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a b s t r a c t

Regression analysis of the odds ratios for sparse data has received a lot of attention.
However, existing works are restricted to the parametric case, and a parametric model
may be a misspecification, which may lead to biased and inefficient estimators. Little
attention is received for nonparametric regression analysis of the odds ratios. Based on
kernel smoothing techniques, we propose two simple estimators of the log odds-ratio
function for sparse data. Large sample properties of the estimators are derived, and the
methods proposed are evaluated through simulation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Odds ratio is the key parameter for biomedical studies of the association between disease incidence (Z1) and exposure
to a suspected risk factor (Z2) in the 2 × 2 table of individuals classified as cases or controls and as exposed or non-exposed
(Breslow, 1976). One of the advantages of using the odds ratio as the measure of the strength of the association is that it
is invariant under sampling designs that depend on the marginal characteristics of the variables (Chen, 2007). In testing
and measuring the associations with discrete variables, the odds-ratio parameter is often adopted (Breslow, 1981, 1996;
Liang, 1985; Hanfelt and Liang, 1998). Modeling the heterogeneity of the odds ratio for binary outcomes parametrically has
received a lot of attention (see, Zelen, 1971; Breslow, 1976; Davis, 1985; Liang, 1985; Liang et al., 1986; Hanfelt and Liang,
1998). However, at times, a parametric regression model may create a very large modeling bias and be a misspecification,
which may lead to biased and inefficient estimators (see, Fan and Gijbels, 1996), thus, we consider in this paper the
nonparametric model for the odds ratio.

For the 2×2 table at point Ti (see, Table 1), suppose that the probabilities of the four cells are p11(Ti), p12(Ti), p21(Ti), and
p22(Ti), respectively, and the log odds ratio is g(Ti), for i = 1, 2, . . . , n, where p11(·), p12(·), p21(·), and p22(·) are unknown
positive regression functions, satisfying p11(t) + p12(t) + p21(t) + p22(t) = 1 for each t , and the log odds-ratio function
g(t), i.e., log{(p11(t)p22(t))/(p12(t)p21(t))}, is also unknown. This paper is concernedwith the smoothing problem of the log
odds-ratio function for sparse data, where the number of tables at all points is large, and the table sizes are all small. There
exist many researches concerning parametric regression analysis of odds ratio for sparse data. For example, by adopting
the noncentral hypergeometric distribution, Breslow (1976) developed an iterative procedure to estimate the regression
parameters based on a simply expressed likelihood equation;Hanfelt and Liang (1998) used theMantel–Haenszel estimating
function and the Mantel–Haenszel quasi-likelihood function to get the estimates. Nevertheless, to our knowledge, little
literature about the nonparametric regression of odds ratio exists.

We organize our article as follows. In Section 2, we derive two estimators of the unknown log odds-ratio function. The
asymptotic properties of the estimators are also presented. In Section 3, simulation studies are conducted to evaluate the
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Table 1
2 × 2 table at Ti .

No disease Disease

Controls n11i n12i
Cases n21i n22i

performances of the proposed methods. A brief discussion is presented in Section 4. Technical conditions and a lemma are
relegated to the Appendix.

2. New estimation approaches

2.1. Table-wise equation based approach

In the log odds-ratio parametric regression problem, i.e., mi = exp(Tiβ), a Mantel–Haenszel estimating function for
regression parameter β was constructed by Hanfelt and Liang (1998) as

h(data;β) :=

n
i=1

∂mi

∂β
ωi(mi)(n11in22i − min12in21i), (1)

β̂ satisfies h(data; β̂) = 0, and is a consistent estimator ofβ . Theweightsωi(mi) are selected to bemi(β)
−3/2N−1

i tominimize
the asymptotic conditional variance of β̂ under the naive assumption of no association between incidence and exposure,
and to enforce the interchangeability property, where Ni = n11i + n12i + n21i + n22i, which is the count of events at Ti
(see also, Hanfelt and Liang, 1998). In the simple case for mi = m, for i = 1, 2, . . . , n, i.e., the common odds-ratio case,
m̂ =

n
i=1(n11in22i/Ni)/

n
i=1(n12in21i/Ni), which is shown by Breslow (1981) to be computationally efficient, reasonable,

and as efficient as the estimator based on the noncentral hypergeometric distribution (Cox, 1970) with asymptotic variance
being the criterion.

