
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DILQR: DIFFERENTIABLE ITERATIVE LINEAR
QUADRATIC REGULATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable control promises end-to-end differentiability and adaptability, ef-
fectively combining the advantages of both model-free and model-based control
approaches. However, the iterative Linear Quadratic Regulator (iLQR), despite
being a powerful nonlinear controller, still lacks differentiable capabilities. The
scalability of differentiating through extended iterations and horizons poses signifi-
cant challenges, hindering iLQR from being an effective differentiable controller.
This paper introduces a framework that facilitates differentiation through iLQR,
allowing it to serve as a trainable and differentiable module, either as or within
a neural network. for control purposes. A novel aspect of this framework is the
analytical solution that it provides for the gradient of an iLQR controller through
implicit differentiation, which ensures a constant backward cost regardless of it-
eration, while producing an accurate gradient. We evaluate our framework on
imitation tasks on famous control benchmarks. Our analytical method demon-
strates superior computational performance, achieving up to 128x speedup and
a minimum of 21x speedup compared to automatic differentiation. Our method
also demonstrates superior learning performance (106x) compared to traditional
neural network policies and better model loss with differentiable controllers that
lack exact analytical gradients. Furthermore, we integrate our module into a
larger network with visual inputs to demonstrate the capacity of our method for
high-dimensional, fully end-to-end tasks. Codes can be found on the project
homepage https://sites.google.com/view/dilqr/.

1 INTRODUCTION

Differentiable control has emerged as a powerful approach in the fields of reinforcement learning (RL)
and imitation learning, enabling significant improvements in sample efficiency and performance. By
integrating control policies into a differentiable framework, researchers can leverage gradient-based
optimization techniques to directly optimize policy parameters. This integration allows for end-to-end
training, where both the control strategy and the underlying model can be learned simultaneously,
enhancing the adaptability and precision of control systems.

As a numerical controller, the iterative Linear Quadratic Regulator (iLQR) Todorov et al. (2012) has
been extensively adopted for trajectory optimization Spielberg et al. (2021); Choi et al. (2023); Zhao
et al. (2020); Mastalli et al. (2020) due to its computational efficiency Tassa et al. (2014); Dean et al.
(2020); Collins et al. (2021) and excellent control performance Dantec et al. (2022); Xie et al. (2017);
Chen et al. (2017). To make iLQR trainable as a neural network module, naively differentiating
through an iLQR controller may be a reasonable choice, but the scalability of differentiating through
hundreds of iterations steps poses a significant challenge, as the forward and backward passes during
training are coupled. The forward pass involves iteratively solving an LQR optimization problem to
converge on the optimal trajectory. The backward pass computes gradients through backpropagation,
and becomes increasingly complex as it needs to traverse through all the layers of the forward
pass, which requires significant computational resources (time and memory), especially for tasks
requiring long iterations and long horizons. This coupling not only increases memory usage, but also
significantly slows down the training process, making it difficult to scale to larger problems.

Efficient differentiable controllers are especially valuable in systems involving neural networks,
such as multi-modal frameworks Mao et al. (2023); Xu et al. (2024b); Xiao et al. (2022) and deep
reinforcement learning Ye et al. (2021); van Hasselt et al. (2016), where an upstream neural network
module is required. Developing differentiable controllers with efficient gradient propagation is crucial,
as they greatly enhance sample efficiency and reduce computational time for online tuning.

1

https://sites.google.com/view/dilqr/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An overview of iLQR, and AutoDiff vs our proposed planner with implicit differentiation.
As shown in the flowchart, autodiff must backpropagate through each layer of the LQR process, which
leads to significantly increased memory usage to store intermediate gradients and computational load.
In contrast, our proposed planner, using implicit differentiation, only needs to handle the final layer.
This results in constant computational costs and memory usage, making our method much more
efficient.

Developing analytical solutions would greatly alleviate these challenges. DiffMPC Amos et al.
(2018) pioneered the use of analytical gradients in LQR control, leading to significant improvements
in computational efficiency and generalization of the learned controller. Its success has inspired
extensions in various planning and control applications East et al. (2020); Romero et al. (2024); Karkus
et al. (2023); Cheng et al. (2024); Soudbakhsh et al. (2023); Shrestha et al. (2023). Numerous studies
have since shown that analytical gradients significantly improve learning performance, reducing
computational costs, and improving scalability in complex, long-horizon tasks Jin et al. (2020); Xu
et al. (2024a); Jin et al. (2021); Böttcher et al. (2022); Zhao et al. (2022).

In this paper, we introduce an innovative analytical framework that leverages implicit differentiation
to handle iLQR at its fixed point. This approach effectively separates the forward and backward
computations, maintaining a constant computational load during the backward pass, irrespective of
the iteration numbers for iLQR. By doing so, our method significantly reduces computational time
and the memory usage needed for training, thereby enhancing scalability and efficiency in handling
non-convex control problems.

This paper makes the following contributions.

1. We develop an efficient method for analytical differentiation. We derive analytical trajectory
derivatives for optimal control problems with tunable additive cost functions and constrained
dynamics described by first-order difference equations, focusing on iLQR as the controller.
Our analytical solution is exact, considering the entire iLQR graph. The method guarantees
O(1) computational complexity with respect to the number of iteration steps.

2. We propose a forward method for differentiating linearized dynamics with respect to nonlin-
ear dynamics parameters, achieving speeds dozens of times faster than auto-differentiation
tools such as torch.autograd.jacobian. Furthermore, we exploit the sparsity of
the tensor expressions to compute some tensor derivatives that scale linearly with trajectory
length.

3. We demonstrate the effectiveness of our framework in imitation and system identification
tasks using the inverted pendulum and cartpole examples, showcasing superior sample
efficiency and generalization compared to traditional neural network policies. Finally, we
integrate our differentiable iLQR into a large network for end-to-end learning and control
from pixels, demonstrating the extensibility and multimodal capabilities of our method.

