Under review as a conference paper at ICLR 2025

NEURAL REGENERATIVE STOCHASTIC DIFFERENTIAL
EQUATION: DROPOUT SCHEME FOR NEURAL DIFFER-
ENTIAL EQUATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Differential Equations (NDEs) are an excellent tool for modeling
continuous-time (stochastic) dynamics, effectively handling challenges such as
irregular observations, missing values, and noise. Despite their advantages, there
is a lack of regularization techniques in the NDE framework, particularly those
like dropout, which have been successfully implemented in other discrete neural
networks, making them susceptible to overfitting. To address this research gap, we
introduce Neural Regenerative Stochastic Differential Equation (NRSDE), based on
alternating renewal processes, as a universally applicable regularization technique
for NDEs. Our study reveals that NRSDE can effectively represent a continuous
approximation of neural networks that randomly deactivate some neurons during
training, similar to dropout, thereby enhancing the robustness and generalization
capabilities of NDEs. Through extensive experiments, we demonstrate that NRSDE
outperforms existing regularization methods for NDEs and can be applied to all
existing NDE models, significantly improving their performance across various
deep learning tasks, including time series classification and image classification.

1 INTRODUCTION

Neural Differential Equations (NDEs) have gained significant attention in recent years due to their
ability to model continuous-time dynamical systems by integrating differential equations with neural
networks (Chen et al.| 2018}; |Rubanova et al.,[2019). The continuous-time nature of NDEs allows for
more precise modeling of temporal dynamics than discrete neural network architectures and has found
applications in various domains, including physics (Greydanus et al., [2019), finance (Yang et al.,
2023), and a variety of fields dealing with irregularly-sampled data and missing values (Rubanova
et al.,[2019; [Kidger et al.l 2020; Oh et al., [2024)).

Despite their remarkable successes, NDEs are prone to overfitting like other deep learning models,
particularly when training data is limited or the model complexity is too high (Oh et al., [2024]).
Therefore, regularization techniques for NDEs are crucial in improving their generalization and
robustness. Recent studies have explored various regularization techniques for NDEs such as
Neural Stochastic Differential Equations (Neural SDEs) by injecting noise into Neural Ordinary
Differential Equations (Neural ODEs) (Tzen and Raginskyl [2019; |Kong et al.| 2020; |Liu et al., 2020;
Oganesyan et al.,2020), variants of Neural SDEs under distribution shifts (Oh et al., 2024)), temporal
regularization technique (Ghosh et al.,|2020), and kinetic energy regularization for Neural ODE-based
generative models (Finlay et al., [2020).

While these approaches have made progress in regularizing NDE models, several aspects remain
largely unexplored compared to well-established regularization techniques developed for discrete
neural networks. In particular, although dropout, one of the most efficient and widely used regulariza-
tion techniques in deep learning, has been extensively studied for conventional neural networks, its
application to NDEs remains limited. [Liu et al.|(2020) made an important first step in incorporating
the dropout mechanism into NDEs using jump diffusion processes and SDEs with various noise
types. While this approach introduces novel ideas, it encounters theoretical and practical challenges
in accurately capturing dropout. One key issue is that the continuous dynamics they propose, when
discretized, fail to align with the actual behavior of dropout in discrete time. Furthermore, the

Under review as a conference paper at ICLR 2025

dynamic nature of continuous models raises new questions around determining dropout rates and
adjusting them in real-time to maintain model stability. Additionally, the need for rescaling the
model’s outputs when applying dropout in NDEs remains an open problem, further complicating its
integration.

To address this gap, we propose Neural Regenerative Stochastic Differential Equations (NRSDEs),
a dropout scheme tailored for NDEs. NRSDEs leverage the concept of alternating renewal pro-
cesses (Ross| [1995}; |Coxl, [1962} |Pham-Gia and Turkkanl [1999) to model the dropout process as a
regenerative phenomenon, where the system alternates between active and inactive (due to dropout)
states randomly. Then, we redefine the dropout rate in the continuous-time setting, and establish the
connection between the dropout rate and the intensity parameters of the alternating renewal process.
We also study a scaling method for consistency between outputs in training and test phases, which is
important for the practical implementation of NRSDEs. Lastly, we conduct comprehensive series of
experiments on various benchmark datasets and NDE models to evaluate the effectiveness of NRSDE:s.
Our numerical results demonstrate that NRSDE outperforms existing regularization methods for
NDEs and can be applied to any type of NDE model, significantly improving the generalization
ability and robustness of NDEs, achieving state-of-the-art results across various tasks.

2 PRELIMINARIES

Notations. Let (Q, F,P) be a probability space. For a R?-valued vector x, denote the i-th compo-
nent of x by () fori = 1,...,d. For A € RT, Exp()\) represents the exponential distribution with
rate parameter \. The rate parameter is often referred to as the intensity parameter in the context of
stochastic processes. For two matrices A and B of the same size, A o B represents a matrix obtained
by element-wise multiplication of A and B.

2.1 PROBLEM STATEMENT

Let {zo(t) }o<t<T be a d,-dimensional continuous-time dynamical (stochastic) process. In particular,
we consider zo(t) as a latent process used for various tasks such as prediction, classification, and
regression. Let x denote the d,.-dimensional input data, and ¢ : R% — R% is an affine function with
parameter 0.

To represent the underlying process zo(¢), (Chen et al|(2018)) proposed a Neural ODE as the solution
of the following ordinary differential equation

dzo(t .

) 200 0,) with 20(0) = C(x:60),
where 0 < t < T, v4(;-;0,) is a neural network parameterized by 6.,, which is inspired by the
following residual connections in ResNet:

Zo(k +1) = Zo(k) +~(Zo(K); 1), M

where Z (k) represents the hidden state of ResNet at the k-th layer. See|Sander et al.[(2022) for a
detailed discussion of the relationship between ResNets and Neural ODEs.

In (Tzen and Raginsky, 2019; Liu et al., 2020; Kong et al., [2020), Neural ODEs have been extended
to Neural SDEs for describing continuous-time stochastic latent processes, which are governed by
the following stochastic differential equation:

dzo(t) = v(t,20(t); 0) dt + o (t,20(t); 0,) AW (t) with zo(0) = ((x;0¢), 2

where 0 < ¢ < T, W(?) is a d,-dimensional Brownian motio and neural networks (-, -; 6.,) and
o(-,-; 0,) are drift and diffusion functions parameterized by 6., and 6, respectively. Neural SDEs
learn stochastic paths generated by Gaussian noise to improve the generalization and robustness of
the models.

On the other hand, when it comes to preventing neural networks from overfitting, the most successful
and powerful regularization technique in deep learning models is dropout, which randomly deactivates
certain neurons during training (Srivastava et al.| 2014). Therefore, to further improve the performance
of Neural Differential Equations (NDEs), one naturally pose the following question:

'The dimension of Brownian motion can be arbitrary chosen. Here, we set to be d. in our experiments.

Under review as a conference paper at ICLR 2025

O
O

(a) Neural network (b) NDE, zo(t)

(c) Neural network with dropout (d) NDE with dropout, z(t)

Figure 1: Ilustration of dropout in discrete neural networks and continuous-time latent processes:
(a) discrete neural network, (b) NDE, (c) neural network with dropout, (d) NDE with dropout.

Q. How can we incorporate the mechanism of dropout into the NDE framework?

The answer to this question lies in developing a suitable continuous-time stochastic process that
approximates the following ResNet with dropout:

Z(k+1) = Z(k) + ~(Z(k); 0x) o &k, (3)

where Z(k) represents the hidden state of ResNet with dropout at the k-th layer 4and P(g,(j) =0)=

1-— P(gfj) = 1) = p, with & € R%. Note that 5,(;) refers to the i-th component of £;,. Compared
to Equation |1} Equation (3| introduces the Bernoulli variable &, which controls whether the state

of the hidden layer at step k£ + 1 evolves from its previous state. Specifically, when & ,(f) = 0, the

corresponding hidden state remains unchanged, whereas when 5,(;) = 1, the hidden state is updated
as in the standard ResNet.

To provide a clearer illustration, Figure [T provides a visual comparison of a standard neural network,
a neural network with dropout, and their continuous-time counterparts. First, consider a standard
neural network without dropout, as shown in Figure[Tal When dropout is applied, some neurons are
temporarily removed from the network, as shown in Fi gure Now, consider the solution z(t) of an
NDE, which represents the continuous counterpart of the discrete neural network shown in Figure
From this, a new continuous-time latent process z() can be constructed, where z(t) evolves like zo(t)
in its active state and temporarily pauses its evolution during its inactive state; See Figure[Td| This
serves as the continuous analogue of Equation 3] effectively incorporating the dropout mechanism
into the NDE framework.

Our key insight is that the behavior of dropout in neural networks in continuous time can be
interpreted as a stochastic process where the system alternates between periods of active (evolution)
and inactive (pause) states over random time intervals. This dynamics can be naturally modeled
using an alternating renewal process, which effectively capture the random dynamics of dropout in
continuous time. By leveraging this framework, we provide a more robust and theoretically sound
regularization technique for NDEs. In addition, we address important follow-up questions: i) what is
the proper definition of the dropout rate in continuous-time settings? ii) how can the dropout rate be
controlled throughout training? and iii) how can the model’s outputs be rescaled during the test phase
to maintain consistency?

Under review as a conference paper at ICLR 2025

2.2 ALTERNATING RENEWAL PROCESS

Before presenting our proposed NRSDE, we briefly review the alternating renewal process, which
is a key concept in our methodology. This class of regenerative stochastic processes is commonly
used to model systems that alternate between two states over time. It has found wide applications
in fields such as operations research, queueing theory, and reliability engineering (Stanford, |1979;
Heath et al.l 1998 |Pham-Gia and Turkkan, |1999; Birolini, |{1974)). For a more detailed explanation,
we refer to Appendix [A]

Consider a dynamical system that alternates between two (active and inactive) states. Let { X, },,>1
be the sequence of i.i.d. random variables with a distribution G representing the lengths of time
that the system is in active state, and let {Y}, },,>1 be the sequence of i.i.d. random variables with
a distribution H representing the lengths of time that the system is in inactive state. Assume that
X,, and Y,,, are independent for any n # m. However, X,, and Y;, (for the same index n) are not
necessarily independent. Moreover, a renewal is defined as the alternation between active and inactive
states where the length of each renewal, {X,, + Yn}nzls has a common distribution F'. Then, the
renewal process associated with {X,,, Y}, },>1 is called an alternating renewal process. In particular,
we focus on an exponential alternating renewal process where G and H are exponentially distributed.

For t > 0, let N(t) denote the number of renewals in the interval [0, t], i.e.,

N(t) = Lix,+va<i)- @
n=1
So, {N(t) }+>0 is the counting process. With Sy = 0, define S, by for each n > 1,
Su=> T, 5)
i=1
where T5;_1 := X, and Ty; := Y;. That is, Ss,, indicates the arrival time of the n-th renewal.

Similarly, S5, 1 denotes the start time of the n-th inactive state, which lasts for a duration of Y;,
until it alternates to the next active state. Moreover, at time ¢, the system is in the active state if
Son_a <t < S5,_1, and in the inactive state if So,,_1 <t < So,.

3 THE PROPOSED DROPOUT METHOD FOR NDES

In this section, we present the proposed dropout scheme for NDEs, Neural Regenerative Stochastic
Differential Equation (NRSDE). We then redefine the concept of dropout rate to fit the continuous-
time setting and introduce a method for tuning the hyperparameters of NRSDE. Finally, we discuss
the scaling factor of dropout used during the test phase.

3.1 NEURAL REGENERATIVE STOCHASTIC DIFFERENTIAL EQUATION (NRSDE)

Recall that zo(t) € R%,0 < t < T be the solution of a NDE. Note that we can use any type of
NDE:s such as Neural ODE, Neural CDE, and Neural SDE for modeling z(¢). However, to provide a
more general explanation of NDEs, we assume that z () is represented as a Neural SDE satisfying
Equation

Define X,, = ({Xr(ll)}nzl, ce {X,(LdZ)}n21> and Y, = ({Yél)}nzl, ce {YédZ)}nzl) where

{Xy(f)} are i.i.d. exponential random variables with rate A\, and {Yn(i)} are i.i.d. exponential random
variables with rate \y for i = 1,...,d,. Assume that {X,(f)}nzl and {XT(LJ)}nZI are mutually

independent for all 5 and j. Then, fori =1,...,d,, NV () and S,(f) can be defined as in Equation
and Equation [5| Given z((¢), let z(t) denote its alternating renewal process associated with X, and

Y Here, X T(f) and Y,g’) represent the sequences of random times that the i-th component of z(t)
remains in the active and inactive states, respectively, as described in Section @ We refer to this

That is, 2 (t), each component of z(¢), is an exponential alternating renewal process of zéi) (t) associated
(X, Y Y.

Under review as a conference paper at ICLR 2025

: (%) (t)

\}

S](l) Séz) Sél, 54(11) SéZ) S((;Z)
Figure 2: Illustration of ¢-th component of NRSDE z(t)

new process z(t) as Neural Regenerative Stochastic Differential Equation (NRSDE) of zo(t). More
specifically, z(¥)(t) is given by for Ség <t< S;c)ﬂ andk=0,1,2,...:

Az (1) = vD(t,2(t); 6 dt+Za”)tz() 0,) AW (1), with 20 (t) = 2 (5,
j=1

and 2()(t) = 20)(S(ZH) for 52k+1 <t< S;wrz with 2()(0) = 2{”(0). Equivalently, z(®) () can
be written in integral form: for S(Y <t< Sék)_‘_l andk=0,1,2,...,

4 ¢
20(t) = z(i)(S&)) +/ 9 (s, 5(ds+/ Za(”) 5,2(s); 0,) AW (s)
S(T) S(Z)

2k g=1
and 2() (1) = 20 (S5),) for S5, | <t < S5, , with 2()(0) = 257 (0).

The construction of z(t) is intuitively explained as follows. For eachi = 1,...,d,, when Ség <t<
s 1 ie., 2(0(¢) is in the active state, z(V)(¢) and the original latent process ;él)(t) share the same
stochastic differential equation. On the other hand, during Séz) 1 St< Sé;c) o> 1.€., the inactive
state, the evolution of z(*)(¢) is temporarily deactivated due to dropout and remains at the fixed value

() (S;C) 1) until the active state is renewed. See Figure 2| for an illustrative example of an NRSDE
trajectory z(t).

3.2 DROPOUT RATE

In discrete neural networks, the dropout technique has a hyperparameter called the dropout rate p.
Specifically, if the dropout rate is p, then each neuron has a probability of being deactivated for
each training iteration. However, in the continuous setting of NDEs, the traditional concept of the
dropout rate cannot be directly applicable because each neuron in NDEs represents the value of a
continuous-time process at a specific time rather than a countable entity. Therefore, the concept of
the dropout rate needs to be redefined to fit the continuous version.

Among possible candidatesﬂ we adopt the concept of instantaneous availability at the terminal time 7',
which represents the probability that the renewal process under consideration is in the active state at
T, denoted by A(T') := P({z(T) is in the active state}). This approach is not only computationally
efficient but aligns well with the traditional meaning of the dropout rate in discrete neural networks.
Hence, in NRSDEs, the dropout rate p is defined as p = 1 — A(T), the probability that the NRSDE
is in the inactive state at 7T'.

NRSDEs have two intensity parameters A; and Ao, which determine the proportion of time spent in
the active (or inactive) state over the total length 7T'. The following theorem provides a formula for
the dropout rate p in terms of two parameters of NRSDE, \; and As.

30ne may consider representing the dropout rate in continuous time as the proportion of the average inactive
time to the total time. However, for the sake of analytical tractability, we choose to use instantaneous availability.