When the log odds-ratio function is set to be g(t), motivated byMantel–Haenszel estimating function (1), based on kernel
regression techniques, we now define the so-called table-wise equation,

L1{data;m(t)} :=

n
i=1

Kh(Ti − t){n11in22i − m(t)n12in21i}/Ni,

to find the estimator of g(t), where Kh(t) = h−1K(t/h)with K(·) being a kernel function, andm(t) = exp{g(t)}. By solving
L1{data;m(t)} = 0, we can obtain the estimator m̂(t) ofm(t), which is

n
i=1

Kh(Ti − t)(n11in22i/Ni)

 n
i=1

Kh(Ti − t)(n12in21i/Ni).

That estimator parallels the estimator given by Breslow (1981). We then get the table-wise equation based estimator of g(t)
(TWEE), denoted as ĝTW(t), which is

ĝTW(t) = log


n

i=1

Kh(Ti − t)(n11in22i/Ni)

 n
i=1

Kh(Ti − t)(n12in21i/Ni)


.

Define

ψ̂1(t) :=

n
i=1

Kh(Ti − t)(n11in22i/Ni)

 n
i=1

Kh(Ti − t)(Ni − 1),

and

ψ̂2(t) :=

n
i=1

Kh(Ti − t)(n12in21i/Ni)

 n
i=1

Kh(Ti − t)(Ni − 1).

Suppose that Ni ≠ 1, for each i ∈ {1, 2, . . . , n}, then, it can be derived easily that ψ̂1(t) and ψ̂2(t) are consistent
estimators of p11(t)p22(t) and p12(t)p21(t), respectively. Hence, ĝTW(t) is a consistent estimator of g(t).

Theorem 2.1. Suppose that the assumptions in the Appendix hold, and for each i ∈ {1, 2, . . . , n},Ni ≠ 1. If nh5
= O(1) as

n → ∞, then, for t an interior point of Ω ,

√
Nh(ĝTW(t)− g(t)− h2c2(K)v(t))

L
−→ N


0,
γ0(K)σ (t)

f (t)


,

with v(t) and σ(t) defined in the Appendix, where N =
n

i=1 Ni, c2(K) =

t2K(t)dt, and γ0(K) =


K 2(t)dt.

This theorem is a direct result from Lemma 1 in the Appendix using the delta method.



Author's personal copy

1804 Z. Chen et al. / Statistics and Probability Letters 81 (2011) 1802–1807

2.2. Cross-table-wise equation based method

If m(t) is the true parameter, we can show an important feature that is

E[rij{m(t)}] = O(h) = o(1),

for i = 1, 2, . . . , n and j = 1, 2, . . . , n, where rij{m(t)} = Kh(Ti−t)Kh(Tj−t){n11in22j−m(t)n12in21j}. By assigning probability
mass 1/n2 to each cross-table function rij{m(t)}, an empirical estimator of E[rij{m(t)}], i.e.,

n
i=1
n

j=1 rij{m(t)}/n
2, is

obtained, then, we define the so-called cross-table-wise equation as

L2(data;m(t)) :=

n
i=1

n
j=1

rij{m(t)}
n2

.

Solve L2(data;m(t)) = 0, the estimator m̂(t) ofm(t) can be obtained, which is
n

i=1

Kh(Ti − t)n11i

n
i=1

Kh(Ti − t)n22i


n

i=1

Kh(Ti − t)n12i

n
i=1

Kh(Ti − t)n21i


.

