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Abstract

The study of fully decentralized learning or independent learning in cooperative multi-agent
reinforcement learning has a history of decades. Recent empirical studies have shown that
independent PPO (IPPO) can achieve good performance, comparable to or even better than
the methods of centralized training with decentralized execution, in several benchmarks.
However, a decentralized actor-critic algorithm with a convergence guarantee is still an open
problem. In this paper, we propose decentralized policy optimization (DPO), a decentralized
actor-critic algorithm with monotonic improvement and convergence guarantee. We derive a
novel decentralized surrogate for policy optimization such that the monotonic improvement
of joint policy can be guaranteed by each agent independently optimizing the surrogate.
For practical implementation, this decentralized surrogate can be realized by two adaptive
coefficients for policy optimization at each agent. Empirically, we evaluate DPO, IPPO, and
independent Q-learning (IQL) in a variety of cooperative multi-agent tasks, covering discrete
and continuous action spaces, as well as fully and partially observable environments. The
results show DPO outperforms both IPPO and IQL in most tasks, which serves as evidence
for our theoretical results. The code is available at https://github.com/PKU-RL/DPO.

1 Introduction

In cooperative multi-agent reinforcement learning (MARL), centralized training with decentralized execution
(CTDE) has been the dominant framework (Lowe et al., 2017; Foerster et al., 2018; Sunehag et al., 2018;
Rashid et al., 2018; Wang et al., 2021a; Zhang et al., 2021; Yu et al., 2021). Such a framework resolves
the non-stationarity problem with the centralized value function that takes the global information as input,
making it beneficial to the training process. Conversely, decentralized learning has received less attention.
The main reason is likely due to the fact that few theoretical guarantees exist for decentralized learning and
the interpretability is insufficient even though the simplest form of decentralized learning, i.e., independent
learning, may achieve good empirical performance in several benchmarks (Papoudakis et al., 2021). However,
decentralized learning itself still should be considered as there are still many settings in which the global
information is unavailable, and also for better robustness and scalability (Zhang et al., 2019). Moreover,
decentralized learning is straightforward, comprehensible, and easy to implement in practice.

Independent Q-learning (IQL) (Tampuu et al., 2015) and independent PPO (IPPO) (de Witt et al., 2020)
are the straightforward decentralized learning methods for cooperative MARL, where each agent learns the
policy by DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) respectively. Empirical studies (de Witt
et al., 2020; Yu et al., 2021; Papoudakis et al., 2021) demonstrate that these two methods can obtain good
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performance, close to CTDE methods. Especially, IPPO can outperform several CTDE methods in a few
benchmarks, including MPE (Lowe et al., 2017) and SMAC (Samvelyan et al., 2019), which shows great
promise for decentralized learning. Unfortunately, to the best of our knowledge, there is still no theoretical
guarantee or rigorous explanation for IPPO, though there has been some study (Sun et al., 2022).

In this paper, we take a step further and propose decentralized policy optimization (DPO), a fully decentralized
actor-critic method with monotonic improvement and convergence guarantee for cooperative MARL. Similar
to IPPO, DPO is actually independent learning as each agent optimizes its own objective individually and
independently in DPO. However, unlike IPPO, such an independent policy optimization of DPO can guarantee
the monotonic improvement of the joint policy.

From the essence of fully decentralized learning, we first analyze the Q-function in the decentralized setting
and further show that the optimization objective of IPPO may not induce joint policy improvement. Then,
starting from the joint monotonic objective from the theoretical results in single-agent RL (Grudzien et al.,
2022; Lan, 2023) and together considering the characteristics of fully decentralized learning, we introduce a
novel lower bound of joint policy improvement as the surrogate for decentralized policy optimization. This
surrogate can be naturally decomposed for each agent, which means each agent can optimize its individual
objective to make sure that the joint policy improves monotonically. Practically, this decentralized surrogate
can be realized by two adaptive coefficients for policy optimization at each agent. The idea of DPO is simple
yet effective and well-suited for fully decentralized learning.

Empirically, we evaluate the performance of DPO, IPPO, and IQL in a variety of cooperative multi-agent
tasks, including a cooperative stochastic game, MPE (Lowe et al., 2017), multi-agent MuJoCo (Peng et al.,
2021), and SMAC (Samvelyan et al., 2019). Our evaluation covers discrete and continuous action spaces, as
well as fully and partially observable environments. The results indicated that DPO outperforms both IPPO
and IQL in most tasks, which serves as evidence for our theoretical results.

2 Related Work

CTDE. In cooperative MARL, centralized training with decentralized execution (CTDE) is the most popular
framework (Lowe et al., 2017; Iqbal & Sha, 2019; Foerster et al., 2018; Sunehag et al., 2018; Rashid et al., 2018;
Wang et al., 2021a; Zhang et al., 2021; Peng et al., 2021). CTDE algorithms address the non-stationarity
problem in the multi-agent environment by the centralized value function. One line of research in CTDE
is value decomposition (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Yang et al., 2020; Wang
et al., 2021a), where a joint Q-function is learned and factorized into local Q-functions by the relationship
between optimal joint action and optimal local actions. Another line of research in CTDE is multi-agent
actor-critic (Foerster et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021b; Zhang et al., 2021; Su & Lu, 2022;
Wang et al., 2023a), where the centralized value function is learned to provide policy gradients for agents to
learn stochastic policies. More recently, policy optimization has attracted much attention for cooperative
MARL. PPO (Schulman et al., 2017) and TRPO (Schulman et al., 2015a) have been extended to multi-agent
settings by MAPPO (Yu et al., 2021), CoPPO (Wu et al., 2021), HAPPO (Kuba et al., 2021) and A2PO
(Wang et al., 2023b) respectively via learning a centralized state value function. However, these methods are
CTDE and thus not appropriate for decentralized learning.

Fully decentralized learning. Independent learning (OroojlooyJadid & Hajinezhad, 2019) is the most
straightforward approach for fully decentralized learning and has been a subject of study in cooperative
MARL for decades. The representatives are independent Q-learning (IQL) (Tan, 1993; Tampuu et al., 2015)
and independent actor-critic (IAC) as Foerster et al. (2018) empirically studied. These methods enable agents
to directly execute the single-agent Q-learning or actor-critic algorithm individually. The drawback of such
independent learning methods is obvious. As other agents are also learning, each agent interacts with a
non-stationary environment, which violates the stationary condition of Markov decision processes (MDPs).
Thus, these methods are not with any convergence guarantee theoretically, though IQL could obtain good
performance in several benchmarks (Papoudakis et al., 2021). More recently, decentralized learning has also
been specifically studied with communication (Zhang et al., 2018; Li et al., 2020) or parameter sharing (Terry
et al., 2020). However, in this paper, we consider fully decentralized learning in the strictest sense – with
each agent independently learning its policy while being not allowed to communicate or share parameters as
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in Tampuu et al. (2015); de Witt et al. (2020). We will propose an algorithm with convergence guarantees in
such a fully decentralized learning setting.