Under review as a conference paper at ICLR 2025

Theorem 3.1. Define X = ({X{ }uz1, - XS }uzt) with (X7} 4 Exp(A) and Y =
({Yél)}nzl, cey {Y,gdZ)}nE) with {Y,Ei)} E~ Exp(A2). Let {zy(t) }o<t<T be the original latent
process and z(t) be its NRSDE associated with Xy, and Yy,. Then, the dropout rate p € (0,1) is
determined by

A1
- 1— e~ uitda)T 6
P=3TT N (¢) ©)

The proof for Theorem [3.1can be found in Appendix [B] Given the desired level of dropout p, there
are infinitely many possible pairs (A1, A2) that satisfy Equation[6] To determine (A1, A2), we impose
an additional condition on the expected number of renewals of z(t) in the interval [0, T, denoted as
m:=E[N® (T)]El In other words, m represents the average number of repetitions of the active and
inactive states in the interval [0, T'|. Consequently, the following corollary offers a principled way to
tune the intensity parameters A; and Ay in NRSDE given the dropout rate p and the expected number
of renewals m.

Corollary 3.2. Let p be the dropout rate and m be the expected number of renewals of z(t) in the
interval [0, T]. Given p € (0,1) and m > 0, A1 and Ay of NRSDE can be determined by solving the
following system of nonlinear equations:

» A1 (1 _ 67(A1+>\2)T> ’

DYDY 7
A1z A1z (—(M4A)T)
m = T— 1—e V17722 .
AL+ Ao (A1 + A2)?
In particular, for large T, A1 and)5 can be approximated by
MR N
T A-pT T pT

The proof for Collorary [3.2]can be found in Appendix [B] While the traditional dropout scheme has a
single hyperparameter, the dropout rate p, the continuous-time setting requires two hyperparameters,
p and m, to characterize NRSDE. Nevertheless, our sensitivity analysis summarized in Appendix
indicates that the performance of NRSDE is not sensitive to m, which reduces the time and effort
required for hyperparameter tuning. Moreover, a detailed explanation of the parameters (p, m) for
the trajectories of NRSDEs is provided in Figure[TT]of Appendix [F

3.3 SCALING FACTOR IN TEST PHASE

Another important procedure when applying dropout in discrete neural networks is to use the full
neural network without dropout during the test phase. This creates a difference between the network’s
outputs during training and testing, necessitating scaling to calibrate this discrepancy. For example,
during the test phase, the weights of neurons are scaled by 1 — p to ensure that the average output of
the network is consistent between training and testing.

Following the mechanism of dropout in discrete neural networks, the dropout rate in NRSDE is set
to 0 to eliminate inactivate states during the test phase. Therefore, suitable scaling is necessary to
match the average outputs during training and test phases. That is, one needs to determine a scaling
factor ¢ such that E[z(T")] = E[z¢(T")] + c. Then, we use the scaled output, zo(T") + c, for various
inference tasks. We explicitly note that the scaling factor is not a tunable or learnable parameter but
rather a fixed value specific to each data point. Since ¢ cannot be obtained analytically, we employ
Monte Carlo simulation which might seem to introduce additional computational burden. However,
we emphasize that the computational overhead due to Monte Carlo simulation is incurred only during
the test phase, and therefore does not significantly increase the overall computational cost of NRSDE.
For numerical experiments related to this, please refer to Section[4.2]

Moreover, the accuracy of estimating ¢ depends on the number of samples used in the Monte Carlo
simulation, which can affect the performance of NRSDE. The impact of sample size is investigated
in Section[d.2] which reveals that 5-10 samples are sufficient to obtain stable results. Algorithm T]
summarizes the whole process of NRSDE.

“Note that E[N®)(T)] = E[N@(T)] = --- = E[N“)(T)] since {X"},>1 and {V;?},>1 have
common distributions Exp(\1) and Exp(A2), respectively, for all .

Under review as a conference paper at ICLR 2025

Algorithm 1 Training and Testing with NRSDE

Input: training data {x;, y;} ~"", testing data {x| } ¢, time interval [0, 7], hyperparameters

(p,m) € [0,1) x R, number of epochs Nepochs
Initialize: Network parameters 0 = [0¢, 6, 65, Omvp]

Training Phase
1: for epoch = 1 to Nepochs do

2: foreach (x,y) in {x;,yi} %" do
3: z(0) = ¢(x;0c)
4: z(T') = NRSDE_Solver(vs, 79,2(0), [0, T], (p, m) f] > See Appendix [D.1]
5: Ypred = MLP(Z(T); 0MLP)
6: Compute 10ss L(Ypred, ¥)
7: end for
8: Compute gradients V£ and update parameters 6 using optimizer
9: end for
Test Phase

1: for each x' in {x!} V=t do

2(0) = C(x';6¢)

3 zo(T') = SDE_Solver(ve, 09,2(0), [0,T])

4 z(T) = NRSDE_Solver(vs, 06, z(0), [0, T], p, m)

5: Estimate ¢ = E[z(T")] — E[z0(T")] using Monte Carlo simulation
6: Ypred = MLP(ZO (T) +c; eMLp)
7

8:

end for
return predicted outputs {yprea }

3.4 WHY ARE ALTERNATING RENEWAL PROCESSES MORE ADEQUATE THAN JUMP DIFFUSION
PROCESSES FOR MODELING DROPOUT?

Liu et al.| (2020) made an interesting attempt to represent the stochastic nature of dropout using
random jumps through a jump diffusion process. However, as we discuss in Appendix [G.1] this
approach encounters some limitations in accurately capturing the dropout mechanism. Specifically,
the discretization form of the jump diffusion process they proposed differs from Equation [3} leading
to a mismatch in describing the true dynamics of dropout. In contrast, the discretization of NRSDE
aligns exactly with Equation [3] providing a more precise representation of the dropout mechanism.

Beyond theoretical alignment, alternating renewal processes offer significant practical advantages.
First, as shown in our numerical experiments in Section[d] jump diffusion dropout only improves
performance at very low dropout rates p, typically less than 0.1 (as discussed in Appendix [E.T)). This
behavior deviates from traditional dropout and often requires additional time-consuming tuning. On
the other hand, NRSDE provides robust performance improvements across a wide range of typical
dropout rates. Second, NRSDE consistently outperforms jump diffusion dropout in various settings.
Lastly, NRSDE is universally applicable to any variant of NDEs, unlike jump diffusion dropout, as
detailed in Appendix[G.2]

4 EXPERIMENTS

We perform numerical experiments using real-world datasets to evaluate the effectiveness of the
proposed dropout method (NRSDE) in NDEs. First, we compare the proposed method with several
regularization methods in Section[d.1] Then, we assess the performance of the proposed method across
various NDEs in Section@ We utilize time-series datasets (SmoothSubspace (Huang et al.l 2016),
ArticularyWordRecognition (Wang et al.l 2013), ERing (Wilhelm et al., 2015), RacketSports, Speech
Commands (Warden| 2018), and PhysioNet Sepsis (Reyna et al.||2019)) and image datasets (CIFAR-
100, CIFAR-10 (Krizhevsky and Hinton, [2009)), STL-10 (Coates et al.,[2011]), and SVHN (Netzer|
et al., |2011)). For NRSDEs, we search for optimal hyperparameters among the dropout rate p €
[0.1,0.2,0.3,0.4,0.5] and the expected number of renewals m € [5, 10, 50, 100]. Further details of
experimental settings and results are summarized in Appendix [D|and Appendix [E} respectively. The
source code can be accessed at https://bit.1ly/4gMUDQKk.

>For brevity, we denote (-, ; 6) and & (-, -; 0,), respectively, simply as o and 0.

https://bit.ly/4gMUDQk

Under review as a conference paper at ICLR 2025

4.1 SUPERIOR PERFORMANCE OVER EXISTING REGULARIZATION METHODS

We compare the proposed dropout method (NRSDE) with existing regularization methods for NDEs,
using Neural ODE as the baseline. Specifically, we consider Dropout for Drift Network and
Dropout for MLP Classifier, where conventional dropout (Srivastava et al., [2014) is applied to
the drift network and the MLP classifier, respectively. Additionally, we also consider Dropout of
Liu et al.| (2020), and STEER (Ghosh et al., 2020). We compute the performance of both with
and without dropout noise during the test phase for Dropout of [Liu et al.| (2020), following their
experimental setup. TTN refers to the use of dropout noise not only during training but also during
the test phase.

Table (1| shows the classification accuracy of various regularization methods on four time series
datasets. We have highlighted the best methods in the results table. NRSDE demonstrates superior
performance compared to existing regularization methods for NDEs.

Table 1: Accuracy of various regularization methods on time series classification

Regularization Methods SmoothSubspace ArticularyWordRecognition ERing RacketSports
Baseline (Neural ODE) 0.569 (0.040) 0.859 (0.005) 0.839 (0.018) 0.565 (0.065)
Dropout for Drift Network 0.594 (0.016) 0.862 (0.014) 0.844 (0.031) 0.598 (0.045)
Dropout for MLP Classifier 0.600 (0.067) 0.860 (0.006) 0.856 (0.078) 0.554 (0.076)
Dropout of|[Liu et al.|(2020) 0.617 (0.043) 0.871 (0.054) 0.861 (0.064) 0.609 (0.031)
Dropout of |Liu et al.[(2020)+TTN 0.606 (0.018) 0.876 (0.025) 0.878 (0.025) 0.598 (0.076)
STEER (Ghosh et al.|[2020) 0.578 (0.056) 0.871 (0.036) 0.850 (0.029) 0.592 (0.054)
NRSDE (ours) 0.639 (0.018) 0.882 (0.040) 0.884 (0.025) 0.625 (0.044)

Table 2] shows the classification performance of various regularization methods on four image datasets.
We follow the dataset selection used in previous studies on regularization methods. The performance
of each method is evaluated in terms of top-5 accuracy for CIFAR-100 and top-1 accuracy for
CIFAR-10, STL-10, and SVHN. NRSDE demonstrates improvement in performance over other
regularization methods.

Table 2: Performance of various regularization methods on image classification

Regularization Methods CIFAR-100 CIFAR-10 STL-10 SVHN
Baseline (Neural ODE) 74.475 (1.181) 73.870 (0.820) 70.650 (0.688) 91.348 (0.440)
Dropout for Drift Network 75.850 (0.367) 74.865 (1.710) 70.787 (0.197) 91.671 (0.353)
Dropout for MLP Classifier 75.005 (0.575) 75.095 (0.685) 70.723 (0.376) 92.327 (0.098)
Dropout of |[Liu et al.|(2020) 76.083 (0.502) 74.987 (0.350) 71.097 (0.242) 91.568 (0.413)
Dropout of [Liu et al.[(2020)+TTN 76.013 (0.276) 75.015 (0.503) 70.931 (0.286) 91.730 (0.518)
STEER (Ghosh et al.}[2020) 75.567 (0.559) 74.668 (0.821) 70.994 (0.259) 91.501 (0.328)
NRSDE (ours) 76.470 (0.480) 76.877 (0.615) 71.833 (0.334) 92.381 (0.083)

4.2 UNIVERSAL APPLICABILITY IN NDES

We investigate whether the proposed dropout method (NRSDE) can demonstrate consistent improve-
ments across various NDEs. To evaluate this, we conduct experiments on both time series and image
classification tasks. Notably, the time series classification tasks considered here involve challenges
such as irregular observations, label imbalance, and missing values where naive Neural ODE and
Neural SDE models tend to struggle (Oh et al.l 2024)).

For time series classification tasks, we consider the following NDE models: Neural ODEs (GRU-
ODE (De Brouwer et al.,2019), and ODE-RNN (Rubanova et al., 2019)), Neural CDEs (Neural
CDE (Kidger et al. [2020) and ANCDE (Jhin et al.| |2023)), Neural SDEs (Neural LSDE, Neu-
ral LNSDE, and Neural GSDE (Oh et al., 2024)). Note that Neural LSDE, Neural LNSDE, and
Neural GSDE are state-of-the-art models for the time series classification tasks under consideration.
Furthermore, we apply the proposed dropout method to these NDE models to create their correspond-
ing NRSDEs. This allows us to investigate whether the proposed dropout method contributes to
performance improvement for NDEs.

Under review as a conference paper at ICLR 2025

Table|3| shows classification accuracy of Neural CDE, ANCDE, Neural LSDE, Neural LSDE, Neural
LNSDE, Neural GSDE, and their NRSDEs on Speech Commands. GRU-ODE and ODE-RNN are
excluded due to their failure in training (Kidger et al.l 2020). For PhysioNet Sepsis, Table 4] shows
the AUROC of various NDE models and their NRSDEs with and without Observation Intensity (OI).
Moreover, we mark “x” and “xx” to represent the statistical significance of the differences between
NDE models with and without dropout using two-sample ¢-tests, where p-values are less than 0.05
and 0.01, respectively. As shown in Table [3|and Table d] the proposed dropout scheme improves
the performance of all NDE models, and most of these improvements are statistically significant. In
particular, we emphasize that the performance of the current state-of-the-art models—Neural LSDE,
Neural LNSDE, and Neural GSDE— can be further improved with proposed dropout method.

Table 4: AUROC on PhysioNet Sepsis

Table 3: Accuracy on Speech Commands podels Dropout Test AUROC
o1 No OI
Models Dropout Test Accuracy
GRU-ODE X 0.852 (0.010) 0.771 (0.024)
o 0.877 (0.004) 0.805 (0.009)
X 0.910 (0.005)
Neural CDE ok
0 0.945 (0.001) ODE.RNN X 0.874 (0.016) 0.833 (0.020)
o 0.895 (0.003)* 0.842 (0.002)
ANCDE X 0.760 (0.003)
0 0.793 (0.007)"* Neural CDE X 0.909 (0.006) 0.841 (0.007)
o 0.912 (0.005) 0.860 (0.001)**
] X 0.927 (0.004)
Neural LSDE o 0.933 (0.001)* ANCDE X 0900 (0.002) 0.823 (0.003)
o 0.908 (0.004) 0.843 0.007)**
X 0.923 (0.001)
I I L R S ST
X 0.913 (0.001)
Neural GSDE N X 0911 (0.002) 0.881 (0.002)
0 0.930 (0.002) Neural LNSDE 0 0.930 (0.001)** 0.890 (0.005)**
X 0.909 (0.001) 0.884 (0.002)
Neural GSDE 0 0.928 (0.002)"* 0.890 (0.002)"*

For image classification tasks, we consider Neural ODE (Chen et al., 2018) and Neural SDEs (Tzen
and Raginskyl 20195 Liu et al.| 2020; [Kong et al.,2020) (Neural SDE with additive noise and Neural
SDE with multiplicative noise). Other variants of NDEs are not suitable for image classification since
the concept of a controlled path is designed for handling time series data.

Table |§] presents the performance of Neural ODE, Neural SDE (additive), and Neural SDE (multi-
plicative) with and without dropout on the four image datasets. The experimental results suggest that
proposed dropout method consistently enhances the performance of all NDEs across all datasets with
statistical significance.

