Under review as a conference paper at ICLR 2025

DILQR: DIFFERENTIABLE ITERATIVE LINEAR
QUADRATIC REGULATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Differentiable control promises end-to-end differentiability and adaptability, ef-
fectively combining the advantages of both model-free and model-based control
approaches. However, the iterative Linear Quadratic Regulator (iLQR), despite
being a powerful nonlinear controller, still lacks differentiable capabilities. The
scalability of differentiating through extended iterations and horizons poses signifi-
cant challenges, hindering iLQR from being an effective differentiable controller.
This paper introduces a framework that facilitates differentiation through iLQR,
allowing it to serve as a trainable and differentiable module, either as or within
a neural network. for control purposes. A novel aspect of this framework is the
analytical solution that it provides for the gradient of an iLQR controller through
implicit differentiation, which ensures a constant backward cost regardless of it-
eration, while producing an accurate gradient. We evaluate our framework on
imitation tasks on famous control benchmarks. Our analytical method demon-
strates superior computational performance, achieving up to 128x speedup and
a minimum of 21x speedup compared to automatic differentiation. Our method
also demonstrates superior learning performance (108x) compared to traditional
neural network policies and better model loss with differentiable controllers that
lack exact analytical gradients. Furthermore, we integrate our module into a
larger network with visual inputs to demonstrate the capacity of our method for
high-dimensional, fully end-to-end tasks. Codes can be found on the project
homepage https://sites.google.com/view/dilqgr/,

1 INTRODUCTION

Differentiable control has emerged as a powerful approach in the fields of reinforcement learning (RL)
and imitation learning, enabling significant improvements in sample efficiency and performance. By
integrating control policies into a differentiable framework, researchers can leverage gradient-based
optimization techniques to directly optimize policy parameters. This integration allows for end-to-end
training, where both the control strategy and the underlying model can be learned simultaneously,
enhancing the adaptability and precision of control systems.

As a numerical controller, the iterative Linear Quadratic Regulator (iLQR) [Todorov et al.[(2012)) has
been extensively adopted for trajectory optimization [Spielberg et al|(2021);|Chot et al.| (2023)); [Zhao
et al.| (2020); Mastalli et al.| (2020) due to its computational efficiency [Tassa et al.|(2014)); Dean et al.
(2020); |Collins et al.| (2021)) and excellent control performance Dantec et al.| (2022); Xie et al.[(2017);
Chen et al.| (2017). To make iLQR trainable as a neural network module, naively differentiating
through an iLQR controller may be a reasonable choice, but the scalability of differentiating through
hundreds of iterations steps poses a significant challenge, as the forward and backward passes during
training are coupled. The forward pass involves iteratively solving an LQR optimization problem to
converge on the optimal trajectory. The backward pass computes gradients through backpropagation,
and becomes increasingly complex as it needs to traverse through all the layers of the forward
pass, which requires significant computational resources (time and memory), especially for tasks
requiring long iterations and long horizons. This coupling not only increases memory usage, but also
significantly slows down the training process, making it difficult to scale to larger problems.

Efficient differentiable controllers are especially valuable in systems involving neural networks,
such as multi-modal frameworks |[Mao et al.|(2023)); |Xu et al.| (2024b); [Xiao et al.|(2022) and deep
reinforcement learning [Ye et al.|(2021)); ivan Hasselt et al.|(2016), where an upstream neural network
module is required. Developing differentiable controllers with efficient gradient propagation is crucial,
as they greatly enhance sample efficiency and reduce computational time for online tuning.

https://sites.google.com/view/dilqr/

Under review as a conference paper at ICLR 2025

Time

—e— AutoDiff

Backvgrd Tme ()

AutoDiff into ilLQR T Rrweee ©

Implicit Diff (analytical gradient) . Sackara Tme v, LOR Heraons

Our Implict Diff

Backward Time (5)

ILOR iterations

A A L 0N — e e e s b s b s i s » iterationV

—————» Forward Pass —— > Backward Gradient Pass

Figure 1: An overview of iLQR, and AutoDiff vs our proposed planner with implicit differentiation.
As shown in the flowchart, autodiff must backpropagate through each layer of the LQR process, which
leads to significantly increased memory usage to store intermediate gradients and computational load.
In contrast, our proposed planner, using implicit differentiation, only needs to handle the final layer.
This results in constant computational costs and memory usage, making our method much more
efficient.

Developing analytical solutions would greatly alleviate these challenges. DiffMPC |[Amos et al.
(2018)) pioneered the use of analytical gradients in LQR control, leading to significant improvements
in computational efficiency and generalization of the learned controller. Its success has inspired
extensions in various planning and control applications|East et al.|(2020); Romero et al.|(2024)); Karkus
et al.| (2023); |Cheng et al.|(2024); [Soudbakhsh et al.|(2023); Shrestha et al.| (2023)). Numerous studies
have since shown that analytical gradients significantly improve learning performance, reducing
computational costs, and improving scalability in complex, long-horizon tasks Jin et al.[(2020); [Xu
et al.| (2024a)); Jin et al.| (2021)); Bottcher et al.| (2022); Zhao et al.|(2022).

In this paper, we introduce an innovative analytical framework that leverages implicit differentiation
to handle iLQR at its fixed point. This approach effectively separates the forward and backward
computations, maintaining a constant computational load during the backward pass, irrespective of
the iteration numbers for iLQR. By doing so, our method significantly reduces computational time
and the memory usage needed for training, thereby enhancing scalability and efficiency in handling
non-convex control problems.

This paper makes the following contributions.

1. We develop an efficient method for analytical differentiation. We derive analytical trajectory
derivatives for optimal control problems with tunable additive cost functions and constrained
dynamics described by first-order difference equations, focusing on iLQR as the controller.
Our analytical solution is exact, considering the entire iLQR graph. The method guarantees
O(1) computational complexity with respect to the number of iteration steps.

