, we will assume ‖c‖∞ ≤ 1. Completing the outline provided in Section 4 requires filling570

two gaps: proving Lemma 1, and bounding the duality gap in terms of the regrets of the two players.571

These are respectively done in Sections D.1 and D.3 below (with Section D.2 providing additional572

technical tools for the proof of Lemma 1). Putting the two parts together complete the proof.573

D.1 Proof of Lemma 1574

The majority of our theoretical analysis is dedicated to proving the error bound stated as Lemma 1,575

recalled here for convenience as576

|〈µK − µ∗, c〉| ≤ GK(µ∗, λ∗, α∗, V ∗). (29)

As a first step towards this proof, we first need to define a technical tool that will allow us to quantify577

the constraint violations associated with the output µK . Indeed, one challenge in the analysis is that578

µK does not necessarily satisfy the constraints (6)–(8) exactly. We quantify this effect by defining579

total absolute constraint violations associated with the primal variables µ, λX and λY respectively by580

∂F(µ) =
∑
x,y

∣∣∣∣∣∣
∑
x′,y′

µ(x, y, x′y′)− γ
∑
x̂,ŷ

µ(x̂, ŷ, x, y)− (1− γ)ν0(x, y)

∣∣∣∣∣∣
∂CX (µ, λX ) =

∑
x,x′,y

∣∣∣∣∣∣
∑
y′

µ(x, y, x′, y′)− νX (x, x′)λX (y|x)

∣∣∣∣∣∣
∂CY(µ, λY) =

∑
x,y,y′

∣∣∣∣∣∑
x′

µ(x, y, x′, y′)− νY(y, y
′)λY(x|y)

∣∣∣∣∣ .
For the sake of analysis, we will make use of a rounding procedure that will convert µK into a valid581

occupancy coupling r(µK) that satisfies all constraints. Importantly, this rounding procedure never582

has to be executed in reality: it is only used as a device within the analysis. The details of this583

rounding process (which is an adaptation of a method developed by Calo et al. 2024) are provided in584

Appendix D.2. The following lemma provides an upper bound on the rounding error in terms of the585

total absolute constraint violations.586

Lemma 2. Let µ ∈ ∆XYXY and r(µ) be its rounding (as defined in Appendix D.2), and λX and λY587

be arbitrary. Then, we have588

‖µ− r(µ)‖1 ≤
3CX (µ, λX ) + 3CY(µ, λY) + ∂F(µ)

1− γ
. (30)
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The proof is provided along with all relevant definitions in Appendix D.2. With this rounding process589

and its guarantees at hand, we can rewrite the absolute error between the cost estimate 〈µK , c〉 and590

the true cost d(MX ,MY) = 〈µ∗, c〉 as follows:591

|〈µK − µ∗, c〉| ≤ 〈r(µK)− µ∗, c〉+ ‖r(µK)− µK‖1 ‖c‖∞
≤ 〈µK − µ∗, c〉+ 2 ‖µK − r(µK)‖1 ‖c‖∞ .

(31)

Here, the first step follows from the triangle inequality and the crucially important fact that 〈r(µK)−592

µ∗, c〉 ≥ 0 thanks to the feasibility of r(µK) and the optimality of µ∗.593

It now only remains to relate the quantity appearing on the right-hand side of the above bound with594

the duality gap. To this end, we define the shorthand λX = 1
K

∑K
k=1 λX ,k and λY = 1

K

∑K
k=1 λY,k595

and recall the choice596

(α∗, V ∗) = arg max
α∈Dα,V ∈DV

1

K

K∑
k=1

L(µk, λk;α, V ).

Then, by plugging these variables into the Lagrangian, it is easy to check that597

1

K

K∑
k=1

L(µk, λk;α
∗, V ∗) = 〈µK , c〉+ 6CX (µK , λX ) + 6CY(µK , λY) + 2∂F(µK)

1− γ
,

which, by using Lemma 2, implies the following bound:598

〈µK , c〉+ 2 ‖µK − r(µK)‖1 ≤
1

K

K∑
k=1

L(µk, λk;α
∗, V ∗)

On the other hand, it is easily verified that 〈µ∗, c〉 = L(µ∗, λ∗;α, V ) holds for any choice of α and599

V , thanks to the fact that µ∗ and λ∗ verify all the constraints of the LP. Putting this together with600

Equation (31), we obtain that the error can be bounded in terms of the duality gap at the above-defined601

comparator (µ∗, λ∗, α∗, V ∗) as602

|〈µK − µ∗, c〉| ≤ GK(µ∗, λ∗, α∗, V ∗).

This concludes the proof of Lemma 1.603

D.2 Rounded coupling and rounding error604

We describe the process and guarantees of rounding an (approximate) occupancy coupling µ ∈605

RXYXY
+ . We note that computing this rounding requires knowledge of νX , but this does not cause606

any practical problems since the rounding is only ever executed in the analysis. For the rounding607

process itself, we first introduce the state-occupancy measure νµ(x, y) =
∑

x′y′ µ(x, y, x′, y′), and608

we define the associated transition coupling πµ as the kernel πµ : XY → ∆XY with entries609

πµ(x
′, y′|x, y) =

{
µ(x,y,x′,y′)

νµ(x,y)
if νµ(x, y) 6= 0,

PX (x′|x)PY(y
′|y) otherwise.