IPPO. TRPO (Schulman et al., 2015a) is an important single-agent actor-critic algorithm that limits the
policy update in a trust region and ensures monotonic improvement by optimizing a surrogate objective.
PPO (Schulman et al., 2017) is a practical but effective algorithm derived from TRPO. PPO replaces the
trust region constraint with a simpler clip trick. IPPO (de Witt et al., 2020) is a recently emerged cooperative
MARL algorithm in which each agent just learns with independent PPO. Though IPPO is still with no
convergence guarantee, it obtains surprisingly good performance in SMAC (Samvelyan et al., 2019). IPPO
is further empirically studied by Yu et al. (2021); Papoudakis et al. (2021). Their results show IPPO can
outperform a few CTDE methods in several benchmark tasks. These studies highlight the potential of policy
optimization in fully decentralized learning, a topic on which this paper focuses.

3 Decentralized Policy Optimization

From the perspective of policy optimization, in fully decentralized learning, we need to find an objective for
each agent such that joint policy improvement can be guaranteed by each agent independently and individually
optimizing its own objective. Therefore, we propose a novel lower bound of the joint policy improvement to
enable decentralized policy optimization (DPO). In the following, we first discuss some preliminaries; then we
analyze the critic in fully decentralized learning; next, we derive the decentralized surrogate and prove the
convergence; finally, we introduce the practical algorithm of DPO.

3.1 Preliminaries

Dec-POMDP. Decentralized partially observable Markov decision process is a general model for cooperative
MARL. A Dec-POMDP is a tuple G = {S, A, P, Y, O, I, N, r, γ, µ}. S is the state space, N is the number of
agents, γ ∈ [0, 1) is the discount factor, and I = {1, 2 · · ·N} is the set of all agents. A = A1 ×A2 × · · · ×AN

represents the joint action space, where Ai is the individual action space for agent i. P (s′|s, a) : S×A×S →
[0, 1] is the transition function, and r(s, a) : S × A → [−rmax, rmax] is the reward function of state s ∈ S
and joint action a ∈ A, where rmax is bound of the reward function. Y is the observation space, and
O(s, i) : S × I → Y is a mapping from state to observation for each agent i. The objective of Dec-POMDP is
to maximize J(π) = Eπ [

∑
t=0 γtr(st, at)] , thus we need to find the optimal joint policy π∗ = arg maxπ J(π).

To settle the partial observable problem, history τi ∈ Ti = (Y × Ai)∗ is often used to replace observation
oi ∈ Y . In fully decentralized learning, each agent i independently learns an individual policy πi(ai|τi) and
their joint policy π can be represented as the product of each πi. Though each agent learns individual policy
as πi(ai|τi) in practice, in our analysis, we will assume that each agent could receive the state s because the
analysis in partially observable environments is much more difficult and the problem may be undecidable in
Dec-POMDP (Madani et al., 1999). Moreover, the V-function and Q-function of the joint policy π are as
follows,

V π(s) = Ea∼π [Qπ(s, a)] (1)
Qπ(s, a) = r(s, a) + γEs′∼P (·|s,a) [V π(s′)] . (2)

In our discussion, we assume the initial state s0 is sampled from a fixed distribution µ. The objective J(π) can
be rewritten as J(π) = Es0∼µ[V π(s0)]. We will use the value function without the agent index to represent
the joint value function related to the joint action such as Qπ(s, a) and the value function with the agent
index i to represent the individual value function of the agent i such as Qπi

π−i(s, ai) which will be discussed
later.

Joint Objective for Monotonic Improvement. In Dec-POMDP, we can still obtain an objective for the
joint policy π from the theoretical results in single-agent RL (Grudzien et al., 2022; Lan, 2023) to ensure the
joint policy can improve monotonically.
Lemma 3.1. Suppose πnew and πold are two joint policies. If πnew and πold satisfy the condition

Ljoint
πold

(πnew, s)− C ·DKL(πold(·|s)∥πnew(·|s)) ≥ 0, ∀s ∈ S, (3)
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where Ljoint
πold

(π, s) =
∑

a π(a|s)Aold(s, a), Aold is the advantage function under πold, and C is a constant,
then V πnew(s) ≥ V πold(s).

This Lemma is the corollary of Lemma 3.3 in Grudzien et al. (2022).

From Lemma 3.1, we can define an objective as Ljoint
πold

(π, s) − C ·DKL(πold(·|s)∥π(·|s)), which is referred
as joint monotonic objective. Maximizing this objective can guarantee that the joint policy is improving
monotonically. However, the joint monotonic objective cannot be directly optimized in fully decentralized
learning as this objective is involved in the joint policy, which cannot be accessed in fully decentralized
settings.

We will propose a new lower bound (surrogate) for the joint monotonic objective, which can be optimized in
fully decentralized learning. Before introducing our new surrogate, we need to first analyze the critic of the
agent in fully decentralized learning, which is referred to as decentralized critic.

3.2 Decentralized Critic

In fully decentralized learning, each agent learns independently from its own interactions with the environment.
Therefore, the Q-function of each agent i is the following formula:

Qπi

π−i(s, ai) = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i
∼πi [Qπi

π−i(s′, a′
i)], (4)

where rπ−i(s, ai) = Eπ−i [r(s, ai, a−i)], and π−i and a−i respectively denote the joint policy and joint action
of all agents expect agent i. If we take the expectation Ea′

−i
∼π−i(·|s′),a−i∼π−i(·|s) over both sides of the

Q-function of joint policy (2), then we have

Eπ−i [Qπ(s, ai, a−i)] = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i
∼πi

[
Eπ−i [Qπ(s′, a′

i, a′
−i)]

]
.

We can see that Qπi

π−i(s, ai) and Eπ−i [Qπ(s, ai, a−i)] satisfy the same iteration. Moreover, we will show in
the following that Qπi

π−i(s, ai) and Eπ−i [Qπ(s, ai, a−i)] are just the same.

We first define an operator Γπi

π−i as follows,

Γπi

π−iQ(s, ai) = rπ−i(s, ai) + γEa−i∼π−i,s′∼P (·|s,ai,a−i),a′
i
∼πi [Q(s′, a′

i)]. (5)

Then we will prove that the operator Γπi

π−i is a contraction. Considering any two individual Q-functions Q1
and Q2, we have:

∥Γπi

π−iQ1 − Γπi

π−iQ2∥∞ = max
s,ai

γ|Ea−i,s′,a′
i
[Q1(s′, a′

i)−Q2(s′, a′
i)]|

≤ γEa−i,s′,a′
i
[max

s′,a′
i

|Q1(s′, a′
i)−Q2(s′, a′

i)|] = γ max
s′,a′

i

|Q1(s′, a′
i)−Q2(s′, a′

i)|

= γ∥Q1 −Q2∥∞. (6)

So the operator Γπi
π−i

has one and only one fixed point, which means

Qπi

π−i(s, ai) = Eπ−i [Qπ(s, ai, a−i)], V πi

π−i(s) = Eπ−i [V π(s)] = V π(s).

This conclusion is from the perspective of definition and policy evaluation. Further discussion about the
learning or iteration of Qπi

π−i
(s, ai) is included in Appendix E.

