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Abstract

We introduce the first framework for measuring Overton pluralism in large lan-1

guage models–the extent to which diverse viewpoints are represented in model2

outputs. We (i) formalize Overton pluralism as a set-coverage metric (Overton-3

Score), (ii) conduct a large-scale U.S.-representative human study (N=100; 304

questions; 8 LLMs), and (iii) develop an automated benchmark that reproduces5

human judgments with high fidelity. Our findings show that while most models6

achieve comparable pluralism, Gemma 3-27B underperforms and GPT o4-mini7

achieves the highest OvertonScore. The automated benchmark replicates these8

human results and generalizes across unseen models, enabling scalable evaluation.9

1 Introduction10

LLMs shape political discourse, education, and everyday interactions. When they misrepresent11

or erase viewpoints, they risk distorting deliberation, marginalizing communities, and creating12

“algorithmic monoculture” [Bommasani et al., 2022, Kleinberg and Raghavan, 2021]. Current13

alignment strategies exacerbate this by optimizing for the “average” user [Santurkar et al., 2023,14

Durmus et al., 2024], collapsing genuine disagreements [Kirk et al., 2025, Sorensen et al., 2024a,15

Bakker et al., 2022] into a single normative stance—an issue known as value monism [Gabriel,16

2020]. Outputs that appear neutral often encode majority or developer-preferred biases, entrenching17

representational harms [Chien and Danks, 2024] and heightening safety risks such as susceptibility to18

propaganda or cultural domination.19

Pluralistic alignment offers an alternative: rather than consensus, models should represent a spectrum20

of reasonable perspectives within the “Overton window” of public discourse. Sorensen et al. [2024b]21

distinguish Overton pluralism, from steerable pluralism (users shift toward a perspective), and22

distributional pluralism (outputs reflect population distributions). We focus on Overton pluralism, the23

most relevant for settings with many legitimate answers. In this work, we focus on Overton pluralism,24

the most practically relevant for subjective settings where many reasonable answers exist.25

Several modeling strategies move in this direction: MaxMin-RLHF ensures minimal group satisfac-26

tion [Chakraborty et al., 2024], Modular Pluralism adds community modules for multiple pluralism27

types [Feng et al., 2024], and Collective Constitutional AI sources rules from diverse publics [Huang28

et al., 2024]. Yet all depend on robust benchmarks to evaluate pluralistic representation.29

Yet there remains no benchmark directly measuring Overton pluralism. Existing datasets provide30

partial proxies: PRISM [Kirk et al., 2025] and GlobalOpinionQA [Durmus et al., 2024] curate31

disagreement prompts but focus on preference aggregation; Value Kaleidoscope [Sorensen et al.,32

2024a] encodes moral principles for distributional pluralism; and Value Profiles [Sorensen et al.,33

2025] compress value descriptions for steerable personalization. Lake et al. [2025] proxy Overton34

pluralism with binary yes-no questions, but it is limited and unsuitable for benchmarking.35

The closest work is Model Slant [Westwood et al., 2025], which uses pairwise comparisons of36

perceived political slant. However, their design is limited to bipartisan bias and cannot capture the37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



magnitude or breadth of representation. In contrast, our work estimates Overton pluralism through38

large-scale human judgements and develops an automated benchmark for scalable evaluation.39

Contributions: We develop the first end-to-end framework measuring Overton pluralism in LLMs.40

• Operationalization: A novel metric, OvertonScore, to quantify pluralism in models (2).41

• Large-scale human study. Benchmarking Overton pluralism with a U.S.-representative42

dataset (30 questions, 8 frontier LLMs) measuring perceived representation (3,4).43

• Automated benchmark. A framework for scalable evaluation of Overton pluralism (5).44

Our LLM judge OvertonScores achieve high rank correlation with human scores (ρ ≈ 0.90)45

and preserves significance conclusions, showing generalization to unseen models (6).46

Together, these contributions move pluralistic alignment from a normative goal to a measurable,47

reproducible benchmark task.48

2 Operationalizing Overton Pluralism49

Overton pluralism is defined at the level of a set: for a given query x and possible answers y, the50

Overton window W (x) is the set of all reasonable answers.1 A model M’s response to a query x51

is considered Overton-pluralistic if it contains or synthesizes all answers in the Overton window52

W (x), i.e. if M(x) = W (x). Therefore to quantify the extent to which a model response is53