2. We propose a forward method for differentiating linearized dynamics with respect to nonlin-
ear dynamics parameters, achieving speeds dozens of times faster than auto-differentiation
tools such as torch.autograd. jacobian. Furthermore, we exploit the sparsity of
the tensor expressions to compute some tensor derivatives that scale linearly with trajectory
length.

3. We demonstrate the effectiveness of our framework in imitation and system identification
tasks using the inverted pendulum and cartpole examples, showcasing superior sample
efficiency and generalization compared to traditional neural network policies. Finally, we
integrate our differentiable iLQR into a large network for end-to-end learning and control
from pixels, demonstrating the extensibility and multimodal capabilities of our method.

Notation For a scalar-valued function f with a vector input, V f is the usual gradient. The
subscripts in the symbol V indicate partial derivatives involving a subvector of the full input, or serve
to emphasize the variable of interest. For a more general operation mapping tensors to tensors, we

Under review as a conference paper at ICLR 2025

write % for the appropriate linearization. See, for example, eq. , where Jacobian matrices are

constructed. To improve the readability of some equations, we sometimes use the notation Dy X as a
synonym for %—}g. Careful tracking of the dependencies involved is essential at every stage.

2 RELATED WORK ON DIFFERENTIABLE PLANNING

Pure model-free techniques for policy search have demonstrated promising results in many domains
by learning reactive policies that directly map observations to actions |Haarnoja et al.| (2018)); |Sutton
& Barto| (2018); |Schulman et al.| (2017); [Fujimoto et al.| (2018). However, due to the black box nature
of these policies, model-free methods suffer from a lack of interpretability, poor generalization, and
high sample complexity|Ye et al.|(2021)); [Yu|(2018); Bacon et al.| (2017); Deisenroth & Rasmussen
(2011). Differentiable planning integrates classical planning algorithms with modern deep learning
techniques, enabling end-to-end training of models and policies, thereby combining the complemen-
tary advantages of model-free and model-based methods. Value Iteration Network (VIN) Tamar et al.
(2016) is a representative work that performs value iteration using convolution on lattice grids and
has been extended further Niu et al.[|(2018); |Lee et al.|(2018)); |Chaplot et al.|(2021); Schleich et al.
(2019). These works have demonstrated significant performance improvements on various tasks.

However, these works primarily focus on discrete action and state spaces. In the field of continuous
control, most efforts have focused on differentiable LQR, including differentiating through finite
horizon LQR |Amos et al.|(2018)); Shrestha et al.|(2023)), infinite horizon [East et al.|(2020); Brewer
(1977), and constrained LQR Xu et al.|(2024a)). References (Jin et al., [2020; [2021}; |Bo6ttcher et al.,
2022)) propose frameworks that can differentiate through Pontryagin’s Maximum Principle (PMP)
conditions. However, the convergence speed of PMP-based methods is slower than that of iLQR Jin
et al.|(2020), due to the 1.5 order convergence rate of iLQR. More importantly, these methods and
Xu et al.| (2024a)) assume a broad range of forward pass solutions and do not align the gradient in the
backward pass with forward solution.

For iLQR, which is a powerful numerical control technique [Todorov et al.| (2012)); |Li & Todorov.
(2004); [Zhu et al.[(2023), Tamar et al.|(2017) differentiates through an iterative LQR (iLQR) solver
to learn a cost-shaping term offline. Other methods based on numerical control techniques include
Okada et al.| (2017); [Pereira et al. (2018), which provide methods to differentiate through path
integral optimal control, and |Srinivas et al.|(2018)), which shows how to embed differentiable planning
(unrolled gradient descent over actions) within a goal-directed policy.

However, all of these methods require differentiation through planning procedures by explicitly
unrolling the optimization algorithm itself, introducing drawbacks such as increased memory and
computational costs and reduced computational stability|[Zhao et al.|(2022); Bai et al.|(2019)). DiffMPC
Amos et al.|(2018)) is a representative work in the field of differentiable MPC. Significant progress
has been made in the efficient differentiable LQR with box constraints by |[Amos et al.| (2018)). To
differentiate iLQR, /Amos et al.|(2018)) proposes a methodology that differentiates through the last
layer of iLQR to avoid unrolling of the entire iLQR graph. However, Amos et al.|(2018)) treats the
input to the last layer of LQR as a constant, rather than a function of the learning parameters. Using
implicit differentiation, we develop a framework that provides exact analytical solutions for iLQR
gradients, improving the gradient computation presented in|Amos et al.| (2018]). Our approach not
only addresses scalability issues, but also improves learning performance.

3 BACKGROUND

The Iterative Linear Quadratic Regulator iILQR) addresses the following control problem:

T
min th(ﬂUt,Ut) st 1 = fi(z, w), ©1 = Tina; u<u<4a. (1
t—

T1.7,U1:T

At each iteration step, it linearizes the dynamics and makes a quadratic approximation of the cost
function to produce a finite-time Linear Quadratic Regulator (LQR) problem. Solving this auxiliary
problem produces updates for the original trajectory. Here are some details.

