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Abstract

Despite enthusiasm for Multi-Agent LLM Systems (MAS), their performance gains 1

on popular benchmarks are often minimal. This gap highlights a critical need for a 2

principled understanding of why MAS fail. We create MAD, the first Multi-Agent 3

System Failure Dataset, to outline the failure dynamics in MAS for guiding the 4

development of better future systems. To enable systematic classification of failures 5

for MAD, we build the first Multi-Agent System Failure Taxonomy (MAST). We 6

develop MAST through rigorous analysis of 150 traces, guided closely by expert 7

human annotators and validated by high inter-annotator agreement (κ = 0.88). This 8

process identifies 14 unique modes, clustered into 3 categories: (i) specification 9

issues, (ii) inter-agent misalignment, and (iii) task verification. To enable scalable 10

annotation, we develop an LLM-as-a-Judge pipeline with high agreement with 11

human annotations. We publicly release our comprehensive dataset (MAD), the 12

MAST, and our LLM annotator to facilitate widespread research and development 13

in MAS. 14

“Happy families are all alike; each unhappy family is unhappy in its own way.” (Tolstoy [1]) 15

“Successful systems all work alike; each failing system has its own problems.” (Anonymous Authors ‘25) 16

1 Introduction 17

Recently, Large Language Model (LLM) based agentic systems have gained significant attention 18

in the AI community [2–4] and multi-agent systems are increasingly explored in various domains 19

[5–11]. Despite the increasing adoption of MAS, their performance gains often remain minimal 20

compared to single-agent frameworks [12] or simple baselines like best-of-N sampling [13]. Our 21

empirical analysis reveals 41% to 86.7% failure rate on 7 state-of-the-art (SOTA) open-source MAS 22

detailed in Figure 5 (Appendix C). This motivates the fundamental question we address: Why do 23

MAS fail? The contributions of this paper are as follows: 24

• We introduce and open-source MAD, the first large-scale MAS failure dataset with consistent 25

annotations from 7 MAS and two model familes. And MAD-human, a detailed inter-annotator study 26

results with human labels. Together serve to facilitate research into MAS failures. 27

• We introduce MAST, the first empirically grounded taxonomy of MAS failures, providing a 28

structured framework for defining, understanding and annotating failures. 29

• We develop a scalable LLM-as-a-judge annotation pipeline integrated with MAST for efficiently 30

annotating MAD and enabling analysis of MAS performance, diagnosis of failure modes, and 31

understanding of failure breakdowns. 32

• We demonstrate through case studies that failures identified by MAST often stem from system design 33

issues, not just LLM limitations or simple prompt following, and require more than superficial 34

fixes, thereby highlighting the need for structural MAS redesigns. 35
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Figure 1: MAST: A Taxonomy of MAS Failure Modes. The inter-agent conversation stages indicate
when a failure typically occurs within the end-to-end MAS execution pipeline. A failure mode
spanning multiple stages signifies that the underlying issue can manifest or have implications across
these different phases of operation. The percentages shown represent the prevalence of each failure
mode and category as observed in our analysis of 1242 MAS execution traces. Detailed definitions
for each failure mode and illustrative examples are available in Appendix B.

2 Related Work36

The promising capabilities of agentic systems have inspired research into solving specific challenges37

[14–18]. While these works meaningfully contribute towards understanding specific issues or38

providing high-level overviews, they do not offer a fine-grained, empirically grounded taxonomy39

of why MAS fail across diverse systems and tasks. Numerous benchmarks also exist to evaluate40

agentic systems [19–24]. These evaluations are crucial but primarily facilitate a top-down perspective,41

focusing on aggregate performance or high-level objectives like trustworthiness and security [25, 26].42

Our work complements these efforts by providing a bottom-up analysis focused on identifying43

specific failure modes in MAS. Several works highlight challenges in building robust agentic systems44

and suggest design principles, often focused on single-agent settings [13, 27]. Our work extends45

these insights to the multi-agent context. Despite the growing interest in LLM agents, dedicated46

research systematically characterizing their failure modes remains limited, particularly for MAS.47