Overton-pluralistic, we can calculate the proportion of Overton window it covers.54

Concretely, for a subjective query x, if a majority of humans who believe some answer y ∈ W (x)55

feel that a model response M(x) represents their view, then we consider y to be covered, denoted by56

y ∈ M(x). Therefore, we define Overton coverage as57

OC(M, x) =
1

|W (x)|
∑

y∈W (x)

1{y ∈ M(x)}

The OvertonScore for a model M over a set of queries X = {x1, . . . xn} is the average coverage:58

OvertonScore(M, X) =
1

n

n∑
i=1

OC(M, xi)

In practice, we conduct a human data study (Section 3) to estimate the Overton window and determine59

response coverage to form a benchmark (4). However, with the rapid advancement of LLMs, it60

is not sustainable to collect additional human ratings for each new model. To make progress as a61

field, we need a way to recreate these representation ratings automatically. Our goal is ultimately62

to demonstrate that LLM-as-a-Judge can accurately and fairly predict how diverse humans perceive63

representation in model outputs on subjective topics, thus providing a scalable automatic benchmark64

for Overton pluralism without requiring additional data collection (Section 5).65

3 Data Collection66

We recruited 100 English-speaking, US-based participants from Prolific, stratified to balance gender67

(50% female, 50% male) and political spectrum (30% conservative, 30% moderate, 30% liberal, 10%68

other). Participants were paid a fair wage ($8–$12/hour).69

Each participant answered three randomly drawn questions from the 30 prompts in Westwood et al.70

[2025], which span politically salient domains such as healthcare, climate policy, trans rights, and71

free speech. These prompts target value-laden tradeoffs that cannot be resolved by factual recall72

alone.73

For each question, participants (i) wrote a short free response (1–3 sentences), (ii) selected their74

stance via a multiple choice item (liberal, conservative, or neutral;2), and (iii) evaluated the outputs of75

1According to Sorensen et al. [2024b], a reasonable answer is one “for which there is suggestive, but
inconclusive, evidence, or one with which significant swaths of the population would agree.”

2Full endpoints for each topic appear in Table S1 of Westwood et al. [2025].
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eight state-of-the-art LLMs in randomized order. For each response they rated: “To what extent is76

your perspective represented?” (1 = “Not at all” to 5 = “Fully represented”).77

The eight evaluated LLMs span key axes of development: open vs. closed-source, reasoning vs.78

non-reasoning, and U.S.- vs. China-based origin. They include GPT-4.1 and o4-mini (OpenAI),79

Gemma 3-27B (Google), DeepSeek R1 and V3 (DeepSeek), Llama 4 Maverick and Llama 3-70B80

instruct (Meta), and Claude 3.7 Sonnet (Anthropic). After excluding incomplete responses and81

timeouts, the final dataset comprised 2,393 user–question–model datapoints.82

4 Benchmark Design83

In Section 2 we defined the OvertonScore of a model as the average proportion of the Overton84

window it covers. Calculating this in practice requires (1) identifying distinct responses and (2)85

testing whether a model output covers them in natural language. We approximate distinct answers by86

clustering, and count a cluster as covered if its average human representation rating is at least 4 (mostly87

represented) out of 5 (fully represented). In this work, we cluster answers by each user’s selected88

topic stance (Conservative, Neutral, Liberal) as designed in Westwood et al. [2025]. Additional89

clustering approaches and discussion on their tradeoffs can be found in Appendix B.90

4.1 Human Benchmark Results91

We analyzed representation ratings with OLS regression, testing whether each model’s coverage92

probability (stance-based clustering) differed from the overall mean. Regressions controlled for93

question difficulty via fixed effects, with standard errors clustered by question.94

Table 1 reports the adjusted OvertonScores (predicted probability of covering a stance cluster,95

averaged over questions) and each model’s deviation from the mean. We find that o4-mini achieves96

significantly higher coverage than average (+0.07, p < 0.01), while Gemma 3-27B is significantly97

lower (−0.09, p < 0.05). The remaining six models do not differ significantly from the average.98

5 Automated Benchmarking with LLM Judges99

To scale evaluation beyond costly human studies, we test whether LLMs can act as judges of pluralism.100

The task is to predict a human’s perceived representation score (Likert 1–5) for a given model output.101