As shown by Calo et al. [2024], each transition coupling π : XY → ∆XY induces a unique occupancy610

coupling µπ , and that the occupancy induced by πµ is valid if and only if it equals µ (i.e., if µπµ = µ611

holds). For more details, we refer to Appendix B.2 in Calo et al. [2024].612

Following Calo et al. [2024], we will apply the rounding procedure of Altschuler et al. [2017,613

Algorithm 2] to πµ to obtain a valid transition coupling r(πµ), and then extract the occupancy614

coupling induced by r(πµ). More precisely, for two probability distributions p ∈ ∆(X ), q ∈ ∆(Y),615

the set of valid couplings is defined as Up,q = {P ∈ RX×Y
+ : P · 1 = p;PT · 1 = q}. For a616

nonnegative matrix F ∈ RX×Y
+ , the rounding procedure outputs a valid coupling r(F, p, q) ∈ Up,q.617

By Lemma 7 of Altschuler et al. [2017], the rounded coupling satisfies618

‖r(F, p, q)− F‖1 ≤ 2(‖F · 1‖+
∥∥FT · 1

∥∥).
For completeness the procedure is detailed in Algorithm 3.619
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Algorithm 3 Rounding procedure for couplings
Input: approximate coupling F , marginals p, q
X ← diag(min(p/(F · 1),1))
F ′ ← XF
Y ← diag(min(q/(F ′> · 1),1))
F ′′ ← F ′Y
errp = p− F ′′ · 1, errq = q − F ′′> · 1
Output: G← F ′′ + errperr>q / ‖errp‖1

This procedure is not symmetric, and thus we consider the following symmetrized procedure defined620

as621

rsym(F, p, q) =
r(F, p, q) + r(FT , q, p)T

2
.

To obtain the rounded transition coupling, we apply the rounding procedure individually for each622

pair of states x, y. In particular, for a transition kernel πµ : XY → ∆XY , we define its rounded623

counterpart π̃ = r(π) with entries624

π̃(·|x, y) = rsym(π(·|x, y), PX (·|x), PY(·|y)).
With some abuse of notation, we will now denote as r(µ) the occupancy coupling induced by r(πµ).625

Because r(πµ) is a valid transition coupling, r(µ) is a valid occupancy coupling. The following626

derivations will relate the distance between r(µ) and µ to the total absolute constraint violations of µ,627

thus providing a proof for Lemma 2.628

To make the subsequent derivations easier, we will define some handy notation. We first define629

the operator E : ∆XYXY → ∆XY via its action on any µ as (Eµ)(x, y) =
∑

x̂,ŷ µ(x̂, ŷ, x, y), and630

note that this allows us to rewrite the flow condition (6) in the form νµ = γEµ + (1 − γ)ν0. For631

a state-distribution ν ∈ ∆XY and a kernel π : XY → ∆XY , we define the composition ν ◦ π as632

the distribution p with entries p(x, y, x′, y′) = ν(x, y)π(x′, y′|x, y). We will specifically use the633

notation ∆(µ) = νµ ◦ (r(πµ)− πµ). Armed with all this notation, we bound the `1 distance between634

r(µ) and µ as635

‖r(µ)− µ‖1 =
∥∥νr(µ) ◦ r(πµ)− νµ ◦ πµ

∥∥
=
∥∥νr(µ) ◦ r(πµ)− νµ ◦ r(πµ) + νµ ◦ r(πµ)− νµ ◦ πµ

∥∥
≤
∥∥νr(µ) − νµ

∥∥
1
+ ‖νµ ◦ (r(πµ)− πµ)‖1

=
∥∥νr(µ) − (1− γ)ν0 + (1− γ)ν0 − νµ

∥∥
1
+ ‖∆(µ)‖1

= ‖γEr(µ)− γEµ+ [γEµ+ (1− γ)ν0 − νµ]‖1 + ‖∆(µ)‖1
≤ γ ‖r(µ)− µ‖1 + ∂F(µ) + ‖∆(µ)‖1 ,

where the second-to-last line uses the fact that r(µ) is a valid occupancy coupling and as such satisfy636

the flow condition (6), and we have recalled the definition of ∂F(µ) stated in the main text. After637

reordering, we obtain638

‖r(µ)− µ‖1 ≤
∂F(µ) + ‖∆(µ)‖1

1− γ
,

and thus it remains to upper bound ‖∆(µ)‖1. This is done in the following lemma, using which639

concludes the proof of Lemma 2.640

Lemma 3. For any µ ∈ ∆XYXY , and any λX : X → ∆Y and λY : Y → ∆X , we have641

‖∆(µ)‖1 ≤ 3∂CY(µ, λY) + 3∂CX (µ, λX ).642

Proof. By Lemma 7 of Altschuler et al. [2017], we have that for arbitrary state pairs x, y, the643

following is satisfied:644

‖r(πµ)(·|x, y)− πµ(·|x, y)‖1

≤ 2

∑
x′

∣∣∣∣∣∣PX (x′|x)−
∑
y′

πµ(x
′, y′|x, y)

∣∣∣∣∣∣+
∑
y′

∣∣∣∣∣PY(y
′|y)−

∑
x′

πµ(x
′, y′|x, y)

∣∣∣∣∣
 .
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By symmetry, this directly gives645

‖rsym(πµ)(·|x, y)− πµ(·|x, y)‖1

≤ 3

2

∑
x′

∣∣∣∣∣∣PX (x′|x)−
∑
y′

πµ(x
′, y′|x, y)

∣∣∣∣∣∣+
∑
y′

∣∣∣∣∣PY(y
′|y)−

∑
x′

πµ(x
′, y′|x, y)

∣∣∣∣∣
 .

Now, multiplying both sides by νµ(x, y), we get646

∆(µ)(x, y) = νµ(x, y) ‖rsym(πµ)(·|x, y)− πµ(·|x, y)‖1

≤ 3

2

∑
x′

∣∣∣∣∣∣PX (x′|x)νµ(x, y)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣+
∑
y′

∣∣∣∣∣PY(y
′|y)νµ(x, y)−

∑
x′

µ(x, y, x′, y′)

∣∣∣∣∣
.

The first term on the right-hand side of the above expression can be bounded as follows:647 ∑
x′

∣∣∣∣∣∣PX (x′|x)νµ(x, y)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣
=
∑
x′

∣∣∣∣∣∣PX (x′|x)νµ(x, y)− νX (x, x′)λX (y|x) + νX (x, x′)λX (y|x)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣
(i)
≤
∑
x′

|PX (x′|x)νµ(x, y)− νX (x, x′)λX (y|x)|+

∣∣∣∣∣∣νX (x, x′)λX (y|x)−
∑
y′

µ(x, y, x′, y′)

∣∣∣∣∣∣
=
∑
x′

PX (x′|x) |νµ(x, y)− νX (x)λX (y|x)|+ ∂CX (µ, λX )

(ii)
= |νµ(x, y)− νX (x)λX (y|x)|+ ∂CX (µ, λX )

(iii)
=

∣∣∣∣∣∣
∑
x′,y′

µ(x, y, x′, y′)−
∑
x′

νX (x)PX (x′|x)λX (y|x)

∣∣∣∣∣∣+ ∂CX (µ, λX )

≤
∑
x′

∣∣∣∣∣∣
∑
y′

µ(x, y, x′, y′)− νX (x, x′)λX (y|x)

∣∣∣∣∣∣+ ∂CX (µ, λX )

= 2∂CX (µ, λX ).