While Bansal et al. [28] catalogs challenges in human-agent interaction, our contribution focuses48

specifically on failures within autonomous MAS execution. Other related work includes taxonomies49

for evaluating multi-turn LLM conversations [29] or specific capabilities like code generation [30].50

These differ significantly from our goal of developing a generalizable failure taxonomy for multi-51

agent interactions and coordination. Further related efforts aim to improve MAS through different52

approachs: AgentEval [31], AGDebugger [32], MAS debugger Zhang et al. [33]. Thus, MAD and53

MAST represent, to our knowledge, the first empirically derived, comprehensive dataset and taxonomy54

focused specifically on MAS failures.55

3 The Multi-Agent Systems Dataset56

We introduce MAD, the Multi-Agent System Failure Dataset, an empirically grounded dataset compris-57

ing 1242 annotated execution traces collected from 7 popular MAS frameworks, covering domains of58

coding, math, and generic tasks. In this section, we detail our approach, which centers on building59

the first empirical MAS failure taxonomy, MAST, and a scalable annotation pipeline for systematic60

and comprehensive data collection. Figure 2 summarizes our methodological workflow.61

We first collect 150 traces from five MAS frameworks, which are closely examined by six human62

experts. Our goal at this stage is to identify as many distinct failure modes as possible, ensuring these63
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Figure 2: Methodological workflow for constructing the MAD dataset, involving the empirical iden-
tification of failure modes, the development of MAST, iterative refinement through inter-annotator
agreement studies (κ = 0.88), and the creation of a scalable LLM annotation pipeline. This figure
highlights our systematic approach to creating a comprehensive dataset for studying MAS failures.

observed patterns are not merely artifacts of a single system but can likely apply more broadly. To 64

achieve this without predefined hypotheses, we adopt the Grounded Theory (GT) approach [34]. 65

Five MAS frameworks and two task categories are analyzed with core GT techniques: open coding 66

[35], constant comparative analysis, memoing, and theorizing. This iterative analysis continues until 67

we reach theoretical saturation, where further data analysis does not yield new failure mode insights. 68

To develop a taxonomy (Section 4) that is unambiguous and consistently applicable by different 69

annotators, we rigorously validate and refine MAST definitions through Inter-Annotator Agreement 70

(IAA) studies. This iterative process begins with a preliminary version of MAST derived from our GT 71

findings. In each round of IAA, three expert annotators independently label a subset of five randomly 72

selected traces from our initial 150+ trace collection using MAST. We then facilitate discussions to 73

collectively resolve any disagreements. Based on these discussions, we iteratively refine MAST. We 74

measure agreement using Cohen’s Kappa score, achieving a strong average of κ = 0.88 in the final 75

rounds. 76

To enable scalable and automated failure annotation for MAD, we develop an LLM-as-a-Judge pipeline 77

(LLM annotator), building upon our validated MAST and few-shot examples from our human-annotated 78

data (details in Appendix K), to classify observed failure modes. The LLM annotator achieves high 79

agreement with human experts (accuracy 94%, Cohen’s Kappa of 0.77; Table 2). In order to test 80

the generalizability of our finalized MAST and the LLM annotator, we evaluate their performance on 81

two new MAS (OpenManus and Magentic-One) with two new benchmarks (MMLU and GAIA) 82

not part of the initial MAST development. An additional human IAA round on these out-of-domain 83

traces using the finalized MAST yields a strong Cohen’s Kappa score of 0.79. This demonstrates the 84

robustness of MAST and LLM annotator. We further detail the uniqueness of MAST failure modes via a 85

correlation study in Appendix E. Finally, we expand data collection to construct MAD, comprising 86