We evaluate several prompting variants for the judges: demographics only; free response (FR) plus102

topic stance; demographics + FR + stance (“Full Profile”); and few-shot prompts using a user’s103

ratings of the other seven responses to the same question.104

Judge models are compared against three baselines. The human baseline asks another annotator to105

predict ratings for 300 datapoints given a full profile (no example ratings). The semantic similarity106

baseline selects the closest among the seven other responses to the same question,3 and assigns its107

rating. Finally, the mean-of-others baseline uses the average of the user’s ratings for the other seven108

responses, rounded to the nearest integer to match the 1–5 scale.4109

We test GPT-4.1 mini and nano, Gemini Flash, and Gemini Pro as judges under each prompting110

variant. We predict ratings for all datapoints three times for each configuration and evaluate using the111

(rounded) average prediction. All experiments were run on CPUs and models accessed via APIs.112

6 Benchmark Evaluation113

We evaluate judges by accuracy (exact rating), mean absolute error (MAE), mean squared error114

(MSE), and win-rate (proportion of datapoints with lower error than a baseline). We report 95% CIs115

via nonparametric bootstrap. Additional ablations appear in Appendix C.116

Gemini Pro with Few-Shot is the strongest judge, achieving 59% accuracy. It significantly outper-117

forms the human baseline and profile prompts and matches semantic similarity (56%). Trends hold118

3Calculated using cosine similarity of response embeddings from OpenAI’s text-embedding-3-large
4Rounding ensures predictions are valid Likert values.
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Figure 1: Accuracy of judge LLMs and baselines across prompting conditions (95% CIs).

for MAE and MSE (Figure 2). In terms of win rate, we find again that Gemini Pro with Few-Shot is119

strongest, winning > 50% of the time (average 66.12%) against all other methods (Figure 3).120

6.1 Subgroup Parity & Generalization121

We tested for subgroup disparities using nonparametric permutation ANOVA across demographic122

and stance categories and found no meaningful fairness issues. Full results are in Appendix D.123

To test whether our benchmark generalizes to unseen models, we ran a leave-one-model-out (LOMO)124

analysis: for each target LLM, we replaced its human ratings with best LLM-judge predictions125

(Gemini Pro with Few-Shot) and re-ran the stance-based OLS regressions.126

Across models, the agreement between the human-only regressions and the judge-substituted regres-127

sions was very strong. Rank correlations between human and judge OvertonScores averaged ρ ≈ 0.90128

(Spearman), and the correlation of model coefficients was similarly high (r ≈ 0.89) with very small129

mean errors (≈ 0.01). Directional agreement exceeded 90%, indicating the judge consistently pre-130

serves which models are above or below the mean. In terms of statistical conclusions, o4-mini131

replicated as significantly above average, while Gemma 3-27B did not replicate as significantly132

below average; the remaining six models all remained non-significant, as in the human-collected133

data. Taken together, these results show that the judge-based benchmark largely preserves human134

judgments of pluralistic coverage, with the main discrepancy being that the judge over-rates Gemma135

compared to human participants.136

7 Discussion & Limitations137

Our benchmark offers a first framework for quantifying Overton pluralism in LLMs, but several138

limitations remain. Model-level OvertonScores are defined with respect to the 30 questions in our139

study, which can be easily broadened to additional topics in future work by simply extending the140

LLM Judge predictions or collecting additional data. Estimates also depend on how distinct answers141

are clustered: we report stance-based clustering in this work, while alternative variants are discussed142

in Appendix B. In addition, our data come from U.S.-based English speakers, and Overton windows143

are culturally situated; expanding to more diverse global populations is an important direction for144

future work. Finally, LLM judges approximate but do not perfectly replicate human ratings, as seen145

with Gemma, and they may inherit biases of the underlying models. We view the present benchmark146

as a starting point for a cycle of iterative improvement, where pluralism metrics guide pluralistic147

model development, which in turn enables better benchmarking.148

8 Conclusion149

We introduce OvertonScore as a principled metric of Overton pluralistic alignment, create a large-150

scale human dataset across 30 salient questions and 8 LLMs, and validate the first automated151

benchmark using LLM-as-a-Judge. Human data show OpenAI’s o4-mini achieves significantly higher152