Table 5: Classification performance on four image datasets using Neural ODE and Neural SDEs

Model Dropout CIFAR-100 CIFAR-10 STL-10 SVHN
Neural ODE X 74475 (0.581) 73.870 (0.820) 70.650 (0.688) 91.348 (0.440)
0 76.470 (0.480)** 76.877 (0.615)** 71.833 (0.334)* 92.381 (0.083)**
Neural SDE X 74.878 (0.328) 74.457 (0.910) 70.666 (0.354) 91.839 (0.255)
(additive) 0 76.872 (0.442)** 77.102 (0.225)** 71.650 (0.253)** 92.418 (0.153)**
Neural SDE X 75.317 (0.338) 74.670 (0.875) 70.463 (0.485) 91.419 (0.577)
(multiplicative) 0 76.947 (0.458)* 76.654 (0.696) 71.484 (0.591)* 92.434 (0.149)**

4.3 SENSITIVITY AND COMPUTATIONAL COST ANALYSIS FOR SCALING FACTOR ¢

NRSDE uses MC simulations to estimate the scaling factor c. To evaluate this process, we conduct
experiments to perform a sensitivity analysis and analyze the associated computational cost. First, we
analyze the performance of the proposed method with varying numbers of MC samples by applying
it to models such as Neural CDE, ANCDE, Neural LSDE, Neural LNSDE, and Neural GSDE on the
Speech Commands dataset. The experimental results show that the accuracy of the models stabilizes
once the number of MC samples exceeds 5, indicating that the scaling factor c is accurately estimated
with 5 or more samples. We confirm a similar observation on the image dataset CIFAR-100, and the

Under review as a conference paper at ICLR 2025

0.80 1 -
— T —
w 1 F0.94 v
85 0.791 L | %]
<
= e i s =]
< T +0.930
> 0.78 —&— ANCDE >
2 Neural CDE &
o 092 8
2 0.77 —&— Neural LSDE 3
g —&— Neural LNSDE g
076] g % Neural GSDE [0-91
0 1 3 5 10 20

Number of Monte Carlo Simulation Samples (MC)

Figure 3: Performance with Different Numbers of MC Simulation Samples on Speech Commands.

detailed results are provided in the Appendix[F.2] Second, Table[6]reports the computation time for
cases without dropout and with c estimated using 5 and 10 MC samples. While MC increases the
computational overhead of the proposed method, the additional computational cost remains within an
acceptable range, as MC simulations are used only during the test phase, requiring inference on the
trained model.

Table 6: Computation time comparison on Speech Commands (time in seconds per epoch)

Dropout MC Neural CDE ANCDE Neural LSDE Neural LNSDE Neural GSDE
X - 25.560 (0.259) 53.264 (0.157) 19.416 (0.147) 19.532 (0.109) 19.776 (0.052)
o 5 27.127 (0.293) 58.943(0.300) 21.595 (0.163) 21.682 (0.169) 22.458 (0.154)

10 32.172(0.329) 75.486(0.250) 31.567 (0.147) 30.034 (0.096) 31.234 (0.227)

4.4 CONTINUOUS-TIME MODELING

While our paper focuses on modeling the continuous learning represen- Figure 4: Comparison
tation of neural networks with dropout, the proposed NRSDE framework f Test RMSE on Total
can also be effectively applied to regenerative processes. To demonstrate Agent Call Time data
this, we conduct an experiment using the Total Agent Call Time dataset.
This dataset represents the cumulative call time of multiple call center =~ Model Test RMSE
agents recorded over time and is characterized by periods of inactivity =~ Neural ODE 809.5 (439.3)
(no calls). Based on this dataset, we design a forecasting task to estimate E;“SrgESDE 522083'77(375'0)

. . . .7(40.3)
the total cumulative call time across all agents. As shown in Table[d] the
proposed method achieves significantly lower Test Root Mean Squared Error (RMSE) compared to
Neural ODE and Neural SDE. Furthermore, Neural ODE and Neural SDE methods fail to adequately
capture the characteristics of regenerative processes, highlighting their limitations for such tasks.

5 CONCLUSION

In this study, we introduced Neural Regenerative Stochastic Differential Equations (NRSDEs), a
dropout technique tailored for NDEs to enhance the generalization and robustness of NDEs. The
key idea is to construct an alternating renewal process, which alternates between active and inactive
states for random time periods, to represent the continuous version of dropout neural networks.
Within the proposed framework, we extended the definition of the dropout rate to a continuous-time
setting and studied the connection between the newly defined dropout rate and the parameters of
NRSDE. Moreover, we discussed how to scale the outputs of NRSDE during the test phase, which
is crucial for the practical implementation of dropout. We validated the effectiveness compared
to existing regularization methods for NDEs and the universal applicability of NRSDE through
extensive experiments on real-world time-series and image classification. NRSDE significantly
improves the performance of all the NDEs under consideration, particularly achieving state-of-the-art
results on time-series datasets. However, NRSDE has limitations in terms of computational cost.
First, unlike traditional discrete dropout, which has a single hyperparameter p, NRSDE involves two
hyperparameters, p and m. Moreover, as Monte Carlo simulation is used to estimate the scaling factor,
it is necessary to investigate the impact of the number of samples used in Monte Carlo simulation on
the performance of NRSDE across a wide range of datasets.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam,
and Eamonn Keogh. The UEA multivariate time series classification archive, 2018. arXiv preprint
arXiv:1811.00075, 2018.

A. Birolini. Some Applications of Regenerative Stochastic Processes to Reliability Theory - Part One: Tutorial
Introduction. IEEE Transactions on Reliability, R-23(3):186-194, 1974.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Differential
Equations. Advances in Neural Information Processing Systems, 31, 2018.

Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single-Layer Networks in Unsupervised Feature
Learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 215-223. JMLR Workshop and Conference Proceedings, 2011.

D. R. Cox. Renewal Theory. Methuen, 1962.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi,
Chotirat Ann Ratanamahatana, and Eamonn Keogh. The UCR time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293—-1305, 2019.

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. GRU-ODE-Bayes: Continuous modeling of
sporadically-observed time series. In Advances in neural information processing systems, volume 32, 2019.

Chris Finlay, Jorn-Henrik Jacobsen, Levon Nurbekyan, and Adam M Oberman. How to Train Your Neural
ODE: the World of Jacobian and Kinetic Regularization. In International conference on machine learning,
pages 3154-3164. PMLR, 2020.

Arnab Ghosh, Harkirat Singh Behl, Emilien Dupont, Philip H. S. Torr, and Vinay Namboodiri. STEER:
Simple Temporal Regularization For Neural ODEs. Advances in Neural Information Processing Systems, 33:
6696-6707, 2020.

Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian Neural Networks. Advances in Neural
Information Processing Systems, 32, 2019.

David Heath, Sidney Resnick, and Gennady Samorodnitsky. Heavy Tails and Long Range Dependence in
On/Off Processes and Associated Fluid Models. Mathematics of Operations Research, 23(1):145-165, 1998.

Xiaohui Huang, Yunming Ye, Liyan Xiong, Raymond YK Lau, Nan Jiang, and Shaokai Wang. Time series
k-means: A new k-means type smooth subspace clustering for time series data. Information Sciences, 367:
1-13, 2016.

Sheo Yon Jhin, Heejoo Shin, Sujie Kim, Seoyoung Hong, Minju Jo, Solhee Park, Noseong Park, Seungbeom Lee,
Hwiyoung Maeng, and Seungmin Jeon. Attentive Neural Controlled Differential Equations for Time-series
Classification and Forecasting. Knowledge and Information Systems, pages 1-31, 2023.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural Controlled Differential Equations for
Irregular Time Series. Advances in Neural Information Processing Systems, 33:6696-6707, 2020.

Li Kong, Jiawei Sun, and Cheng Zhang. SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates.
In International Conference on Machine Learning, volume 37, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images, 2009.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable Gradients for Stochastic
Differential Equations. In International Conference on Artificial Intelligence and Statistics, pages 3870-3882.
PMLR, 2020.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune: A
Research Platform for Distributed Model Selection and Training. arXiv preprint arXiv:1807.05118, 2018.

Xuanging Liu, Tesi Xiao, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. How Does Noise Help Robustness?
Explanation and Exploration under the Neural SDE Framework. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 279-287, 2020.

Markus Loning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, and Franz J Kirdly. sktime:
A unified interface for machine learning with time series. arXiv preprint arXiv:1909.07872, 2019.

11

Under review as a conference paper at ICLR 2025

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih Elibol,
Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging Al
applications. In 13th USENIX Symposium on Operating Systems Design and Implementation OSDI 18, pages
561-577, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, and Andrew Y Ng. Reading Digits in
Natural Images with Unsupervised Feature Learning. NIPS workshop on deep learning and unsupervised
feature learning, 2011(5):7, 2011.

Viktor Oganesyan, Alexandra Volokhova, and Dmitry Vetrov. Stochasticity in Neural ODEs: An Empirical
Study. arXiv preprint arXiv:2002.09779, 2020.

YongKyung Oh, Dongyoung Lim, and Sungil Kim. Stable Neural Stochastic Differential Equations in Analyzing
Irregular Time Series Data. In The Twelfth International Conference on Learning Representations, 2024.

T. Pham-Gia and N. Turkkan. System Availability in a Gamma Alternating Renewal Process. Naval Research
Logistics (NRL), 46(7):822-844, 1999.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth Shashikumar, Benjamin Moody, M. Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D. Clifford. Early Prediction of Sepsis from Clinical
Data: The PhysioNet/Computing in Cardiology Challenge 2019. In 2019 Computing in Cardiology (CinC),
pages 1-4. IEEE, 2019.

Sheldon M. Ross. Stochastic Processes. Wiley, 1995.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent ODEs for Irregularly-Sampled Time Series.
Advances in Neural Information Processing Systems, 32, 2019.

Michael Sander, Pierre Ablin, and Gabriel Peyré. Do Residual Neural Networks Discretize Neural Ordinary
Difterential Equations? Advances in Neural Information Processing Systems, 35:36520-36532, 2022.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15:
1929-1958, 2014.

Robert E. Stanford. Reneging Phenomena in Single Channel Queues. Mathematics of Operations Research, 4
(2):162-178, 1979.

Belinda Tzen and Maxim Raginsky. Neural Stochastic Differential Equations: Deep Latent Gaussian Models in
the Diffusion Limit. arXiv preprint arXiv:1905.09883, 2019.

Jun Wang, Arvind Balasubramanian, Luis Gerardo Mojica de la Vega, Jordan R Green, Ashok Samal, and
Balakrishnan Prabhakaran. Word Recognition from Continuous Articulatory Movement Time-Series Data
using Symbolic Representations. In Proceedings of the Fourth Workshop on Speech and Language Processing
for Assistive Technologies, pages 119-127, 2013.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition. arXiv preprint
arXiv:1804.03209, 2018.

Mathias Wilhelm, Daniel Krakowczyk, Frank Trollmann, and Sahin Albayrak. eRing: Multiple Finger Gesture
Recognition with one Ring Using an Electric Field. In Proceedings of the 2nd international Workshop on
Sensor-based Activity Recognition and Interaction, pages 1-6, 2015.

Luxuan Yang, Ting Gao, Yubin Lu, Jingiao Duan, and Tao Liu. Neural network stochastic differential equation
models with applications to financial data forecasting. Applied Mathematical Modelling, 115:279-299, 2023.

12

Under review as a conference paper at ICLR 2025

A OVERVIEW OF ALTERNATING RENEWAL PROCESS

The renewal process is a concept generalized from the Poisson process, where interarrival times
follow not only the exponential distribution but also more general distributions. This process is
commonly used for analyzing purchase cycles, replacement times, and similar phenomena and has
been extensively studied under the name renewal theory. Among these, we focus on the alternating
renewal process, which is a renewal process where a system alternates between two states, ‘on’ and
‘off’. In this appendix, we provide a brief overview of renewal theory. For more details, we refer to
(Ross, [1995; |Cox, [1962; [Pham-Gia and Turkkanl, [1999).

Let F denote the common distribution of the independent interarrival times {7}, }n,>1,

Ft)=P(Ty <t), tel0,00).
And let i be the mean time of 77, i.e.,
oo
b= E[Ty] = / LAF (),
0
Define S, as the time of the n-th arrival, given by

S():O, Sn:iTw nZl.

For n € N, let F,, denote the distribution of S,,,
F.(t) =P(S, <t), te]0,00).

Let N(t) denote the number of arrivals in time [0, ¢],

Z 1is, <) = arg sup{S <t}

n=1

Definition A.1. The counting process { N (t)}i>o is called a renewal process.

The distribution of N (t) can be obtained as
P(N(t) = n) = P(N(£) > n) — B(N(£) > n+ 1)
=P(Sn <t) —P(Sp+1 < 1)
= F(t) — Faya(2).

The renewal function m(t) is defined as the expected value of N (t), i.e., m(t) = E[N(t)], is closely
related to most renewal theory and determines the properties of the renewal process.

Theorem A.2. Let m(t) be the renewal function of N (t), defined as m(t) = E[N(t)]. Then, m(t) is
given in terms of the arrival distribution function by

t)=>_ Fult)

We summarize some important theorems related to the renewal function m(t).
Theorem A.3. (The Renewal Equation) Let the distribution F has the density f, then

—|—/0 fit —1m)m(r)dr

Theorem A.4. (The Elementary Renewal Theorem) For finite i,

m(t) 1
T—>f as t — o0.

13

Under review as a conference paper at ICLR 2025

Theorem A.5. (The Key Renewal Theorem) Suppose that the renewal process is aperiodic and
g :[0,00) = [0, 00) is directly Riemann integrable, then

t 1 00
/Og(t—T)dm(T)—>;/0 g(r)dr as t — .

Now, we define an alternating renewal process. Consider a system that alternates two states, ‘on’
and ‘off’. It starts with the state ‘on’ for a time X, and then transitions to the state ‘off’ for a time
Y. This pattern continues with X in the ‘on’ state, followed by Y5 in the ‘off” state, and so forth.
Suppose that (X,,,Y;,) for n > 1 are independent random vectors with identically distributed. Let,
{X,}n>1 have a common distribution G, {Y},},,>1 have a common distribution H and the cycle
lengths {X,, + Y., },,>1 have a common distribution F'. Notice that X,, and Y,,, are independent for
any n # m, but X,, and Y;, can be dependent for n > 1. In this setting, interarrival times {7}, },,>1
can be expressed as:

Xny1 if nis odd,
T, = 2 . .
Ya if n is even.
Thus, it can be seen that an alternating renewal process is a type of renewal process. Note that in
a renewal process, events, arrivals, and renewals are used interchangeably. However, in alternating
renewal processes, a renewal is defined as the alternation between an active phase and an inactive
phase. To avoid confusion, we distinguish and use Ss,, to denote the time of the n-th renewal and

the (2n)-th event and arrival. Furthermore, the focus is more on renewals, thus N (¢) represents the
number of renewals in the interval [0, ¢].

Define instantaneous availability A(t) as
A(t) = P{system is on at time t}.
Then, we have the following asymptotic formula for A(t).

Theorem A.6. If E[X,, + Y,] < oo and the alternating renewal process is aperiodic then

. . E[X,)
A A BRI R

Theorem describes the ratio of ‘on’ and ‘off” states in the limit for a system that follows an
alternating renewal process. We called this limit the steady-state availability, which is generally more
useful than instantaneous availability for analytical analysis in alternating renewal processes.

B PROOFS

For a function u, we denote the Laplace transform of u(t) by
L{u}(s) = / e *tu(t) dt.
0
Proof of Theorem[3.1] From the definition of the dropout rate in continuous time, we have p =
1 — A(T) for given p € (0,1) where A(T) := P({2)(T) is in the active state})ﬂ

Recall that { X O }n>1 have a common distribution Exp(A;), {Y,gi) }n>1 have a common distribution

Exp(A2) and the cycle lengths { X O 4 Y,Ei)}nzl have a common distribution F'. Denote the density
of F'as f. Then, using the convolution theorem, the Laplace transform of f is given by

ﬁ{f}(s) = /OOO eist ()\167)\115) dt /OOO e*St ()\2€7>\2t) d+

NN
_S+)\1 S+>\2. (8)

SAs each 2z%(t) has common distributions for {Xﬁﬁ}nzl and {Yéi)}nzl, we have
P({z")(T) is in the active state}) = - - - = P({2(4<) (T) is in the active state}).

14

Under review as a conference paper at ICLR 2025

Moreover, A(t) can be further expressed by conditioning on the value of S’éi) =X 1@ + Yl(i)
A(t) = P({z9(¢) is in the active state})
= P({z)(t) is in the active state}, S5 > t) + P({z(?)(t) is in the active state}, S5 < t)

. t . .
=P (S{z) > t) +/ P ({z(’)(t) is in the active state} | S;l) = T) f(r)ydr
0
=P (X{l) > t) + / P({z(t — 7) is in the active state}) f(7) dr
0

t
me +/ At —7)f(7)dr, ®
0

where we have used the renewal property of z(¥)(t) for the fourth equality. Taking the Laplace
transform on both sides of Equation] yields,

L{AY) = 5 + LA L))
Thus, we have using Equation §]
1
A = a6+
. S+ Ao
s(s+ A1+ A2)
Ay 1 A1 1

4 .
)\1+>\25)\1+A25+A1+)\2
Then, A(t) is uniquely determined as

Az AL uta
A(t) = + ArtA2)t
®) At A+ A ¢
Thus, we have the desired result:
p=1-A(T)

A1

_ 1— —()\1+/\2)T> .