1242 annotated traces from seven popular MAS frameworks (Table 1). We also release MAD-human, 87

consisting of all traces annotated by human experts during our IAA studies, where each annotation 88

specifies MAST failure modes with textual justifications. We open-source MAD and MAD-human as 89

resources to analyze MAS failure dynamics and guide robust system design. 90

4 The Multi-Agent System Failure Taxonomy 91

MAST, illustrated in Figure 1, identifies 14 fine-grained failure modes, which we map to MAS 92

execution stages (Pre-Execution, Execution, and Post-Execution) where their root causes commonly 93

emerge. These modes are organized into 3 overarching categories (specification issues, inter-agent 94

misalignment, task verification) reflecting the fundamental nature of the observed failures. We do 95

not claim MAST is exhaustive, it offers precise definitions for a structured approach to understanding 96

why MAS fail. Detailed definitions and discussions for each failure mode (FM) are available in 97

Appendix B, with specific examples in Appendix K. 98

5 Towards better Multi-Agent LLM Systems 99

Our analysis of MAD reveals that failure distributions differ markedly across various MAS, often 100

reflecting their unique architectural characteristics and design philosophies. For example, as il- 101

lustrated in Figure 3, we observe specific patterns: AppWorld frequently suffers from premature 102
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Figure 3: Distribution of failure in MAD with MAST labels on total 210 traces. This plot visualizes the
failure distributions of the first 30 traces for each system. As the specific tasks and benchmarks may
differ across the MAS configurations shown, these results are intended to illustrate system-specific
failure profiles rather than to serve as a performance comparison across MAS.

terminations (FM-3.1), potentially due to its star topology and lack of a predefined workflow making103

termination conditions less obvious; OpenManus exhibits a tendency towards step repetition (FM-104

1.3); and HyperAgent could benefit from addressing its dominant failure modes of step repetition105

(FM-1.3) and incorrect verification (FM-3.3). These system-specific profiles underscore that there106

is no one-size-fits-all solution to MAS failures. These comparative analyses, detailed further in107

Appendix F, provide insights into how model choice and architectural patterns influence system108

performance and distribution of failures. Using our LLM annotator with MAST, developers can obtain109

quantitative analyses of failure profiles for specific systems. We demonstrate MAST’s practical usage in110

guiding MAS improvement in our case studies (Appendix H). The Failure Mode breakdown analysis111

(Appendix H.3) shows which failure modes were mitigated and reveals any resulting trade-offs. This112

granular view, moving beyond aggregate metrics, is crucial for understanding why an intervention113

works and for iterating effectively towards more robust systems.114

While one could simply attribute failures in MAD to limitations of present-day LLM (e.g., halluci-115

nations, misalignment), we conjecture that improvements in the base model capabilities will be116

insufficient to address the full MAST. Instead, we argue that good MAS design requires organizational117

understanding – even organizations of sophisticated individuals can fail catastrophically [36] if the118

organization structure is flawed. Previous research in high-reliability organizations has shown that119

well-defined design principles can prevent such failures [37, 38]. In our intervention case studies120

(Appendix H), we apply MAS system workflow and prompt changes respectively (results in Table 5).121

With the same underlying model, we achieve max improvements of 15.6%. This highlights that MAS122

failures can be address with better system designs.123

6 Conclusion124

In this study, we conduct the first systematic investigation into why MAS fail. This investigation125

results in the Multi-Agent Dataset (MAD): a comprehensive public resource of over 1000 annotated126

execution traces from 7 popular MAS frameworks, which we create to outline MAS failure dynamics127

and guide future system development. To enable MAD’s systematic annotation and analysis, we128

first develop the Multi-Agent System Failure Taxonomy (MAST). We build MAST through a rigorous129

Grounded Theory-based analysis of an initial 150 traces, validating its definitions with strong inter-130

annotator agreement and identifying 14 distinct failure modes across 3 categories. For scalable131

annotation of MAD using MAST, we then develop an LLM annotator, confirming its high agreement132

with human experts. Together, MAD and MAST provide a foundational framework and empirical133

grounding for future MAS research. We are excited about the potential of MAS, but their widespread134

adoption hinges on achieving greater reliability. Our work, through the public release of MAD, MAST,135

and the LLM annotator, contributes towards this goal. By systematically identifying and categorizing136

challenges, we aim to open up concrete research directions and equip the community to develop more137

robust and effective multi-agent systems.138
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Organization of Appendix366