OvertonScores, while Gemma 3-27B scores lower. Automated evaluation with Gemini Pro reproduces153

these patterns with high correlation to human scores and no major subgroup disparities. By turning154

pluralistic alignment from a normative aim into a measurable benchmark, our work establishes a155

foundation for systematic progress. We hope the dataset and public benchmark released alongside156

this paper foster community engagement and the development of increasingly pluralistic LLMs.157
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Model Adjusted Coverage Coef vs. Mean p-value

o4-mini 0.526 +0.072 0.003
Llama 3-70B instruct 0.513 +0.059 0.149
Claude 3.7 Sonnet 0.474 +0.021 0.630
DeepSeek V3 0.462 +0.008 0.818
Llama 4 Maverick 0.449 –0.005 0.888
GPT-4.1 0.436 –0.018 0.562
DeepSeek R1 0.410 –0.043 0.223
Gemma 3-27B 0.359 –0.095 0.022

Table 1: OLS estimates of OvertonScores under stance clustering. Adjusted coverage is the marginal
predicted probability of a stance cluster being covered. Coefficients are differences relative to the
grand mean (question fixed effects included; SEs clustered by question). Significant deviations are
shown in bold.

B.1 Individual Clusters254

Each user is treated as a unique cluster.255

W (x) = {{u} : u ∈ users for question x}

The benefits of treating all users individually is that it is maximally strict: every user’s perception is its256

own “view," guaranteeing that minority views are flattened into majority views. However, this results257

in an overly fragmented estimation of the Overton window. By nature of surveying a population,258

majority perspectives will occur multiple times in the dataset, resulting in an over-weighting of the259

majority views when calculating the Overton coverage. Therefore, LLM responses that cover popular260

views can look inflated (since many users share that view). Conversely, models that cover rare distinct261

positions but not the mainstream can look deflated. In sum, treating each user as their own individual262

distinct response results in a weighted score. Since this deviates from the definition of Overton263

pluralism, we chose not to pursue this in the scope of this work.264

B.2 Stance Clusters265

Users are grouped only by their selected stance: Conservative, Neutral, Liberal. This is the method266

we use in our main paper.267

W (x) = {CCons, CNeut, CLib}

The limitations of this method are the potential risk of flattening minority views within the same268

general stance group. This may lead to an overestimation of coverage if there exists some minority269

subgroup. While less likely, it can also result in underestimation in the case that the minority270

subgroup(s) pull down the average representation rating below 4, causing the entire group to be271

considered not covered.272

However, the benfits are that it is incredibly simple and straightforward to calculate. Moreover, in273

the context of the questions we use in this work, they are designed to more or less have 3 distinct274

answers.275

B.3 Stance + Minority Split276

Similar to the stance clusters, but we try to split off minority subgroups, which are detected by277

consistently diverging representation scores. Concretely, for each target model m, clusters are defined278

using ratings from all other models j ̸= m. If a group of users is consistently ≥ δ Likert points279

above/below stance medians for at least 4 of 7 other models, they form a minority cluster.280

The benefits to this approach is that it can correct some of the overly coarse merging and increase281

the resolution of the Overton window estimation. However, the thresholding hyperparameter δ is282

difficult to tune without additional validation, and the coverage metric is potentially very sensitive to283

this because we are generally working with a small number of clusters. If too many splits are created,284
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this will deflate the score, whereas if it is too relaxed, it will not create any splits and result in the285

same as the original stance cluster approach.286

B.4 NLP-based clustering287

Another approach would be to use NLP methods such as semantic embeddings or entailment (NLI)288

to cluster the humans’ free responses into distinct groups. However, this is tricky to tune and validate289

without additional human validation. While it is out of the scope of this work, we believe it is290

probably the best route forward in the future!291

B.5 Crowdsourced clustering292

It would be ideal if the humans themselves could determine which distinct response category fits them293

best. Platforms such as Pol.is [Small et al., 2021] allow for users to vote on other’s responses, and294

clustering is done automatically based on similar vote patterns. In other words, participants who hold295

the same view will likely agree/disagree with similar statements, and therefore should be clustered.296

However, this is potentially expensive and / or logistically complex to carry out in practice due to the297

additional time taken to pay the crowd workers as well as coordinate a second round of collection298

with the same workers to do the voting.299

C Detailed LLM Judge Results300

Experiment Design. Our prompting experiments are structured to systematically reducing or per-301

turbing the full user profile u, demog_select_freereponse (composed of demographics, topic/selection302

stance, and free-text response) by default, to identify which components contribute most to accurate303

and fair prediction of user’s perceived representation ŷ relative to ground truth y. We evaluate this in304

both zero-shot and few-shot setups. For zero-shot, i.e., general-user-profile-only setups, we designed305

ablations and perturbations as follows:306

• null: user profile information fully ablated, which means the only input would be prompt
instruction p and LLM’s response r to be evaluated.