A1+ Ao (©

O
Proof of Corollary[32] Let m(™ (t) = E[N?)(t)]. Then, by the Renewal equation in Theorem
m® (1) = F(t) + /0 "t = rym®(r) dr. (10)
By taking the Laplace transform on both sides of Equation[I0} we obtain
L{m DY (s) = L{F}(s) + L{f}(s) L{mD}(s).
where F' and f are distribution and density functions of {X T(Li) + Yéi)}nzl, which yields

1—L{f}(s)
O ah
- 82(8+)\1 +>\2)
Coake 1 AN (1 1)
7)\14-)\2 52 ()\1+)\2)2 S S+ A1+ Ao '
Therefore, m (%) (t) is given by
- AA AL
() 1) — 112 +_ 112 1 —(A1+A2)t)
mo) = ()\1—1—)\2)2(¢)

15

Under review as a conference paper at ICLR 2025

From the definition of m = E[N)(T)] = m) (T') and Theorem 3.1} we have for given p € (0, 1)
and m >0

A1
— 1— *(A1+>\2)T)
p A1+ Ao (€ ’

. A1 A T A1 (1 . 67(/\1+)\2)T))

m =
A1+ Ag (A1 + A2)?
Furthermore, from Theorem lim7_, o, A(T') can be easily computed as follows:

E[X.” 1/ A
lim A(T) = EXn] Mo e
T=o0 E[Xff)] + E[yygl)] 1/ AM+1/x2 M+ X
In other words, we have the following asymptotic relation: for sufficiently large 7',
p=1-A(T)
A2
~1-— . 11
A1+ Ao (D
Furthermore, using Theorem[A.4] we get for sufficiently large T’
m _ m(T)
T T
N M2 (12)
A1+ A2
From Equation |l 1jand Equation|12} \; and A5 can be approximated by for large T’
m m
MR R —.
T A-pT T T
O

C DESCRIPTION OF DATASETS

SmoothSubspace. The SmoothSubspace dataset (Huang et al.,2016) is designed to test algorithms’
ability to identify and classify smooth trajectories in a high-dimensional space. This dataset consists
of 150 simulated univariate time series, each represented in a 15-dimensional space. The time series
are generated such that they lie on or near a smooth subspace within this higher-dimensional space.
Each series can belong to one of three classes, with the class indicating the particular subspace
configuration that the series aligns with.

ArticularyWordRecognition. The ArticularyWordRecognition dataset (Wang et al., | 2013) uses
an Electromagnetic Articulograph (EMA) to measure tongue and lip movements during speech.
It includes data from multiple native English speakers producing 25 words. The dataset features
recordings from twelve sensors capturing x, y, and z positions at a 200 Hz sampling rate. Sensors
are positioned on the forehead, tongue (T1 to T4), lips, and jaw. Out of 36 possible dimensions, this
dataset includes 9.

ERing. The ERing dataset (Wilhelm et al., 2015)) is collected using a prototype finger ring known
as eRing, which detects hand and finger gestures through electric field sensing. The dataset includes
six classes of finger postures involving the thumb, index finger, and middle finger. Each data series is
four-dimensional with 65 observations, representing measurements from electrodes sensitive to the
distance from the hand.

RacketSports. The RacketSports dataset consists of data collected from university students playing
badminton or squash while wearing a Smart Watch. The watch recorded x, y, and z coordinates
from both the accelerometer and gyroscope, which were transmitted to a phone and stored in an
Attribute-Relation File Format (ARFF) file. The dataset includes accelerometer and gyroscope
measurements in the order: accelerometer x, y, z, followed by gyroscope x, y, z. The data was
collected at 10 Hz over 3 seconds during either forehand/backhand strokes in squash or clear/smash
strokes in badminton.

16

Under review as a conference paper at ICLR 2025

Speech Commands. The Speech Commands dataset (Warden, 2018)) features a comprehensive set
of one-second long audio clips that include spoken words and ambient sounds. This dataset contains
34,975 time-series entries, each corresponding to one of 35 different words. Ten specific words were
chosen as categories: ‘yes’, ‘no’, ‘up’, ‘down’, ‘left’, ‘right’, ‘on’, ‘off’, ‘stop’, and ‘go’. The audio
clips are pre-processed by computing the Mel-frequency cepstral coefficients, which serve as features
to capture the audio characteristics more effectively, thereby enhancing the accuracy of the applied
machine learning models. Each audio sample is represented by a time series of 161 frames, with each
frame consisting of 20 feature dimensions.

PhysioNet Sepsis. The 2019 PhysioNet Sepsis challenge (Reyna et al.l|2019) focuses on predicting
sepsis, a critical condition caused by blood infections leading to numerous fatalities. This challenge
uses a dataset with 40,335 ICU patient records, featuring 34 time-dependent indicators like heart rate
and body temperature. Researchers aim to determine the presence of sepsis in patients based on the
sepsis-3 criteria. This dataset presents challenges due to its irregular time-series nature—only 10% of
data points are timestamped for each patient. To tackle this, we employ two strategies for time-series
classification: (i) using observation intensity (OI), which gauges the severity of the patient’s condition,
and (ii) without using OI. Each method adjusts for the dataset’s imbalance by evaluating performance
through the Area Under the Receiver Operating Characteristic curve (AUROC) score.

CIFAR-100 and CIFAR-10. These datasets, introduced by Krizhevsky and Hinton| (2009), contain
60,000 32x32 pixel RGB images that are split into two groups: CIFAR-100, with 100 different
fine-grained classes, and CIFAR-10, with 10 broader categories. Each dataset is evenly divided, with
50,000 images allocated for training and 10,000 for testing. The images depict a wide variety of
objects, including animals, vehicles, and everyday scenes. For example, CIFAR-100 includes detailed
classes such as maple trees, shrews, and pickup trucks, while CIFAR-10 contains broader categories
such as airplanes, automobiles, dogs, and cats.

STL-10. The STL-10 dataset (Coates et al., 2011) consists of 13,000 color images, each with a
resolution of 96x96 pixels, categorized into 10 classes. The images primarily capture animals, objects,
and outdoor scenes. For instance, some of the categories include airplanes, birds, cars, cats, deer,
dogs, horses, monkeys, ships, and trucks.

SVHN. The Street View House Numbers (SVHN) dataset (Netzer et al., 2011) consists of over
600,000 digit images extracted from real-world scenes, specifically house numbers captured by
Google’s Street View. The images typically have a resolution of around 32x32 pixels and contain
digits from ‘0’ to ‘9’. Each image often includes multiple digits, but the dataset focuses on identifying
individual digits.

D DETAILS OF EXPERIMENTAL SETTINGS

We followed the recommended pipelines for each dataset and model. We conducted experiments
repeated for five iterations to ensure robustness in all settings. For time series classification exper-
iments, we adhered to experimental protocols provided in the GitHub repositories of each model.
For image classification experiments, as there were no publicly available protocols for NDEs, we
established our own. Details of the protocols we devised are elaborated in Section[D.4] Our experi-
ments were performed using a server on Ubuntu 20.04.6 LTS, equipped with an Intel(R) Core(TM)
19-10980XE CPU and four NVIDIA GeForce RTX 4090 GPUs. The source code can be accessed at
https://bit.ly/4gMUDQk!

D.1 DETAILED NRSDE ALGORITHM

We implemented the NRSDE algoritm based on the commonly used SDE solver, torchsd(Li
et al, 2020). The algorithm 2] shows the detailed NRSDE algorithm. Please refer the stochastic
adjoint sensitivity method in the original paper (Li et al.,[2020).

"https://github.com/google-research/torchsde

17

https://bit.ly/4gMUDQk
https://github.com/google-research/torchsde

Under review as a conference paper at ICLR 2025

Algorithm 2 Detailed NRSDE Algorithm
Subroutine: NRSDE_Solver (vy, 09, 2z(0), [0, T], (p, m))

Input: Drift function -y, diffusion function oy, initial condition z(0), time interval [0, T'], hyperparameters
(p,m) €[0,1) x RT

1: if p = O then

2: return SDE_Solver(~s, 06, z(0), [0, T1])

3: else

4: Compute A1 and Az using (p, m, T') with Equation|[7]

5: Generate event times S = {S,,, S,, < T'} using Event_Times(\1, Az, [0, T7)

6: Initialize Zcur = z(0)

7: for each time step ¢, in discretization of [0, 7] do

8: Identify interval [S;, S;+1) in S containing ¢,

9: if 7 is even (¢ mod 2 = 0) then
10: Znext = Step(Yo, 00, [tk, th+1]s Zeurr) > Active phase
11: else
12: Zinext = Zcurr > Inactive phase
13: end if
14: Update Zcurr = Znext
15: end for
16: return Zcurr

17: end if
Subroutine: Event_Times(\1, A2, [0, T7)

1: Initialize S=0,t =0,7=1
2: whilet < T do
Sample event time t by alternating renewal process using A1 and A2
if t < T then
Append t to S
end if
Increment 7 +=1
8: end while
9: return S

AR A

Subroutine: Step(vo, 09, [tk, th+1], Zeur)

1: Compute At = tp41 — ty

2: Sample AW ~ AN (0, At)

3! Znext = Zeur + Y (ks Zeurr; O4) AL + 0 (tk, Zeur; 0o) AW > e.g., Euler-Maruyama Method
4: return Zyex

Subroutine: SDE_Solver(vg, 09,2(0), [0,7T])

: Initialize Zewr = 2(0)

: for each time step ¢, in discretization of [0, 7] do
Znext = Step(7e, 09, [tk, tr+1], Zeur)
Update Zcurr = Zpext

end for

return zy

QDAL

Gradient Computation using Stochastic Adjoint Sensitivity Method
1: Define augmented state a(¢) = [z(t), q(t)]
2: Initialize adjoint variable q(1") = V(1)L
3: for time ¢t from 7" to 0 do
4: Solve the Stochastic Adjoint SDE backward in time:

da(t) =~ (32 aw)at+ (%2 a0) aw

5: Accumulate gradients w.r.t parameters:

VoLl += (%Tq(t)) dt + <§%Tq(t)> dW (1)

6: end for

18

Under review as a conference paper at ICLR 2025

D.2 VARIOUS REGULARIZATION METHODS

In ‘Dropout for Drift Network’ (Srivastava et al., 2014), we used p = [0.1,0.2,0.3,0.4,0.5] for
tuning the dropout rate. For ‘Dropout of |Liu et al.| (2020)’, since they did not provide a repro-
ducible code implementation, we referred to their Github repositoryﬂ to devise our own pipeline
for the experiments. We employed tuning methods for typical dropout rates; however, since we
could not observe significant performance improvements, we utilized a broader tuning grid of
p = [107°,10"%,1073,1072,0.1,0.2,0.3,0.4,0.5]. For ‘STEER’, we followed the pipeline out-
lined by |Ghosh et al.| (2020) and the GitHub repositoryﬂ For further details, please refer to the
original paper.

D.3 TIME SERIES CLASSIFICATION

In ‘SmoothSubspace’, ‘ArticularyWordRecognition’, ‘ERing’ and ‘RacketSports’, we adhered to the
experimental protocol using the pipeline outlined by Oh et al.|(2024) and Github repositor We
utilized a 70%:15%:15% split for train, validation, and test due to the unconventional split ratios in
the original datasets, as recommended by |Oh et al.| (2024). Regarding hyperparameter tuning, we
employed the Python library ra (Moritz et al.| |2018; Liaw et al.| 2018), as suggested by |Oh et al.
(2024). For further details, please refer to the original paper.

In ‘Speech Commands’ and ‘PhysioNet Sepsis’, we followed the experimental protocol using publicly
available pipelines for each model. For ANCDE, we used the pipeline outlined by Jhin et al.|(2023)
and the Github repository{]ﬂ For the other models, we followed the pipeline outlined by |Oh et al.
(2024) and the Github repositorym. However, for the ANCDE model using the ‘Speech Commands’
dataset, the hyperparameter settings for the architecture were not disclosed. Therefore, we conducted
experiments using the number of layers n; = 4, the hidden vector dimensions nj, = 128, and the
hidden vector dimensions for attention ngttention = 20, and we reported the performance based
on these settings. We performed NRSDE hyperparameter tuning for two architecture (optimal and
complex) for Neural CDE, Neural LSDE, Neural LNSDE, and Neural GSDE. For Neural CDE,
contrary to previous approaches, we utilized grid search to optimize the model hyperparameters. We
evaluated test performance using n; from the set {1, 2, 3,4} and nj, from {16, 32, 64, 128}, selecting
both the optimal architecture and the most complex architecture. Note that in certain models, optimal
hyperparameters might be the same as complex hyperparameters. Table [9records the performance
for each set of architecture hyperparameters. For Neural LSDE, Neural LNSDE, and Neural GSDE,
we used the optimal architecture hyperparameters reported by (Oh et al. (2024). The following are the
definitions of each model:

GRU-ODE. De Brouwer et al.|(2019) introduced GRU-ODE, a concept of combination of Neural
ODE and GRU as the solution of the following ordinary differential equation:

dzy(t

0 — (1~ gt (8)) o (actont) — 70(0)).
Here, ugqtc(t) and uyecror (t) represent the update gate and update vector of the GRU, respectively.
They control how much of the new state information should be retained and how much of the previous
state should be forgotten.
The reset gate U,csc¢(t) and update gate ugq¢(¢) are defined as:

Upeset(t) = sigmoid(W,.x(t) + V,zo(t) + b,.),

Ugare(t) = sigmoid(Wx(t) + Vyzo(t) + by),
where W,., V., W and V, are weight matrices, b, and by, are bias vectors, and x(¢) is the input
data at time ¢.

The update vector Wyector(t) is given by:
Wyector (t) = tanh(wvx(t) + Vv (ureset (t) ©Zo (t)) + bv)’
where W, and V,, are weight matrices, and b,, is a bias vector.

$https://github.com/xuanqing94/NeuralSDE
%https://github.com/arnabgho/steer
Ohttps://github.com/yongkyung—oh/Stable-Neural-SDEs
Uhttps://github.com/ray-project/ray
Zhttps://github.com/sheoyon-jhin/ANCDE

19

https://github.com/xuanqing94/NeuralSDE
https://github.com/arnabgho/steer
https://github.com/yongkyung-oh/Stable-Neural-SDEs
https://github.com/ray-project/ray
https://github.com/sheoyon-jhin/ANCDE

Under review as a conference paper at ICLR 2025

ODE-RNN. The ODE-RNN, proposed by Rubanova et al.| (2019), combines Neural ODEs and
RNN . The latent process z(¢) is obtained by numerically solving the ODE and then undergoing a
standard RNN update process:

Zo(ti) = ODE,SO]VCI‘(’)/('; - 97), Zo(tl;l), [tifl, ti]),

zo(t;) = RNNCell(zo(t;),2D) with zo(to) = 0,
where the drift function ~(-; -; 6) is a neural network with parameter 6.,.
Neural CDE. [Kidger et al.|(2020) proposed Neural Controlled Differential Equation (Neural CDE),
an extension of RNN to a continuous-time setting. It addresses the limitation of the initial condition

determining the solution in the existing Neural ODE by introducing the concept of a controlled path
X(t), which incorporates data arriving later. The model is formulated as follows:

t
zo(t) = 20(0) + / 7(s,20(s);0,) dX(s) with 20(0) = ((«V;6;),
0
where the drift function ~y(-;-;6,) is a neural network with parameter 6, and the integral is the

Riemann-Stieltjes integral. A controlled path X(¢) can be any continuous function of bounded
variation, but we have chosen natural cubic spline of x in our experiments.