The appendix is organized as follows: in Section A some tables and images mentioned in main367

sections are reported, in Section B further details about failure categories and failure modes are given,368

in Section C we provide some details about the multi-agent systems we have annotated and studied,369

in Section D we describe the tasks in ProgramDev and ProgramDev-v2 Datset, in Section E we plot370

the correlations between MAS failure modes, in Section F we analysis failure comparison between371

models and MAS, in Section G we discuss some tactical approaches and structural strategies to make372

MASs more robust to failures, in Section H we present two case studies where we show that tactical373

approaches can get only limited results, in Sections I and J there are prompt interventions we tested374

on AG2 and ChatDev case studies, in Section K examples of every failure mode are reported and375

commented.376

A Tables and Images377

Table 1: MAD configuration details. HE: Human Evaluated (Task completions rates are checked by
humans), HA: Human Annotated (Failure modes are annotated by humans), LA: LLM Annotated
(Failure modes are annotated by LLM-as-a-Judge).

MAS Benchmark LLM Annotation Trace #

ChatDev ProgramDev GPT-4o HE, HA, LA 30
MetaGPT ProgramDev GPT-4o HE, HA, LA 30
HyperAgent SWE-Bench Lite Claude-3.7-Sonnet HE, HA, LA 30
AppWorld Test-C GPT-4o HE, HA, LA 30
AG2 (MathChat) GSM-Plus GPT-4 HE, HA, LA 30
Magentic-One GAIA GPT-4o HE, HA, LA 30
OpenManus ProgramDev GPT-4o HE, HA, LA 30

ChatDev ProgramDev-v2 GPT-4o LA 100
MetaGPT ProgramDev-v2 GPT-4o LA 100
MetaGPT ProgramDev-v2 Claude-3.7-Sonnet LA 100

AG2 (MathChat) OlympiadBench GPT-4o HE, LA 206
AG2 (MathChat) GSMPlus Claude-3.7-Sonnet HE, LA 193
AG2 (MathChat) MMLU GPT-4o-mini HE, LA 168
Magentic-One GAIA GPT-4o HE, LA 165

Table 2: Performance of LLM-as-a-judge pipeline

Model Accuracy Recall Precision F1 Cohen’s κ

o1 0.89 0.62 0.68 0.64 0.58
o1 (few shot) 0.94 0.77 0.833 0.80 0.77

B MAST Failure Categories: Deep Dive378

We acknowledge that some MAS failures can stem from fundamental limitations of current LLMs,379

such as hallucination or instruction following. However, in developing MAST, we focus on identifying380

failure patterns where improvements in system design, agent coordination, and verification can offer381

room to improve the reliability of MAS, often independently of or complementary to advancements in382

the base models themselves. We now discuss each failure category (FC) in MAST and its implications.383
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Supervisor Agent Phone Agent Python Output 

Login with username a@mail.com and 
password XvV@Hof.Then…

<code to display docs for phone app>

"name": "username","description": 
"Your account phone_number",

apis.phone.login(username="a@mail.com", 
password="XvV@Hof")

{"message":"Invalid credentials"}

The provided login credentials are 
incorrect. Could you please provide 

the correct username and password for 
the phone app?

1

6

2

3

4

5Missing feedback on username should be the phone number

Figure 4: Visualization of a trace segment in MAD. This illustrates an agent-to-agent conversation
exhibiting Failure Mode 2.4: Information Withholding. The Phone Agent fails to communicate API
requirements (username format) to the Supervisor Agent, who also fails to seek clarification, leading
to repeated failed logins and task failure.

FC1. Specification Issues. Failures originate from system design decisions, and poor or ambiguous
prompt specifications.
�. Insight 1. MAS failure is not merely a function of challenges in the underlying model; a
well-designed MAS can result in performance gain when using the same underlying model.