Here, we used the triangle inequality for (i) and the fact that
∑

x′ PX (x′|x) = 1 for (ii) and (iii). The648

proof is concluded by repeating the same argument for the constraint violations ∂CY(µ, λY), and649

plugging the results back into the previous inequalities.650

D.3 Regret bounds of the primal and dual sequence651

This section provides an upper bound on the duality gap as defined in Equation (10), in terms of652

the regrets of the two set of algorithms controlling the primal and dual variables. Recalling the653

convention established in Appendix C, we will refer to the algorithms as the min- and max-players,654

with their regrets respectively defined as655

regretmax
K (α∗, V ∗) =

K∑
k=1

(
L(µk, λk;α

∗, V ∗)− L(µk, λk;αk, Vk)
)

regretmin
K (µ∗, λ∗) =

K∑
k=1

(
L(µk, λk;αk, Vk)− L(µ∗, λ∗;αk, Vk)

)
,

where our notation emphasizes that each regret is measured against the comparators α∗, V ∗ and656

µ∗, λ∗. With this notation, the duality gap can be rewritten as657

GK(µ∗, λ∗;α∗, V ∗) =
regretmax

K (α∗, V ∗) + regretmin
K (µ∗, λ∗)

K
. (32)
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With a mild abuse of our earlier notation, we write out the full expression of the Lagrangian in terms658

of the αX , αY and λX , λY variables as L(µ, λX , λY ;αX , αY , V ). The regret terms that need to be659

bounded can be further decomposed in terms of the following individual terms defined for each set of660

primal and dual variables:661

regretmax
K (α∗

X ) =

K∑
k=1

L(µk, λX ,k, λY,k;α
∗
X , α∗

Y , V
∗)− L(µk, λX ,k, λY,k;αX ,k, α

∗
Y , V

∗)

regretmax
K (α∗

Y) =

K∑
k=1

L(µk, λX ,k, λY,k;αX ,k, α
∗
Y , V

∗)− L(µk, λX ,k, λY,k;αX ,k, αY,k, V
∗)

regretmax
K (V ∗) =

K∑
k=1

L(µk, λX ,k, λY,k;αX ,k, αY,k, V
∗)− L(µk, λX ,k, λY,k;αX ,k, αY,k, Vk)

regretmin
K (µ∗) =

K∑
k=1

L(µk, λX ,k, λY,k;αX ,k, αY,k, Vk)− L(µ∗, λX ,k, λY,k;αX ,k, αY,k, Vk)

regretmin
K (λ∗

X ) =
K∑

k=1

L(µ∗, λX ,k, λY,k;αX ,k, αY,k, Vk)− L(µ∗, λ∗
X , λY,k;αX ,k, αY,k, Vk)

regretmin
K (λ∗

Y) =

K∑
k=1

L(µ∗, λ∗
X , λY,k;αX ,k, αY,k, Vk)− L(µ∗, λ∗

X , λ∗
Y ;αX ,k, αY,k, Vk)

Thanks to the bilinearity of the Lagrangian, each of these terms can be seen as the regret of an online662

learning algorithm with linear loss / gain functions and decision variables taking values in a convex663

decision space Z (embedded within some Euclidean space). In particular, each of these regrets can664

be written in the following form for some sequences (gk)k ∈ Rd, (zk)k ∈ Z and z ∈ Z:665

regretK(z∗) =

K∑
k=1

〈gk, zk − z∗〉.

As noted in Section C, our algorithm can be understood as running an instance of Online Stochastic666

Mirror Descent (OSMD) for each set of variables, and thus each regret term can be bounded using667

standard results. One challenge for the analysis is that the comparator points α∗ and V ∗ are chosen in668

a data-dependent manner. This is not easily handled by standard tools in online learning, but can still669

be treated with some relatively more advanced tools that are common in the context of saddle-point670

optimization (most notably, using techniques of Nemirovski et al. 2009, Rakhlin and Sridharan 2017).671

In particular, we will use the following general result to bound the regrets of each player in the672

analysis below.673

Lemma 4. Let z∗ ∈ Z be a potentially data-dependent comparator and assume that Ψ is λ-strongly674

convex with respect to some norm ‖·‖ whose dual is denoted by ‖·‖∗. Furthermore, suppose that675

supz,z′∈Z ‖z − z′‖ ≤ C holds for some constant C > 0. Then, for any η̃ > 0, the sequence (zk)k676

produced by OSMD satisfies the following bound with probability at least 1− δ:677

K∑
k=1

〈gk, zk − z∗〉 ≤BΨ (z‖z1)
η

+
η

2λ

K∑
k=1

‖gk‖2∗

+
BΨ (z‖z1)

η̃
+

η̃

2λ

K∑
k=1

‖gk − g̃k‖2∗ + C

√√√√2

K∑
k=1

‖gk − g̃k‖2∗ log
1

δ
.