Under review as a conference paper at ICLR 2025

3.1 THE APPROXIMATE PROBLEM

Iteration 4 begins with the trajectory 7% = {7{,..., 7%}, where 7/ = {z},ui}. We linearize the
dynamics by defining
ofe| of| | " 7
Dt:[At Bt]: —_ s dt:ft(xz u;)—Dt t t:1,2,...,T, (2)
’ 833 TZ‘, 6’& TZ’_ ’ ’ u% ’
and form a quadratic approximation of the cost function using
dg dg C, C,
C: == [Ct,zv Ct,u] == R) =) Ct = b by) t = 1; 27 e ;T7 (3)
ox i ou i t,ux t,uu
Tt Tt
where o2 o2 o2
_0"Ggt _ UGt _ AT gt
Ot,;car: - W 7_1'7 t,uu — W T'i7 Ot,acu — Ct,ua: - udx o
t t t{
These elements lead to an approximate problem whose unknowns are 67y = 74 — 74
T
1
min Z 01, ' Cyo1, + 02—67} st. 0xpy1 = Dby, 621 =0; u<u<a. @)
ST P 2

3.2 THE TRAJECTORY UPDATE

Problem (@) can be solved by the two-pass method detailed in[Tassa et al.| (2014). First a backward
pass is conducted, using the Riccati-Mayne method [Mayne et al.| (2000) to obtain a quadratic value
function and a projected-Newton method to optimize the actions under box constraints. Then a
forward pass uses the linear control gains K}, k; obtained in the backward pass to roll out a new
trajectory. Let 67* denote the minimizing trajectory in (). We use the controls in 67* directly, but
discard the states in favor of an update based on the original dynamics, setting

i1 i i1 i1 il
ufr = uy + ouj, xﬁl = f(acfr 7u§+). 5)

With these choices, defining 77" = {2!™! 41} provides a feasible trajectory for (1)) that can serve
as the starting point for another iteration.

4 DIFFERENTIABLE ILQR

4.1 END-TO-END LEARNING FRAMEWORK

In the learning problem of interest here, the cost functions g; and system dynamics f; involve
structured uncertainty parameterized by a vector variable . For example, in a drone, 6 could
represent physical parameters like mass or propeller length, while in a humanoid robot, it might refer
to limb lengths or joint masses; additionally, # can include reference trajectories for robot tracking,
which help parametrize the cost function for control. Suppressing 6 in the notation is typical when
0 has a fixed value, but now we face the challenge of choosing 6 to optimize some scalar criterion.
This requires changing the notation to f; = f;(z,u,6) and g; = g¢(z,u,). As such, the derivatives
shown in (2)) and (3)) must also be considered as functions of §. So, along a given reference trajectory
7, the dynamics in (1)) will generate three 6-dependent matrices we must consider:
Oft Ofe Oft
Ai(0) = oz’ Byi(0) = ou’ and 20

The same is true for the coefficients in the quadratic approximation to the loss function in the original
problem. Careful accounting for the #-dependence at every level is required for accurate gradients.

Suppose the loss function L to be minimized by “learning” 6 is expressed entirely in terms of the
trajectory 7. Then the influence of 8 on the observed L-values will be indirect, and we will need the
chain rule to express the gradient of the composite function 6 — L(7(9)):

Vo(Lom)(0) = V,L(r(0) 2 ©

In practical implementations, the partial derivatives required to form VL are provided during the

backward pass by automatic differentiation tools [Paszke et al.| (2019); |Abadi et al.|(2015). The main

challenge, however, is to determine 2%, i.e., the derivative of the optimal trajectory with respect to

L o0g° .
the learnable parameters. This is the focus of the next section.

Under review as a conference paper at ICLR 2025

4.2 FIXED POINT DIFFERENTIATION

For a particular choice of #, we can consider the sequence of trajectories produced by iLQR:

0o iLQR_ | iLQR_ 5 iLQR iLQR. _, iLQR , iLQR
T T T “e. T T e,

(N

Each iteration includes the three steps noted above: linearizing the system, conducting the backward
pass, and performing the forward pass. Iterations proceed until the output 7* from an iLQR step is
indistinguishable from the input, indicating that the process can no longer improve the input trajectory.
This trajectory 7* is called a fixed point for the iLQR. We expect the value of # to influence the fixed
point produced above.

In general, an operator’s fixed point can be calculated by various methods, typically iterative in nature.
As pointed out in [Bai et al.| (2019), naively differentiating through such a scheme would require
intensive memory usage Tamar et al. (2016); Lee et al.| (2018) and computational effort|Zhao et al.
(2022)). Instead, we propose to use implicit differentiation directly on the defining identity. This gives
direct access to the derivatives required by decoupling the forward (fixed-point iteration as the solver)
and backward passes (differentiating through the solver).

Let us write X = (21,...,27) and U = (uq,...,ur) for the components of a trajectory 7 =
(x1,u1,Z2,us, ..., 27, ur), and abuse notation somewhat by identifying 7 with (X, U). At a fixed
point (X™*, U*) of the iLQR process for parameter 6, we have the following:

X*=F(X*U*0), U"=GX*,U"0) 8)

where F' and G summarize the operations that define a single iteration in the iLQR algorithm. (Thus
eq. () formalizes the graphical summary in eq. (7).)

In eq. (8), the solutions X* and U* depend on the parameter §. By treating both X* and U* explicitly
as functions of 6, we can interpret eq. as an identity valid for all 8. Differentiating through this
identity yields a new one:

., OF_ . OF_ . OF
., 0G_ _, 9G_ . G

Here, the matrix-valued partial derivatives of F' and G above are evaluated at (X*(6), U*(0),).
Likewise, Do X™* and DyU™ are the Jacobians (sensitivity matrices) that quantify the §-dependence
of the optimal trajectory; both depend on 6. Rearranging eq. (9) produces a system of linear equations
in which these two matrices provide the unknowns:

oF oF oF
I—— X*— —=VoU*= —
(ax)v" vV 90" (10)
oG . oG . 0G
The analytical solution for this system is given below.
Proposition 1. The Jacobians in eq. are given by
VoX* = M(Fy+ Fy(K — GxMFy) Y (GxMFy — Gg)) an
VoU* = (K - GxMFU)il(GXMFg + Gg),
where we denote M = (I — Fx)~ and K = I — Gy, and use the condensed notation
oF OF oF oG oG oG
Fx=—, Fu=—=, Fh=—, Gx=—-—=, Gu=—-——, Gog=——. 12
x=ox tv=g5 Ti=755 Gx=3% Gu=g55 Go=7 (12)
See the Appendix.