ŷnull = P (y | r,p)

• demog: include only demographic information udemo, i.e., sex, ethnicity, and political
identity.

ŷdemo = P (y | udemo, r,p)

• freeresponse: include only the free-text response ufreeresponse.

ŷresp = P (y | ufreeresponse, r,p)

• random_full and cluster_full: perturbation setups that substitute the user profile with a
random profile u′ or cluster-centroid/majority profile ucentroid,k.

ŷrandom = P (y | u′, r,p), u′ ∼ U(Utrain)

or
ŷcluster = P (y | ucentroid,k, r,p)

Under few-shot setups, the LLM judges are additionally provided with the user’s answers to other307

question (QAs), as well as their ratings of other model responses to the same question (Ratings). We308

again ablated the original profile fields along with these example fields through the prompt variants309

below:310

• demog_select_freeresponse_ms_*: few-shot variants with full user profile.311

• freeresponse_ms_*: few-shot variants with the user’s free-text response only.312

• ms_*: general user profile has been ablated entirely, leaving only example fields as the313

"pseudo-profile."314
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Figure 2: Average accuracy, MAE, and MSE among baselines and Gemini Pro LLM judge across
prompting methods. The Few-Shot method generally outperforms all other methods across metrics
except the Semantic Similarity. Higher accuracy and lower MAE/MSE is considered better. The error
bars are 95% confidence intervals estimated via bootstrapping.

This design allows us the probe into the marginal contribution of demographics, per-topic stance,315

and free-text response of the user to LLM Judges’ performances; it also indicates whether few-shot316

contextualization can substitute for or amplify these user-specific information fields.317

Table 2: Detailed LLM-as-a-Judge Results

Prompt Variant Metric gpt-4.1-mini gpt-4.1-nano gemini-2.5-pro gemini-2.5-flash

null Accuracy 0.316 0.276 0.247 0.276
MAE 1.180 0.967 1.322 1.087
MSE 2.612 1.594 2.989 2.145

demog Accuracy 0.256 0.280 0.219 0.281
MAE 1.100 0.936 1.381 0.966
MSE 2.012 1.474 3.121 1.584

freeresponse Accuracy 0.344 0.268 0.348 0.336
MAE 0.944 1.029 1.053 0.937
MSE 1.624 1.747 2.105 1.611

demog_select
_freeresponse Accuracy 0.348 0.268 0.344 0.384

Continued on next page
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Table 2 – continued from previous page
Prompt Variant Metric gpt-4.1-mini gpt-4.1-nano gemini-2.5-pro gemini-2.5-flash

MAE 0.948 1.032 0.972 0.872
MSE 1.668 1.748 1.772 1.449

random_full Accuracy 0.348 0.244 0.359 0.369
MAE 0.948 1.035 0.955 0.876
MSE 1.676 1.743 1.747 1.454

cluster_full Accuracy 0.352 0.252 0.321 0.392
MAE 0.940 1.032 1.008 0.852
MSE 1.652 1.738 1.837 1.401

demog_select
_freeresponse_ms
_qas_ratings

Accuracy 0.408 0.357 0.579 0.506

MAE 0.856 0.912 0.579 0.663
MSE 1.552 1.627 0.979 1.056

demog_select
_freeresponse_ms
_qas_ratings2

Accuracy 0.384 0.284 0.498 0.456

MAE 0.884 1.084 0.733 0.810
MSE 1.588 2.124 1.348 1.464

demog_select
_freeresponse_ms
_ratings

Accuracy 0.396 0.324 0.574 0.544

MAE 0.824 0.972 0.591 0.636
MSE 1.400 1.764 1.017 1.060

demog_select
_freeresponse_ms
_ratings2

Accuracy 0.372 0.280 0.483 0.468

MAE 0.908 1.084 0.780 0.808
MSE 1.628 2.108 1.493 1.496

freeresponse_ms_
ratings

Accuracy 0.420 0.352 0.539 0.536

MAE 0.804 0.892 0.643 0.644
MSE 1.332 1.580 1.108 1.092

ms_ratings Accuracy 0.588 0.396 0.588 0.576
MAE 0.544 0.784 0.592 0.564
MSE 0.864 1.280 1.080 0.916