While composed of standard elements, we provide the proof for the sake of completeness in Ap-678

pendix E. The regret bound itself can be simplified in two different ways, depending on whether or679

not the algorithm in question uses deterministic or stochastic gradients: for deterministic updates, we680

have gk = g̃k and we can choose 1/η̃ = 0, whereas for stochastic updates the choice η̃ = η is more681

natural. This is how we will apply the lemma to each regret term below. In what follows, we will682

instantiate this bound to bound the regrets of all players listed above, which will require establishing i)683

the strong-convexity properties of the regularization functions, ii) bounds on the Bregman divergences684

between the initial points and the comparators and iii) bounds on the dual norms of the gradients and685

the gradient noise. This is done case by case in the following subsections.686
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D.3.1 Regret of the α-players687

The policy of the α-players is to run projected online stochastic gradient ascent on the feasible set688

Z = B∞( 6
1−γ ), and unbiased gradient estimators with elements defined respectively as689

g̃k,αX (x, x
′, y) =

∑
y′

µk(x, y, x
′, y′)− 1{Xk,X′

k=x,x′}λX ,k(y|x)

and690

g̃k,αY (x, y, y
′) =

∑
x′

µk(x, y, x
′, y′)− 1{Yk,Y ′

k=y,y′}λY,k(x|y).

The following lemma provides an upper bound on each of the two α-players.691

Lemma 5. With probability at least 1− δ, the regret of the αX -player is bounded as692

regretmax
K (α∗

X ) ≤ 18 |X |2 |Y|
(1− γ)2βX

+ 4βXK +

√
72K

(1− γ)2
log

2

δ
, (33)

and the regret of the αY -player is bounded as693

regretmax
K (α∗

Y) ≤
18 |Y|2 |X |
(1− γ)2βY

+ 4βYK +

√
72K

(1− γ)2
log

2

δ
. (34)

Proof. We prove the claim for αX , and the result for αY will follow by symmetry. We start by noting694

that the gradient estimators and the gradients satisfy ‖g̃k,αX ‖1 ≤ 2 and ‖gk,αX − g̃k,αX ‖1 ≤ 2.695

Indeed, this can be verified easily as696

‖g̃k,αX ‖1 ≤
∑

x,y,x′,y′

µk(x, y, x
′, y′) +

∑
x,x′,y

1{X,X′=x,x′}λX ,k(y|x) = 2,

because of the normalization of both µk and λX ,k. Similarly, we have697

‖gk,αX − gk,αX ‖1 ≤
∑
x,x′,y

(
1{X,X′=x,x′} + νX (x, x′)

)
λX ,k(y|x) = 2.

Furthermore, ‖α∗
X − αX ,1‖∞ ≤

6
1−γ trivially holds thanks to the definition of the domain of αX698

and the choice αX ,1 = 0. Finally, notice that Ψ is 1-strongly convex with respect to ‖·‖2, and thus699

Lemma 4 (with the choice η̃ = η = βX ) immediately implies the claim after using the relations700

‖g̃k,αX ‖2 ≤ ‖g̃k,αX ‖1 ≤ 2 and ‖α∗
X − αX ,1‖22 ≤ ‖α

∗
X − αX ,1‖2∞ ≤

36|X |2|Y|
(1−γ)2

.701

D.3.2 Regret of the V -player702

Similarly to the α-players, the V -player employs online gradient ascent on the feasible set Z =703

B∞( 2
1−γ ), with entries of the gradients given in each round as704

gk,V (x, y) =
∑
x′,y′

µk(x, y, x
′, y′)− (1− γ)ν0(x, y)− γ

∑
x̂,ŷ

µk(x̂, ŷ, x, y).

The following lemma gives a bound on its regret.705

Lemma 6. The regret of the V -player is bounded as706

regretmax
K (V ∗) ≤ 4 |X | |Y|

β(1− γ)2
+ 2βK. (35)

Proof. Since the V -player employs deterministic gradients, we will apply Lemma 4 with 1/η̃ = 0,707

and bound the Euclidean norms of the comparator V ∗ and the gradients. By the choice of the feasible708

set for V ∗ and the choice V1 = 0, we immediately have ‖V ∗ − V1‖2 ≤ |X | |Y| ‖V ∗ − V1‖2∞ ≤709
4|X ||Y|
(1−γ)2 . Furhermore, evaluating the gradient of the Lagrangian with respect to V , we get710

‖gk,V ‖1 ≤ (1− γ)
∑
x,y

ν0(x, y) + (1 + γ)
∑

x,y,x′,y′

µ(x, y, x′, y′) = 2,

which in turn implies ‖gk,V ‖2 ≤ ‖gk,V ‖1 ≤ 2. Plugging these results in the bound of Lemma 4711

concludes the proof.712
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D.3.3 Regret of the µ-player713

The µ-player plays OSMD with entropy regularization, and gradients with elements defined as714

gk,µ(x, y, x
′, y′) = c(x, y)− αX ,k(x, x

′, y)− αY,k(x, y, y
′) + γVk(x

′, y′)− Vk(x, y).

The following bound gives a bound on the regret of this player.715

Lemma 7. The regret of the µ-player is bounded as716

regretmin
K (µ∗) ≤

log
(
|X |2 |Y|2

)
η

+
200ηK

(1− γ)2
.

Proof. The proof follows from noticing that the regularization function Ψ is 1-strongly convex with717

respect to the norm ‖·‖1, and that the dual norm of the gradients is bounded as ‖gk,µ‖∞ ≤
20
1−γ .718

Indeed, this follows by upper-bounding each entry of the gradient as719

|gk,µ(x, y, x′, y′)| ≤ c(x, y) + |αX ,k(x, x
′, y′)|+ |αY,k(x, y, y

′)|+ γ |Vk(x
′, y′)|+ |Vk(x, y)|

≤ 1 +
12

1− γ
+

4(γ + 1)

1− γ
=

17 + 3γ

1− γ
≤ 20

1− γ
.

Finally, we recall the choice of µ1 being uniform over XYXY , and the standard result that the720

relative entropy between any distribution and µ1 is equal to log(|X |2 |Y|2).721

D.3.4 Regret of the λ-players722

The regret analysis of the λ-players is slightly nonstandard. Focusing on the λX -player here, we723

note that the updates correspond to using OSMD on the decision space Z = {λ : ∀x, y λ(y|x) ≥724

0 ; ∀x
∑

y λ(y|x) = 1} with the following choice of regularization function:725

Ψ(λ) =
∑
x

∑
y

λ(y|x) log(λ(y|x)).