Notation For a scalar-valued function f with a vector input, ∇f is the usual gradient. The
subscripts in the symbol ∇ indicate partial derivatives involving a subvector of the full input, or serve
to emphasize the variable of interest. For a more general operation mapping tensors to tensors, we

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

write ∂(·)
∂(·) for the appropriate linearization. See, for example, eq. (2), where Jacobian matrices are

constructed. To improve the readability of some equations, we sometimes use the notation DθX as a
synonym for ∂X

∂θ . Careful tracking of the dependencies involved is essential at every stage.

2 RELATED WORK ON DIFFERENTIABLE PLANNING

Pure model-free techniques for policy search have demonstrated promising results in many domains
by learning reactive policies that directly map observations to actions Haarnoja et al. (2018); Sutton
& Barto (2018); Schulman et al. (2017); Fujimoto et al. (2018). However, due to the black box nature
of these policies, model-free methods suffer from a lack of interpretability, poor generalization, and
high sample complexity Ye et al. (2021); Yu (2018); Bacon et al. (2017); Deisenroth & Rasmussen
(2011). Differentiable planning integrates classical planning algorithms with modern deep learning
techniques, enabling end-to-end training of models and policies, thereby combining the complemen-
tary advantages of model-free and model-based methods. Value Iteration Network (VIN) Tamar et al.
(2016) is a representative work that performs value iteration using convolution on lattice grids and
has been extended further Niu et al. (2018); Lee et al. (2018); Chaplot et al. (2021); Schleich et al.
(2019). These works have demonstrated significant performance improvements on various tasks.

However, these works primarily focus on discrete action and state spaces. In the field of continuous
control, most efforts have focused on differentiable LQR, including differentiating through finite
horizon LQR Amos et al. (2018); Shrestha et al. (2023), infinite horizon East et al. (2020); Brewer
(1977), and constrained LQR Xu et al. (2024a). References (Jin et al., 2020; 2021; Böttcher et al.,
2022) propose frameworks that can differentiate through Pontryagin’s Maximum Principle (PMP)
conditions. However, the convergence speed of PMP-based methods is slower than that of iLQR Jin
et al. (2020), due to the 1.5 order convergence rate of iLQR. More importantly, these methods and
Xu et al. (2024a) assume a broad range of forward pass solutions and do not align the gradient in the
backward pass with forward solution.

For iLQR, which is a powerful numerical control technique Todorov et al. (2012); Li & Todorov
(2004); Zhu et al. (2023), Tamar et al. (2017) differentiates through an iterative LQR (iLQR) solver
to learn a cost-shaping term offline. Other methods based on numerical control techniques include
Okada et al. (2017); Pereira et al. (2018), which provide methods to differentiate through path
integral optimal control, and Srinivas et al. (2018), which shows how to embed differentiable planning
(unrolled gradient descent over actions) within a goal-directed policy.

However, all of these methods require differentiation through planning procedures by explicitly
unrolling the optimization algorithm itself, introducing drawbacks such as increased memory and
computational costs and reduced computational stability Zhao et al. (2022); Bai et al. (2019). DiffMPC
Amos et al. (2018) is a representative work in the field of differentiable MPC. Significant progress
has been made in the efficient differentiable LQR with box constraints by Amos et al. (2018). To
differentiate iLQR, Amos et al. (2018) proposes a methodology that differentiates through the last
layer of iLQR to avoid unrolling of the entire iLQR graph. However, Amos et al. (2018) treats the
input to the last layer of LQR as a constant, rather than a function of the learning parameters. Using
implicit differentiation, we develop a framework that provides exact analytical solutions for iLQR
gradients, improving the gradient computation presented in Amos et al. (2018). Our approach not
only addresses scalability issues, but also improves learning performance.

3 BACKGROUND

The Iterative Linear Quadratic Regulator (iLQR) addresses the following control problem:

min
x1:T ,u1:T

T∑
t=1

gt(xt, ut) s.t. xt+1 = ft(xt, ut), x1 = xinit; u ≤ u ≤ ū. (1)

At each iteration step, it linearizes the dynamics and makes a quadratic approximation of the cost
function to produce a finite-time Linear Quadratic Regulator (LQR) problem. Solving this auxiliary
problem produces updates for the original trajectory. Here are some details.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 THE APPROXIMATE PROBLEM

Iteration i begins with the trajectory τ i = {τ i1, . . . , τ iT }, where τ it = {xi
t, u

i
t}. We linearize the

dynamics by defining

Dt = [At, Bt] =

[
∂ft
∂x

∣∣∣∣
τ i
t

,
∂f

∂u

∣∣∣∣
τ i
t

]
, dt = ft(x

i
t, u

i
t)−Dt

[
xi
t

ui
t

]
, t = 1, 2, . . . , T, (2)

and form a quadratic approximation of the cost function using

c⊤t = [ct,x, ct,u] =

[
∂gt
∂x

∣∣∣∣
τ i
t

,
∂gt
∂u

∣∣∣∣
τ i
t

]
, Ct =

[
Ct,xx Ct,xu

Ct,ux Ct,uu

]
, t = 1, 2, . . . , T, (3)

where

Ct,xx =
∂2gt
∂x2

∣∣∣∣
τ i
t

, Ct,uu =
∂2gt
∂u2

∣∣∣∣
τ i
t

, Ct,xu = C⊤
t,ux =

∂2gt
∂u∂x

∣∣∣∣
τ i
t

.

These elements lead to an approximate problem whose unknowns are δτt = τt − τ it :

min
δτ1:T

T∑
t=0

1

2
δτt

⊤Ctδτt + c⊤t δτt s.t. δxt+1 = Dtδτt, δx1 = 0; u ≤ u ≤ ū. (4)

3.2 THE TRAJECTORY UPDATE

Problem (4) can be solved by the two-pass method detailed in Tassa et al. (2014). First a backward
pass is conducted, using the Riccati-Mayne method Mayne et al. (2000) to obtain a quadratic value
function and a projected-Newton method to optimize the actions under box constraints. Then a
forward pass uses the linear control gains Kt, kt obtained in the backward pass to roll out a new
trajectory. Let δτ⋆ denote the minimizing trajectory in (4). We use the controls in δτ∗ directly, but
discard the states in favor of an update based on the original dynamics, setting

ui+1
t = ui

t + δu⋆
t , xi+1

t+1 = f(xi+1
t , ui+1

t ). (5)

With these choices, defining τ i+1
t = {xi+1

t , ui+1
t } provides a feasible trajectory for (1) that can serve

as the starting point for another iteration.