With this well-defined decentralized critic, we can further analyze the objective of IPPO (de Witt et al., 2020).
In IPPO, the policy objective (without clipping) of each agent i in state s can be essentially formulated as
follows:

Li
πold

(πi, s) =
∑
ai

πi(ai|s)Ai
old(s, ai), (7)

where Ai
old(s, ai) = Q

πi
old

π−i
old

(s, ai)− Eπi
old

[Qπi
old

π−i
old

(s, ai)] = Eπ−i
old

[Aold(s, ai, a−i)].
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However, (7) is different from (3) in the joint monotonic objective. Thus, directly optimizing (7) may not
improve the joint policy, and thus cannot provide any guarantee for convergence, to the best of our knowledge.
Nevertheless, it seems that Ai

old(s, ai) is the only advantage formulation that can be accessed by each agent
in fully decentralized learning. So, the policy objective of DPO will be derived on (7) but with modifications
to guarantee convergence, and we will introduce the details in the next section. In the following, we discuss
how to compute this advantage in practice in fully decentralized learning.

As we need to calculate Ai
old(s, ai) = Eπ−i

old
[r(s, ai, a−i) + γV πold(s′)− V πold(s)] for the policy update, we can

approximate Ai
old(s, ai) with Âi(s, ai) = r + γV πi

π−i(s′)− V πi

π−i(s), which is an unbiased estimate of Ai
old(s, ai),

though it may be with a large variance. In practice, we can follow the traditional idea in fully decentralized
learning, and let each agent i independently learn an individual value function V i(s). Then, we further have
Âi(s, ai) ≈ r + γV i(s′)− V i(s). The loss for the decentralized critic is as follows:

Li
critic = E

[
(V i(s)− yi)2]

, where yi = r + γV i(s′) or other target values. (8)

Here we could take the target value yi according to different methods like Monte Carlo returns or GAE
(Schulman et al., 2015b). There may be some ways to improve the learning of this critic, which however is
beyond the scope of this paper.

3.3 Decentralized Surrogate

We are ready to introduce the decentralized surrogate. First we will discuss the relationship between the joint
policy objective Ljoint

πold
(π, s) and the individual policy objective Li

πold
(πi, s). We have the following lemma.

Lemma 3.2. Suppose πold and π are two joint policies. Then, the following bound holds for any agent i:

Ljoint
πold

(π, s)− Li
πold

(πi, s) ≥ −M̃

√∑
j ̸=i

DKL(πj
old(·|s)∥πj(·|s)), where M̃ = 2rmax

1− γ
. (9)

Proof. We first consider Ljoint
πold

(π, s)− Li
πold

(πi, s). According to (3) and (7), we have the following equation:

Ljoint
πold

(π, s)− Li
πold

(πi, s) = Eπi

[ ∑
a−i

(
π−i(a−i|s)− π−i

old(a−i|s)
)
Aold(s, ai, a−i)

]
.

Then, we have the following inequalities:

|Ljoint
πold

(π, s)− Li
πold

(πi, s)| ≤ Eπi

[ ∑
a−i

|π−i
old(a−i|s)− π−i(a−i|s)||Aold(s, ai, a−i)|

]

≤ Eπi

[
M

∑
a−i

|π−i
old(a−i|s)− π−i(a−i|s)|

]
(M = rmax

1− γ
≥ max

s,a
|Aold(s, a)|)

= 2MDTV(π−i
old(·|s)∥π−i(·|s))

= M̃DTV(π−i
old(·|s)∥π−i(·|s)) (M̃ = 2M)

≤ M̃

√
DKL(π−i

old(·|s)∥π−i(·|s)) (10)

= M̃

√∑
j ̸=i

DKL(πj
old(·|s)∥πj(·|s)), (11)

where (10) is from the relationship between the total variation distance and KL-divergence that DTV(p∥q)2 ≤
DKL(p∥q) (Schulman et al., 2015a), and (11) is a property of the KL-divergence that DKL(πold(·|s)||π(·|s)) =∑

i DKL(πi
old(·|s)||πi(·|s)). From (11), we can further obtain the following inequality, which completes the

proof,
Ljoint

πold
(π, s)− Li

πold
(πi, s) ≥ −M̃

√∑
j ̸=i

DKL(πj
old(·|s)∥πj(·|s)).
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We need to emphasize that the inequality (9) connects the joint policy objective with the individual policy
objective, which is essential for our purpose of fully decentralized learning.

Next, we will derive our novel lower bound of joint policy improvement by the following theorem.
Theorem 3.3. Suppose πold and π are two joint policies. We have

Ljoint
πold

(π, s)− C ·DKL(πold(·|s)∥π(·|s)) ≥ 1
N

N∑
i=1
Li

πold
(πi, s)− M̂

N∑
i=1

√
DKL(πi

old(·|s)∥πi(·|s))

− C

N∑
i=1

DKL(πi
old(·|s)∥πi(·|s)) ≥ 0, ∀s ∈ S, (12)

where M̂ =
√

N−1
N

2rmax
1−γ and C > 0 is any constant.

Proof. We will start to prove this theorem from the objective Ljoint
πold

(π, s)− C ·DKL(πold(·|s)∥π(·|s)),

Ljoint
πold

(π, s)− C ·DKL(πold(·|s)∥π(·|s)) = 1
N

N∑
i=1
Ljoint

πold
(π, s)− C ·DKL(πold(·|s)∥π(·|s))

≥ 1
N

N∑
i=1
Li

πold
(πi, s)− M̃

N

N∑
i=1

√∑
j ̸=i

DKL(πj
old(·|s)∥πj(·|s))− C ·DKL(πold(·|s)||π(·|s)) (13)

≥ 1
N

N∑
i=1
Li

πold
(πi, s)− M̃

√√√√N − 1
N

N∑
i=1

DKL(πi
old(·|s)∥πi(·|s))− C ·DKL(πold(·|s)||π(·|s)) (14)

= 1
N

N∑
i=1
Li

πold
(πi, s)− M̃

√√√√N − 1
N

N∑
i=1

DKL(πi
old(·|s)∥πi(·|s))− C

N∑
i=1

DKL(πi
old(·|s)∥πi(·|s)) (15)

≥ 1
N

N∑
i=1
Li

πold
(πi, s)− M̂

N∑
i=1

√
DKL(πi

old(·|s)∥πi(·|s))− C

N∑
i=1

DKL(πi
old(·|s)∥πi(·|s)). (16)

The inequality (13) is the direct application of the inequality (9) in Lemma 3.2. The inequality (14) is from
the Cauchy-Schwarz inequality,

N∑
i=1

√∑
j ̸=i

DKL(πj
old(·|s)∥πj(·|s)) ≤

√
N

∑
i=1

∑
j ̸=i

DKL(πj
old(·|s)∥πj(·|s))

=
√

N(N − 1)
∑
i=1

DKL(πi
old(·|s)∥πi(·|s)).

The inequality (15) is from a property of the KL-divergence (see the proof of Lemma 3.2), while the inequality
(16) is from the simple inequality

√∑
i ai ≤

∑
i

√
ai (ai ≥ 0, ∀i).