ANCDE. |Jhin et al.[(2023) proposed the Attentive Neural Controlled Differential Equation (AN-
CDE), where they adopt two Neural CDEs: the bottom Neural CDE for attention Zg¢tention (t) and
the top Neural CDE for latent process zg(t):

t
Zattention (t) = Za,ttention(o) + / 71 (Sa Zattention(s); 071) dX(S),
0

20(t) = 70(0) + / a5, 20(8): 65) Y (5),

where Y (t) = sigmoid(Zattention (t)) © X () and the drift functions ~; (-; -; 6,) and y2(+; -; 6,) are
neural networks with parameter 6., and 6.,,, respectively.

Oh et al.| (2024) proposed three classes of Neural SDEs: Neural Langevin-type SDE (LSDE),
Neural Linear Noise SDE (LNSDE), and Neural Geometric SDE (GSDE). These models incorporate
controlled paths into well-established SDEs, effectively capturing sequential observations like time
series data and achieving recent state-of-the-art performance.

Neural LSDE. Neural LSDE is a class of Langevin SDE, defined as follows:

zo(t) = 2o (0) +/0 Y(zo(s); 6) ds +/O 0(s;0,) dW (s) with zo(0) = ((x;6¢),

where the drift function (-; 6,) is a neural network with parameter 6., and the diffusion function
o(+;0,) is a neural network with parameter 6,,.

Neural LNSDE. Neural LNSDE is an SDE with linear multiplicative noise, defined as follows:
t t
zo(t) = zo(0) +/ v(s,20(s); 0~) ds +/ 0(s;05)z0(s) dW(s) with z(0) = ((x;6¢),
0 0

where the drift function (-; -;) is a neural network with parameter ¢, and the diffusion function
o(+;0,) is a neural network with parameter 6,,.

Neural GSDE. Neural GSDE is motivated by Geometric Brownian motion (GBM) and is defined
as follows:

Zo(t) = z0(0) —l—/o Y(s,20(s);04)z0(s) ds +/0 0(s;05)z0(s) dW (s) with zo(0) = {(x;6c¢),

where the drift function ~(-; -; 6,) is a neural network with parameter 6., and the diffusion function
o(+;0,) is a neural network with parameter 6,,.

20

Under review as a conference paper at ICLR 2025

D.4 IMAGE CLASSIFICATION

For the dataset preprocessing, we adhered to the original train-test split provided with the datasets.
From the training set, 20% was reserved for validation purposes. For data augmentation in the training
set, we employed random resizing, cropping, and flipping techniques. Image normalization was
carried out using the original mean and standard deviation values from each dataset, and the images
were used at their default sizes without any resizing. This approach helped maintain the integrity of
the original data while enhancing the model’s ability to generalize from augmented variations.

In our experiments, the batch size was set to 128 for the CIFAR-100, CIFAR-10, and SVHN datasets.
For the STL-10 dataset, a smaller batch size of 64 was utilized due to its limited number of samples.
The models were optimized using stochastic gradient descent (SGD) with an initial learning rate of
0.1 over a course of 100 epochs. To address potential stalls in training progress, the learning rate was
halved if there was no change in the loss over two consecutive epochs. Additionally, an early-stopping
mechanism was implemented, terminating the training process if there was no improvement in the
loss for ten consecutive epochs. This strategy helps in preventing overfitting and ensures efficient
training by curtailing unnecessary computation once performance plateaus.

Specifically, the model architecture consists of the following components:

 The input layer of the image classification model is similar to conventional CNN models,
where multiple convolutional operations are applied to the input image to extract basic
features. An average pooling layer is used to extract the input feature as a vector z, with a
vector size of 1024 obtained through convolutional layers.

* The feature vector z is fed into the neural differential equation module, which estimates the
hidden state z(7") from the initial input feature z, where 7" represents the depth. The last
value of z(T) is estimated by solving neural differential equations.

» The differential equation module consists of a vector field that can be learned through
backpropagation. In the case of Neural SDE, the drift term and diffusion term are represented
by neural networks. The complexity of the vector field is controlled to ensure that the total
number of parameters is similar to ResNet18.

¢ The last value z(7") obtained from the neural differential equation module is fed into the
classifier to identify the class of the input. The parameters for all three modules (feature
extractor, neural differential equation module, and classifier) are optimized simultaneously
using backpropagation and the adjoint-sensitive algorithm.

We defined the complexity of the model to have a number of parameters comparable to that of
ResNet18. Precisely, ResNet18 has 11.18 million parameters for 10 classes and 11.23 million for 100
classes. Our Neural ODE models possess 10.49 million and 10.59 million parameters for 10 and 100
classes, respectively. Meanwhile, the Neural SDE models, both additive and multiplicative, contain
12.59 million and 12.69 million parameters for 10 and 100 classes, respectively. We used depth

T = 10 in the experiments. We employed the Euler method (Euler-Maruyama method in the case of
SDEjs) for the numerical solving of the differential equations, using a time step size of At = 0.1.

Neural SDE with additive and Neural SDE with multiplicative noise are defined as follows:
Neural SDE with Additive Noise.
zo(t) = zo(0) + /Ot v(s,20(s); 0~) ds + /Ot o(s;6,)dW(s) with zo(0) = {(x;6c¢),
where the noise term does not depend on the latent process zo(¢) and only depends on time ¢.
Neural SDE with Multiplicative Noise.
zo(t) = zo(0) + /Ot v(s,20(s);0)ds + /Ot 0(s;05) zo(s) dW(s) with z¢(0) = ((x;0¢),

where the noise term indicates an interaction between the diffusion function and the latent process
Z (t) .

21

Under review as a conference paper at ICLR 2025

E DETAILED RESULTS OF BENCHMARK DATASETS
E.l VARIOUS REGULARIZATION METHODS

Table 7: Results of hyperparameter tuning for various regularization methods in time series datasets
(a) Dropout for Drift Network

p SmoothSubspace ArticularyWordRecognition ERing RacketSports
0.569 (0.040) 0.859 (0.005) 0.839 (0.018) 0.565 (0.065)

0.1 0.589 (0.046) 0.862 (0.026) 0.839 (0.048) 0.598 (0.045)
0.2 0.594 (0.024) 0.862 (0.022) 0.844 (0.042) 0.582 (0.028)
0.3 0.583 (0.043) 0.856 (0.021) 0.844 (0.052) 0.592 (0.056)
0.4 0.589 (0.056) 0.862 (0.014) 0.844 (0.031) 0.582 (0.094)
0.5 0.594 (0.016) 0.851 (0.043) 0.833 (0.019) 0.582 (0.068)

(b) Dropout of |[Liu et al.|(2020)

p SmoothSubspace ArticularyWordRecognition ERing RacketSports

0 0.569 (0.040) 0.859 (0.005) 0.839 (0.018) 0.565 (0.065)
1075 0.594 (0.048) 0.871 (0.054) 0.844 (0.050) 0.571 (0.018)
1074 0.617 (0.043) 0.862 (0.043) 0.861 (0.064) 0.592 (0.032)
1073 0.606 (0.043) 0.862 (0.014) 0.850 (0.036) 0.609 (0.031)
1072 0.594 (0.036) 0.856 (0.035) 0.850 (0.055) 0.592 (0.056)
0.1 0.600 (0.057) 0.859 (0.021) 0.844 (0.057) 0.609 (0.061)
0.2 0.611 (0.011) 0.853 (0.029) 0.844 (0.065) 0.576 (0.033)
0.3 0.589 (0.060) 0.862 (0.049) 0.856 (0.040) 0.582(0.071)
0.4 0.594 (0.024) 0.856 (0.014) 0.856 (0.056) 0.576 (0.036)
0.5 0.600 (0.068) 0.862 (0.017) 0.850 (0.033) 0.569 (0.041)

(c) Dropout of Liu et al.[(2020)+TTN

p SmoothSubspace ArticularyWordRecognition ERing RacketSports
0 0.569 (0.040) 0.859 (0.005) 0.839 (0.018) 0.565 (0.065)
10~° 0.583 (0.036) 0.874 (0.029) 0.872 (0.010) 0.587 (0.080)
1074 0.594 (0.024) 0.876 (0.025) 0.878 (0.025) 0.576 (0.024)
1073 0.583 (0.024) 0.874 (0.022) 0.867 (0.031) 0.598 (0.076)
1072 0.594 (0.040) 0.874 (0.031) 0.861 (0.018) 0.576 (0.059)
0.1 0.606 (0.018) 0.871 (0.015) 0.872 (0.033) 0.560 (0.060)
0.2 0.594 (0.065) 0.862 (0.021) 0.872 (0.036) 0.587 (0.060)
0.3 0.600 (0.057) 0.868 (0.031) 0.850 (0.024) 0.572 (0.051)
0.4 0.606 (0.048) 0.871 (0.033) 0.861 (0.033) 0.571 (0.056)
0.5 0.600 (0.010) 0.862 (0.020) 0.844 (0.016) 0.578 (0.039)
(d) NRSDE (ours)

m SmoothSubspace ArticularyWordRecognition ERing RacketSports

0 - 0.569 (0.040) 0.859 (0.005) 0.839 (0.018) 0.565 (0.065)

5 0.583 (0.029) 0.874 (0.029) 0.844 (0.035) 0.576 (0.024)

0.1 10 0.589 (0.011) 0.865 (0.034) 0.867 (0.031) 0.576 (0.070)

: 50 0.611 (0.046) 0.868 (0.013) 0.867 (0.042) 0.603 (0.071)

100 0.606 (0.040) 0.871 (0.013) 0.861 (0.043) 0.571 (0.018)

5 0.594 (0.033) 0.868 (0.026) 0.844 (0.027) 0.576 (0.024)

02 10 0.639 (0.018) 0.859 (0.019) 0.844 (0.050) 0.598 (0.088)

’ 50 0.600 (0.067) 0.851 (0.031) 0.881 (0.029) 0.582 (0.120)

100 0.594 (0.055) 0.871 (0.005) 0.884 (0.025) 0.598 (0.011)

5 0.589 (0.056) 0.862 (0.042) 0.828 (0.018) 0.592 (0.064)

03 10 0.600 (0.016) 0.868 (0.042) 0.850 (0.024) 0.592 (0.062)

i 50 0.594 (0.040) 0.859 (0.030) 0.844 (0.043) 0.598 (0.085)

100 0.578 (0.054) 0.876 (0.025) 0.850 (0.010) 0.592 (0.076)

5 0.583 (0.036) 0.882 (0.040) 0.833 (0.040) 0.571 (0.028)

04 10 0.622 (0.042) 0.868 (0.034) 0.856 (0.025) 0.587 (0.043)

’ 50 0.594 (0.043) 0.876 (0.026) 0.850 (0.018) 0.592 (0.042)

100 0.583 (0.033) 0.865 (0.043) 0.844 (0.052) 0.625 (0.044)

5 0.578 (0.031) 0.868 (0.026) 0.828 (0.024) 0.576 (0.064)

05 10 0.594 (0.024) 0.856 (0.026) 0.833 (0.033) 0.587 (0.053)

: 50 0.600 (0.047) 0.862 (0.027) 0.839 (0.040) 0.609 (0.034)

100 0.589 (0.033) 0.868 (0.037) 0.828 (0.043) 0.592 (0.094)

22

Under review as a conference paper at ICLR 2025

Table 8: Results of hyperparameter tuning for other regularization methods in image datasets

(a) Dropout for Drift Network

P CIFAR-100 CIFAR-10 STL-10 SVHN
0 74.475(1.181) 73.870 (0.820) 70.650 (0.688) 91.348 (0.440)

0.1 75.850(0.367) 74.013(1.431) 70.784 (0.219) 91.671 (0.353)
0.2 75547(0.321) 74.865(1.710) 70.672 (0.486) 90.870 (0.319)
0.3 73.650(1.450) 72.685(2.041) 70.628 (0.219) 91.374 (0.294)
0.4 75.055(1.380) 73.855(2.137) 70.787 (0.197) 91.587 (0.554)
0.5 74345(1.074) 73280 (1.931) 70.659 (0.411) 91.467 (0.348)

(b) Dropout of [Liu et al.|(2020)

p CIFAR-100 CIFAR-10 STL-10 SVHN
0 74.475(1.181) 73.870 (0.820) 70.650 (0.688) 91.348 (0.440)

107° 74.852(1.085) 74.987(0.350) 71.097 (0.242) 91.388 (0.348)
1074 76.083(0.502) 74370 (1.689) 71.084 (0.215) 90.906 (0.422)
1073 73.873(1.973) 74377(1.303) 70912 (0.436) 91.520 (0.450)
1072 75.098(0.530) 74.600(1.165) 70.409 (0.370) 91.194 (0.556)
0.1 75415(0415) 73.570(1.788) 70.966 (0.192) 91.272 (0.367)
0.2 74975(0394) 72.927(1.782) 70.931(0.230) 91.539 (0.238)
0.3 74.782(0.608) 72.727 (1.437) 70.938 (0.648) 91.478 (0.146)
0.4 74900 (1.401) 72.282(1.413) 70.903 (0.364) 91.568 (0.413)
0.5 74.535(0231) 73.850(2.184) 70.778 (0.204) 91.480 (0.135)

(c) Dropout of Liu et al.[(2020)+TTN

P CIFAR-100 CIFAR-10 STL-10 SVHN
0 74.475(1.181) 73.870 (0.820) 70.650 (0.688) 91.348 (0.440)

107° 76.013(0.276) 73.742(1.646) 70.747 (0.479) 91.730 (0.518)
1074 75743(0.307) 74305(2.027) 70.716(0.282) 91.366 (0.110)
1073 75.227(0.261) 74.755(1.500) 70.409 (0.390) 91.323 (0.566)
1072 74430(1.637) 74.710(1.307) 70.544(0.177) 91.088 (0.309)
0.1 75170 (0213) 75.015(0.503) 70.775(0.259) 91.509 (0.107)
0.2 75.692(0.392) 73.403(1.190) 70.931(0.286) 91.561 (0.494)
0.3 74.992 (1.470) 73.375(2269) 70.819 (0.455) 91.267 (0.360)
0.4 74553(1.220) 73.915(1.692) 70.741 (0.206) 91.423 (0.401)
0.5 75.502(1.176) 73.160 (1.698) 70.722 (0.411) 91.238 (0.606)

E.2 TIME SERIES CLASSIFICATION

Table 9: Results of architecture hyperparameter tuning of Neural CDE for
‘Speech Commands’ (left) and ‘PhysioNet Sepsis’ (right)

Test AUROC
n; np Test Accuracy e Mh
(o) No OI
16 0.390 (0.053)
1 32 0.603 (0.043) 16 0.879 (0.007) 0.786 (0.014)
64 0.782 (0.021) 1 32 0.875 (0.009) 0.786 (0.015)
128 0.830 (0.013) 64 0.879 (0.009) 0.799 (0.012)

128 0.886 (0.006) 0.808 (0.010)

16 0.753 (0.013)

, 32 0826(0008) 16 0.895(0.007) 0.804 (0.010)
64 0.864(0.003) , 32 0883(0.003) 0.808(0.013)
128 0.895 (0.003) 64 0.896 (0.008) 0.821 (0.009)

128 0.895(0.007) 0.826 (0.022)

16 0.786 (0.011)

;32 0853(0.006) 16 0.899 (0.005) 0.813 (0.008)
64 0.882 (0.006) 5 32 0893(0.006) 0.834(0.004)
128 0.906 (0.004) 64 0.901(0.009) 0.834 (0.005)
128 0.909 (0.006) 0.840 (0.011)
16 0.789 (0.013)
. 32 08690004 16 0.900 (0.005) 0.822 (0.002)
64 0.887 (0.003) 4 32 0903(0007) 0.836(0.004)
128 0.910 (0.005) 64 0.908 (0.005) 0.840 (0.008)

128 0.907 (0.004) 0.841 (0.007)