4 DIFFERENTIABLE ILQR

4.1 END-TO-END LEARNING FRAMEWORK

In the learning problem of interest here, the cost functions gt and system dynamics ft involve
structured uncertainty parameterized by a vector variable θ. For example, in a drone, θ could
represent physical parameters like mass or propeller length, while in a humanoid robot, it might refer
to limb lengths or joint masses; additionally, θ can include reference trajectories for robot tracking,
which help parametrize the cost function for control. Suppressing θ in the notation is typical when
θ has a fixed value, but now we face the challenge of choosing θ to optimize some scalar criterion.
This requires changing the notation to ft = ft(x, u, θ) and gt = gt(x, u, θ). As such, the derivatives
shown in (2) and (3) must also be considered as functions of θ. So, along a given reference trajectory
τ , the dynamics in (1) will generate three θ-dependent matrices we must consider:

At(θ) =
∂ft
∂x

, Bt(θ) =
∂ft
∂u

, and
∂ft
∂θ

.

The same is true for the coefficients in the quadratic approximation to the loss function in the original
problem. Careful accounting for the θ-dependence at every level is required for accurate gradients.

Suppose the loss function L to be minimized by “learning” θ is expressed entirely in terms of the
trajectory τ . Then the influence of θ on the observed L-values will be indirect, and we will need the
chain rule to express the gradient of the composite function θ 7→ L(τ(θ)):

∇θ(L ◦ τ)(θ) = ∇τL(τ(θ))
∂τ

∂θ
. (6)

In practical implementations, the partial derivatives required to form ∇τL are provided during the
backward pass by automatic differentiation tools Paszke et al. (2019); Abadi et al. (2015). The main
challenge, however, is to determine ∂τ

∂θ , i.e., the derivative of the optimal trajectory with respect to
the learnable parameters. This is the focus of the next section.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 FIXED POINT DIFFERENTIATION

For a particular choice of θ, we can consider the sequence of trajectories produced by iLQR:

τ0
iLQR−−−−→ τ1

iLQR−−−−→ τ2
iLQR−−−−→ · · · iLQR−−−−→ τ⋆

iLQR−−−−→ τ⋆
iLQR−−−−→ · · · . (7)

Each iteration includes the three steps noted above: linearizing the system, conducting the backward
pass, and performing the forward pass. Iterations proceed until the output τ⋆ from an iLQR step is
indistinguishable from the input, indicating that the process can no longer improve the input trajectory.
This trajectory τ⋆ is called a fixed point for the iLQR. We expect the value of θ to influence the fixed
point produced above.

In general, an operator’s fixed point can be calculated by various methods, typically iterative in nature.
As pointed out in Bai et al. (2019), naively differentiating through such a scheme would require
intensive memory usage Tamar et al. (2016); Lee et al. (2018) and computational effort Zhao et al.
(2022). Instead, we propose to use implicit differentiation directly on the defining identity. This gives
direct access to the derivatives required by decoupling the forward (fixed-point iteration as the solver)
and backward passes (differentiating through the solver).

Let us write X = (x1, . . . , xT ) and U = (u1, . . . , uT ) for the components of a trajectory τ =
(x1, u1, x2, u2, . . . , xT , uT ), and abuse notation somewhat by identifying τ with (X,U). At a fixed
point (X⋆, U⋆) of the iLQR process for parameter θ, we have the following:

X⋆ = F (X⋆, U⋆, θ), U⋆ = G(X⋆, U⋆, θ) (8)

where F and G summarize the operations that define a single iteration in the iLQR algorithm. (Thus
eq. (8) formalizes the graphical summary in eq. (7).)

In eq. (8), the solutions X⋆ and U⋆ depend on the parameter θ. By treating both X⋆ and U⋆ explicitly
as functions of θ, we can interpret eq. (8) as an identity valid for all θ. Differentiating through this
identity yields a new one:

∇θX
⋆ =

∂F

∂X
∇θX

⋆ +
∂F

∂U
∇θU

⋆ +
∂F

∂θ
,

∇θU
⋆ =

∂G

∂X
∇θX

⋆ +
∂G

∂U
∇θU

⋆ +
∂G

∂θ
.

(9)

Here, the matrix-valued partial derivatives of F and G above are evaluated at (X⋆(θ), U⋆(θ), θ).
Likewise, DθX

⋆ and DθU
⋆ are the Jacobians (sensitivity matrices) that quantify the θ-dependence

of the optimal trajectory; both depend on θ. Rearranging eq. (9) produces a system of linear equations
in which these two matrices provide the unknowns:(

I − ∂F

∂X

)
∇θX

⋆ − ∂F

∂U
∇θU

⋆ =
∂F

∂θ
,

− ∂G

∂X
∇θX

⋆ +

(
I − ∂G

∂U

)
∇θU

⋆ =
∂G

∂θ
.

(10)

The analytical solution for this system is given below.
Proposition 1. The Jacobians in eq. (10) are given by

∇θX
⋆ = M(Fθ + FU (K −GXMFU )

−1(GXMFθ −Gθ))

∇θU
⋆ = (K −GXMFU )

−1(GXMFθ +Gθ),
(11)

where we denote M = (I − FX)−1 and K = I −GU , and use the condensed notation

FX =
∂F

∂X
, FU =

∂F

∂U
, Fθ =

∂F

∂θ
, GX =

∂G

∂X
, GU =

∂G

∂U
, Gθ =

∂G

∂θ
. (12)

See the Appendix.

To be completely explicit, suppose a parameter θ is given. Then eq. (8) defines a fixed point τ⋆ in
terms of this particular θ, and this τ⋆ provides the evaluation point (X⋆(θ), U⋆(θ), θ) for all the
Jacobian matrices involving F and G in Equations (9) to (11).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 OBTAINING EACH TERM

The functions F and G whose Jacobian appear in eq. (12) are defined by rather complicated arg min
operations. The Chain-Rule pattern below, which we can apply to either H = F or H = G, suggests
that

HX =
∂H

∂D

∂D

∂X
+

∂H

∂d

∂d

∂X
+

∂H

∂C

∂C

∂X
+

∂H

∂c

∂c

∂X
,

HU =
∂H

∂D

∂D

∂U
+

∂H

∂d

∂d

∂U
+

∂H

∂C

∂C

∂U
+

∂H

∂c

∂c

∂U
,

Hθ =
∂H

∂D

∂D

∂θ
+

∂H

∂d

∂d

∂θ
+

∂H

∂C

∂C

∂θ
+

∂H

∂c

∂c

∂θ
.