The lower bound in Theorem 3.3 is dedicated to decentralized policy optimization because it can be directly
decomposed individually for each agent as a decentralized surrogate. From Theorem 3.3, if we set the policy
optimization objective of each agent i as

πi
new(·|s) = arg max

πi

( 1
N
Li

πold
(πi, s)− M̂

√
DKL(πi

old(·|s)∥πi(·|s))− C ·DKL(πi
old(·|s)∥πi(·|s))

)
, (17)

then we have J(πnew) ≥ J(πold) from Lemma 3.1. Finally, we can obtain the following theorem.
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Theorem 3.4. If we define a joint policy sequence {πt} as follows:

πi
t+1(·|s) = arg max

πi

( 1
N
Li

πt
(πi, s)− M̂

√
DKL(πi

t(·|s)∥πi(·|s))− C ·DKL(πi
t(·|s)∥πi(·|s))

)
∀i ∈ I, ∀s ∈ S,

(18)

then the sequence {J(πt)} will improve monotonically and converge to sub-optimum.

Proof. At each iteration, as the policy of each agent is obtained by (18), all agents jointly maximize the RHS
of (12). Thus, from Theorem 3.3, we have ∀s ∈ S

Ljoint
πt

(πt+1, s)− C ·DKL(πt(·|s)∥πt+1(·|s))

≥ 1
N

N∑
i=1
Li

πt
(πi

t+1, s)− M̂

N∑
i=1

√
DKL(πi

t(·|s)∥πi
t+1(·|s))− C

N∑
i=1

DKL(πi
t(·|s)∥πi

t+1(·|s))

≥ 1
N

N∑
i=1
Li

πt
(πi

t, s)− M̂

N∑
i=1

√
DKL(πi

t(·|s)∥πi
t(·|s))− C

N∑
i=1

DKL(πi
t(·|s)∥πi

t(·|s)) = 0, (19)

where (19) is from the definition of πi
t+1(·|s) in (18). From Lemma 3.1, we know V πt+1(s) ≥ V πt(s), ∀s ∈ S.

From the definition J(π) = Es0∼µ[V π(s0)], we know J(πt+1) ≥ J(πt), which means that the sequence
{J(πt)} improves monotonically. Moreover, as {J(πt)} is bounded (the reward function is bounded), {J(πt)}
will converge to sub-optimum, which completes the proof.

As (17) can be independently optimized at each agent, the monotonic improvement and convergence of joint
policy can be achieved by fully decentralized policy optimization. It is worth noting that the result above is
under the assumption that each agent can obtain the state, and in practice, each agent can take the individual
trajectory τi as the approximation to the state.

3.4 Remarks About Our Theoretical Results

In this section, we would like to summarize our theoretical results and discuss an important problem: how
could DPO overcome the non-stationarity problem in decentralized learning and obtain the convergence
guarantee?

Our general idea is that finding a surrogate for the joint monotonic improvement condition Ljoint
πold

(πnew, s)−C ·
DKL(πold(·|s)∥πnew(·|s)) and this surrogate can be optimized independently for each agent. Then optimizing
this surrogate will make sure that the joint policy will improve monotonically.

DPO realizes this idea in two stages. In the first stage, according to the inequality (9) in Lemma 3.2, we have
a bound between Ljoint

πold
(π, s) and Li

πold
(πi, s). This bound actually help us to replace Eπ−i

new
[Aold(s, ai, a−i)]

in Ljoint
πold

(π, s) with Ai
old(s, ai) = Eπ−i

old
[Aold(s, ai, a−i)], where π−i

new is not accessible in training. But the extra

terms M̃
√∑

j ̸=i DKL(πj
old(·|s)∥πj(·|s)) in (9) is still from other agents and not accessible for agent i. So, in

the second stage, we apply (9) for all agents and rearrange the terms in M̃
√∑

j ̸=i DKL(πj
old(·|s)∥πj(·|s)) by

inequalities in Theorem 3.3 to make sure that the term DKL(πj
old(·|s)∥πj(·|s)) is optimized by agent j instead

of agent i. Finally, we have a new surrogate (12) which could be divided into N parts, and each part is only
related to one agent. Our general idea mentioned above is eventually realized after these two stages.

We also would like to discuss the relation between DKL and
√

DKL in the surrogate (12). It seems that DKL
and
√

DKL are similar and could be merged into one term. However, in fact, we are not able to merge these
two terms. From the perspective of theory,

√
DKL is from the bound (9). The relation between DKL and√

DKL is different around DKL = 1 and we cannot find an inequality to merge these two terms. From the
perspective of experiments, we could find in the empirical results in Section 4.5 that eliminating either the
term

√
DKL or the term DKL lowers the performance of DPO.

3.5 The Practical Algorithm

7
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Algorithm 1 The practical algorithm of DPO
1: for episode = 1 to M do
2: for t = 1 to max_episode_length do
3: select action ai ∼ πi(·|s)
4: execute ai and observe reward r and next state s′

5: collect ⟨s, ai, r, s′⟩
6: end for
7: Update decentralized critic according to (8)
8: Update policy according to the surrogate (20)
9: Update βi

1 and βi
2 according to (21).

10: end for

DPO is proposed with the simple idea that
each agent optimizes the decentralized surro-
gate (17). However, we face the same trouble
as TRPO in that the constant M̂ is large and
if we directly optimize this objective, then the
step size of the policy update will be too small.

To settle this problem, we absorb the idea of the
adaptive coefficient in PPO (Schulman et al.,
2017). We use two adaptive coefficients βi

1 and
βi

2 to replace the constant M̂ and C (Schul-
man et al., 2015a). Since any constant C > 0
is available in theory, we can also obtain an
appropriate value of C in an adaptive way. In practice, we will optimize the following objective:

πi
new(·|s) = arg max

πi

( 1
N
Li

πold
(πi, s)− βi

1

√
DKL(πi

old(·|s)∥πi(·|s))− βi
2DKL(πi

old(·|s)∥πi(·|s))
)

. (20)

As for the adaption of βi
1 and βi

2, we need to define a hyperparameter dtarget, which can be seen
as a ruler for the average KL-divergence Davg

KL (πi
old∥πi

new) for each agent, where Davg
KL (πi

old∥πi) =
Es∼πold

[
DKL(πi

old(·|s)∥πi(·|s))
]
.

If Davg
KL (πi

old∥πi
new) is close to dtarget, then we believe current βi

1 and βi
2 are appropriate. If Davg

KL (πi
old∥πi

new)
exceeds dtarget too much, we believe βi

1 and βi
2 are small and need to increase and vice versa. In practice, we

will use the following rule to update βi
1 and βi

2:

If Davg
KL (πi

old∥πi
new) > dtarget ∗ δ, then βi

j ← βi
j ∗ ω ∀j ∈ {1, 2}

If Davg
KL (πi

old∥πi
new) < dtarget/δ, then βi

j ← βi
j/ω ∀j ∈ {1, 2}.