To be completely explicit, suppose a parameter 6 is given. Then eq. (8] defines a fixed point 7* in
terms of this particular 0, and this 7* provides the evaluation point (X*(8), U*(0), 0) for all the
Jacobian matrices involving F' and G in Equations (9) to (TT).

Under review as a conference paper at ICLR 2025

4.3 OBTAINING EACH TERM

The functions F' and G whose Jacobian appear in eq. are defined by rather complicated arg min
operations. The Chain-Rule pattern below, which we can apply to either H = F or H = G, suggests

that
_OHOD O0H od OHOC OH dc

Ax=3pax Y aaax Tacoax * o ax

g, _ OHLOD OH 0d 0HOC 0H dc a3
Y= 9DoU " ad oU " aC oU ' dc oU’

I OHOD OHOd OHOC OH Oc

0

9D 09 " ad o6 " aC 90 " oc 06
In each term on the right, the first matrix factor (e.g., 0H /9 D) expresses the sensitivity of the optimal
LQR trajectory with respect to the corresponding named ingredient of the formulation in eq. (@).
Efficient methods for calculating these terms are known: see|Amos et al.| (2018));/Amos & Kolter
(2017). The second factor in each term of (I3) can be computed using automatic differentiation. The
next subsections talk about how to calculate these terms efficiently.

4.4 PARALLELIZATION

Amos et al.|(2018) proposes method that directly calculates g—é, ‘3—5, g—é, and %—ﬁ with a complexity
of only O(T'). We adopt these results in our framework. To facilitate parallelization, we construct

batches of binary loss functions. Specifically, to compute aggj , we set the L; ; element in L to

1, while all other elements are set to 0, and then calculate ‘%. Although this approach introduces
more computations, the computations can be fully parallelized since each operation is completely

independent. As a result, the calculation of g—g can be parallelized efficiently. The same method also

applies to %—g, g—g, and %—f

4.5 EXPLORING THE SPARSITY

Some care is required when coding the calculations for which eq. provides the models. With

X = (x1,...,x7) as above, and the corresponding D = (D1, ..., D), the quantity g—f{) suggests a

huge structure involving 7' submatrices of the general form gf t. However, the definitions in eq.
t’

show that any such submatrix in which ¢’ # ¢ will be zero. Thus the quantity g—D shown above never
appears explicitly in our implementation. Instead, we work directly with the information-bearing

blocks 22+ 1 <¢ < T
Tt

4.6 FORWARD ALGORITHM

It can be costly to evaluate matrices like %—D. In Pytorch, for example, such tools such as
torch.autograd. jacobian rely on baclé)(propagation, which means that gradient informa-
tion from one time step is not reused for the next time step. However, the derivation above makes it

clear that knowing 8%@‘1 allows for a direct calculation of 8(% .

We now propose an efficient forward approach that uses available information efficiently to acceler-

ate later steps. We refer to 22¢ from l) as VgD, here for clarity and to distinguish it from other

00
gradient notations, a convention we apply similarly to other gradients such as %.

Given a trajectory satisfying xy11 = fi(x¢,uy, 0), the matrices D; and d; defined in eq. are
functions of x4, u, and 0. For time step ¢, we will have

8Dt 8Dt 8Dt aut
VoD = — —+——|V 14
o= ge {axt R N 14)
with B o 5 B
Tt Ty Ty OUt—1
Vor; = — Voxi_1, 15
T [8xt_1 Dup_s axt_l] o1 (15)
where 8£t , %g: , %ﬁf and %, aifﬁl , aifjl are analytically calculated in first so that on each time

step we only need to instantly plug in the corresponding parameter values to obtain the numerical

Under review as a conference paper at ICLR 2025

gradients. % and g’;::i are the linear control gain solved from FT-LQR. Vyz,_; is the stored

information from time step ¢ — 1 and reused here, and Vyx, is prepared for the next time step ¢ + 1.
Finally

oD I oD oD
Vodi = Vi1 — t {xt} —Dy {Out} Voxy, Vg,dy = t {xt} ;o Vi dy = t {zf} .

06 |ur ot - Oay [~ Ouy |
(16)

The calculation of V¢ and Vyc; is similar.

Algorithm 1 Forward Algorithm
Input: aa%’ %ftf, ‘?)ﬁ’: and %, D,
Initialize variables Vyxzg = 0
for time stept =1,2,...,7 do
obtain Vyz, through (T3)
obtain VD, with Vyz; and (14), and obtain Vyd; with Vyz; and
end for
return VyD, Vyd

A A S

4.7 METHODOLOGICAL COMPARISON AND DISCUSSION

Differences between our method and DiffMPC|Amos et al.| (2018) DiffMPC treats input X * and
U™ as constant and uses auto-differentiation to obtain a—’g, and finally use the chain rule to obtain
the derivative of the optimal trajectory. We improve Dit&fMPC by further considering the input X*
and U™ as a function of 6, that is, X*(6) and U* (), and leverage implicit differentiation on the
fixed-point to solve the exact analytical gradient, improving the accuracy of the gradient. The box in
illustrates the differences between the two approaches

of (x,u,0)
Ox .

Ti

DA L DA o7’
06 art 90 |

AT, 0) = VoAl = (17)

5 EXPERIMENTS

We follow the examples and experimental setups from previous works Amos et al. (2018); Jin et al.
(2020); [Xu et al.[(2024a); |Watter et al.|(2015) and conduct experiments on two well-known control
benchmarks: CartPole and Inverted Pendulum. The experiments demonstrate our method’s computa-
tional performance (at most 128x speedup) and superior learning performance (108 improvement).
All experiments were carried out on a platform with an AMD 3700X 3.6GHz CPU, 16GB RAM, and
an RTX3080 GPU with 10GB VRAM. The experiments are implemented with Pytorch Paszke et al.
(2019).