As we show in Lemma 10, this regularization function is 1-strongly convex with respect to the 2-1726

group norm defined for each λ ∈ Z as727

‖λ‖2,1 =

√√√√∑
x

(∑
y

|λ(y|x)|

)2

.

It is easy to verify that the corresponding dual norm is the 2−∞ group norm defined as ‖g‖2,∞ =728 √∑
x(maxy |g(x, y)|)2. We also recall that the updates make use of the following unbiased estimate729

of the gradient:730

g̃k,λX (x, y) = 1{X=x}αX ,k(X,X ′, y). (36)
With these facts at hand, we prove the following bound on the regret of the λ-players.731

Lemma 8. With probability at least 1− δ, the regret of the λX player and is bounded as732

regretmax
K (λ∗

X ) ≤ |X | log |Y|
ηX

+
90ηXK

(1− γ)2
+

√
288 |X |K log

(
2
δ

)
(1− γ)2

. (37)

and the regret of the λY -player is bounded as733

regretmax
K (λ∗

Y) ≤
|Y| log |X |

ηY
+

90ηYK

(1− γ)2
+

√
288 |Y|K log

(
2
δ

)
(1− γ)2

. (38)

Proof. We provide a complete proof for λX , and note that the result for λY is analogous. For this734

case, notice that Lemmas 4 and 10 suggest that we should first obtain upper-bounds on the magnitude735

of the gradients in terms of their 2,∞-group norms, and thus we first establish that736

‖g̃k,λX ‖2,∞ =

√√√√∑
x

(
max

y
|1{X=x}αX (X,X ′, y)|

)2

≤
√∑

x

1{X=x} ‖αX ,k‖2∞ = ‖αX ,k‖∞ .
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Note that the latter is upper-bounded as ‖αX ,k‖∞ ≤
6

1−γ by construction. Further observing that the737

true gradient norm can be bounded via the same argument as ‖g̃k,λX ‖2,∞ ≤
6

1−γ , we also have738

‖gk,λX − g̃k,λX ‖2,∞ ≤ ‖gk,λX ‖2,∞ + ‖g̃k,λX ‖2,∞ ≤
12

1− γ
.

Finally, since λX ,1(·|x) is chosen as the uniform distribution over Y for all x, we have739

BΨ(λ∗
X ‖λX ,1) ≤ |X | log |Y|, and the primal-norm distance satisfies ‖λ∗ − λ‖ ≤ 2

√
|X |. Now,740

the claim follows from using Lemma 4 with η̃ = ηX .741

D.4 Proof of Theorem 1742

The proof of the theorem now follows from putting together Lemma 1 with the regret decomposition743

in Equation (32), and combining Lemmas 5–8. Taking a union bound over the two probabilistic744

claims of Lemma 5 and 5, this gives that the following bound holds with probability at least 1− 2δ:745

|〈µK − µ∗, c〉| ≤ 18|X |2|Y|
βXK(1− γ)2

+ 4βX +

√
72

K(1− γ)2
log

2

δ

+
18|X ||Y|2

βYK(1− γ)2
+ 4βY +

√
72

K(1− γ)2
log

2

δ

+
4|X ||Y|

βK(1− γ)2
+ 2β

+
2 log(|X ||Y|)

ηK
+

200η

2(1− γ)2

+
|X | log(|Y|)

ηXK
+

90ηX
(1− γ)2

+

√
288|X | log 2

δ

K(1− γ)2

+
|Y| log |X |

ηYK
+

90ηY
(1− γ)2

+

√
288|Y| log 2

δ

K(1− γ)2
.

Setting βX =
√

9|X |2|Y|
2(1−γ)2K , βY =

√
9|X ||Y|2
2(1−γ)2K , β =

√
2|X ||Y|
(1−γ)2K , ηX =

√
(1−γ)2|X | log |Y|

90K , ηX =746 √
(1−γ)2|Y| log |X |

90K , η =
√

(1−γ)2 log(|X ||Y|)
100K , the bound becomes747

|〈µK − µ∗, c〉| ≤
12
√
2|X ||Y|

(√
|X |+

√
|Y|
)

(1− γ)
√
K

+
4
√
2|X ||Y|

(1− γ)
√
K

+
3
√
10|X | log |Y|
(1− γ)

√
K

+
3
√
10|Y| log |X |
(1− γ)

√
K

+
40
√
log(|X|2|Y |2)

(1− γ)
√
K

+
12
√
log 1

δ

(1− γ)
√
K

+
12
√

2|X | log 1
δ

(1− γ)
√
K

+
12
√

2|Y| log 1
δ

(1− γ)
√
K

=O

√ (|X ||Y| (|X |+ |Y|) + |X | log |Y|
δ + |Y| log |X |

δ

(1− γ)2K

 .

This concludes the proof.748

E Online learning: The proof of Lemma 4749

This section is dedicated to proving the general regret bound we use throughout the analysis for750

upper-bounding the regret of each player, Lemma 4. As mentioned in Appendix D.3, the main751

challenge that we need to deal with is that the comparators for some of the regret terms are data752
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dependent, which requires some additional steps that are typically not necessary in regret analyses.753

For concreteness, we adapt the notation of Lemma 4 and write the regret against comparator z∗ as754

regretK(z∗) =

K∑
k=1

〈gk, zk − z∗〉 =
K∑

k=1

〈g̃k, zk − z∗〉︸ ︷︷ ︸
RK

+

K∑
k=1

〈gk − g̃k, zk − z∗〉︸ ︷︷ ︸
MK

,

where in the second equality we also added some terms corresponding to the stochastic gradient g̃k.755

Here, the first term RK corresponds to the regret of the online learning algorithm on the sequence of756

stochastic gradients g̃k, which can be upper-bounded using standard tools of online learning. For757

the second term, notice that the stochastic gradient satisfies E [ g̃k| Fk−1] = gk, and thus if z∗ is758

independent of the sequence of stochastic gradients, the second term MK in the above decomposition759

is a martingale. However, this is no longer true if z∗ is statistically dependent on the sequence. In760

order to account for this, we adopt an elegant technique by Rakhlin and Sridharan [2017] to control761

the resulting sequence of dependent random variables1. In particular, we introduce a second online762

learning algorithm for the sake of analysis, and use its regret bound to account for the additional error763

terms in the above decomposition. For sake of concreteness, we define the sequence of decisions764

made by this algorithm by setting z̃1 = z1 and updating the parameters recursively via a mirror765

descent scheme analogous to the one underlying the sequence zk:766

z̃k+1 = arg min
z∈Z

{
〈gk − g̃k, z〉+

1

η
BΨ(z‖zk)

}
.