(21)

We choose the constants δ = 1.5 and ω = 2 as the choice in PPO (Schulman et al., 2017). As for the critic,
we just follow the standard method in PPO. Then, we can have the fully decentralized learning procedure of
DPO for each agent i in Algorithm 1.

The practical algorithm of DPO uses some approximations of the decentralized surrogate. Most of these
approximations are traditional practices in RL or with no alternative in fully decentralized learning yet. We
admit that the practical algorithm may not maintain the theoretical guarantee. However, we need to argue
that we go one step further to give a decentralized surrogate in fully decentralized policy optimization with a
convergence guarantee. We believe and expect that a better practical method can be found based on this
objective in future work.

4 Experiments

In this section, we compare the practical algorithm of DPO with IPPO (de Witt et al., 2020) and IQL
(Tan, 1993) in a variety of cooperative multi-agent environments, including a cooperative stochastic game,
MPE (Lowe et al., 2017), multi-agent MuJoCo (Peng et al., 2021), and SMAC (Samvelyan et al., 2019),
covering both discrete and continuous action spaces, as well as fully and partially observable environments.
In our experiments, we focus on the comparison between DPO and IPPO, and just add IQL as a baseline
for reference. Q-learning or value-based methods are out of our scope of discussion. As we consider fully
decentralized learning, in the experiments agents do not use parameter-sharing as sharing parameters should
be considered as centralized learning (Terry et al., 2020). In all experiments, the network architectures and
common hyperparameters of DPO and IPPO are the same for a fair comparison. Note that IPPO (de Witt
et al., 2020) is the widely used clip version of PPO, while the KL version of PPO serves as ablation of DPO,
which is also included in the ablation study. More details about experimental settings and hyperparameters
are available in Appendix A and B. Moreover, all the learning curves are from 5 random seeds and the shaded
area corresponds to the 95% confidence interval.
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Figure 1: Empirical studies of DPO on the didactic example: (a) learning curve of DPO compared with IPPO, IQL,
and the global optimum; (b) the influence of different values of dtarget on DPO, x-axis is environment steps.

4.1 A Didactic Example

First, we use a cooperative stochastic game as a didactic example. The cooperative stochastic game has 100
states and 6 agents. Each agent has 5 actions. All the agents share a joint reward function. The reward
function and the transition probability are both generated randomly. This stochastic game has a certain
degree of complexity which is helpful to distinguish the performance of DPO, IPPO, and IQL. On the other
hand, this environment is tabular which means training in this environment is fast and we can do ablation
studies efficiently. Moreover, we can find the global optimum by dynamic programming to compare with in
this game.

The learning curves in Figure 1(a) show that DPO performs better than two baselines and learns a better
solution in this environment. IQL is the most unstable among the three algorithms according to its variance.
The fact that DPO learns a sub-optimal solution agrees with our theoretical result. However, the sub-optimal
solution found by DPO is still far from the global optimum. This means that there is still improvement space.

On the other hand, we study the influence of the hyperparameter dtarget on DPO. We choose dtarget =
0.001, 0.01, 0.1, 1. The empirical results are shown in Figure 1(b). We find that when dtarget is small, the
coefficients β1 and β2 are more likely to be increased and the step size of the policy update is limited. So for
the case that dtarget = 0.001, 0.01, the performance of DPO is relatively low. And when dtarget is large, the
policy update may be out of the trust region. This can be witnessed by the fluctuating learning curve of the
case dtarget = 1. So we need to choose an appropriate value for dtarget and in this environment we choose
dtarget = 0.1, which is also the learning curve of DPO in Figure 1(a). We found that the appropriate value
for dtarget changes in different environments. In the following, we keep dtarget to be the same for tasks of the
same environment. There may be some better choices for dtarget, but it is a bit time-consuming and out of
the focus of our discussion.
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Figure 2: Learning curve of DPO compared with IPPO and IQL in the 5-agent simple spread, 5-agent line control,
and 5-agent circle control in MPE, where the x-axis is environment steps.
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Figure 3: Learning curves of DPO compared with IPPO and IDDPG in 3 × 1 Hopper, 3 × 2 HalfCheetah, 3 × 2
Walker2d, 4 × 2 Ant, and 17 × 1 Humanoid in multi-agent MuJoCo, where x-axis is environment steps.
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Figure 4: Learning curves of DPO compared with IPPO and IQL in 2s3z, 8m, 3s5z, 27m_vs_30m, and MMM2 in
SMAC, where x-axis is environment steps.

4.2 MPE

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects in MPE
environment are either agents or landmarks. Landmark is a part of the environment, while agents can move
in any direction. With the relation between agents and landmarks, we can design different tasks. We use the
discrete action space version of MPE and the agents can accelerate or decelerate in the direction of the x-axis
or y-axis. We choose MPE for its partial observability. We take dtarget = 0.01 for all MPE tasks.

The MPE tasks we used for the experiments are simple spread, line control, and circle control which were
originally used in Agarwal et al. (2020). In our experiments, we set the number of agents N = 5 in all three
tasks. The empirical results are illustrated in Figure 2. We can find that although DPO may fall behind
IPPO and IQL at the beginning of the training in some tasks, DPO learns a better policy in the end for
all three tasks. As for the drop in IQL’s performance, we checked the learning curves of different random
seeds and found that this phenomenon is actually caused by the instability of IQL. IQL learns very fast but
converges to different sub-optima in different random seeds.

4.3 Multi-Agent MuJoCo

Multi-agent MuJoCo is a robotic locomotion control environment for multi-agent settings, which is built upon
single-agent MuJoCo (Todorov et al., 2012). In multi-agent MuJoCo, each agent controls one part of a robot
to carry out different tasks. We choose this environment for the reason of continuous state and action spaces.
We use independent DDPG (Lillicrap et al., 2016) (IDDPG) to replace IQL for continuous action spaces. We
select 5 tasks for our experiments: 3-agent Hopper, 3-agent HalfCheetah, 3-agent Walker2d, 4-agent Ant and
17-agent Humanoid. In all these tasks, we set agent_obsk=2. We take dtarget = 0.001 for all multi-agent
MuJoCo tasks.

The empirical results are illustrated in Figure 3. We can find that in all five tasks, DPO outperforms IPPO
and IDDPG, though in 3-agent HalfCheetah DPO learns slower than IPPO at the beginning. The results on
multi-agent MuJoCo verify that DPO is also effective in facing continuous state and action spaces. Moreover,
the better performance of DPO in the 17-agent Humanoid task could be evidence of the scalability of DPO.

4.4 SMAC

SMAC is a partially observable and high-dimensional environment that has been used in many cooperative
MARL studies. We select five maps in SMAC, 2s3z, 8m, 3s5z, 27m_vs_30m, and MMM2 for our experiments.
We take dtarget = 0.02 for all SMAC tasks.
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Figure 5: Learning curves of DPO compared with DPO_w/o_kl and DPO_w/o_sqrt in three MPE tasks, where
x-axis is environment steps.