5.1 COMPUTATIONAL PERFORMANCE

—e— AutoDiff —e— AutoDiff —e— AutoDiff
Our method Our method Our method

S —

250 300 50 100 150 200 250 300 50 100 150 200 250 300
iLQR iterations iLQR iterations

Backward Time (s)

50 100 150 200
iLQR iterations

Figure 2: Backward computation time comparison between AutoDiff and our proposed method across
different iLQR iterations and LQR horizons. AutoDiff’s computation time scales linearly with the
number of iterations, while our method maintains constant computation time. The experiments are
conducted under pendulum domain, with batch size 20.

The performance of our differentiable iLQR solver is shown in Figure 2] We compare it to the naive
approach, where the gradients are computed by differentiating through the entire unrolled chain of

Under review as a conference paper at ICLR 2025

Imitation Loss Comparison
1

== nn Model Loss
sysid

= dilgr.dx

= dilgr.cost

Imitation loss

Pendulum Cartpole 0 50 100 150 200 250
Tasks Epoch

(@ (b)

Figure 3: (a) Learning results on the pendulum and cartpole. We select the best validation loss
observed during the training run and report the corresponding test loss. Every data point is averaged
over five trials. (b) Comparison of cost function parameter estimation between our method and
DiffMPC under the cartpole and cost learning domain.

iLQR. The results of the experiments clearly demonstrate the significant computational advantage of
our method over AutoDiff across all configurations.

Backward pass efficiency: For example, for a horizon of 10 and 300 iterations, AutoDiff takes
8.57 seconds compared to just 0.067 seconds with our method, resulting in a 128x speedup. Even
in the case with the smallest improvement—horizon of 10 and 50 iterations, AutoDiff takes 1.41
seconds, while our method remains 0.067 seconds, still delivering a 21x speedup. These results
highlight the clear scalability and efficiency of our method, maintaining a near-constant computation
time as the number of iLQR iterations increases, while AutoDiff’s time grows significantly with
longer horizons and more iterations.

5.2 IMITATION LEARNING

Imitation learning recovers the cost and dynamics of a controller through only actions. Similarly
to |/Amos et al|(2018), we compare our approach with Neural Network (NN): An LSTM-based
approach that takes the state x as input and predicts the nominal action sequence, directly optimizing
the imitation loss directly; SysId: Assumes that the cost of the controller is known and approximates
the parameters of the dynamics by optimizing the next-state transitions; and DiffMPC |Amos et al.
(2018)). We evaluated two variations of our method: diLQR.dx: Assumes that the cost of the controller
is known and approximates the parameters of the dynamics by directly optimizing the imitation loss;
diLQR.cost: Assumes that the dynamics of the controller are known and approximates the cost by
directly optimizing the imitation loss. For more experimental details, please refer to the Appendix.

Imitation Loss: In Figure[3a we compare our method with NN and Sysid using imitation loss.
Notably, our method performs the best in the dx mode across both tasks, achieving a performance
improvement of orders of magnitude—10° and 10*—over the NN. In the dcost mode, our method
is also dozens of times stronger than the NN but slightly weaker than Sysid. This is because Sysid
directly leverages a system model with state estimates, while imitation learning relies solely on action
data, which contains less information. The fact that our method achieves comparable results to Sysid
in this mode demonstrates its effectiveness.

Model Loss: In Figure [3b} we compare the model error learned from our approach to that of
DiffMPC. Model loss is defined as the MSE(6 — 6), where 6 represents the parameters of the cost
function. Since learning in the cost mode is particularly challenging, we chose it as the case to
demonstrate model loss. In the dcost mode, our approach recovers more accurate model parameters
than DiffMPC, reducing model loss by 18%, indicating an improvement over our analytical results.

5.3 VISUAL CONTROL

We next explore a more complex, high-dimensional task: controlling an inverted pendulum system
using images as input.

Under review as a conference paper at ICLR 2025

Real Image o Predicted Image

o / it

[
/

wr d L Decoder | ™
x=p| DILOR |=p
X

T

0 so 100 10 200 0 s 100 10 20

Figure 4: Diagram of the end-to-end control architecture. The encoder maps the compressed set of
four input frames to the physical state variables (e.g., position, velocity). The differentiable iLQR
then steps the state forward using the encoder’s parameters. The decoder takes the predicted state and
generates a future frame to match the true future observation.

In this task, the state of the pendulum is visualized by a rendered line starting from the center of the
image, with the angle representing the position of the pendulum. The objective is to swing up the
underactuated pendulum from its downward resting position and balance it. The network architecture
consists of a mirrored encoder-decoder structure, each with five convolutional or transposed convolu-
tional layers, respectively. For further architectural details, please refer to the Appendix. To capture
the velocity information, we stack four compressed images as input channels. An example of these
observations and reconstructions is provided in Figure]

1 2 3 4 5 6

. / y |

y y
S — b / /

Y ;i

¥4 /

i /

~_ y

Figure 5: Imagined trajectory in the pendulum domain. The first image (red) represents the real input,
while the following images are "dreamed up" by our model based on the initial image.

Our modular approach handles the coordination between the controller and decoder seamlessly.
Figure 5| shows sample images drawn from the task depicting a trajectory generated by our system.
In this scenario, the system is given just one real image and, with the help of DiLQR, it can output a
sequence of predicted images, which closely approximate the actual trajectory of the pendulum.

6 DISCUSSION

In this paper, we focus on the theoretical aspects of differentiable control methods. While our
experiments are based on simpler control tasks, the advantages of our approach promise to extend to
more complex, real-world applications. Many prior works|Amos et al.|(2018)); Watter et al.| (2015)); Xu
et al.| (2024a); Jin et al.| (2020) also rely on such toy examples to demonstrate foundational concepts.

One promising direction is embedding our differentiable controller into reinforcement learning (RL)
frameworks. For instance, it could be integrated into a policy network and trained using an actor-critic
approach, enabling more efficient policy updates. With its ability to propagate gradients through the
control process, our method could enhance RL’s performance, potentially achieving state-of-the-art
results in more advanced tasks.