Using this notation, the regret of the original algorithm can be rewritten as follows:767

K∑
k=1

〈gk, zk − z∗〉 =
K∑

k=1

〈g̃k, zk − z∗〉︸ ︷︷ ︸
RK

+

K∑
k=1

〈gk − g̃k, zk − z̃k〉︸ ︷︷ ︸
M̃K

+

K∑
k=1

〈gk − g̃k, z̃k − z∗〉︸ ︷︷ ︸
R̃K

.

Thanks to this construction, the term M̃K is a martingale and R̃K is the regret of the auxiliarly online768

learning algorithm in the newly defined online learning game.769

For the concrete proof of Lemma 4, we will make use of the following classic result regarding the770

regret of mirror descent.771

Lemma 9. Let z ∈ Z and assume that Ψ is λ-strongly convex with respect to some norm ‖·‖ whose772

dual is denoted by ‖·‖∗. Consider the sequence with an arbitrary u1 ∈ Z and all subsequent iterates773

defined as774

uk+1 = arg min
z∈Z

{
〈vk, z〉+

1

ω
BΨ(z‖uk)

}
,

where ak is an arbitrary sequence in Z∗ and ω > 0. Then, for any u∗ ∈ Z , the sequence (uk)k775

produced by OSMD satisfies the following bound:776

K∑
k=1

〈ak, uk − u〉 ≤ BΨ(u
∗‖u1)

ω
+

ω

2λ

K∑
k=1

‖ak‖2∗ . (39)

The proof is standard and can be found in many textbooks—for concreteness, we refer to Theorem 6.10777

of Orabona [2019]. To proceed, we apply this lemma to the standard sequence of iterates in our778

setting with ak = g̃k and ω = η to bound RK and once again with ak = gk− g̃k and ω = η̃ to bound779

R̃K . Finally, we use the Hoeffding–Azuma inequality (Lemma 11) to control the remaining term as780

M̃K =

K∑
k=1

〈gk − g̃k, zk − z̃k〉 ≤ C

√√√√2

K∑
k=1

‖gk − g̃k‖2 log
1

δ

with probability at least 1 − δ. Indeed, notice that under the condition maxz,z′∈Z ‖z − z′‖ ≤ C781

each term satisfies |〈gk − g̃k, zk − z̃k〉| ≤ C ‖gk − g̃k‖∗, which allows using Lemma 11 with ck =782

2C ‖gk − g̃k‖∗. Putting these results together concludes the proof of Lemma 4.783

1This technique is commonly attributed to Nemirovski et al. [2009], but we find the connection with Rakhlin
and Sridharan [2017] more illuminating. Otherwise, we learned this proof technique from Neu and Okolo
[2024].
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F Technical Lemmas784

Lemma 10. The function Ψ(p) =
∑J

j=1

∑I
i=1 p(i|j) log p(i|j) is 1-strongly convex with respect785

to the 2-1 group norm ‖p‖2,1 =

√∑J
j=1

(∑I
i=1

∣∣pi|j∣∣)2 on the set Z = {p ∈ RI×J : p(i|k) ≥786

0(∀i, j),
∑I

i=1 p(i|j) = 1 (∀j).787

Proof. We first note that, by standard calculations, the Bregman divergence induced by Ψ is788

BΨ(p‖q) =
J∑

j=1

I∑
i=1

p(i|j) log p(i|j)
q(i|j)

.

Now, by Pinsker’s inequality, we have that789

BΨ(p‖q) ≥
1

2

J∑
j=1

‖p(·|j)− q(·|j)‖1 ,

which is equivalent to the statement of the lemma.790

Lemma 11. (Hoeffding–Azuma inequality, see, e.g., Lemma A.7 in Cesa-Bianchi and Lugosi 2006)791

Let (Zk)k be a martingale with respect to a filtration (Fk)k. Assume that there are predictable792

processes (Ak)k and (Bk)k and positive constant (ck)k such that for all k ≥ 1, almost surely,793

Ak ≤ Zk − Zk−1 ≤ Bk and Bk −Ak ≤ ct.

Then, for all ε > 0,794

P [Zt − Z0 ≥ ε] ≤ exp

(
− 2ε2∑t

i=1 c
2
i

)
, (40)

or equivalently for all δ ∈ (0, 1)795

P

Zt − Z0 ≥

√√√√(∑t
i=1 c

2
i

)
log( 1δ )

2

 ≤ δ. (41)

Lemma 12. The occupancy measure νX ∈ RX×X
+ of the Markov chain MX is uniquely defined by796

the two sets of equations797 ∑
x′

νX (x, x′) = γ
∑
x′′

νX (x′′, x) + (1− γ)ν0,X (x) (∀x), (42)

νX (x, x′) = PX (x′|x)
∑
x′′

νX (x, x′′) (∀x, x′). (43)

Proof. Using the definition of the occupancy measure νX we obtain798

νX (x, x′) = (1− γ)

∞∑
t=0

γtP [Xt = x,Xt+1 = x′]

= (1− γ)

∞∑
t=0

γtPX (x′|x)P [Xt = x]

= PX (x′|x)

(
(1− γ)ν0,X (x) + (1− γ)

∞∑
t=1

γtP [Xt = x]

)

= PX (x′|x)

(
(1− γ)ν0,X (x) + γ

∑
x′′

(1− γ)

∞∑
t=1

γt−1P [Xt−1 = x′′, Xt = x]

)
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= PX (x′|x)

(
(1− γ)ν0,X (x) + γ

∑
x′′

νX (x′′, x)

)
,

where we used the stationarity of the transition kernel PX , the definition of ν0,X , the law of total799

probability, and the stationarity of the Markov chain to recognize νX (x′′, x) in the last step. Summing800

the previous equation over x′ yields (42), and substituting (42) into the previous equation yields (43).801

In order to show that the solution νX to (42) and (43) is unique, we introduce the notation ξX as802

ξX (x) =
∑

x′ νX (x, x′) for each x. Substituting (43) into (42) yields803

ξX (x) = γ
∑
x′′

PX (x|x′′)ξX (x′′) + (1− γ)ν0,X (x) (∀x).