(13)

In each term on the right, the first matrix factor (e.g., ∂H/∂D) expresses the sensitivity of the optimal
LQR trajectory with respect to the corresponding named ingredient of the formulation in eq. (4).
Efficient methods for calculating these terms are known: see Amos et al. (2018); Amos & Kolter
(2017). The second factor in each term of (13) can be computed using automatic differentiation. The
next subsections talk about how to calculate these terms efficiently.

4.4 PARALLELIZATION

Amos et al. (2018) proposes method that directly calculates ∂L
∂D , ∂L

∂d , ∂L
∂C , and ∂L

∂c with a complexity
of only O(T ). We adopt these results in our framework. To facilitate parallelization, we construct
batches of binary loss functions. Specifically, to compute ∂Hi,j

∂D , we set the Li,j element in L to
1, while all other elements are set to 0, and then calculate ∂L

∂D . Although this approach introduces
more computations, the computations can be fully parallelized since each operation is completely
independent. As a result, the calculation of ∂H

∂D can be parallelized efficiently. The same method also
applies to ∂H

∂d , ∂H
∂C , and ∂H

∂c .

4.5 EXPLORING THE SPARSITY

Some care is required when coding the calculations for which eq. (13) provides the models. With
X = (x1, . . . , xT ) as above, and the corresponding D = (D1, . . . , DT ), the quantity ∂D

∂X suggests a
huge structure involving T 2 submatrices of the general form ∂Dt

∂xt′
. However, the definitions in eq. (2)

show that any such submatrix in which t′ ̸= t will be zero. Thus the quantity ∂D
∂X shown above never

appears explicitly in our implementation. Instead, we work directly with the information-bearing
blocks ∂Dt

∂xt
, 1 ≤ t ≤ T .

4.6 FORWARD ALGORITHM

It can be costly to evaluate matrices like ∂D
∂θ . In Pytorch, for example, such tools such as

torch.autograd.jacobian rely on backpropagation, which means that gradient informa-
tion from one time step is not reused for the next time step. However, the derivation above makes it
clear that knowing ∂Dt−1

∂θ allows for a direct calculation of ∂Dt

∂θ .

We now propose an efficient forward approach that uses available information efficiently to acceler-
ate later steps. We refer to ∂Dt

∂θ from (13) as ∇θDt here for clarity and to distinguish it from other
gradient notations, a convention we apply similarly to other gradients such as ∂dt

∂θ .

Given a trajectory satisfying xt+1 = ft(xt, ut, θ), the matrices Dt and dt defined in eq. (2) are
functions of xt, ut, and θ. For time step t, we will have

∇θDt =
∂Dt

∂θ
+

[
∂Dt

∂xt
+

∂Dt

∂ut

∂ut

∂xt

]
∇θxt (14)

with

∇θxt =
∂xt

∂θ
+

[
∂xt

∂xt−1
+

∂xt

∂ut−1

∂ut−1

∂xt−1

]
∇θxt−1, (15)

where ∂Dt

∂θ , ∂Dt

∂xt
, ∂Dt

∂ut
and ∂xt

∂θ , ∂xt

∂xt−1
, ∂xt

∂ut−1
are analytically calculated in first so that on each time

step we only need to instantly plug in the corresponding parameter values to obtain the numerical

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

gradients. ∂ut

∂xt
and ∂ut−1

∂xt−1
are the linear control gain solved from FT-LQR. ∇θxt−1 is the stored

information from time step t− 1 and reused here, and ∇θxt is prepared for the next time step t+ 1.
Finally

∇θdt = ∇θxt+1−
∂Dt

∂θ

[
xt

ut

]
−Dt

[
I

∂ut

∂xt

]
∇θxt, ∇xt

dt = −∂Dt

∂xt

[
xt

ut

]
, ∇ut

dt = −∂Dt

∂ut

[
xt

ut

]
.

(16)
The calculation of ∇θCt and ∇θct is similar.

Algorithm 1 Forward Algorithm

1: Input: ∂Dt

∂θ , ∂Dt

∂xt
, ∂Dt

∂ut
and ∂xt

∂θ , Dt

2: Initialize variables ∇θx0 = 0
3: for time step t = 1, 2, . . . , T do
4: obtain ∇θxt through (15)
5: obtain ∇θDt with ∇θxt and (14), and obtain ∇θdt with ∇θxt and (16)
6: end for
7: return ∇θD, ∇θd

4.7 METHODOLOGICAL COMPARISON AND DISCUSSION

Differences between our method and DiffMPC Amos et al. (2018) DiffMPC treats input X∗ and
U∗ as constant and uses auto-differentiation to obtain ∂D

∂θ , and finally use the chain rule to obtain
the derivative of the optimal trajectory. We improve DiffMPC by further considering the input X∗

and U∗ as a function of θ, that is, X∗(θ) and U∗(θ), and leverage implicit differentiation on the
fixed-point to solve the exact analytical gradient, improving the accuracy of the gradient. The box in
27 illustrates the differences between the two approaches

Ai(τ i, θ) =
∂f(x, u, θ)

∂x

∣∣∣∣
τ i

, ∇θA
i =

∂Ai

∂θ
+

∂Ai

∂τ i
∂τ i

∂θ
. (17)

5 EXPERIMENTS

We follow the examples and experimental setups from previous works Amos et al. (2018); Jin et al.
(2020); Xu et al. (2024a); Watter et al. (2015) and conduct experiments on two well-known control
benchmarks: CartPole and Inverted Pendulum. The experiments demonstrate our method’s computa-
tional performance (at most 128x speedup) and superior learning performance (106 improvement).
All experiments were carried out on a platform with an AMD 3700X 3.6GHz CPU, 16GB RAM, and
an RTX3080 GPU with 10GB VRAM. The experiments are implemented with Pytorch Paszke et al.
(2019).