The empirical results are illustrated in Figure 4. The two super hard SMAC tasks (27m_vs_30m and MMM2)
are too difficult for all DPO, IPPO, and IQL to win, so we use episode reward as the metric to show their
difference. DPO performs better than IPPO and IQL in all five maps. We need to argue that though we
have controlled the network architectures of DPO and IPPO to be the same, in our experiments each agent
has its individual parameters which increases the difficulty of training. So our results in SMAC may be
different from other works. Although IPPO has been shown to perform well in SMAC (de Witt et al., 2020;
Yu et al., 2021; Papoudakis et al., 2021), DPO can still outperform IPPO, which verifies the effectiveness of
the practical algorithm of DPO in high-dimensional complex tasks and can also be evidence of our theoretical
result. Again, the better performance of DPO in 27m_vs_30m shows its good scalability in the task with
many agents. As for the performance of IPPO, we have fine-tuned the clip parameters and found that the
impact of different clip parameters is relatively small. The empirical results and more discussions are included
in Appendix C.

4.5 Ablation Study

We carry out the ablation study about the objective in (20). We consider two ablation methods: in the first
one, we keep βi

1 = 0 to eliminate the influence of the term
√

Davg
KL (πi

old∥πi), which is the same as IPPO-KL;
in the second one, we keep βi

2 = 0 to eliminate the influence of the term Davg
KL (πi

old∥πi). The other parameters
are controlled to be the same as DPO. We call these two methods as DPO_w/o_sqrt and DPO_w/o_kl,
respectively.

We compare DPO with DPO_w/o_kl and DPO_w/o_sqrt for ablation study in MPE, multi-agent MuJoCo,
and SMAC. We add the performance of IPPO in the empirical results for reference. The tasks selected for
each environment are the same as previous experiments in Section 4.2, 4.3 and 4.4. The empirical results for
MPE, multi-agent MuJoCo, and SMAC are illustrated in Figure 5, Figure 6, and Figure 7, respectively. In
general, we can find that eliminating either the term

√
Davg

KL (πi
old∥πi) or the term Davg

KL (πi
old∥πi) lowers the

performance of DPO in all these tasks. Though the influence of eliminating these two terms is relatively
small in several tasks such as Walker2d-V2_3X2 in multi-agent MuJoCo and 2s3z in SMAC, the absence
of these two terms will obviously lower the performance of DPO in most tasks. This could be evidence for
the significance of our novel lower bound (17) and the objective (20). The performance drop also shows
empirically that we are not able to merge the two KL-divergence terms into one.

5 Conclusion

In this paper, we investigate fully decentralized learning in cooperative multi-agent reinforcement learning.
We derive a novel decentralized lower bound for the joint policy improvement and we propose DPO, a fully
decentralized actor-critic algorithm with convergence guarantee and monotonic improvement. Empirically,
we test DPO compared with IPPO and IQL in a variety of environments including a cooperative stochastic
game, MPE, multi-agent MuJoCo, and SMAC, covering both discrete and continuous action spaces, as well
as fully and partially observable environments. The results show the advantage of DPO over IPPO and IQL,
which can be evidence for our theoretical results.
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Figure 6: Learning curves of DPO with compared with DPO_w/o_kl and DPO_w/o_sqrt in 3-agent Hopper,
3-agent HalfCheetah, 3-agent Walker2d, 4-agent Ant, and 17-agent Humanoid in multi-agent MuJoCo, where x-axis is
environment steps.
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Figure 7: Learning curves of DPO with compared with DPO_w/o_kl and DPO_w/o_sqrt on 2s3z, 8m,3s5z, MMM2,
and 27m_vs_30m in SMAC , where x-axis is environment steps.

We have to admit that there are still some limitations to DPO. To optimize the decentralized surrogate
objective, the practical algorithm of DPO needs to take some approximations, which however may not preserve
the theoretical results. In future work, we hope to find a better practical method for our theoretical results.
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A Experimental Settings

A.1 MPE

The three tasks are built on the origin MPE (Lowe et al., 2017) (MIT license) and are originally used in
Agarwal et al. (2020) (MIT license). The objectives in these three tasks are listed as follows:

• Simple Spread: There are N agents who need to occupy the locations of N landmarks.

• Line Control: There are N agents who need to line up between 2 landmarks.

• Circle Control: There are N agents who need to form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We set the number
of agents N = 5 for these three tasks in our experiment.

A.2 Multi-Agent MuJoCo

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task with continuous
action space for multi-agent settings. MuJoCo’s reward function is about the distance the robot has moved
from the original position. In Multi-Agent MuJoCo, the robot could be divided into several parts and each
part contains several joints. Agents in this environment control a part of the robot which could be different
varieties. So the type of the robot and the assignment of the joints decide a task. For example, the task
‘HalfCheetah-3×2’ means dividing the robot ‘HalfCheetah’ into three parts for three agents and each part
contains 2 joints.

The details about our experiment settings in multi-agent Mujoco are listed in Table 1. The configuration
defines the number of agents and the joints of each agent. The ‘agent obsk’ defines the number of nearest
agents an agent can observe.

Table 1: The task settings of multi-agent MuJoCo

task configuration agent obsk

HalfCheetah 3×2 2
Hopper 3×1 2

Walker2d 3×2 2
Ant 4×2 2

Humanoid 17×1 2

A.3 SMAC

SMAC (Samvelyan et al., 2019) is a popular environment for MARL. The agents in SMAC are rewarded as
soon as they attack or kill an enemy unit. The rewards for an episode in SMAC are affected by the number
of agents, so the environment has normalized the maximum episode rewards for all tasks to 20. If the agents
in SMAC kill all enemy units in an episode, then they have ’won" that episode. The observation space of the
agents in SMAC is related to the number of units in the task. In general, the observation is a vector with
100+ dimensions over the information of all units in difficult tasks, and the information of the units that are
outside the agent’s field of view is denoted by zero in the observation vector. More details on SMAC can be
found in the original paper (Samvelyan et al., 2019).

B Training Details

Our code of IPPO is based on the open-source code1 of MAPPO (Yu et al., 2021) (MIT license). We modify
the code for individual parameters and ban the tricks used by MAPPO for SMAC. The network architectures

1https://github.com/marlbenchmark/on-policy
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and base hyperparameters of DPO and IPPO are the same for all the tasks in all the environments. We use
3-layer MLPs for the actor and the critic and use ReLU as non-linearities. The number of the hidden units of
the MLP is 128. We train all the networks with an Adam optimizer. The learning rates of the actor and
critic are both 5e-4. The number of epochs for every batch of samples is 15 which is the recommended value
in Yu et al. (2021). For IPPO, the clip parameter is 0.2 which is the same as Schulman et al. (2017). For
DPO, the initial values of the coefficient βi

1 and βi
2 are 0.01. The value of dtarget is 0.1 for the cooperative

stochastic game, 0.01 for MPE, 0.001 for multi-agent MuJoCo, and 0.02 for SMAC. Our code of IQL is based
on the open-source code2 PyMARL (Apache-2.0 license) and we modify the code for individual parameters.
The default architecture in PyMARL is RNN so we just follow it and the number of the hidden units is 128.
The learning rate of IQL is also 5e-4. The architectures of the actor and critic of IDDPG are 3-layer MLPs.
The learning rates of the actor and critic are both 5e-4.