By defining ξX and ν0,X as vectors and PX as a matrix, we can write this system of equations in804

matrix form as ξX = γPX ξT

X + (1− γ)ν0,X , or equivalently, (I − γP T

X )ξX = (1− γ)ν0,X . Since805

PX is a positive matrix with spectral radius 1, the Perron–Frobenius theorem applies and the matrix806

(I − γPX ) is invertible. Hence there exists a unique solution ξX = (1− γ)(I − γP T

X )−1ν0,X , which807

together with (43) implies that νX is uniquely defined as νX (x, x′) = PX (x′|x)ξX (x).808

G Additional details on experiments809

In this appendix we present further details about the experiments included in the main text, along810

with some additional empirical results. Along the way, we will also provide some further comments811

on best practices when implementing SOMCOT, including recommended hyperparameter settings.812

G.1 Model selection813

Another important use case is identifying the hidden dynamics underlying realizations of stochastic814

processes. We model this scenario in two experiments. In the first one, we generate a block-structured815

Markov chain M∗
Y , and a set of low-dimensional Markov chains MX with different transition kernels816

parameterized by θ ∈ [0, 1]. This set contains the true model M∗
X underlying M∗

Y , corresponding to817

θ = 0.5. We compute estimates of the distances between MY and all the candidates of the model818

class by running SOMCOT for various sample sizes, and show the results on Figure 2a. Notably, the819

distance achieves its minimum for the true model, and increases as θ is further separated from its true820

value.821

(a) Distances between the true dynamics (θ = 0.5)
and the different models in the model class, for dif-
ferent values of the parameter θ and the number of
iterations K.

(b) Distances between the true dynamics (g = 9.8)
and the different models in the model class, for differ-
ent values of the gravity parameter g.

Figure 2: Model selection results for random walks and the pendulum environment

We conduct an second experiment on model selection in continuous state spaces. To this end, we822

consider the classic control environment Pendulum-v1 from Gymnasium [Towers et al., 2024]. We823
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Figure 3: Distance matrices between instances after running SOMCOT for 1000 and 10000 steps, and
the ground truth obtained via Sinkhorn Value Iteration.

begin by training a near-optimal policy using the DDPG algorithm [Lillicrap et al., 2015] and fix824

this policy to induce a Markov chain over the environment. The continuous state variables of the825

pendulum are then discretized to n bins each. We instantiate several copies of the environment826

by varying a hyperparameter: the acceleration constant g, which by default is set to g = 9.8. The827

learning task we consider is to identify which of the class of candidate models best explains the828

unknown true dynamics corresponding to the default choice of g. Figure 2b shows the results obtained.829

Again, we can observe that the distance achieves its minimum for the true model, and increases as g830

departs from its true value. Notably, due to discretization of the state space, the observations are not831

Markovian, yet the results clearly indicate that SOMCOT is still able to produce meaningful distance832

estimates, thus illustrating the potential of this methodology for general representation learning tasks.833

G.2 Similarity metrics between parametric Markov chains834

This experiment serves to illustrate the ability of bisimulation metrics to capture intuitive similarities835

between stochastic processes, as well as the empirical behavior of SOMCOT when used to approximate836

such similarity metrics based on data. To this end, we generated several random walk instances from837

the same family as used in the experiments in the main body (described in detail in Appendix G.4).838

For this experiment, we let X = Y = {1, 2, . . . , n} with n = 1 and set the block size as B = 1.839

Deviating from the setup described in Appendix G.4, we set the reward function as r(1) = r(n) = 1840

for both extremes of the state space, which induces a symmetry on the state space. For generating841

the set of environments, we varied the initial states x0 and y0 between {2, 3, . . . , n− 1} and the842

bias parameter θ in the set {0.05, 0.1, 0.15, . . . , 0.95}, thus resulting in 72 different instances. We843

then computed pairwise distances between these instances using SOMCOT with various sample sizes,844

and compared the results with the ground truth (computed by the Sinkhorn Value Iteration method845

of Calo et al. 2024). Figure 3 shows the similarity matrices obtained by these methods, showing846

that the distances computed by SOMCOT successfully capture the structure of the problem: even847

though the exact numerical values of the true distances are not approximated very accurately, the848

qualitative picture obtained by SOMCOT is very similar to the ground truth. In particular, the symmetry849

induced our choice of reward function is clearly visible with the matrix being symmetric along the850

counter-diagonal as well as the main diagonal.851

G.3 Practical implementation details852

Being a primal-dual method, SOMCOT is not as easy to tune as a common stochastic optimization853

algorithm. There are several implementation details that one needs to design carefully in order to854

make sure that the algorithm behaves in a stable way and outputs good estimates. This section855

describes our experience working with SOMCOT, and provides practical guidance for implementation.856

SOMCOT has one tunable parameter per optimization variable: a positive learning rate that controls the857

magnitude of the updates during optimization. While our theoretical analysis suggests some specific858

values for these learning rates to guarantee convergence, such values are typically too conservative (as859

is common in stochastic optimization). In practice, using larger learning rates can significantly reduce860

the number of iterations needed to reach good solutions. Since our problem involves optimizing861

six variables, this leads to six separate hyperparameters, which makes tuning a grueling task. To862

address this, we tie some of the learning rates together: all primal variables share a single learning863

rate denoted by η, and all dual variables share another one denoted by β.864
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Figure 4: The influence of the ratio between η and β on the convergence of SOMCOT for different
chain sizes. Error and learning rates are shown on a logarithmic scale. To produce this plot, a decay
rate of a = 0.001 was used for η. No decay was applied on β.