5.1 COMPUTATIONAL PERFORMANCE

50 100 150 200 250 300
iLQR iterations

0

5

10

15

20

25

Horizon = 10 

AutoDiff
Our method

50 100 150 200 250 300
iLQR iterations

Horizon = 20

AutoDiff
Our method

50 100 150 200 250 300
iLQR iterations

Horizon = 30

AutoDiff
Our method

Ba
ck

w
ar

d 
Ti

m
e 

(s
)

Figure 2: Backward computation time comparison between AutoDiff and our proposed method across
different iLQR iterations and LQR horizons. AutoDiff’s computation time scales linearly with the
number of iterations, while our method maintains constant computation time. The experiments are
conducted under pendulum domain, with batch size 20.

The performance of our differentiable iLQR solver is shown in Figure 2. We compare it to the naive
approach, where the gradients are computed by differentiating through the entire unrolled chain of

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Pendulum Cartpole
Tasks

10 7

10 5

10 3

10 1
Im

ita
tio

n 
lo

ss

Imitation Loss Comparison
nn
sysid
dilqr.dx
dilqr.cost

(a)

0 50 100 150 200 250
Epoch

1.6

1.8

2.0

2.2

2.4

2.6

Lo
ss

Model Loss
DiffMPC
DiLQR

(b)

Figure 3: (a) Learning results on the pendulum and cartpole. We select the best validation loss
observed during the training run and report the corresponding test loss. Every data point is averaged
over five trials. (b) Comparison of cost function parameter estimation between our method and
DiffMPC under the cartpole and cost learning domain.

iLQR. The results of the experiments clearly demonstrate the significant computational advantage of
our method over AutoDiff across all configurations.

Backward pass efficiency: For example, for a horizon of 10 and 300 iterations, AutoDiff takes
8.57 seconds compared to just 0.067 seconds with our method, resulting in a 128x speedup. Even
in the case with the smallest improvement—horizon of 10 and 50 iterations, AutoDiff takes 1.41
seconds, while our method remains 0.067 seconds, still delivering a 21x speedup. These results
highlight the clear scalability and efficiency of our method, maintaining a near-constant computation
time as the number of iLQR iterations increases, while AutoDiff’s time grows significantly with
longer horizons and more iterations.

5.2 IMITATION LEARNING

Imitation learning recovers the cost and dynamics of a controller through only actions. Similarly
to Amos et al. (2018), we compare our approach with Neural Network (NN): An LSTM-based
approach that takes the state x as input and predicts the nominal action sequence, directly optimizing
the imitation loss directly; SysId: Assumes that the cost of the controller is known and approximates
the parameters of the dynamics by optimizing the next-state transitions; and DiffMPC Amos et al.
(2018). We evaluated two variations of our method: diLQR.dx: Assumes that the cost of the controller
is known and approximates the parameters of the dynamics by directly optimizing the imitation loss;
diLQR.cost: Assumes that the dynamics of the controller are known and approximates the cost by
directly optimizing the imitation loss. For more experimental details, please refer to the Appendix.

Imitation Loss: In Figure 3a, we compare our method with NN and Sysid using imitation loss.
Notably, our method performs the best in the dx mode across both tasks, achieving a performance
improvement of orders of magnitude—106 and 104—over the NN. In the dcost mode, our method
is also dozens of times stronger than the NN but slightly weaker than Sysid. This is because Sysid
directly leverages a system model with state estimates, while imitation learning relies solely on action
data, which contains less information. The fact that our method achieves comparable results to Sysid
in this mode demonstrates its effectiveness.

Model Loss: In Figure 3b, we compare the model error learned from our approach to that of
DiffMPC. Model loss is defined as the MSE(θ − θ̂), where θ represents the parameters of the cost
function. Since learning in the cost mode is particularly challenging, we chose it as the case to
demonstrate model loss. In the dcost mode, our approach recovers more accurate model parameters
than DiffMPC, reducing model loss by 18%, indicating an improvement over our analytical results.

5.3 VISUAL CONTROL

We next explore a more complex, high-dimensional task: controlling an inverted pendulum system
using images as input.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Diagram of the end-to-end control architecture. The encoder maps the compressed set of
four input frames to the physical state variables (e.g., position, velocity). The differentiable iLQR
then steps the state forward using the encoder’s parameters. The decoder takes the predicted state and
generates a future frame to match the true future observation.

In this task, the state of the pendulum is visualized by a rendered line starting from the center of the
image, with the angle representing the position of the pendulum. The objective is to swing up the
underactuated pendulum from its downward resting position and balance it. The network architecture
consists of a mirrored encoder-decoder structure, each with five convolutional or transposed convolu-
tional layers, respectively. For further architectural details, please refer to the Appendix. To capture
the velocity information, we stack four compressed images as input channels. An example of these
observations and reconstructions is provided in Figure 4.

Figure 5: Imagined trajectory in the pendulum domain. The first image (red) represents the real input,
while the following images are "dreamed up" by our model based on the initial image.

Our modular approach handles the coordination between the controller and decoder seamlessly.
Figure 5 shows sample images drawn from the task depicting a trajectory generated by our system.
In this scenario, the system is given just one real image and, with the help of DiLQR, it can output a
sequence of predicted images, which closely approximate the actual trajectory of the pendulum.

6 DISCUSSION

In this paper, we focus on the theoretical aspects of differentiable control methods. While our
experiments are based on simpler control tasks, the advantages of our approach promise to extend to
more complex, real-world applications. Many prior works Amos et al. (2018); Watter et al. (2015); Xu
et al. (2024a); Jin et al. (2020) also rely on such toy examples to demonstrate foundational concepts.

One promising direction is embedding our differentiable controller into reinforcement learning (RL)
frameworks. For instance, it could be integrated into a policy network and trained using an actor-critic
approach, enabling more efficient policy updates. With its ability to propagate gradients through the
control process, our method could enhance RL’s performance, potentially achieving state-of-the-art
results in more advanced tasks.