7 CONCLUSIONS

In this work, we introduced DiLQR, an efficient framework for differentiating through iLQR using
implicit differentiation. By providing an analytical solution, our method eliminates the overhead of
iterative unrolling and achieves O(1) computational complexity in the backward pass, significantly
improving scalability. Experiments demonstrate that DiLQR outperforms existing methods in both
runtime and learning performance, making it a promising approach for real-time control applications.

Under review as a conference paper at ICLR 2025

REFERENCES

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaogiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136—145. PMLR, 2017.

Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J Zico Kolter. Differentiable MPC for
end-to-end planning and control. Advances in neural information processing systems, 31, 2018.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1), 2017. doi: 10.1609/aaai.v31i1.10916.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

Lucas Bottcher, Nino Antulov-Fantulin, and Thomas Asikis. Al Pontryagin or how artificial neural
networks learn to control dynamical systems. Nature communications, 13(1):333, 2022.

J Brewer. The derivative of the riccati matrix with respect to a matrix. IEEE Transactions on
Automatic Control, 22(6):980-983, 1977.

Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable spatial planning using
transformers. In International conference on machine learning, pp. 1484-1495. PMLR, 2021.

Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. Constrained iterative lqr for on-road autonomous
driving motion planning. In 2017 IEEE 20th International conference on intelligent transportation
systems (ITSC), pp. 1-7. IEEE, 2017.

Sheng Cheng, Minkyung Kim, Lin Song, Chengyu Yang, Yiquan Jin, Shenlong Wang, and Naira
Hovakimyan. Difftune: Auto-tuning through auto-differentiation. /[EEE Transactions on Robotics,
2024.

Suyoung Choi, Gwanghyeon Ji, Jeongsoo Park, Hyeongjun Kim, Juhyeok Mun, Jeong Hyun Lee,
and Jemin Hwangbo. Learning quadrupedal locomotion on deformable terrain. Science Robotics,
8(74):eade2256, 2023.

Jack Collins, Shelvin Chand, Anthony Vanderkop, and David Howard. A review of physics simulators
for robotic applications. IEEE Access, 9:51416-51431, 2021.

Ewen Dantec, Maximilien Naveau, Pierre Fernbach, Nahuel Villa, Guilhem Saurel, Olivier Stasse,
Michel Taix, and Nicolas Mansard. Whole-body model predictive control for biped locomotion
on a torque-controlled humanoid robot. In 2022 IEEE-RAS 21st International Conference on
Humanoid Robots (Humanoids), pp. 638—644. IEEE, 2022.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample complexity
of the linear quadratic regulator. Foundations of Computational Mathematics, 20(4):633-679,
2020.

Marc Deisenroth and Carl E Rasmussen. PILCO: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465-472,2011.

Sebastian East, Marco Gallieri, Jonathan Masci, Jan Koutnik, and Mark Cannon. Infinite-horizon
differentiable model predictive control. Proceedings of ICLR 2020, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596, 2018.

10

https://www.tensorflow.org/

Under review as a conference paper at ICLR 2025

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. Pontryagin differentiable program-
ming: An end-to-end learning and control framework. Advances in Neural Information Processing
Systems, 33:7979-7992, 2020.

Wanxin Jin, Shaoshuai Mou, and George J Pappas. Safe pontryagin differentiable programming.
Advances in Neural Information Processing Systems, 34:16034-16050, 2021.

Peter Karkus, Boris Ivanovic, Shie Mannor, and Marco Pavone. Diffstack: A differentiable and
modular control stack for autonomous vehicles. In Conference on robot learning, pp. 2170-2180.
PMLR, 2023.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated
path planning networks. In International Conference on Machine Learning, pp. 2947-2955. PMLR,
2018.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In First International Conference on Informatics in Control, Automation and
Robotics, volume 2, pp. 222-229. SciTePress, 2004.

Jiageng Mao, Yuxi Qian, Junjie Ye, Hang Zhao, and Yue Wang. Gpt-driver: Learning to drive with
gpt. arXiv preprint arXiv:2310.01415, 2023.

Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maximilien
Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nicolas Mansard. Crocoddyl:
An efficient and versatile framework for multi-contact optimal control. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2536-2542. IEEE, 2020.

David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789-814, 2000.

Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa Smith, and Jelena Kovacevi¢.
Generalized value iteration networks: Life beyond lattices. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral networks: End-to-end differen-
tiable optimal control. arXiv preprint arXiv:1706.09597, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Marcus Pereira, David D Fan, Gabriel Nakajima An, and Evangelos Theodorou. MPC-inspired neural
network policies for sequential decision making. arXiv preprint arXiv:1802.05803, 2018.

Angel Romero, Yunlong Song, and Davide Scaramuzza. Actor-critic model predictive control. In
2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14777-14784. IEEE,
2024.

Daniel Schleich, Tobias Klamt, and Sven Behnke. Value iteration networks on multiple levels of
abstraction. arXiv preprint arXiv:1905.11068, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347,2017.

Jatan Shrestha, Simon Idoko, Basant Sharma, and Arun Kumar Singh. End-to-end learning of
behavioural inputs for autonomous driving in dense traffic. In 2023 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 10020-10027. IEEE, 2023.

Damoon Soudbakhsh, Anuradha M Annaswamy, Yan Wang, Steven L Brunton, Joseph Gaudio,

Heather Hussain, Draguna Vrabie, Jan Drgona, and Dimitar Filev. Data-driven control: Theory
and applications. In 2023 American Control Conference (ACC), pp. 1922-1939. IEEE, 2023.

11

Under review as a conference paper at ICLR 2025

Nathan A Spielberg, Matthew Brown, and J Christian Gerdes. Neural network model predictive
motion control applied to automated driving with unknown friction. IEEE Transactions on Control
Systems Technology, 30(5):1934—-1945, 2021.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal plan-
ning networks: Learning generalizable representations for visuomotor control. In International
conference on machine learning, pp. 4732-4741. PMLR, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
Advances in neural information processing systems, 29, 2016.