Table 2: Hyperparameters for all the experiments

hyperparameter value

MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lr 5e-4
critic_lr 5e-4

numbers of epochs 15
initial βi

1 0.01
initial βi

2 0.01
δ 1.5
ω 2

dtarget different for environments as aforementioned
clip parameter for IPPO 0.2

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We set the
episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo experiments.
We performed the whole experiment with a total of four NVIDIA A100 GPUs. We have summarized the
hyperparameters in Table 2.

C Additional Results

Schulman et al. (2017) actually proposed two versions of PPO. The first version, which is also the most
popular version, is with the clip trick. The second version is directly optimizing the penalty formula with
adaptive coefficients and we refer to this algorithm as PPO-KL. IPPO (de Witt et al., 2020) is actually
extended from the first version, while the practical algorithm of DPO is similar to the second version. The
main difference between DPO and PPO-KL is the term of the square root of the KL-divergence in the policy
loss. We modify IPPO by making each agent learn with PPO-KL to obtain IPPO-KL.

For the completeness of our experiments, we test the performance of IPPO-KL, IQL, and DPO_w/o_kl that
eliminates the term Davg

KL (πi
old∥πi) for ablation study, in the cooperative stochastic game. The empirical result

is illustrated in Figure 8. We find that the performances of IPPO-KL, IPPO, and DPO_w/o_kl are close
and are all lower than DPO. This could be evidence of the effectiveness of DPO. As for IQL, its performance
is lower than IPPO though it converges faster.

Moreover, we further study the influence of the values of δ and ω for the adaptive adjust-
ments of the coefficient βi

1 and βi
2. We test seven different choices of δ and ω as (δ, ω) =

(1.5, 2), (1.5, 4), (1.5, 6), (1.1, 2), (3, 2), (3, 6), (1.1, 6) in the cooperative stochastic game. The empirical results
are included in Figure 9. We find that the influence of different δ and ω is relatively limited and the adaptive
adjustment is not very sensitive to them. This conclusion is similar to the PPO paper (Schulman et al., 2017).

2https://github.com/oxwhirl/pymarl
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IPPO performs poorly in super-hard SMAC tasks such as 27m_vs_30m and MMM2 where the number of
agents is relatively more and IPPO can hardly win. So we finetune the clip parameter of IPPO in these tasks to
find the impact of hyperparameters on IPPO. The empirical results are illustrated in Figure 10. We could find
that different clip parameters only affect the performance of IPPO during the training process, but at the end
of the training, these algorithms perform similarly. We need to argue again here that in our settings parameter
sharing is not permitted so all the methods will have difficulties in training as the number of agents increases.

Table 3: The two-player matrix game where each
agent has two actions. p and q represent the poli-
cies of two agents respectively. a, b, c and d are
the rewards for the corresponding joint actions
respectively.

q 1 − q

p a b

1 − p c d

To determine whether the bound in (9) is trivial in theory
is actually not simple. But we need to argue that the bound
will be tighter if the KL-divergence between the new policies
and the old policies is smaller. So we empirically evaluate the
mean KL-divergence of all agents in the training process in
two SMAC tasks, 27m_vs_30m and MMM2. The empirical
results are illustrated in Figure 12. We could find that the
KL-divergence is actually small and stable during the whole
learning process, which could be evidence for the effectiveness
of our bound.

To verify the monotonic improvement property of (17), we use a simple two-player matrix game in Table
3. In this matrix game, each agent has two actions and the reward for four joint actions are a, b, c and d
respectively. To obtain a more general result, we take four different sets of the payoff matrix: Matrix Game 1
(a, b, c, d) = (5, 7, 6, 4); Matrix Game 2 (a, b, c, d) = (1, 3, 5, 4); Matrix Game 3 (a, b, c, d) = (7, 1, 1, 3); Matrix
Game 4 (a, b, c, d) = (20, 0, 0, 10). Since there is no closed-form solution to (17), we use a numerical method
to find the solution for policy updates. The constant M̂ is defined by the payoff matrix and the constant C
can be chosen arbitrarily. We choose C = 10 in all the experiments. The empirical results are illustrated in
Figure 11. We use the payoff matrix and the joint policy πt = (pt, qt) to calculate the value of J(πt). We can
find the phenomenon of monotonic improvement in all four matrix games. Moreover, we can find that the
joint policy πt = (pt, qt) converges in all four matrix games. From the results in Matrix Game 1 and Matrix
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matrix game. The first line is the learning curves of J(πt). The second line is the learning curves of the policies p and
q.

0.0 0.5 1.0 1.5 2.0
steps 1e6

0.000

0.005

0.010

0.015

0.020

0.025

kl
 d

iv

27m vs 30m

DPO

0.0 0.5 1.0 1.5 2.0
steps 1e6

0.00

0.01

0.02

0.03

MMM2

DPO

Figure 12: The mean KL-divergence curves of all agents for DPO in 27m_vs_30m and MMM2 in SMAC, where the
x-axis is environment steps.

Game 2 we know that the iteration (17) may be trapped in the sub-optimum. These results can empirically
verify our theoretical results in Theorem 3.4.

D Discussion

Besides our empirical results, we would like to share our views on the difference between DPO and IPPO and
give some intuitive ideas. KL regularization and ratio clipping are similar in the single-agent setting, but they
are not supposed to be similar in multi-agent settings. The ‘correct’ ratio clipping in the multi-agent setting
according to the theory of PPO should clip over the joint policy ratio πnew(a|s)

πold(a|s) . IPPO just clips individual
policy ratio πi

new(ai|s)
πi

old(ai|s) for each agent i which may not be enough to realize the ‘correct’ ratio clipping. We
could find more discussion about this in the CoPPO (Wu et al., 2021) paper. So IPPO is not supposed to
enjoy the theoretical results of DPO.

We could rewrite the objective of IPPO for each agent i with a similar formulation in HPO (Yao et al., 2021)
as follows:

Li,IPPO
πold

(πi) =
∑

s

ρold(s)
∑
ai

πi(ai|s)|Ai
old(s, ai)|l

(
sign(Ai

old(s, ai)), ui(s, ai)− 1, ϵ
)

,

where l(y, x, ϵ) = max{0, ϵ− y × x} is the hinge loss and ui(s, ai) = πi(ai|s)
πi

old(ai|s) is the ratio.

If we follow the same idea as PPO, then IPPO is the ‘correct’ ratio clipping version for the surrogate of DPO.
However, the effectiveness of this ratio clipping formulation in theory is still open in decentralized learning
since there is not any convergence guarantee for IPPO, to the best of our knowledge.

Though the effectiveness of IPPO, in theory, is beyond the scope of our paper, we could provide an intuitive
explanation for the fact that the performance of DPO can surpass IPPO from this formulation and the
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analysis in HPO. In the proof of HPO, there is a critical assumption that the sign of the estimated advantage
is the same as that of the true advantage (Assumption 4 in Section 2.3 in Yao et al. (2021)). And HPO also
shows that the sign of the advantage is more important than the value for this formulation of PPO-clip. In
decentralized learning, both DPO and IPPO are facing the difficulty of learning the individual advantage
function as there may be noise in the individual value function. However, the objective of DPO is continuous
and the objective of IPPO is discrete for sign(Ai

old(s, ai)). So the impact of the noise in the value function
may be larger on IPPO than DPO.