7 CONCLUSIONS

In this work, we introduced DiLQR, an efficient framework for differentiating through iLQR using
implicit differentiation. By providing an analytical solution, our method eliminates the overhead of
iterative unrolling and achieves O(1) computational complexity in the backward pass, significantly
improving scalability. Experiments demonstrate that DiLQR outperforms existing methods in both
runtime and learning performance, making it a promising approach for real-time control applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable MPC for
end-to-end planning and control. Advances in neural information processing systems, 31, 2018.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), 2017. doi: 10.1609/aaai.v31i1.10916.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

Lucas Böttcher, Nino Antulov-Fantulin, and Thomas Asikis. AI Pontryagin or how artificial neural
networks learn to control dynamical systems. Nature communications, 13(1):333, 2022.

J Brewer. The derivative of the riccati matrix with respect to a matrix. IEEE Transactions on
Automatic Control, 22(6):980–983, 1977.

Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable spatial planning using
transformers. In International conference on machine learning, pp. 1484–1495. PMLR, 2021.

Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. Constrained iterative lqr for on-road autonomous
driving motion planning. In 2017 IEEE 20th International conference on intelligent transportation
systems (ITSC), pp. 1–7. IEEE, 2017.

Sheng Cheng, Minkyung Kim, Lin Song, Chengyu Yang, Yiquan Jin, Shenlong Wang, and Naira
Hovakimyan. Difftune: Auto-tuning through auto-differentiation. IEEE Transactions on Robotics,
2024.

Suyoung Choi, Gwanghyeon Ji, Jeongsoo Park, Hyeongjun Kim, Juhyeok Mun, Jeong Hyun Lee,
and Jemin Hwangbo. Learning quadrupedal locomotion on deformable terrain. Science Robotics,
8(74):eade2256, 2023.

Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review of physics simulators
for robotic applications. IEEE Access, 9:51416–51431, 2021.

Ewen Dantec, Maximilien Naveau, Pierre Fernbach, Nahuel Villa, Guilhem Saurel, Olivier Stasse,
Michel Taix, and Nicolas Mansard. Whole-body model predictive control for biped locomotion
on a torque-controlled humanoid robot. In 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids), pp. 638–644. IEEE, 2022.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample complexity
of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):633–679,
2020.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Sebastian East, Marco Gallieri, Jonathan Masci, Jan Koutnik, and Mark Cannon. Infinite-horizon
differentiable model predictive control. Proceedings of ICLR 2020, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596, 2018.

10

https://www.tensorflow.org/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Pontryagin differentiable program-
ming: An end-to-end learning and control framework. Advances in Neural Information Processing
Systems, 33:7979–7992, 2020.

Wanxin Jin, Shaoshuai Mou, and George J Pappas. Safe pontryagin differentiable programming.
Advances in Neural Information Processing Systems, 34:16034–16050, 2021.

Peter Karkus, Boris Ivanovic, Shie Mannor, and Marco Pavone. Diffstack: A differentiable and
modular control stack for autonomous vehicles. In Conference on robot learning, pp. 2170–2180.
PMLR, 2023.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated
path planning networks. In International Conference on Machine Learning, pp. 2947–2955. PMLR,
2018.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In First International Conference on Informatics in Control, Automation and
Robotics, volume 2, pp. 222–229. SciTePress, 2004.

Jiageng Mao, Yuxi Qian, Junjie Ye, Hang Zhao, and Yue Wang. Gpt-driver: Learning to drive with
gpt. arXiv preprint arXiv:2310.01415, 2023.

Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maximilien
Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nicolas Mansard. Crocoddyl:
An efficient and versatile framework for multi-contact optimal control. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2536–2542. IEEE, 2020.

David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000.

Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa Smith, and Jelena Kovačević.
Generalized value iteration networks: Life beyond lattices. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral networks: End-to-end differen-
tiable optimal control. arXiv preprint arXiv:1706.09597, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Marcus Pereira, David D Fan, Gabriel Nakajima An, and Evangelos Theodorou. MPC-inspired neural
network policies for sequential decision making. arXiv preprint arXiv:1802.05803, 2018.

Angel Romero, Yunlong Song, and Davide Scaramuzza. Actor-critic model predictive control. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14777–14784. IEEE,
2024.

Daniel Schleich, Tobias Klamt, and Sven Behnke. Value iteration networks on multiple levels of
abstraction. arXiv preprint arXiv:1905.11068, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jatan Shrestha, Simon Idoko, Basant Sharma, and Arun Kumar Singh. End-to-end learning of
behavioural inputs for autonomous driving in dense traffic. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 10020–10027. IEEE, 2023.

Damoon Soudbakhsh, Anuradha M Annaswamy, Yan Wang, Steven L Brunton, Joseph Gaudio,
Heather Hussain, Draguna Vrabie, Jan Drgona, and Dimitar Filev. Data-driven control: Theory
and applications. In 2023 American Control Conference (ACC), pp. 1922–1939. IEEE, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nathan A Spielberg, Matthew Brown, and J Christian Gerdes. Neural network model predictive
motion control applied to automated driving with unknown friction. IEEE Transactions on Control
Systems Technology, 30(5):1934–1945, 2021.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal plan-
ning networks: Learning generalizable representations for visuomotor control. In International
conference on machine learning, pp. 4732–4741. PMLR, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
Advances in neural information processing systems, 29, 2016.

Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Learning from the
hindsight plan—episodic MPC improvement. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 336–343. IEEE, 2017.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic programming.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1168–1175.
IEEE, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the 30th AAAI conference on artificial intelligence, volume 30, pp.
2094–2100, 2016. doi: 10.1609/aaai.v30i1.10295.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

Xuesu Xiao, Tingnan Zhang, Krzysztof Choromanski, Edward Lee, Anthony Francis, Jake Varley,
Stephen Tu, Sumeet Singh, Peng Xu, Fei Xia, et al. Learning model predictive controllers with
real-time attention for real-world navigation. arXiv preprint arXiv:2209.10780, 2022.

Zhaoming Xie, C Karen Liu, and Kris Hauser. Differential dynamic programming with nonlinear
constraints. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
695–702. IEEE, 2017.