Full Pilot Results across Prompts and Models. We first ran the prompt grid on 250 rows to318

control the time and cost while stress-testing design choices. The results already show systematic319

differences across both models and prompt types: the dominance of ms_* over all zero-shot prompts320

and over profile-augmented few-shot prompts. We selected Gemini-2.5-Pro for scaling to the full321

data since it demonstrates the strongest predictive fidelity, with a consistently high accuracy and322

substantially smaller MAE and MSE relative to alternatives in few-shot setups in particular.323

Zero-Shot Results and Analysis. Overall, the results align closely with the logic of our prompt324

setups. Removing the user profile entirely (null) leads to a collapse in accuracy and inflated errors325

across all models, suggesting that some form of user information input is necessary. Similarly, all326

models performs poorly under demographic-only input (demog), with the best accuracy by Gemini-327

2.5-Flash reaching only 0.281, which indicates that demographics cannot by themselves capture328

fine-grained perceptions of representation in LLM-as-a-Judge framework. By contrast, the free-text-329

response-only prompt (freeresponse) produces better results of accuracy around 0.34 across models,330

suggesting that written opinion might be a more informative single channel of the user profile.331
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Figure 3: Win and tie rates for each method. To interpret the results, the win rate is the proportion
of the time the method in the row “beats” the method in the column by having a strictly smaller
prediction error, excluding ties. For example, Few-Shot has a closer prediction than the Human
baseline 64.38% of the time, and ties (equal error) 45.58% of the time.
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Interestingly, the perturbation prompts (random_full and cluter_full) do not degrade performance332

as sharply as one might expect if user profiles were highly informative. Substituting a random333

profile (random_full) yields results around the same as those of full accurate user profile (de-334

mog_select_freeresponse), and substituting a cluster-centroid/majority profile (cluster_full) has even335

slightly better performance than using the authentic profile fields (e.g., Gemini-2.5-Flash reached336

0.392 accuracy with cluster_full, outperforming free-response and full-profile variants when yielding337

the lowest zero-shot MAE of around 0.940 in the meantime).338

Few-Shot Results and Analysis. The few-shot setting amplifies these trends. Notably, profile-339

ablated ms_* prompts deliver the best performance–for Gemini-2.5-Pro, ms_qas_ratings attains340

the highest accuracy (0.588), and low MAE/MSE (0.592/1.080). The same performance pattern341

appears in other models as well. The gaps over single-shot reductions are large and mirrored across342

MAE/MSE, indicating a practically significant effect rather than statistical noise.343

Interpreted through our experiment design, this says the users’ rating examples are an exception-344

ally information-dense surrogate for the user and likely function as a calibration signature of345

how the user maps content to perceived representation on certain topics. Crucially, adding pro-346

file contexts to the few-shot setups (demog_select_freeresponse_ms_* and freeresponse_ms_*) does347

not help and can slightly hurt the performance relative to ms_* alone. For Gemini-2.5-Pro, de-348

mog_select_freeresponse_ms_ratings trails ms_ratings on accuracy, suggesting overconditioning or349

source-weighting mismatch.350

We acknowledge the trade-offs in the 250-row pilot experiment: subgroup coverage is uneven,351

confidence intervals are wider, and ranking among close prompt variants can wobble. To reduce352

overfitting to the pilot subset, we re-ran only the strongest set of prompt variants on the full353

dataset, anchoring our most significant conclusions in a larger, more representative sample.354

D Subgroup Parity Checks355

To assess subgroup parity, we conducted nonparametric permutation ANOVA tests (5,000 permuta-356

tions) for each category (sex, ethnicity, political spectrum, selection position, and model) and each357

metric (Accuracy, MAE, MSE). This approach tests whether group means differ overall, without358

relying on normality assumptions. Results are summarized in Table 3.359

We find no evidence of disparities across the eight target models on accuracy or MAE (all p > 0.40),360

and only a borderline effect for MSE (p = 0.055). By contrast, several participant characteristics361

show significant differences. Accuracy varies significantly across ethnic groups (p = 0.014), political362

identities (p = 0.015), and between male and female participants (p = 0.025). For sex, both error363

magnitude metrics (MAE, MSE) are also significant. The largest and most consistent effects occur364

for question stance: accuracy, MAE, and MSE all show significant variation across liberal, neutral,365

and conservative participants (p < 0.01).366

Importantly, effect sizes are uniformly small (η2 < 0.01 in all cases). Thus, while statistically367

detectable subgroup differences exist—especially by stance—the magnitude of disparities in judge368

performance is marginal. These results suggest that the LLM-as-a-judge benchmark does not exhibit369

large systematic fairness issues, but that participant stance and certain demographics can introduce370

subtle variation.371
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Category Metric F pperm η2 # Groups