Then, the cross-table-wise equation based estimator of g(t) (CTWEE), denoted as ĝCTW(t), can be obtained, which is

log


n

i=1

Kh(Ti − t)n11i

n
i=1

Kh(Ti − t)n22i


n

i=1

Kh(Ti − t)n12i

n
i=1

Kh(Ti − t)n21i


.

We now state the intuitive interpretation for ĝCTW(t). Motivated by the idea of nonparametric regression techniques, we
give the local average 2 × 2 table at t in the interior ofΩ as

n
i=1

Kh(Ti − t)Table(Ti)
 n

i=1

NiKh(Ti − t), (2)

where Table(Ti) denotes the 2×2 table at Ti. We claim that the (i, j)th cell of (2), denoted as p̂ij(t), is a consistent estimate of
pij(t), for i = 1, 2; j = 1, 2. ĝCTW(t) is actually log[{p̂11(t)p̂22(t)}/{p̂12(t)p̂21(t)}], consequently, the consistence of ĝCTW(t)
can be got. Intuitively, taking the kernel to be the uniform kernel, ĝCTW(t) is actually the sample log odds ratio of the table

|Ti−t|≤0.5h

Table(Ti),

which is approximate to that by sampling repeatedly infinite times, i.e., O(nh) times, at t , thus the consistency of ĝCTW(t) is
guaranteed, as n → ∞, under Assumptions 2 and 3 in the Appendix.

Remark 1. The positiveness of p̂11(t), p̂12(t), p̂21(t), and p̂22(t), and p̂11(t)+ p̂12(t)+ p̂21(t)+ p̂22(t) = 1 are guaranteed.
Let P̂(t) := (p̂11(t), p̂12(t), p̂21(t), p̂22(t))′, P(t) := (p11(t), p12(t), p21(t), p22(t))′, B(t) := (b11(t), b12(t), b21(t), b22(t))′

with bij(t) =
1
2p
(2)
ij (t) +

f (1)(t)p(1)ij (t)

f (t) , for i = 1, 2; j = 1, 2, diag{P(t)} is a diagonal matrix with the elements of P(t) on the
main diagonal, and l(t) := b11(t)/p11(t)− b12(t)/p12(t)− b21(t)/p21(t)+ b22(t)/p22(t).

Theorem 2.2. Suppose that the assumption s given in the Appendix hold. We have the following results:
If nh5

= O(1) as n → ∞, then,

√
Nh(P̂(t)− P(t)− h2c2(K)B(t))

L
−→ N


0,
γ0(K)
f (t)

[diag{P(t)} − P(t)P(t)′]


,

and

√
Nh

ĝCTW(t)− g(t)− h2c2(K)l(t)

 L
−→ N


0,
γ0(K)δ(t)

f (t)


,

for every t in the interior of Ω , where N =
n

i=1 Ni, and δ(t) =
1

p11(t)
+

1
p12(t)

+
1

p21(t)
+

1
p22(t)

.

Following the same lines as the proof of Lemma 1, we can get the first equation in the theorem above, and applying the
delta method, the second one can be verified.

Remark 2. The number of tables falling into the neighborhood of t with bandwidth h is O(Nh), thus, as is stated in the
theorem, the convergence rate of the CTWEE is

√
Nh, intuitively.
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Table 2
Summary results of the Monte Carlo bias and mean squared error at 200 fixed points based on 500 simulated datasets. Entries from up to down are the
sample quartiles from the 200 biases andmean squared errors for n = 100, 150 and 300. MSE: mean squared error; Q1: lower quartile; Q3: upper quartile.