Ming Xu, Timothy L Molloy, and Stephen Gould. Revisiting implicit differentiation for learning
problems in optimal control. Advances in Neural Information Processing Systems, 36, 2024a.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kwan-Yee K Wong, Zhenguo Li, and
Hengshuang Zhao. Drivegpt4: Interpretable end-to-end autonomous driving via large language
model. IEEE Robotics and Automation Letters, 2024b.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476–25488, 2021.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739–5743, 2018.

Linfeng Zhao, Huazhe Xu, and Lawson LS Wong. Scaling up and stabilizing differentiable planning
with implicit differentiation. arXiv preprint arXiv:2210.13542, 2022.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence
(SSCI), pp. 737–744. IEEE, 2020.

James Zhu, J Joe Payne, and Aaron M Johnson. Convergent ilqr for safe trajectory planning and
control of legged robots. arXiv preprint arXiv:2304.00346, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROOF OF PROPOSITION 1

Proposition 2. Define Fθ := ∂F
∂θ , FU := ∂F

∂U , FX := ∂F
∂X , Gθ := ∂G

∂θ , GU := ∂G
∂U , GX := ∂G

∂X .
Define M := (I − FX)−1, and K := I −GU . The analytical form of the gradients dX

dθ and dU
dθ are

given as follows:

dX

dθ
= M(Fθ + FU (K −GXMFU )

−1(GXMFθ −Gθ))

dU

dθ
= (K −GXMFU )

−1(GXMFθ +Gθ)

(18)

Proof. With the new notations, equations can be rewritten as:

(I − FX)
dX∗

dθ
− FU

dU∗

dθ
= Fθ

−GX
dX∗

dθ
+ (I −GU )

dU∗

dθ
= Gθ

(19)

Focusing on the first equation, dX
dθ can be represented with dU

dθ :

dX

dθ
= (I − FX)−1(Fθ + FU

dU

dθ
)

= M(Fθ + FU
dU

dθ
)

(20)

Then, substituting 20 into the second equation of 19 to obtain an equation with respect to only dU
dθ :

−GX(M(Fθ + FU
dU

dθ
)) + (I −GU )

dU∗

dθ
= Gθ (21)

Solving equation 21 will give the solution to dU∗

dθ :

dU

dθ
= (K −GXMFU )

−1(GXMFθ +Gθ) (22)

Substituting 22 into 20, the solution to dX
dθ can be obtained:

dX

dθ
= M(Fθ + FU (K −GXMFU )

−1(GXMFθ +Gθ)) (23)

This completes the proof.

A.2 EXPERIMENTS DETAILS

We refer the methods in DiffMPC as mpc.dx: Assumes the cost of the controller is known and
approximates the parameters of the dynamics by directly optimizing the imitation loss; mpc.cost:
Assumes the dynamics of the controller are known and approximates the cost by directly optimizing
the imitation loss. For all settings involving learning the dynamics (mpc.dx, mpc.cost. iLQR.dx, and
iLQR.cost.dx), a parameterized version of the true dynamics is used. In the pendulum domain, the
parameters are the masses of the arm, length of the arm, and gravity; and in the cartpole domain,
the parameters are the cart’s mass, pole’s mass, gravity, and length. For cost learning in mpc.cost,
iLQR.cost and mpc,cost.dx, we parameterized the controller’s cost as the weighted distance to a goal
state C(τ) = ∥wg(τ − τg)∥. As indicated in Amos et al. (2018), simultaneously learning the weights
wg and goal state τg was unstable. Thus, we alternated learning wg and τg independently every 10
epochs.

Training and Evaluation We collected a dataset of trajectories from an expert controller and varied
the number of trajectories our models were trained on. The NN setting was optimized with Adam
with a learning rate of 10−4, and all other settings were optimized with RMSprop with a learning rate
of 10−2 and a decay term of 0.5.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.3 DETAILED NETWORK ARCHITECTURE

Encoder The encoder is a neural network designed to encode input image sequences into low-
dimensional state representations. It is implemented as a subclass of torch.nn.Module, and
consists of five convolutional layers and a regression layer:

• Convolutional layers: Each layer applies 2D convolutions, followed by batch normalization,
ReLU activations, and max pooling. These operations progressively reduce the spatial
dimensions of the input image.

• Regression layer: After the final convolutional layer, the output is flattened and passed
through three fully connected layers, mapping the extracted features to the desired output
dimension, which represents the system state.

The forward pass takes an input tensor of shape [batch, 12, 224, 224] (representing four
stacked RGB images) and processes it through the convolutional layers. The output is a state vector
of shape [batch, out_dim].

Decoder The decoder mirrors the structure of the encoder and is also a subclass of
torch.nn.Module. It reconstructs images from the low-dimensional state vector. The decoder
consists of five transposed convolutional layers followed by a regression layer:

• Transposed convolutional layers: These layers progressively upsample the input, applying
batch normalization and ReLU activations after each layer to restore the spatial dimensions.

• Regression layer: This layer, consisting of three fully connected layers, transforms the
low-dimensional input vector into a form suitable for the initial transposed convolution.

The forward pass takes a state vector of shape [batch, 3] as input, upscales it through the
transposed convolution layers, and outputs a reconstructed image tensor of shape [batch, 3,
224, 224]. A Sigmoid activation is applied to ensure the pixel values remain within the range [0,
1].

A.4 ADVANTAGES OF FIXED-POINT METHOD

A.4.1 ANALYTICALLY DISCUSSION

In this section, we discuss how our method differs from non-fixed-point method (e.g. Amos et al.
(2018)) and why our gradient is the accurate one. Given nonlinear dynamics fθ(x, u), in the ith
iteration, iLQR linearizes fθ(x, u) around the trajectory τ i−1

Ai
θ =

∂fθ(x, u)

∂x

∣∣∣∣
τ i−1

, Bi
θ =

∂fθ(x, u)

∂u

∣∣∣∣
τ i−1

. (24)

Without loss of generality, the following discussion focuses on the backpropagation through A.