Recently, there have been several works with theoretical analysis of monotonic improvement in MARL including
HAPPO (Kuba et al., 2021), CoPPO (Wu et al., 2021) and A2PO (Wang et al., 2023b). Unfortunately, these
algorithms are not appropriate for fully decentralized learning. HAPPO needs agents to maintain a joint
advantage function over the joint action and the agents need the information of the critical function M i1:m

from other agents. These conditions cannot be satisfied in fully decentralized learning. CoPPO needs the
ratios of other agents’ policies for policy updates but this information cannot be obtained in fully decentralized
learning. A2PO uses the joint advantage function and agents need the joint policy in the off-policy correction
for the calculation of Aπ,π̂i−1 . Moreover, A2PO uses the double-clip trick similar to CoPPO which requires
the ratios of other agents’ policies. Thus, A2PO is also not appropriate for fully decentralized learning.

E Additional Proof for Decentralized Critic

In this section, we will discuss the convergence of the iteration of decentralized critic following the idea of
Melo (2001). We have a lemma from Melo (2001).
Lemma E.1. The random process {∆t} taking values in Rn and defined as

∆t+1(x) = (1− αt(x)) + αt(x)Ft(x)

converges to zero w.p.1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑

t αt(x) =∞ and
∑

t α2
t (x) <∞;

• ∥E [Ft(x)|Ft]∥ ≤ γ∥∆t∥W , with γ < 1;

• Var [Ft(x)|Ft] ≤ C
(
1 + ∥∆t∥2

W

)
, for C > 0.

Next, we define an update rule given any initial Q-function Qi
0 for any agent i and the joint policy π as

follows:

Qi
t+1(st, ai

t) = Qi
t(st, ai

t) + αi
t(st, ai

t)
(

ri(st, ai
t) + γEbi

t∼πi(·|st+1)
[
Qi

t(st+1, bi
t)

]
−Qi

t(st, ai
t)

)
, (22)

where 0 ≤ αi
t(st, ai

t) ≤ 1 is the step-size for agent i and the reward ri(s, ai) = rπ−i(s, ai) = Eπ−i [r(s, ai, a−i)].

Then we have the following result.
Proposition E.2. Given any initial Q-function Qi

0 for any agent i, the update rule (22) converges to
Qπi

π−i(s, ai) w.p.1 as long as ∑
t

αi
t(s, ai) =∞ and

∑
t

α2
t (s, ai) <∞ (23)

for all (s, ai) ∈ S ×Ai.

Proof. We can rewrite (22) as follows

Qi
t+1(st, ai

t) =
(
1− αi

t(st, ai
t)

)
Qi

t(st, ai
t) + αi

t(st, ai
t)

(
ri(st, ai

t) + γEbi
t∼πi(·|st+1)

[
Qi

t(st+1, bi
t)

])
. (24)

We define ∆i
t(s, ai) = Qi

t(s, ai)−Qπi

π−i(s, ai), then we have

∆i
t+1(st, ai

t) =
(
1− αi

t(st, ai
t)

)
∆i

t(st, ai
t) + αi

t(st, ai
t)

(
ri(st, ai

t) + γEbi
t∼πi(·|st+1)

[
Qi

t(st+1, bi
t)

]
−Qπi

π−i(st, ai
t)

)
(25)
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If we define F i
t (s, ai) = ri(s, ai) + γEbi∼πi(·|s′)

[
Qi

t(s′, bi)
]
−Qπi

π−i(s, ai), then we have

∆i
t+1(st, ai

t) =
(
1− αi

t(st, ai
t)

)
∆i

t(st, ai
t) + αi

t(st, ai
t)F i

t (st, ai
t) (26)

To apply Lemma E.1, we consider E
[
F i

t (s, ai)|Ft

]
and Var

[
F i

t (s, ai)|Ft

]
.

For E
[
F i

t (s, ai)|Ft

]
, we have

E
[
F i

t (s, ai)|Ft

]
= Es′∼Pi(·|s,ai)

[
ri(s, ai) + γEbi∼πi(·|s′)

[
Qi

t(s′, bi)
]
−Qπi

π−i(s, ai)
]

= ri(s, ai) + γEs′∼Pi(·|s,ai),bi∼πi(·|s′)
[
Qi

t(s′, bi)
]
−Qπi

π−i(s, ai)

= Γπi

π−iQi
t(s, ai)−Qπi

π−i(s, ai) (27)

= Γπi

π−iQi
t(s, ai)− Γπi

π−iQπi

π−i(s, ai), (28)

where Pi(s′|s, ai) =
∑

a−i
π−i(a−i|s)P (s′|s, ai, a−i) is the individual transition probability from the perspective

of agent i given a fixed π−i. The step (27) is from the definition of Γπi

π−i in (5). The step (28) is from the
property of the fixed point in (4). From the contraction property of Γπi

π−i in (6), we know∥∥E [
F i

t (s, ai)|Ft

]∥∥
∞ =

∥∥∥Γπi

π−iQi
t − Γπi

π−iQπi

π−i

∥∥∥
∞
≤ γ

∥∥∥Qi
t −Qπi

π−i

∥∥∥
∞

= γ
∥∥∆i

t

∥∥
∞ (29)

For Var
[
F i

t (s, ai)|Ft

]
, we have

Var
[
F i

t (s, ai)|Ft

]
= E

[
ri(s, ai) + γEbi∼πi(·|s′)

[
Qi

t(s′, bi)
]
−Qπi

π−i(s, ai)−
(

Γπi

π−iQi
t(s, ai)−Qπi

π−i(s, ai)
)]

= E
[
ri(s, ai) + γEbi∼πi(·|s′)

[
Qi

t(s′, bi)
]
− Γπi

π−iQi
t(s, ai)

]
= Var

[
ri(s, ai) + γEbi∼πi(·|s′)

[
Qi

t(s′, bi)
]
|Ft

]
.

Given the fact that ri is bounded, we know that Var
[
F i

t (s, ai)|Ft

]
≤ C

(
1 +

∥∥∆i
t

∥∥
∞

)
for some constant C.

Finally from the Lemma E.1, we know {∆i
t} converges to zero w.p.1, i.e., {Qi

t} converges to Qπi

π−i w.p.1.

F Future Work

In the paper, we derive a novel lower bound that can be naturally divided into independent surrogate (17)
for each agent. By each agent optimizing this surrogate, the monotonic improvement of the joint policy can
be guaranteed in fully decentralized settings. However, the practical algorithm of DPO takes the formula
of (20) with several approximations. How to solve the optimization of (17) more precisely is left as future
work. Moreover, we expect our work could provide some insights for future studies on fully decentralized
multi-agent reinforcement learning since current methods still have a gap from the optimum as shown in
Figure 8.
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