TWEE CTWEE Parametric
Bias MSE Bias MSE Bias MSE

n = 100 Q1 −0.1400 0.0331 −0.1393 0.0322 −0.1791 0.0434
Median −0.0029 0.0412 −0.0038 0.0400 −0.0144 0.0602
Q3 0.1062 0.0515 0.1018 0.0503 0.1700 0.0748

n = 150 Q1 −0.1146 0.0237 −0.1128 0.0230 −0.1762 0.0316
Median −0.0018 0.0300 −0.0012 0.0291 −0.0149 0.0509
Q3 0.0935 0.0353 0.0898 0.0345 0.1748 0.0680

n = 300 Q1 −0.0870 0.0130 −0.0850 0.0127 −0.1826 0.0204
Median −0.0004 0.0167 −0.0004 0.0162 −0.0155 0.0412
Q3 0.0664 0.0196 0.0653 0.0192 0.1710 0.0609

3. Simulation study

In this section, we investigate the finite sample performances of the proposed estimators in Section 2. We generate 500
datasets, each consisting of n points at which the 2×2 tables are observed.We take n = 100, 150 and 300 to represent small,
moderate and large numbers of tables, respectively. The Ti, i = 1, 2, . . . , n, are generated from a uniform distribution on
the interval [0, 1]. Given t , we take the log odds-ratio function g(t) = cos(2π t), the expectation of the binary variables
Z1(t) and Z2(t) are set to be et/(1 + et) and 0.6, respectively. The number of observations Ni for table i is set to be 25, for
i = 1, 2, . . . , n. From the log odds-ratio andmarginal mean functions, i.e., g(t), EZ1(t), and EZ2(t), the iterative proportional
fitting procedure (see also, Fitzmaurice and Laird, 1993) can be applied to obtain the probabilities of the four cells, i.e.,
p11(t), p12(t), p21(t), and p22(t). We generate the cell counts of the table at Ti, (n11i, n12i, n21i, n22i), from a multinomial
(Ni; p11(Ti), p12(Ti), p21(Ti), p22(Ti)) distribution, for i = 1, 2, . . . , n. Here, our simulated datasets are sparse datasets. Our
main focus is the estimation of the log odds-ratio function. For comparison purpose, we give the parametric model for
the log odds ratio, i.e., g(t) = β1 + β2t + β3t2 + β4t3, and use the Mantel–Haenszel estimating function (1) to estimate
β := (β1, β2, β3, β4)

′. If we get β̂, ĝ(t) under the parametric model can be obtained. The three estimators are evaluated,
the TWEE, the CTWEE and the estimator under the parametric model. Since the T vary from dataset to dataset, estimates
are obtained at 200 fixed equally spaced grid points within the range of T throughout the simulation. Numerical properties
of the three estimates are then investigated.

In the simulation study, the Monte Carlo bias and mean squared error (MSE) for each estimator are obtained at each of
the 200 fixed points. Table 2 summarizes the results. The MSE of the TWEE is similar to that of the CTWEE, which indicates
that the table-wise equation based method is as efficient as the cross-table-wise equation based method when MSE is used
as the criterion. The two proposed estimators show little biases. Compared to the estimator under the parametric model,
both proposed estimators exhibit less biases and smaller MSEs regardless of the number of tables for each dataset (i.e., n).
This is due to the fact that the parametric model is a misspecification.

We now compare the performances of two estimators through averages over all simulated datasets. Here, an index R
is calculated for comparing both proposed estimators with the estimator under the parametric model for each dataset.
We obtain the sums of squared deviations between the estimated and the true g values at the 200 fixed points for all
estimators. We define R to be the ratio of the two sums of squared deviations, with the numerator again calculated using
the estimator under the parametric model, and the denominator using the new estimator. The sample quantile plot of R is
given in Fig. 1 for n = 150. An R larger than 1 indicates that the proposed estimator has a smaller sum of squared errors than
the estimator under the parametric model. It is clearly showed by Fig. 1 that the proposed estimators are both superior to
the estimator under the parametric model for almost all 500 datasets. This is also due to the fact that the parametric model
is a misspecification. Furthermore, by the closeness of the solid and short dashes curves, we observe that the TWEE behaves
approximately as well as the CTWEE.