The goal of differentiable iLQR is to calculate ∇L
∇θ . The non-fixed-point method naturally uses chain

rule
∇L

∇θ
=

∂L

∂τ i
∂τ i

∂Ai
θ

∇Ai
θ

∇θ︸ ︷︷ ︸
∂τi

∂θ

. (25)

(25) is mathematically correct, but it is impractical. Ai
θ is not only a parameterized function of θ,

but also a function of τ i−1
θ , and τ i−1

θ is also a function of θ, since it is the output of previous layers.
Consequently,

∇Ai
θ

∇θ
=

∂Ai
θ

∂θ
+

∂Ai
θ

∂τ i−1

∂τ i−1

∂θ
. (26)

For the final layer that outputs fixed-point, (26) would be written as

∇Ai
θ

∇θ
=

∂Ai
θ

∂θ
+

∂Ai
θ

∂τ i
∂τ i

∂θ
(27)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

which would drive us back to ∂τ i

∂θ , the thing we indeed want to derive. What non-fixed-point method
does is treating τ i as a constant, in the following way

Ai
θ =

∂fθ(x, u)

∂x

∣∣∣∣
τ i

. (28)

When taking gradient, they only consider∂A
i
θ

∂θ that explicitly appears in the matrix. In a word, non-
fixed-point method treats A as A(θ, τ), while our method treats it as A(θ, τ(θ)). Our main argument
is that the accurate gradient is supposed to be ‘solved’, instead of ‘multiplied’ through the chain rule.

A.4.2 A CONCRETE EXAMPLE

Consider a non-quadratic two-step optimal control problem defined by the following objective
function:

J =

0∑
k=0

θ(xk)
4 + (uk)

2 + θ(xT )
4

s.t. xk+1 = Axk +Buk

x0 = [1, 1]⊤

(29)

where the matrices are specified as:

A =

[
1 1
0 1

]
, B =

[
0
1

]
, (30)

and (xk)
4 denotes the sum of the element-wise fourth powers of vector xk. The parameter θ is a

scalar and is a learnable coefficient influencing the cost function.

Given the initial state x0 and considering u0 as the sole control variable, the system evolves through
the states:

x0 = [1, 1]⊤, x1 = [2, u0 + 1]⊤. (31)
The optimization problem then reduces to minimizing the following equivalent function:

min J = min u2
0 + θ(u0 + 1)4. (32)

For the sake of simplicity, we will drop the subscript from u0 and refer to it as u. The derivative of
(32) with respect to u, necessary to find the optimal control u∗, is given by:

2u+ 4θ(u+ 1)3 = 0. (33)

Solving this equation yields the analytical solution for u∗:

u∗ =
3
√

9θ2 +
√
3
√
27θ4 + 2θ3

62/3θ
− 1

3
√
6

3
√

9θ2 +
√
3
√
27θ4 + 2θ3

− 1. (34)

Given that the problem is convex and the solution is unique, iLQR algorithms would converge to the
optimal solution (34). The resulting optimal trajectory (u∗, x∗

1) is refered to as a fixed-point in the
iLQR context.

In the linear approximation of the cost function for state x1 = [x0
1, x

1
1], the expansion around the

fixed-point state x∗
1 = [x0∗

1 , x1∗
1 ] is:

(x1)
4 ≈ θ(x0

1)
4|x0∗

1
+ c01(x

0
1 − x0∗

1 ) + C0
1 (x

0
1 − x0∗

1 )2

+ θ(x1
1)

4|x1∗
1

+ c11(x
1
1 − x1∗

1 ) + C1
1 (x

1
1 − x1∗

1 )2
(35)

with constants:

c01 = 4θ(x0
1)

3|x0∗
1
, C0

1 = 12θ(x0
1)

2|x0∗
1
, c11 = 4θ(x1

1)
3|x1∗

1
, C1

1 = 12θ(x1
1)

2|x1∗
1
. (36)

One of the core part in differentiable iLQR is to derive the gradient of cost functions c, C and
dynamics A,B with respect to the learnable parameters. In our case, this turns to sensitivity analysis
∇c
∇θ and ∇C

∇θ . Without loss of generality, we particularly study about ∇c11
∇θ .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

In non-fixed-point method, the following formulation is used

∇c11
∇θ

= 4(x1∗
1 )3. (37)

The formulation is straightforward, however, it ignores the relation between c11 and u∗. Even though
u∗ is a fixed-point for the iLQR, a different u∗ would still result in a different c11. Consequently, we
argue that the correct formulation suppose to be

∇c11
∇θ

= 4(x1∗
1 )3 + θ

∇4(x1∗
1 )3

∇x1∗
1

∇x1∗
1

∇u

∇u

∇θ
= 4(x1∗

1 )3 + θ
∇4(x1∗

1 )3

∇x1∗
1

∇u

∇θ
. (38)

In order to obtain ∇u
∇θ on u∗, take difference for (33)

2du+ 4dθ(u+ 1)3 + 12θ(u+ 1)2du = 0

→ ∇u

∇θ
= − 2(u∗ + 1)3

6θ(u∗ + 1)2 + 1
.

(39)

Plugin it to (38), we will have

∇c11
∇θ

= 4(x1∗
1 )3 − 24θ(u∗ + 1)5

6θ(u∗ + 1)2 + 1
. (40)

To illustrate how huge difference the correction term can give, we use finite difference method as a
baseline to calculate ∇c11

∇θ , and plot the values of the gradients with θ.

0 1 2 3 4 5
Theta

0.0

0.5

1.0

1.5

2.0

2.5

Gr
ad

ie
nt

 V
al

ue
s

Gradients from Different Methods
Finite Difference
Reference Method
Our Method

Figure 6: Comparison of gradients from different methods. Our method (squares) and the finite
difference method (circles) produce nearly identical curves, but the two lines can still be distinguished
by their different markers.

16


	Introduction
	Related Work on Differentiable Planning
	Background
	The Approximate Problem
	The Trajectory Update

	Differentiable iLQR
	End-to-end learning framework
	Fixed point differentiation
	Obtaining each term
	Parallelization
	Exploring the sparsity
	Forward algorithm
	Methodological Comparison and Discussion

	Experiments
	Computational Performance
	Imitation Learning
	Visual control

	Discussion
	Conclusions
	Appendix / supplemental material
	Proof of proposition 1
	Experiments Details
	Detailed Network Architecture
	Advantages of fixed-point method
	Analytically discussion
	A concrete example