Aviv Tamar, Garrett Thomas, Tianhao Zhang, Sergey Levine, and Pieter Abbeel. Learning from the
hindsight plan—episodic MPC improvement. In 2017 IEEE International Conference on Robotics
and Automation (ICRA), pp. 336-343. 1IEEE, 2017.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic programming.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1168-1175.
IEEE, 2014.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the 30th AAAI conference on artificial intelligence, volume 30, pp.
2094-2100, 2016. doi: 10.1609/aaai.v30i1.10295.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

Xuesu Xiao, Tingnan Zhang, Krzysztof Choromanski, Edward Lee, Anthony Francis, Jake Varley,
Stephen Tu, Sumeet Singh, Peng Xu, Fei Xia, et al. Learning model predictive controllers with
real-time attention for real-world navigation. arXiv preprint arXiv:2209.10780, 2022.

Zhaoming Xie, C Karen Liu, and Kris Hauser. Differential dynamic programming with nonlinear
constraints. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
695-702. IEEE, 2017.

Ming Xu, Timothy L Molloy, and Stephen Gould. Revisiting implicit differentiation for learning
problems in optimal control. Advances in Neural Information Processing Systems, 36, 2024a.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kwan-Yee K Wong, Zhenguo Li, and
Hengshuang Zhao. Drivegpt4: Interpretable end-to-end autonomous driving via large language
model. IEEE Robotics and Automation Letters, 2024b.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari games
with limited data. Advances in Neural Information Processing Systems, 34:25476-25488, 2021.

Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pp. 5739-5743, 2018.

Linfeng Zhao, Huazhe Xu, and Lawson LS Wong. Scaling up and stabilizing differentiable planning
with implicit differentiation. arXiv preprint arXiv:2210.13542, 2022.

Wenshuai Zhao, Jorge Pefia Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforce-
ment learning for robotics: a survey. In 2020 IEEE symposium series on computational intelligence
(SSCI), pp. 737-744. IEEE, 2020.

James Zhu, J Joe Payne, and Aaron M Johnson. Convergent ilqr for safe trajectory planning and
control of legged robots. arXiv preprint arXiv:2304.00346, 2023.

12

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 PROOF OF PROPOSITION 1

Proposition 2. Define Fg = 89, Fy = BU, Fx = ax’ Gy = 69, Gy = BU’ Gx = gg

Define M := (I — Fx)~!, and K := I — Gy. The analytical form of the gradients %X o and de are
given as follows:

% = M(Fp+ Fy(K — GxMFy) " (GxMFy — Gy)))
% = (K —GxMFy) Y (GxMF, + Gy)
Proof. With the new notations, equations can be rewritten as:
(I —Fx) dj;* Fy dfig = Iy 1)
—Gx d;g* + (I - Gy) d(%* =Gy
Focusing on the first equation, da can be represented with ﬂ:
C(l;g (I—Fx)~ (FeJrFU(ilg) 0,
=M(Fy+ Fy Cflg)

Then, substituting [20|into the second equation of to obtain an equation with respect to only %

-Gx(M (F9+FU§9J)) + (I - GU)d(%* =Gy 2n
Solving equation will give the solution to d’d%*:
fg (K — GxMFy) " (GxMFy + Gy) (22)
Substituting into the solution to % can be obtained:
% = M(Fp+ Fy(K — GxMFy) " (GxMFy + Gy)) (23)
This completes the proof. O

A.2 EXPERIMENTS DETAILS

We refer the methods in DiffMPC as mpc.dx: Assumes the cost of the controller is known and
approximates the parameters of the dynamics by directly optimizing the imitation loss; mpc.cost:
Assumes the dynamics of the controller are known and approximates the cost by directly optimizing
the imitation loss. For all settings involving learning the dynamics (mpc.dx, mpc.cost. iLQR.dx, and
iLQR.cost.dx), a parameterized version of the true dynamics is used. In the pendulum domain, the
parameters are the masses of the arm, length of the arm, and gravity; and in the cartpole domain,
the parameters are the cart’s mass, pole’s mass, gravity, and length. For cost learning in mpc.cost,
iLQR.cost and mpc,cost.dx, we parameterized the controller’s cost as the weighted distance to a goal
state C(7) = [Jwy (T — 7).
wg and goal state 7, was unstable. Thus, we alternated learning w, and 74, independently every 10
epochs.

Training and Evaluation We collected a dataset of trajectories from an expert controller and varied
the number of trajectories our models were trained on. The NN setting was optimized with Adam
with a learning rate of 10~%, and all other settings were optimized with RMSprop with a learning rate
of 1072 and a decay term of 0.5.

13

Under review as a conference paper at ICLR 2025

A.3 DETAILED NETWORK ARCHITECTURE

Encoder The encoder is a neural network designed to encode input image sequences into low-
dimensional state representations. It is implemented as a subclass of torch.nn.Module, and
consists of five convolutional layers and a regression layer:

* Convolutional layers: Each layer applies 2D convolutions, followed by batch normalization,
ReLU activations, and max pooling. These operations progressively reduce the spatial
dimensions of the input image.

* Regression layer: After the final convolutional layer, the output is flattened and passed
through three fully connected layers, mapping the extracted features to the desired output
dimension, which represents the system state.

The forward pass takes an input tensor of shape [batch, 12, 224, 224] (representing four
stacked RGB images) and processes it through the convolutional layers. The output is a state vector
of shape [batch, out_dim].

Decoder The decoder mirrors the structure of the encoder and is also a subclass of
torch.nn.Module. It reconstructs images from the low-dimensional state vector. The decoder
consists of five transposed convolutional layers followed by a regression layer:

» Transposed convolutional layers: These layers progressively upsample the input, applying
batch normalization and ReLU activations after each layer to restore the spatial dimensions.