23

Under review as a conference paper at ICLR 2025

Table 10: Results of hyperparameter tuning for ‘Speech Commands’

m ANCDE
0 - 0.760 (0.003)

5 0.777 (0.002)
10 0.780 (0.018)

01 5o 0794 (0.007)
100 0782 (0.009)

S 0776 (0.024)

0 10 07700028)
250 0763(0016)
100 0.775 (0.011)

S 0.753(0.029)

0 10 07480033
350 0763(0018)
100 0.764(0.015)

5 06720065

oa 10 06990056
450 0.697(0.076)
100 0.690 (0.012)

5 0572(0.101)

0s 10 06150088)

50 0.690 (0.061)
100 0.708 (0.060)

Test Accuracy Test Accuracy

Models p m Models p m
Optimal Complex Optimal Complex
0 - 0.910 (0.005) 0.910 (0.005) 0 - 0.924 (0.000) 0.912 (0.004)
5 0.940 (0.002) 0.940 (0.002) 5 0.913 (0.002) 0.931 (0.002)
01 10 0.941 (0.001) 0.941 (0.001) 01 10 0.914 (0.001) 0.930 (0.001)
: 50 0.942 (0.000) 0.942 (0.000) : 50 0.912 (0.005) 0.930 (0.002)
100 0.940 (0.003) 0.940 (0.003) 100 0.915(0.003) 0.928 (0.001)
5 0.939 (0.001) 0.939 (0.001) 5 0.895 (0.015) 0.927 (0.002)
02 10 0.942 (0.001) 0.942 (0.001) 02 10 0.908 (0.004) 0.928 (0.003)
- 50 0.943 (0.002) 0.943 (0.002) . 50 0.905 (0.008) 0.930 (0.002)
100 0.945(0.001) 0.945 (0.001) 100 0.910(0.007) 0.932 (0.002)
Neural CDE Neural LNSDE
5 0.937 (0.005) 0.937 (0.005) 5 0.901 (0.007) 0.904 (0.005)
03 10 0.938 (0.003) 0.938 (0.003) 03 10 0.870 (0.005) 0.916 (0.002)
: 50 0.940 (0.001) 0.940 (0.001) : 50 0.916 (0.004) 0.929 (0.004)
100 0.941(0.002) 0.941 (0.002) 100 0.913(0.002) 0.926 (0.001)
5 0.932 (0.003) 0.932(0.003) 5 0.881 (0.013) 0.890 (0.011)
04 10 0.932 (0.002) 0.932(0.002) 04 10 0.878 (0.004) 0.910 (0.008)
) 50 0.935 (0.005) 0.935 (0.005) : 50 0.913 (0.006) 0.920 (0.002)
100 0.932(0.005) 0.932 (0.005) 100 0.917(0.003) 0.928 (0.003)
5 0.927 (0.004) 0.927 (0.004) 5 0.861 (0.016) 0.867 (0.006)
05 10 0.920 (0.008) 0.920 (0.008) 05 10 0.891 (0.005) 0.893 (0.002)
) 50 0.926 (0.003) 0.926 (0.003) . 50 0.905 (0.003) 0.915 (0.003)
100 0.920(0.002) 0.920 (0.002) 100 0.897 (0.007) 0.928 (0.004)
0 - 0.927 (0.004) 0.926 (0.005) 0 - 0.913 (0.001) 0.899 (0.005)
5 0.930 (0.001) 0.933 (0.002) 5 0.930 (0.002) 0.923 (0.004)
01 10 0.931 (0.000) 0.930 (0.003) 0.1 10 0.927 (0.003) 0.926 (0.003)
: 50 0.933 (0.001) 0.930 (0.002) : 50 0.927 (0.001) 0.924 (0.004)
100 0.929 (0.004) 0.933 (0.004) 100 0.926 (0.001) 0.926 (0.002)
5 0.922 (0.004) 0.924 (0.002) 5 0.922 (0.001) 0.905 (0.012)
02 10 0.928 (0.004) 0.930 (0.001) 02 10 0.918 (0.005) 0.921 (0.005)
) 50 0.933 (0.003) 0.928 (0.002) : 50 0.927 (0.003) 0.916 (0.002)
100 0.933(0.002) 0.933 (0.004) 100 0.929 (0.003) 0.922(0.001)
Neural LSDE Neural GSDE
5 0.917 (0.010) 0.912 (0.006) 5 0.903 (0.008) 0.888 (0.007)
03 10 0.909 (0.009) 0.911 (0.009) 03 10 0.911 (0.003) 0.914 (0.001)
- 50 0.931 (0.003) 0.929 (0.003) . 50 0.923 (0.002) 0.921 (0.007)
100 0.932(0.002) 0.932(0.002) 100 0.924 (0.001) 0.926 (0.002)
5 0.896 (0.013) 0.888 (0.008) 5 0.890 (0.004) 0.894 (0.015)
04 10 0.913 (0.003) 0.904 (0.003) 04 10 0.903 (0.005) 0.881 (0.010)
: 50 0.929 (0.002) 0.927 (0.005) : 50 0.922 (0.002) 0.915 (0.006)
100 0.929 (0.001) 0.926 (0.002) 100 0.924 (0.003) 0.912 (0.004)
5 0.864 (0.015) 0.871(0.016) 5 0.869 (0.018) 0.853 (0.021)
05 10 0.889 (0.004) 0.879 (0.017) 05 10 0.891 (0.008) 0.862 (0.018)
) 50 0.925 (0.002) 0.921 (0.007) : 50 0.911 (0.003) 0.903 (0.010)
100 0.924 (0.002) 0.924 (0.004) 100 0.920(0.002) 0.915 (0.003)

24

Under review as a conference paper at ICLR 2025

Table 11: Results of hyperparameter tuning for ‘PhysioNet Sepsis’ with observation intensity

m GRU-ODE ODE-RNN ANCDE
0 - 0.852 (0.010) 0.874 (0.016) 0.900 (0.002)

5 0.873(0.007) 0.891(0.009) 0.905 (0.004)
10 0.854(0.019) 0.883(0.013) 0.907 (0.005)

Ol 50 0.870(0.005) 0.889 (0.011) 0.908 (0.004)
100 0.827(0.035) 0.881 (0.006) 0.904 (0.003)
5 0.846 (0.030) 0.880 (0.008) 0.897 (0.002)
02 10 0.870 (0.006) 0.893 (0.009) 0.905 (0.004)
: 50 0.866 (0.006) 0.890 (0.004) 0.902 (0.003)
100 0.877 (0.004) 0.889 (0.010) 0.901 (0.008)
5 0.858 (0.006) 0.872 (0.009) 0.902 (0.006)
03 10 0.858 (0.014) 0.894 (0.002) 0.900 (0.007)
: 50 0.854 (0.021) 0.891 (0.004) 0.904 (0.007)
100 0.871(0.004) 0.887 (0.002) 0.905 (0.008)
5 0.828 (0.015) 0.885(0.008) 0.895 (0.003)
04 10 0.841 (0.006) 0.890 (0.003) 0.899 (0.003)
’ 50 0.855 (0.016) 0.890 (0.004) 0.900 (0.006)
100 0.863 (0.015) 0.894 (0.005) 0.904 (0.004)
5 0.835(0.007) 0.889 (0.004) 0.881 (0.001)
05 10 0.843 (0.010) 0.893 (0.010) 0.889 (0.004)
i 50 0.847 (0.010) 0.889 (0.006) 0.898 (0.004)
100 0.866 (0.008) 0.895(0.003) 0.902 (0.005)
Models » m Test AUROC Models » m Test AUROC
Optimal Complex Optimal Complex
0 - 0.909 (0.006) 0.907 (0.004) 0 - 0.911 (0.002) 0.900 (0.004)
5 0.911 (0.002) 0.910 (0.001) 5 0.908 (0.009) 0.924 (0.005)
01 10 0.910 (0.005) 0.903 (0.004) 01 10 0.914 (0.005) 0.922 (0.003)
: 50 0.908 (0.004) 0.909 (0.003) : 50 0.923 (0.008) 0.925 (0.003)
100 0.906 (0.001) 0.906 (0.004) 100 0.921(0.003) 0.923 (0.004)
5 0.901 (0.005) 0.907 (0.004) 5 0.917 (0.011) 0.914 (0.009)
02 10 0.907 (0.003) 0.909 (0.001) 02 10 0.919 (0.007) 0.925 (0.004)
- 50 0.910 (0.002) 0.908 (0.004) . 50 0.915 (0.002) 0.924 (0.003)
100 0.906 (0.003) 0.907 (0.003) 100 0.909 (0.006) 0.930 (0.001)
Neural CDE Neural LNSDE
5 0.893 (0.004) 0.907 (0.002) 5 0911 (0.007) 0.913 (0.005)
03 10 0.901 (0.002) 0.899 (0.004) 03 10 0.908 (0.003) 0.915 (0.003)
’ 50 0.904 (0.003) 0.912 (0.005) ’ 50 0.920 (0.007) 0.923 (0.003)
100 0.907 (0.003) 0.909 (0.003) 100 0.914(0.007) 0.922 (0.001)
5 0.886 (0.007) 0.901 (0.004) 5 0.901 (0.004) 0.903 (0.004)
04 10 0.895 (0.008) 0.904 (0.003) 04 10 0.914 (0.004) 0.903 (0.004)
) 50 0.902 (0.007) 0.910 (0.006) : 50 0.911 (0.007) 0.916 (0.003)
100 0.904 (0.006) 0.906 (0.001) 100 0.909 (0.004) 0.920 (0.006)
5 0.890 (0.007) 0.886 (0.006) 5 0.890 (0.007) 0.898 (0.004)
05 10 0.900 (0.001) 0.895 (0.007) 05 10 0.897 (0.008) 0.901 (0.007)
) 50 0.895 (0.005) 0.903 (0.006) . 50 0.909 (0.002) 0.916 (0.003)
100 0.903 (0.003) 0.902 (0.002) 100 0.909 (0.011) 0.914 (0.003)
0 - 0.909 (0.004) 0.900 (0.002) 0 - 0.909 (0.001) 0.905 (0.001)
5 0.923 (0.002) 0.928 (0.003) 5 0.919 (0.002) 0.928 (0.002)
01 10 0.914 (0.006) 0.927 (0.002) 0.1 10 0.923 (0.002) 0.927 (0.002)
’ 50 0.919 (0.001) 0.924 (0.004) ’ 50 0.917 (0.005) 0.926 (0.004)
100 0.921(0.007) 0.926 (0.003) 100 0.923(0.004) 0.923 (0.007)
5 0.919 (0.006) 0.921 (0.004) 5 0.914 (0.005) 0.907 (0.008)
02 10 0.917 (0.005) 0.924 (0.002) 02 10 0.919 (0.002) 0.918 (0.003)
) 50 0.917 (0.010) 0.923 (0.002) : 50 0.919 (0.004) 0.926 (0.004)
100 0.921(0.003) 0.925 (0.003) 100 0.922 (0.004) 0.923 (0.001)
Neural LSDE Neural GSDE
5 0.904 (0.004) 0.910 (0.003) 5 0.908 (0.005) 0.914 (0.001)
03 10 0.908 (0.008) 0.920 (0.007) 03 10 0.914 (0.005) 0.912 (0.008)
- 50 0.917 (0.003) 0.927 (0.003) . 50 0.913 (0.003) 0.918 (0.004)
100 0.920(0.009) 0.921 (0.002) 100 0.912(0.007) 0.920 (0.000)
5 0.907 (0.007) 0.906 (0.003) 5 0.901 (0.012) 0.903 (0.002)
04 10 0.903 (0.002) 0.915 (0.003) 04 10 0.900 (0.010) 0.909 (0.002)
’ 50 0.917 (0.005) 0.920 (0.006) ’ 50 0.904 (0.014) 0.920 (0.003)
100 0.909 (0.005) 0.915 (0.001) 100 0.916 (0.005) 0.921 (0.004)
5 0.886 (0.004) 0.893 (0.006) 5 0.891 (0.011) 0.899 (0.005)
05 10 0.897 (0.005) 0.902 (0.004) 05 10 0.897 (0.009) 0.907 (0.004)
) 50 0.909 (0.004) 0.912 (0.005) : 50 0.911 (0.002) 0.915 (0.005)
100 0.915(0.003) 0.912 (0.003) 100 0.909 (0.004) 0.915 (0.004)

25

Under review as a conference paper at ICLR 2025

Table 12: Results of hyperparameter tuning for ‘PhysioNet Sepsis’ without observation intensity

m GRU-ODE ODE-RNN ANCDE
0 - 0.771 (0.024) 0.833 (0.020) 0.823 (0.003)

5 0.787(0.006) 0.830(0.001) 0.843 (0.007)
10 0.803(0.002) 0.831(0.001) 0.833 (0.013)

0.1 50 0.805 (0.009) 0.835(0.004) 0.833 (0.013)
100 0.792 (0.007) 0.831(0.001) 0.831(0.014)
5 0.790 (0.014) 0.838 (0.003) 0.838 (0.005)
02 10 0.784 (0.015) 0.825(0.001) 0.833(0.012)
: 50 0.783 (0.014) 0.832(0.004) 0.825(0.018)
100 0.769 (0.027) 0.824 (0.003) 0.829 (0.015)
5 0.788 (0.008) 0.833 (0.001) 0.826 (0.001)
03 10 0.731 (0.027) 0.830(0.003) 0.822 (0.009)
: 50 0.787 (0.017) 0.839(0.001) 0.818 (0.012)
100 0.784 (0.016) 0.842 (0.002) 0.824 (0.010)
5 0.756 (0.023) 0.832(0.003) 0.802 (0.009)
04 10 0.752 (0.046) 0.829 (0.002) 0.801 (0.024)
: 50 0.782 (0.011) 0.838 (0.002) 0.807 (0.017)
100 0.766 (0.009) 0.837 (0.003) 0.814 (0.017)
5 0.731 (0.026) 0.834 (0.005) 0.784 (0.006)
05 10 0.752 (0.020) 0.836 (0.013) 0.792 (0.008)
i 50 0.779 (0.010) 0.827 (0.001) 0.799 (0.019)
100 0.780 (0.008) 0.834 (0.005) 0.798 (0.015)
Models » m Test AUROC Models » m Test AUROC
Optimal Complex Optimal Complex
0 - 0.841 (0.007) 0.841 (0.007) 0 - 0.881 (0.002) 0.859 (0.005)
5 0.855 (0.003) 0.855 (0.003) 5 0.879 (0.002) 0.884 (0.003)
01 10 0.833 (0.021) 0.833(0.021) 01 10 0.878 (0.004) 0.886 (0.003)
: 50 0.838 (0.003) 0.838 (0.003) : 50 0.884 (0.002) 0.886 (0.006)
100 0.842(0.001) 0.842(0.001) 100 0.881(0.006) 0.882 (0.004)
5 0.848 (0.007) 0.848 (0.007) 5 0.877 (0.002) 0.886 (0.003)
02 10 0.853 (0.004) 0.853 (0.004) 02 10 0.883 (0.004) 0.883 (0.004)
- 50 0.856 (0.006) 0.856 (0.006) . 50 0.879 (0.004) 0.882 (0.003)
100 0.852(0.008) 0.852 (0.008) 100 0.886 (0.002) 0.880 (0.006)
Neural CDE Neural LNSDE
5 0.851 (0.001) 0.851 (0.001) 5 0.885 (0.010) 0.870 (0.011)
03 10 0.849 (0.009) 0.849 (0.009) 03 10 0.875 (0.007) 0.880 (0.002)
: 50 0.851 (0.009) 0.851 (0.009) : 50 0.884 (0.005) 0.890 (0.005)
100 0.852(0.006) 0.852 (0.006) 100 0.884 (0.006) 0.884 (0.004)
5 0.833 (0.004) 0.833(0.004) 5 0.876 (0.007) 0.876 (0.008)
04 10 0.838 (0.011) 0.838 (0.011) 04 10 0.885 (0.004) 0.875 (0.002)
) 50 0.854 (0.003) 0.854 (0.003) : 50 0.879 (0.000) 0.881 (0.000)
100 0.860 (0.001) 0.860 (0.001) 100 0.884(0.002) 0.886 (0.002)
5 0.814 (0.014) 0.814 (0.014) 5 0.856 (0.024) 0.863 (0.006)
05 10 0.829 (0.012) 0.829 (0.012) 05 10 0.875 (0.006) 0.877 (0.008)
) 50 0.843 (0.003) 0.843 (0.003) . 50 0.885 (0.003) 0.884 (0.008)
100 0.829 (0.011) 0.829(0.011) 100 0.878 (0.003) 0.884 (0.004)
0 - 0.879 (0.008) 0.866 (0.006) 0 - 0.884 (0.002) 0.875 (0.003)
5 0.894 (0.005) 0.878 (0.007) 5 0.883 (0.006) 0.885 (0.001)
01 10 0.886 (0.004) 0.880 (0.004) 0.1 10 0.881 (0.002) 0.884 (0.002)
: 50 0.887 (0.001) 0.882 (0.004) : 50 0.878 (0.010) 0.884 (0.002)
100 0.887 (0.006) 0.885 (0.005) 100 0.877 (0.009) 0.888 (0.003)
5 0.875 (0.001) 0.882 (0.002) 5 0.880 (0.005) 0.883 (0.002)
02 10 0.879 (0.005) 0.873 (0.003) 02 10 0.890 (0.002) 0.876 (0.006)
) 50 0.885 (0.006) 0.882 (0.002) : 50 0.880 (0.002) 0.883 (0.004)
100 0.885(0.007) 0.883 (0.003) 100 0.886 (0.001) 0.884 (0.005)
Neural LSDE Neural GSDE
5 0.875 (0.005) 0.874 (0.007) 5 0.883 (0.010) 0.878 (0.001)
03 10 0.880 (0.003) 0.879 (0.003) 03 10 0.876 (0.002) 0.882 (0.006)
- 50 0.883 (0.003) 0.886 (0.008) . 50 0.879 (0.006) 0.886 (0.006)
100 0.888(0.002) 0.875 (0.003) 100 0.887 (0.002) 0.880 (0.003)
5 0.877 (0.005) 0.874 (0.011) 5 0.876 (0.004) 0.873 (0.009)
04 10 0.882 (0.007) 0.873 (0.006) 04 10 0.882 (0.002) 0.884 (0.011)
: 50 0.882 (0.004) 0.882 (0.009) : 50 0.888 (0.006) 0.885 (0.003)
100 0.887 (0.006) 0.875 (0.007) 100 0.879 (0.004) 0.879 (0.004)
5 0.866 (0.006) 0.872(0.011) 5 0.874 (0.014) 0.865 (0.008)
05 10 0.872 (0.006) 0.888 (0.001) 05 10 0.882 (0.003) 0.874 (0.006)
) 50 0.880 (0.005) 0.885 (0.004) : 50 0.882 (0.006) 0.878 (0.004)
100 0.885(0.003) 0.887 (0.004) 100 0.878 (0.005) 0.880 (0.003)