4. Discussion

Motivated by the Mantel–Haenszel estimating function (Hanfelt and Liang, 1998), we propose the table-wise equation
based estimator for the log odds-ratio function for sparse data. We also propose the cross-table-wise equation based
estimator. Both estimators are consistent and attain asymptotic normality. The two estimators are computational
straightforwardly from the samples. As is indicated in the simulation study, both proposals outperform the estimator based
on theMantel–Haenszel estimating function (1) under the parametricmodel, and the two proposals enjoy similar efficiency.
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Appendix

We investigate the large sample properties of the estimators given in Section 2. For this purpose, we give the following
regular conditions. They may not be the weakest possible conditions, but they are imposed to facilitate the proofs.
Assumptions:

1. T1, . . . , Tn are independently and identically sampled from a density having a version f (·) with compact support Ω .
In addition, f is twice continuously differentiable, and is bounded away from 0 in a neighborhood of the each t belonging to
the interior ofΩ . The function K(·) is a symmetric density function.

2. The log odds-ratio function g(t), and themarginalmean functions, i.e., EZ1(t) and EZ2(t), have continuous second order
derivatives in a neighborhood of each t belonging to the interior ofΩ .

3. h → 0 and nh3
→ ∞, as n → ∞.

4. The tables at all points are independent, and the cell counts of the table at Ti(n11i, n12i, n21i, n22i) have a multinomial
(Ni; p11(Ti), p12(Ti), p21(Ti), p22(Ti)) distribution, for i = 1, 2, . . . , n.

5. There exists an integer K0 such that Ni ≤ K0, for i = 1, 2, . . . , n.
DefineΣ(t) :=


σ11(t) σ12(t)
σ12(t) σ22(t)


, withσ11(t) being limn→∞[N{(N−3n+2M)p11(t)ω1(t)+(N−3n+2M)p22(t)ω1(t)+(n−

M)ω1(t)−2(2N−5n+3M)ω2
1(t)}/(N−n)2], σ22(t) being limn→∞[N{(N−3n+2M)p12(t)ω2(t)+(N−3n+2M)p21(t)ω2(t)+

(n − M)ω2(t)− 2(2N − 5n + 3M)ω2
2(t)}/(N − n)2], and σ12(t) being limn→∞[−2N(2N − 5n + 3M)ω1(t)ω2(t)/(N − n)2],

whereM =
n

i=1(1/Ni), ω1(t) = p11(t)p22(t), and ω2(t) = p12(t)p21(t). Let ω(t) := (ω1(t), ω2(t))′; c(t) := (c1(t), c2(t))′

with ci(t) being ω
(1)
i (t)f

(1)(t)/f (t)+ 1
2ω

(2)
i (t), for i = 1, 2; v(t) := c1(t)/ω1(t)− c2(t)/ω2(t); and σ(t) := σ11(t)/ω2

1(t)−
2σ12(t)/{ω1(t)ω2(t)} + σ22(t)/ω2

2(t).

Lemma 1. Suppose that the assumptions given above hold, and Ni ≠ 1, for each i ∈ {1, 2, . . . , n}. If nh5
= O(1) as n → ∞,

then, for t an interior point of Ω ,

√
Nh

ψ̂(t)− ω(t)− h2c2(K)c(t)


L

−→ N


0,
γ0(K)
f (t)

Σ(t)


,

where ψ̂(t) = (ψ̂1(t), ψ̂2(t))′.
Proof. E(n11in22i | Ti) = Ni(Ni − 1)p11(Ti)p22(Ti), and Var(n11in22i | Ti) = {−2Ni(Ni − 1)(2Ni − 3)p211(Ti)p

2
22(Ti)+ Ni(Ni −

1)(Ni−2)p211(Ti)p22(Ti)+Ni(Ni−1)(Ni−2)p11(Ti)p222(Ti)+Ni(Ni−1)p11(Ti)p22(Ti)}. Also, E(n12in21i | Ti) andVar(n12in21i | Ti)
can be expressed in the similar forms. Apply the familiar proof techniques in Fan and Gijbels (1996, Chapter 5) or Pagan and
Ullah (1999, Chapter 3), the result follows. �
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