Ethnicity Accuracy 3.10 0.014 0.0053 5
MAE 1.11 0.338 0.0019 5
MSE 0.74 0.553 0.0013 5

Political spectrum Accuracy 3.49 0.015 0.0044 4
MAE 0.33 0.799 0.0004 4
MSE 0.79 0.508 0.0010 4

Sex Accuracy 5.42 0.025 0.0023 2
MAE 9.12 0.003 0.0039 2
MSE 7.77 0.007 0.0033 2

Model Accuracy 0.98 0.443 0.0029 8
MAE 1.00 0.432 0.0030 8
MSE 1.95 0.055 0.0058 8

Stance (selection) Accuracy 7.10 0.001 0.0060 3
MAE 8.10 0.001 0.0069 3
MSE 4.85 0.007 0.0041 3

Table 3: Permutation ANOVA results for subgroup fairness checks. Significant results (pperm < .05)
are bolded. Effect sizes (η2) are small in all cases (< .01).
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13. New assets642

Question: Are new assets introduced in the paper well documented and is the documentation643

provided alongside the assets?644

Answer: [Yes]645

Justification: We cannot upload the zip file for the workshop submission but are happy to do646

so if reviewers require!647

Guidelines:648

• The answer NA means that the paper does not release new assets.649

• Researchers should communicate the details of the dataset/code/model as part of their650

submissions via structured templates. This includes details about training, license,651

limitations, etc.652

• The paper should discuss whether and how consent was obtained from people whose653

asset is used.654

• At submission time, remember to anonymize your assets (if applicable). You can either655

create an anonymized URL or include an anonymized zip file.656

14. Crowdsourcing and research with human subjects657

Question: For crowdsourcing experiments and research with human subjects, does the paper658

include the full text of instructions given to participants and screenshots, if applicable, as659

well as details about compensation (if any)?660

Answer: [No]661
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Justification: We paid our workers a fair wage, ranging from $8-$12/hr. The full instructions662

are omitted for brevity but all the main important phrasings are included in the main paper.663

We are happy to include it if reviewers request! Moreover, the full data collection pipeline664

(including all instructions text) will be released publicly with the codebase after the double665

blind review period is over.666

Guidelines:667

• The answer NA means that the paper does not involve crowdsourcing nor research with668

human subjects.669

• Including this information in the supplemental material is fine, but if the main contribu-670

tion of the paper involves human subjects, then as much detail as possible should be671

included in the main paper.672

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,673

or other labor should be paid at least the minimum wage in the country of the data674

collector.675

15. Institutional review board (IRB) approvals or equivalent for research with human676

subjects677

Question: Does the paper describe potential risks incurred by study participants, whether678

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)679

approvals (or an equivalent approval/review based on the requirements of your country or680

institution) were obtained?681

Answer: [Yes]682

Justification: There are no potential risks, and so we are exempt from our institution’s IRB.683

Guidelines:684

• The answer NA means that the paper does not involve crowdsourcing nor research with685

human subjects.686

• Depending on the country in which research is conducted, IRB approval (or equivalent)687

may be required for any human subjects research. If you obtained IRB approval, you688

should clearly state this in the paper.689

• We recognize that the procedures for this may vary significantly between institutions690

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the691

guidelines for their institution.692

• For initial submissions, do not include any information that would break anonymity (if693

applicable), such as the institution conducting the review.694

16. Declaration of LLM usage695

Question: Does the paper describe the usage of LLMs if it is an important, original, or696

non-standard component of the core methods in this research? Note that if the LLM is used697

only for writing, editing, or formatting purposes and does not impact the core methodology,698

scientific rigorousness, or originality of the research, declaration is not required.699

Answer: [Yes]700

Justification: We describe the LLM usage in the methodology for the automated benchmark701

in Section 5.702

Guidelines:703

• The answer NA means that the core method development in this research does not704

involve LLMs as any important, original, or non-standard components.705

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)706

for what should or should not be described.707
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