* Regression layer: This layer, consisting of three fully connected layers, transforms the
low-dimensional input vector into a form suitable for the initial transposed convolution.

The forward pass takes a state vector of shape [batch, 3] as input, upscales it through the
transposed convolution layers, and outputs a reconstructed image tensor of shape [batch, 3,
224, 224]. A Sigmoid activation is applied to ensure the pixel values remain within the range [0,
17.

A.4 ADVANTAGES OF FIXED-POINT METHOD
A.4.1 ANALYTICALLY DISCUSSION

In this section, we discuss how our method differs from non-fixed-point method (e.g.
(2018))) and why our gradient is the accurate one. Given nonlinear dynamics fy(x, u), in the ith
iteration, iLQR linearizes fy(z,u) around the trajectory 7~

. Ofe, . Ofola,
Aézifea(iu) ’_71,Bé=7fegi”) - (24)

T T

Without loss of generality, the following discussion focuses on the backpropagation through A.

The goal of differentiable iLQR is to calculate %. The non-fixed-point method naturally uses chain
rule

VL 0L ort VA

Ve or 0A, VO

———

ari
20

(25)

(25) is mathematically correct, but it is impractical. A} is not only a parameterized function of 6,

but also a function of Tg_l, and Té‘l is also a function of 6, since it is the output of previous layers.
Consequently,

VA, 0Ap | 0AL 97!

= . 26
Vo 00 ' or—1 a0 (20)
For the final layer that outputs fixed-point, (26) would be written as
VA, 04} A, Or'
=0 : 27
Vo 0 | 00 =7

14

Under review as a conference paper at ICLR 2025

which would drlve us back to 39 , the thing we indeed want to derive. What non-fixed-point method
does is treating 7" as a constant, in the following way

~ Ofg(x,u)

4y =0 (28)

T

. . .1 0A,
When taking gradient, they only consider =5

fixed-point method treats A as A(6, 7), while our method treats it as A(6, 7(0)). Our main argument
is that the accurate gradient is supposed to be ‘solved’, instead of ‘multiplied’ through the chain rule.

A.4.2 A CONCRETE EXAMPLE

Consider a non-quadratic two-step optimal control problem defined by the following objective
function:

J = 29 Zk +9(:CT)

(29)
St Tpy1 = Axy + Buy
- [17 1]T
where the matrices are specified as:
11 0
Ab]}BLy (30)

and (71,)* denotes the sum of the element-wise fourth powers of vector ;. The parameter 6 is a
scalar and is a learnable coefficient influencing the cost function.

Given the initial state x¢ and considering ug as the sole control variable, the system evolves through
the states:
zo=[1,1]", z1=[2,u0+1]". (31)

The optimization problem then reduces to minimizing the following equivalent function:
min J = min uZ + 0(ug + 1)*. (32)

For the sake of simplicity, we will drop the subscript from ug and refer to it as u. The derivative of
(32) with respect to u, necessary to find the optimal control u*, is given by:

2u +40(u +1)* = 0. (33)
Solving this equation yields the analytical solution for u*:
. V902 + /32767 + 20° 1
uwt = _ : _
62/59 $63/902 + /3270 + 208

Given that the problem is convex and the solution is unique, 1LQR algorithms would converge to the
optimal solution (34). The resulting optimal trajectory (u*, x7) is refered to as a fixed-point in the
iLQR context.

In the linear approximation of the cost function for state 71 = [, 21], the expansion around the

(34)

fixed-point state x; = [2*, 21*] is:
(21)* = 0(27)* 50 + (] — 277) + CP(a] — 2§")?

35
O e + el (ah — al) 1 Clat - al)? 4

with constants:
= 409 g, OF =120(29) Lo ch = 40(}) e, CF =120}y, (36)
One of the core part in differentiable iLQR is to derive the gradient of cost functions ¢, C' and

dynamics A B with respect to the learnable parameters. In our case, this turns to sensitivity analysis
Vcl

v and . Without loss of generality, we particularly study about

15

Under review as a conference paper at ICLR 2025

In non-fixed-point method, the following formulation is used

Vel e

g = U’ (37)
The formulation is straightforward, however, it ignores the relation between ci and u*. Even though

u* is a fixed-point for the iLQR, a different u* would still result in a different ci. Consequently, we
argue that the correct formulation suppose to be

Vel V4(zi*)? Vai* Vu 1e\3
_— = _— _— = 4 *
v Vol vu vg) e

In order to obtain % on u*, take difference for 1h

V4(x1*)3 Vu

—— —. (38)
Vzl*r Vo

4(x1*)> + 6

2du + 4df(u + 1) + 120(u + 1)*du = 0
Vu ot 1)} (39)
Vo 60(ur +1)24+1
Plugin it to (38)), we will have
Vel 1513 240(u* +1)°
it B W 2 T 40
W (@17 60(u* +1)2+1 (“40)
To illustrate how huge difference the correction term can give, we use finite difference method as a

1
baseline to calculate vv(;l , and plot the values of the gradients with 6.

Gradients from Different Methods

—e— Finite Difference
251 Reference Method
—=— Our Method

Gradient Values

0.0

Theta

Figure 6: Comparison of gradients from different methods. Our method (squares) and the finite
difference method (circles) produce nearly identical curves, but the two lines can still be distinguished
by their different markers.

16

	Introduction
	Related Work on Differentiable Planning
	Background
	The Approximate Problem
	The Trajectory Update

	Differentiable iLQR
	End-to-end learning framework
	Fixed point differentiation
	Obtaining each term
	Parallelization
	Exploring the sparsity
	Forward algorithm
	Methodological Comparison and Discussion

	Experiments
	Computational Performance
	Imitation Learning
	Visual control

	Discussion
	Conclusions
	Appendix / supplemental material
	Proof of proposition 1
	Experiments Details
	Detailed Network Architecture
	Advantages of fixed-point method
	Analytically discussion
	A concrete example