26

Under review as a conference paper at ICLR 2025

E.3

IMAGE CLASSIFICATION

CIFAR-100 and top 1 accuracy for CIFAR-10, STL-10, and SVHN
(a) CIFAR-100

(b) CIFAR-10

Table 13: Results of hyperparameter tuning in image classification, with top 5 accuracy for

Neural SDE Neural SDE Neural SDE Neural SDE

p m Neural ODE (additive) (multiplicative) m Neural ODE (additive) (multiplicative)
0 - 744750581) 74878(0328) 75317 (0338) 0 - 73870(0.820) 74457 (0910) 74.670 (0.875)
S 75515(0.077) 75941 (0.677) 76.206 (0.519) S 75295(1.636) 75.862(0.612) 75.778 (0.979)

o 10 75728(0235) 753710445 759930664 10 75970(1333) 76206(0.714) 75897 (0.294)
150 75493(0341) 75716 (0345) 76.864 (0.610) 1 S0 752702477) 75.635(0993) 76.232 (0.536)
100 75870 (0.124) 76283 (0.787) 76.119 (0.354) 100 75413 (2.044) 76157 (L.103) 76.125 (0.704)

5 75725(0.540) 76234(0.227) 76.676 (0.521) 5 75585(1.226) 77.102(0.225) 75.977 (0.778)

0y 10 75787(0530) 755770817) 761110455 o 10 76.665(1933) 76326(0645) 76.654 (0.696)
2 S0 75547(0.174) 76.872(0442) 76.140 (0.745) 250 75385(1651) 76.601 (0457) 76.054 (0.544)
100 76.155(0.509) 75.808 (0.421) 76.048 (0.666) 100 74.825(1.066) 76304 (0.474) 76.520 (0.628)

S 75.692(0.221) 76.624 (0.664) 76.298 (0.640) S 74805(1.826) 76362 (0.877) 76420 (0.962)

0z 10 757400275 761450497) 76759(0523) o 10 TSI08(2974) T5519(0699) 75857 (0.913)
3 S0 75833(0291) 76260 (0474) 76.947 (0.458) 3 S0 76325(2046) 76257 (0553) 75.983 (0.526)
100 76108 (0203) 76.014 (0.860) 75.863 (0.381) 100 76480 (2.315) 76031 (1.166) 75.968 (0.546)

S 75.845(0.178) 75076 (0.552) 76321 (0.835) S 74600(1.881) 76.102(0.697) 75.807 (1.085)

s 10 760580279 76051(0708) 76542(0470) . 10 74190(0679) 76151(0.749) 75967 (0928)
4 S0 76.470(0.480) 75.860 (0.854) 76.251 (0.397) 450 76060 (0815) 76214 (0.879) 76.562 (0.679)
100 75938 (0.509) 76.232(0.364) 76.253 (0.999) 100 75957 (1.706) 76.277(0.662) 76.496 (0.687)

S 76008 (0472) 76058 (0.283) 76370 (0.532) S 76877(0.615 75.804(0.745) 76.050 (0.850)

0s 10 760520316 75952(0289) 75966(0699) . 10 751452001 75.563(0765) 75.997 (0.800)
S50 76205(0202) 75.681 (0.564) 76.558 (0.482) S50 75.145(1.730) 75.651 (0.848) 76.283 (0.592)
100 76.240 (0478) 76291 (0.395) 76.587 (0.475) 100 75.562(0.620) 76338 (0.791) 76.427 (0.908)

(c) STL-10 (d) SVHN
Neural SDE Neural SDE Neural SDE Neural SDE

p m NeuralODE (additive) (multiplicativey P ™ Neural ODE (additive) (multiplicative)
0 - 70.650(0.688) 70.666(0354) 70.463 (0.485) 0 - 91.348(0440) 91.839(0.255) 91.419 (0.577)
S 70.894(0.559) 71471(0.260) 70.990 (0.429) S 92.199(0.095) 92256 (0.124) 92.183 (0.155)

o 10 710690211 71061(0247) 70892(0.180) 10 92140106 92214(0.13) 92231 (0.144)
1 S0 70250(0533) 71.248(0475) 71.099 (0.656) 1 S0 92.157(0.132) 92.139(0.139) 91.977 (0.146)
100 70319 (0214) 70.651(0.142) 71.177 (0.311) 100 92262(0.124) 92114 (0.199) 92.250 (0.124)

S 70997 (0437) 70856 (0.211) 71.099 (0.209) S 92.185(0.165) 91914 (0.123) 92355 (0.044)

0y 10 70947(0340) 70670(0461) 71052(0459) o 10 92174(0.106) 92261 (0.186) 92.249 (0.258)
250 710220615 71.153(0312) 70.950 (0.234) 250 92327(0201) 92.418(0.153) 92.022(0.119)
100 70941 (0477) 71.539(0215) 70.712 (0.583) 100 92262(0.124) 92.366(0.196) 92.355 (0.209)

5 70950 (0.310) 70794 (0.385) 71.484 (0.591) S 92332(0.170) 92260 (0.144) 92311 (0.098)

0 10 713280313 71296(0610) 70966(0829) . 10 92241(0135) 92053 (0068) 92332 (0.108)
3 S0 70912(0.182) 71650 (0253) 71.265 (0.409) 3 S0 92.056(0209) 92122 (0.145) 92127 (0.107)
100 70.909 (0.560) 71.176(0.759) 71.250 (0.396) 100 92277(0.082) 92221 (0.111) 92.434 (0.149)

S 70825(0.376) 71351 (0217) 71.225 (0.188) S 92331(0.146) 92306 (0.072) 92.055 (0.153)

0a 10 70913(0438) 70997(0.607) 707190586 . 10 92317(0.194) 91882 (0.113) 92349 (0.173)
4 S0 70872(0322) 71390 (0.745) 71.031(0.255) 4 S0 92310(0273) 92264 (0.092) 91.958 (0.182)
100 70.825(0260) 71.288(0.373) 71.226 (0.470) 100 92.172(0.086) 92.181 (0.094) 92.176 (0.156)

S 71833(0.334) 70670 (0.206) 71.280 (0.787) S 92237(0.125 92.155(0.131) 92.044 (0.139)

s 10 7US88(0166) 713360306 710900216 o 10 92240(0142) 92072(0.I8) 92291 (0.I186)
S50 71.584(0445) 71.631(0.172) 71.135 (0.703) S50 92.381(0.083) 92.155(0.115) 92.367 (0.154)
100 70.506 (0.080) 71.619(0.532) 71.167 (0.129) 100 92.225(0.022) 92.066(0.198) 92.014 (0.092)

27

Under review as a conference paper at ICLR 2025

Figure[3]illustrates the impact of dropout on generalization loss, which is assessed on the validation
set during the training process. As anticipated, the implementation of dropout helps to mitigate
overfitting, thereby enhancing overall model performance in test set.

8 3.0 @ 775
° \ —— wj/o dropout é ’
5 with dropout € 75.0 4
§ 2.5 AN N é P /\/w
® _/‘WMN $ 7257 y 4 —— wj/o dropout
() 4 .
S 2.0 % 70.0 - / with dropout
o T T T T T = T T T T T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs
(a) Generalization loss (b) Task performance

Figure 5: Monitoring Neural ODE training on CIFAR-100

Figures [6H9)illustrate how the performance of NRSDEs for Neural ODE and Neural SDEs varies with
different hyperparameters p and m, showing that the proposed dropout scheme robustly enhances
performance regardless of the choice of p and m. Black dashed line and gray area indicate the mean
and standard deviation of method without dropout.

78 78 78
5771 5771 5771
g £ 751 RE * £ 75
744 74
@73* - m=5 —&— m=50 .g- - m=5 —&— m=50 é’- - m=5 —&— m=50
72 - m=10 —$— m=100 731 - m=10 —$— m=100 731 —#- m=10 - m=100
714+ . : - : 724+ : : : : 721+ . : : :
0.1 0.2 03 0.4 0.5 0.1 0.2 03 0.4 0.5 0.1 0.2 03 0.4 0.5
P p p
(a) Neural ODE (b) Neural SDE (additive) (c) Neural SDE (multiplicative)

Figure 6: Performance comparison with different hyperparameters on CIFAR-100

?8 79 78
] 78 4 4
E—
g 761 g 76 g
S Hi=mas e Il e :
s3] Ay 574
o 711 a 731 - . 2 734 = =
281701 g 721 - m=5 —&— m=50 k5 - m=5 —&— m=50
gg: 714 —#- m=10 —§ m=100 724 —#- m=10 —$— m=100
67 70 T T T T T 71 T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
P P
(a) Neural ODE (b) Neural SDE (additive) (c) Neural SDE (multiplicative)

Figure 7: Performance comparison with different hyperparameters on CIFAR-10

(a) Neural ODE (b) Neural SDE (additive) (c) Neural SDE (multiplicative)

Figure 8: Performance comparison with different hyperparameters on STL-10

©
@

93

©
@

1

Top 5 Accuracy

%

921

-
& m=5 —&— m=50
—# m=10 —% m=100

©
4

Top 5 Accuracy

©
=

Top 5 Accuracy

©
o

T T T 91 +— T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

P P P

(a) Neural ODE (b) Neural SDE (additive) (c) Neural SDE (multiplicative)

©
o

Figure 9: Performance comparison with different hyperparameters on SVHN

28

Under review as a conference paper at ICLR 2025

E.4 EXTENDED EXPERIMENTS ON TIME SERIES DATASETS

We conducted a comprehensive evaluation of the proposed dropout technique using 30 diverse datasets
from the University of East Anglia (UEA) and University of California Riverside (UCR) Time Series
Classification RepositoryE] (Bagnall et al., [2018}; [Dau et al.,2019). This analysis was facilitated by
the Python library skt im (Loning et al., 2019). We followed the experiment protocol and code
repository based on Oh et al.|(2024).

Table 14: Data description for extended experiments

Dataset Total number of samples Number of classes Dimension of time series Length of time series
ArrowHead 211 3 1 251
Car 120 4 1 577
Coffee 56 2 1 286
GunPoint 200 2 1 150
Herring 128 2 1 512
Lightning2 121 2 1 637
Lightning7 143 7 1 319
Meat 120 3 1 448
OliveOil 60 4 1 570
Rock 70 4 1 2844
SmoothSubspace 300 3 1 15
ToeSegmentationl 268 2 1 277
ToeSegmentation2 166 2 1 343
Trace 200 4 1 275
Wine 111 2 1 234
ArticularyWordRecognition 575 25 9 144
BasicMotions 80 4 6 100
CharacterTrajectories 2858 20 3 60-180
Cricket 180 12 6 1197
Epilepsy 275 4 3 206
ERing 300 6 4 65
EthanolConcentration 524 4 3 1751
EyesOpenShut 98 2 14 128
FingerMovements 416 2 28 50
Handwriting 1000 26 3 152
JapaneseVowels 640 9 12 7-26
Libras 360 15 2 45
NATOPS 360 6 24 51
RacketSports 303 4 6 30
SpokenArabicDigits 8798 10 13 4-93

Table |15| presents a comprehensive overview of the performance improvements achieved by our
proposed dropout technique (NRSDE) across various methods. The results demonstrate significant
enhancements in classification accuracy across the 30 datasets examined. Notably, the impact
was more pronounced for Neural ODE and Neural CDE models compared to Neural SDE-based
approaches.

Table 15: Comprehensive performance analysis on extended datasets (Results are averaged across 30
diverse datasets. Values in parentheses represent the mean of individual standard deviations.
Improvement and percentage change are reported as average + standard error of the mean.)

Method Baseli Proposed Improvement % Change

Neural ODE 0.521 (0.065) 0.568 (0.054) 0.047 £ 0.006 11.56 £2.02
Neural CDE 0.709 (0.061) 0.781 (0.048) 0.072 £ 0.012 13.39 £2.70
Neural SDE 0.526 (0.068) 0.571 (0.065) 0.045 + 0.008 9.69 +1.87
Neural LSDE 0.717 (0.056) 0.741 (0.061) 0.024 +0.010 4.19+1.65
Neural LNSDE 0.727 (0.047) 0.761 (0.056) 0.034 + 0.007 593 +1.38
Neural GSDE 0.716 (0.065) 0.752 (0.063) 0.036 + 0.009 6.00 + 1.50

Tables [16] and [I7) offer a detailed decomposition of our experimental outcomes, stratifying the 30
datasets into two equal subsets: 15 univariate and 15 multivariate time series. Our proposed dropout
technique demonstrates heightened efficacy when applied to univariate datasets. The contrasting
results between these two categories underscore the importance of considering data dimensionality
when applying proposed dropout method to neural differential equation models.