Moreover, we observed that in practice using a fixed value for the dual learning rate η often made865

it difficult to achieve stable convergence across different problem instances. To address this, we866

introduced a decaying learning-rate scheme of the form ηk = η0√
1+ak

, where k is the index of the867

current iteration and a > 0 is a tunable parameter. This decay helps balance the need for large updates868

in early iterations with the stability required for convergence in later stages.869

Figure 4 illustrates the performance of the algorithm under different learning rate settings. This shows870

that, even given the above choices, it is not easy to pick hyperparameters that work uniformly well871

across problem instances. Even for a single instance, the combination of η0 and β that leads to the best872

performance requires careful hyperparameter search. In order to understand the behavior of SOMCOT873

under different parameter choice, it is helpful to remember the roles of the primal and dual variables,874

and in particular that the dual variables serve to penalize the primal variables for violating the primal875

constraints. Thus, a value of η that is too high relative to β leads to large constraint violations,876

resulting in µ values that yield very small distances but fall outside the feasible set. Ultimately, setting877

β too small results in gross underestimation of the true distance. Thus, whenever one sees distance878

estimates that are suspiciously close to zero, the value of β should be increased or the value of η be879

decreased. The opposite scenario produces the inverse effect: a β that is too large relative to η causes880

the dual variables to update too quickly, leading to a resulting distance that overestimates the actual881

value. This issue can largely be mitigated by decaying η while keeping β constant (as described882

above). In our experience, it is often better to pick a large initial value for η: while this typically leads883

to a rapid drop of the distance estimate to zero, the estimates eventually start increasing and converge884

toward the true cost.885

Theorem 1 provides guarantees for the averaged output µK = 1
K

∑K
k=1 µk, where µk is the value of886

µ obtained at iteration k. This is commonly required for algorithms based on regret analysis, at least887

for the theoretical guarantees to go through. In typical applications of stochastic optimization, this888

averaging step is not strictly necessary and the final iteration can perform well enough. However,889

this is typically not the case for primal-dual algorithms like SOMCOT, where iterate averaging often890

makes a big difference to the stability of algorithms. This is true in our case too: without averaging,891

the iterates typically fluctuate quite wildly around the optimum. Averaging makes the estimates much892

more stable, and is thus strongly recommended (even if only for the last half of the iterates or less).893

Finally, we note that all our experiments have made use of i.i.d. transitions sampled from the894

occupancy measures of the two chains. This falls in line perfectly with the theory, but may be895

impractical in applications where transitions may be dependent or be sampled from undiscounted896

trajectory distributions. While we have not experimented with such data, we believe that SOMCOT897

should be able to deal with it as long as efforts are made to break the correlations between the898

consecutive samples, for instance by sampling the transitions randomly from a buffer (instead of899

processing them in their original order). In our experiments, we have sometimes made use of900

minibatch updates, which can affect computational efficiency and stability, but no major impact on901

the overall convergence properties has been observed. We display all hyperparameter choices we902

have made in the experiments in Table 1.903
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Experiment η0 a β b γ
Figure 1 40 0 0.2 1 0.99
Figure 3 20 0 0.5 1 0.99
Figure 2a 0.1 0.001 0.5 8 0.95
Figure 2b 0.1 0.05 0.2 16 0.95

Table 1: Table summarizing our hyperparameter choices for each experiment. Recall that the learning
rates follow the decaying scheme ηk = η0√

1+ak
, and the minibatch size is denoted by b.

G.4 Details about the environments904

Our experiments made use of two families of Markov chains: a collection of parametrized random905

walks, and several instances of the classic “inverted pendulum” environment. We describe the details906

of these settings below.907

Parametrized random walks. We consider a one-dimensional random walk over a finite state908

space X = {1, 2, . . . , n} with biased transitions. A transition from state x moves to x + 1 with909

probability θ ∈ [0, 1] and x − 1 with probability 1 − θ. States 1 and n are “sticky walls”: the910

process remains there with probability 0.9 or moves to the neighboring state with probability 0.1.911

Additionally, we define a reward function on the state space, with values r(1) = 1, r(n) = −1, and912

r(x) = 0 for all x ∈ 2, . . . , n− 1. The initial state distribution is a Dirac measure on x = 1. To913

produce the plot shown in Figure 2a, we generate a low-dimensional chain MX with bias θ = 0.5914

following this setting. Then, we produce a set of chains MY ∈ B, each of them with a different bias915

parameter. In addition, all MY are augmented with an additional irrelevant noise variable, producing916

B observations per each latent state in X . Formally, MY is a Markov chain on the state space Y917

equal to X ×{1, 2, . . . , B}. The cost between x ∈ X and y ∈ Y is given by c(x, y) = |r(x)− r(y)|,918

reflecting the absolute difference in rewards between the states.919

Inverted pendulum. We begin by training a near-optimal policy using DDPG, a widely known Deep920

RL algorithm, in the standard Pendulum-v1 environment, which is then used to induce a Markov chain.921

One could use any policy, but using a near-optimal policy produces richer dynamics (e.g., using a922

random policy in the Pendulum-v1 environment reduces the effective state space to the surroundings923

of the initial state). Once a policy is fixed, we discretized each state variable of the environment into924

n bins. Since the Pendulum-v1 environment has 2 variables (angle θ and angular velocity w), the925

resulting state space has n2 states. In our experiments, we have chosen n = 7, which resulted in a926

total of 49 states. Note that due to the discretization, the resulting stochastic process is no longer927

a Markov chain, as the states are no longer sufficient to predict the distribution of the next state.928

Nevertheless, the conducted experiments follow the same principle as the aforementioned random929

walks: We will compare the (approximate) Markov chain MX of discretized observations with a set930

of parametrized models MY . The parameter governing the dynamics the acceleration constant g,931

capturing the effect of gravity. We set the default value g = 9.8 in MX , and choose values in [0.4, 20]932

in the model set. The cost function is given by c(x, y) = |r(x)− r(y)|, where r(x) is the average933

reward in bin x (computed from all samples that fell into bin x along a long simulated trajectory).934
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