Bhttp://www.timeseriesclassification.com/
“https://github.com/sktime/sktime

29

http://www.timeseriesclassification.com/
https://github.com/sktime/sktime

Under review as a conference paper at ICLR 2025

Table 16: Comprehensive performance analysis on 15 univariate datasets

Method Baseline Proposed Improvement % Change
Neural ODE 0.535(0.073) 0.593 (0.068) 0.058 +0.009 11.73 +1.93
Neural CDE 0.628 (0.079) 0.725(0.065) 0.098 £ 0.020 19.33 £4.63
Neural SDE 0.535(0.086) 0.597 (0.082) 0.062 +0.013 12.99 £3.23
Neural LSDE 0.636 (0.082) 0.683 (0.089) 0.047 £0.013 8.12+2.35

Neural LNSDE 0.665 (0.065) 0.718 (0.078) 0.053 +0.010 9.41£2.19
Neural GSDE 0.649 (0.097) 0.711 (0.096) 0.062 +0.015 10.30 +2.50

Table 17: Comprehensive performance analysis on 15 multivariate datasets

Method Baseline Proposed Improvement % Change
Neural ODE 0.507 (0.056) 0.544 (0.041) 0.037 +0.009 11.38 £3.63
Neural CDE 0.790 (0.044) 0.837 (0.031) 0.047 £0.010 7.45+1.93
Neural SDE 0.516 (0.049) 0.545(0.048) 0.028 +0.007 6.38 £ 1.57
Neural LSDE 0.798 (0.031) 0.800(0.032) 0.002 +0.013 0.27 +1.88

Neural LNSDE 0.789 (0.030) 0.805 (0.034) 0.016 +0.007 245+1.18
Neural GSDE 0.783 (0.034) 0.794 (0.030) 0.011 +0.005 1.71 £0.69

Figure [I0]illustrates the performance variations across different hyperparameter configurations. The
baseline performance without dropout is represented by a black dashed horizontal line. Our results
consistently demonstrate that the proposed dropout method enhances classification performance
relative to this baseline across various hyperparameter settings. This robust improvement highlights
the method’s effectiveness in bolstering generalization capabilities and its versatility in addressing
diverse time series classification tasks, further validating its practical utility in real-world problems.

Accuracy

Accuracy

Accuracy

(e) Neural LNSDE

Figure 10: Performance comparison with different hyperparameters on extended datasets

--- Baseline
. m=5

N m=10
= m=50
. m=100

--- Baseline
. m=5

N m=10
= m=50
. m=100

--- Baseline
. m=5

mE m=10
= m=50
. m=100

Accuracy

"

i

i

(b) Neural CDE

0.5

Accuracy

a

"

IJ

(d) Neural LSDE

Accuracy

il

ﬂ

"
iy

30

IJ

(f) Neural GSDE

--- Baseline
mm m=5

mm m=10
= m=50
. m=100

--- Baseline
mm m=5

mm m=10
= m=50
. m=100

--- Baseline
mm m=5

mm m=10
= m=50
. m=100

Under review as a conference paper at ICLR 2025

F FURTHER ANALYSIS OF NRSDE

F.1 COMPREHENSIVE ANALYSIS OF COMPUTATIONAL EFFICIENCY

We performed comprehensive experiments to evaluate the computational overhead of our proposed
NRSDE method with varying dropout rates p and expected renewal counts m. Table[I8]presents the
average computation times per epoch on Speech Commands dataset. The results indicate that while
the NRSDE method generally increases computation time compared to the baseline, the impact of
different p and m values is relatively minor. Also, since Monte Carlo simulation is only conducted
during the test phase, we observe that it does not significantly increase the computational overhead.
In particular, with Monte Carlo simulation using 5 samples, the computational overhead remains
almost negligible, showing only a marginal increase compared to the baseline.

Table 18: Computation time comparison on Speech Commands (time in seconds per epoch)

(a) Monte Carlo simulation with 5 samples

m Neural CDE ANCDE Neural LSDE Neural LNSDE Neural GSDE
0 - 25.560 (0.259) 53.264 (0.157) 19.416 (0.147) 19.532 (0.109) 19.776 (0.052)

5 28.056 (0.262) 60.208 (0.292) 22.086 (0.158) 22.499 (0.223) 23.095 (0.233)
10 28.182(0.258) 59.914 (0.199) 22.076 (0.171) 22.207 (0.173) 22.807 (0.112)

0.1 50 28.014 (0.245) 59.339(0.307) 22.157(0.150) 22.213(0.161) 23.178 (0.246)
100 28.375(0.508) 60.100 (0.340) 22.332(0.190) 22.128 (0.122) 22.939 (0.131)
5 27.180 (0.366) 59.148 (0.408) 21.576 (0.155) 21.668 (0.171) 22.496 (0.176)
03 10 27.226 (0.305) 59.156 (0.367) 21.610(0.135) 21.632(0.144) 22.460 (0.216)
i 50 27.064 (0.248) 59.062 (0.373) 21.589(0.214) 21.646(0.199) 22.482 (0.183)
100 27.145(0.255) 59.093 (0.276) 21.580(0.214) 21.740(0.131) 22.436 (0.174)
5 26.052 (0.255) 58.108 (0.229) 21.045(0.094) 20.790 (0.174) 21.818 (0.089)
05 10 26.393 (0.276) 57.643(0.136) 21.058 (0.097) 21.185(0.091) 21.893 (0.088)
: 50 25.688 (0.219) 57.646 (0.407) 21.025(0.135) 21.176(0.120) 21.931 (0.116)
100 26.144(0.314) 57.905(0.265) 21.005(0.104) 21.098 (0.144) 21.960 (0.084)

(b) Monte Carlo simulation with 10 samples
p m Neural CDE ANCDE Neural LSDE Neural LNSDE Neural GSDE
- 25.560 (0.259) 53.264 (0.157) 19.416 (0.147) 19.532 (0.109) 19.776 (0.052)
5 33.485(0.346) 76.222(0.245) 30.518 (0.171) ~ 30.358 (0.099) 32.352(0.249)
o1 10 33.195(0.245) 76.630 (0.251) 30.736 (0.186) 30.502 (0.066) 32.255(0.284)
. 50 33.430(0.252) 76.202 (0.245) 30.393 (0.107) 30.467(0.102) 31.895(0.194)
100 33.944(0.511) 76.638 (0.366) 30.642(0.173) 30.283 (0.058) 32.064 (0.219)
5 32.252(0.372) 75.468 (0.285) 30.382(0.154) 30.084 (0.112) 31.256 (0.296)
03 10 32.152(0.370) 75.500 (0.215) 30.084 (0.148) 30.046 (0.115) 31.201 (0.356)
. 50 32.078 (0.327) 75.448 (0.176) 30.208 (0.193) 30.039 (0.130) 31.276 (0.208)
100 32.108 (0.376) 75.603 (0.238) 30.193(0.108) 30.187 (0.152) 31.251 (0.198)
5 30.652 (0.368) 74.664 (0.123) 29.545(0.098) 29.633 (0.077) 30.092 (0.162)
05 10 31.356 (0.192) 74.390 (0.243) 29.446 (0.144) 29.614 (0.073) 30.255(0.179)

50 30.688 (0.287) 74.645(0.250) 29.458 (0.151) 29.601(0.102) 30.308 (0.215)
100 30.722(0.299) 74.457 (0.244) 29.463 (0.149) 29.598 (0.099) 30.351 (0.188)

F.2 VALIDATION OF SCALING FACTOR c ESTIMATION

We designed experiments to validate the scaling factor ¢ estimation during the test phase. Table[T9]
and Table[20] show the optimal performance based on the number of Monte Carlo simulation samples
(MC) on Speech Commands and CIFAR-100, respectively. We considered MC = [0, 1, 3, 5, 10, 20],
where MC = 0 indicates that no scaling is applied during the test phase, which corresponds to
performing inference using z(t). We observed consistent performance improvements with only
5-10 samples, which supports the accurate estimation of c. While 5 samples provide sufficient
performance, this paper uses 10 samples as the default for experiments to achieve more stable results.

F.3 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

We conducted a sensitivity analysis to provide guidelines for selecting the hyperparameters p and
m. We evaluated the accuracy of Neural CDE successfully trained on Speech Commands dataset.

31

Under review as a conference paper at ICLR 2025

m ; .1()(1 »_v/»\/‘v\‘/v/\ m’ ; (IOU /
N Nf\m ‘ N
\/‘M ‘\ “/u\ H/“‘m | f
| [
t t
(a) NRSDE z(t) with dropout rate p = 0.1 (b) NRSDE z(t) with dropout rate p = 0.5

Figure 11: Illustration of dropout in NDEs with different hyperparameters p and m

Table 19: Accuracy on Speech Commands with different numbers of Monte Carlo simulation samples

Dropout MC Neural CDE ANCDE Neural LSDE ~ Neural LNSDE Neural GSDE
X - 0.910 (0.005) 0.760 (0.003) 0.927 (0.004) 0.923 (0.001) 0.913 (0.001)

0 0.934 (0.000) 0.776 (0.003) 0.932 (0.000) 0.930 (0.003) 0.920 (0.005)

1 0.908 (0.002) 0.762 (0.002) 0.931 (0.003) 0.925 (0.002) 0.919 (0.006)

o 3 0.929 (0.002) 0.782(0.006) 0.932 (0.001) 0.930 (0.000) 0.927 (0.002)

5 0.940 (0.001) 0.794 (0.003) 0.932 (0.000) 0.932 (0.001) 0.927 (0.001)

10 0.945 (0.001) 0.793 (0.007) 0.933 (0.001) 0.932 (0.002) 0.930 (0.002)

20 0.943 (0.003) 0.793 (0.005) 0.932 (0.001) 0.932 (0.002) 0.930 (0.001)

Table 20: Performance on CIFAR-100 with different numbers of Monte Carlo simulation samples

Neural SDE Neural SDE
Dropout MC Neural ODE (additive) (multiplicative)
X - 74475(0.581) 74.878(0.328) 75.317 (0338)

75.822(0.314) 75.754 (0.390) 75.925 (0.286)
76.365(0.342) 76.390 (0.263) 76.006 (0.426)
76.848 (0.254) 76.547 (0.398) 76.182 (0.522)
76213 (0.238) 76.958 (0.415) 76.787 (0.420)
76.470 (0.480) 76.872 (0.442) 76.947 (0.458)
76.374 (0.298) 76.704 (0.252) 76.927 (0.404)

[
SowUnw—o

To observe the performance variations with respect to p and m, we set p € [0.1,0.2,0.3,0.4,0.5]
and m € [3,5,10,50,100]. Table 21| shows the performance for each combination of p and m,
and we highlighted in red the cases that exhibit lower performance than the without dropout. We
observed a significant performance decline at high dropout rates when m = 3. This is because a
smaller m increases the variance of NRSDE z(t), hindering stable training. Consequently, we limited
our experiments to m € [5, 10, 50, 100] in this paper. This choice robustly improves performance
regardless of hyperparameters p and m. Additionally, performance with respect to the choice of
hyperparameters for various datasets and models can be found in Figures [6HI0] so please refer to
them for further insights.

Table 21: Comparison of average accuracy from the sensitivity analysis

m
3 5 10 50 100

0. 0.936(0.003) 0.940(0.002) 0.941(0.001) 0.942(0.000) 0.940 (0.003)
02 0.939(0.002) 0.939(0.001) 0942 (0.001) 0.943(0.002) 0.945 (0.001)
03 0.923(0.004) 0.937(0.005) 0.938 (0.003) 0.940 (0.001) 0.941 (0.002)
04 0915(0.008) 0.932(0.003) 0.932(0.002) 0.935(0.005) 0.932 (0.005)
0.5 0.908(0.013) 0.927(0.004) 0.920(0.008) 0.926 (0.003) 0.920 (0.002)

G LIMITATIONS OF JUMP DIFFUSION DROPOUT

In this section, we examine more thoroughly the limitations of the jump diffusion dropout mentioned
in the main text. Specifically, Appendix [G.T|analyzes the theoretical issues of jump diffusion dropout,

32

Under review as a conference paper at ICLR 2025

while Appendix [G.2] demonstrates, through experiments, why jump diffusion dropout cannot be
universally applicable to various variants of NDEs.

G.1 DISCRETIZATION

Liu et al.| (2020) claimed that
Z(k+1) = Z(k) + 7(Z(k); 05) 0 &
1 1 —_
= Z(k) + 3(Z(k); ;) + 57(Z(R);6;) o
withk =0,1,... . N—-1,P(6®D =0)=1-P(® =1)=pfori=1,...,d, and E = 26 — 1 is
a discrete version of the following jump diffusion process: for 0 <¢ < T,
t
1

z(t) = z(0) + /0 %7(2(7’); 0,)dr + /0 5’7(2(7’); 6,) o En,. dN;, (14)

(13)

where N is a Poisson counting process.

However, that claim is not only incomplete in defining equation [I3] but even if we were to correct it
properly, our analysis reveals theoretical inconsistencies in this approach. More specifically, the time
step size At has not been considered in equation which is essential for it to be a valid discrete
approximation of the continuous jump diffusion process. In fact, a correct Euler discretization of
equation [I4]is given by

Z(k +1) = Z(k) + S1(Z(k); 0,) At + 24(Z(k); 0,) 0 Zx, AN,

2 2
1 1
§'y(Z(k:); 0,)At + §W(Z(k‘); 0,) 0 Z, if ANy =1,
=Z(k) + 1
§V(Z(kz); 0,)At, if ANy, =0,

7# Z(k) +v(Z(k); 05) o &,
where AN}, = Nz, — Nz, € {0,1}.

In contrast, our proposed dropout scheme based on the alternating renewal processes (NRSDE)
accurately extends the following discrete-time equation to the continuous-time process:

Z(k + 1) = Z(k) + y(Z(k); 0,) At 0 &.
G.2 UNIVERSAL APPLICABILITY

We discuss why jump diffusion dropout is not universally applicable, unlike the proposed dropout
method (NRSDE). |Liu et al.| (2020) introduced a new type of Neural SDE by adding a stochastic
dropout term to Neural ODE. However, this approach is limited to ODE-based models. Nonetheless,
from an engineering perspective, we compared the performance of NRSDE with the model, which
combines jump diffusion dropout with the CDE-based model. Additionally, in the case of SDE-based
models, the existing diffusion network dominates the jump diffusion dropout term, and thus, these
models are not considered.

Table 22] presents the performance of jump diffusion dropout and the proposed dropout method
(NRSDE), using Neural CDE as the baseline. When jump diffusion dropout is applied, performance
either declines or, if it improves, the improvement is not statistically significant. However, our
method demonstrates statistically significant and highly successful performance improvements,
experimentally proving that it is the only universally applicable dropout method.

Table 22: Performance of various dropout methods on Speech Commands

Dropout Methods Test Accuracy
Baseline (Neural CDE) 0.910 (0.005)
Dropout of [Liu et al.| (2020) 0.917 (0.009)
Dropout of |Liu et al.| (2020)+TTN 0.906 (0.013)
NRSDE (ours) 0.945 (0.001)"

33

	Introduction
	Preliminaries
	Problem Statement
	Alternating Renewal Process

	The Proposed Dropout Method for NDEs
	Neural Regenerative Stochastic Differential Equation (NRSDE)
	Dropout Rate
	Scaling Factor in Test Phase
	Why are alternating renewal processes more adequate than jump diffusion processes for modeling dropout?

	Experiments
	Superior Performance Over Existing Regularization Methods
	Universal Applicability in NDEs
	Sensitivity and Computational Cost Analysis for Scaling Factor c
	Continuous-Time Modeling

	Conclusion
	Overview of Alternating Renewal Process
	Proofs
	Description of Datasets
	Details of Experimental Settings
	Detailed NRSDE Algorithm
	Various Regularization Methods
	Time Series Classification
	Image Classification

	Detailed Results of Benchmark Datasets
	Various Regularization methods
	Time Series Classification
	Image Classification
	Extended experiments on time series datasets

	Further Analysis of NRSDE
	Comprehensive Analysis of Computational Efficiency
	Validation of Scaling Factor c Estimation
	Sensitivity Analysis of Hyperparameters

	Limitations of Jump Diffusion Dropout
	Discretization
	Universal Applicability