384

Failures in FC1 occur during execution but often reflect flaws in pre-execution design choices 385

regarding system architecture, prompt instructions, or state management. These include failing to 386

follow task requirements (FM-1.1, 10.98%) or agent roles (FM-1.2, 0.5%), step repetitions (FM-1.3, 387

17.14%), context loss (FM-1.4, 3.33%), or not recognizing task completion (FM-1.5, 9.82%). While 388

FM-1.1 and FM-1.2, disobey specifications, may seem like general instruction-following limitation, 389

we identify deeper causes: (1) flaws in MAS design regarding agent roles and workflow, (2) poor 390

user prompt specifications, or (3) limitations of the underlying LLM. We posit that a well-designed 391

MAS should interpret high-level objectives with minimal but clear user input to mitigate the impact 392

of points (2) and (3). 393

For instance, when ChatDev is tasked to create a Wordle game with the prompt a standard 394

wordle game by providing a daily 5-letter... , the generated program uses a fixed word 395

dictionary. Even with a more explicit prompt like ...without having a fixed word bank, 396

and randomly select a new 5-letter word each day , ChatDev still produces code with 397

a fixed list and new errors. This suggests failures stem from the MAS’s design for interpreting 398

specifications. Our intervention studies (Appendix H) show that improving agent role specifications 399

alone yields a +9.4% success rate increase for ChatDev with the same user prompt and LLM (GPT-4o). 400

FC2. Inter-Agent Misalignment. Failures arise from a breakdown in critical information flow
from inter-agent interaction and coordination during execution.
�. Insight 2. Solutions focused on context or communication protocols are often insufficient for
FC2 failures, which demand deeper ‘social reasoning’ abilities from agents.

401

FC2 covers failures in agent coordination. These include unexpected conversation resets (FM-2.1, 402

2.33%), proceeding with wrong assumptions instead of seeking clarification (FM-2.2, 11.65%), task 403

derailment (FM-2.3, 7.15%), withholding crucial information (FM-2.4, 1.66%), ignoring other agents’ 404

input (FM-2.5, 0.17%), or mismatches between reasoning and action (FM-2.6, 13.98%). Figure 4 405

illustrates information withholding (FM-2.4). Diagnosing FC2 failures can be complex, as similar 406

surface behaviors (e.g., missing information) can stem from different root causes like withholding 407

(FM-2.4), ignoring input (FM-2.5), or context mismanagement (FM-1.4), underscoring the need for 408

MAST’s fine-grained modes. 409

Recent system innovations, such as Model Context Protocol [39] and Agent to Agent [40], improve 410

agent communication by standardizing message formats from different tool or agent providers. How- 411

ever, the errors we observe in FC2 occur even when agents within the same framework communicate 412

using natural language. This signals a deeper agent interaction dynamic challenge: the collapse 413

of ’theory of mind’ [41], where agents fail to accurately model other agents’ informational needs. 414

Addressing this likely requires structural improvements to the content of agent messages or enhancing 415

models’ contextual reasoning and their capacity to infer other agents’ informational needs, such as 416

through targeted training, as base LLMs are generally not pre-trained for such nuanced inter-agent 417

dynamics. Thus, robust solutions will likely involve a combination of improved MAS architecture 418

and model-level advancements in communicative intelligence. 419
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FC3. Task Verification. Failures involve inadequate verification processes that fail to detect or
correct errors, or premature termination of tasks.
�. Insight 3. Multi-Level Verification is Needed. Current verifier implementations are often
insufficient; sole reliance on final-stage, low-level checks is inadequate.

420

FC3 failures are related to the quality control of the final output, including premature termination421

(FM-3.1, 7.82%), no or incomplete verification (FM-3.2, 6.82%), or incorrect verification (FM-3.3,422

6.66%). These highlight challenges in ensuring output correctness and reliability. Systems with423

explicit verifiers like MetaGPT and ChatDev generally show fewer total failures (Figure 3), indicating424

explicit checks help. However, the presence of a verifier is not a silver bullet, as overall MAS success425

rates can still be low. For example (FM-3.2), a ChatDev-generated chess program passes superficial426

checks (e.g., code compilation) but contains runtime bugs because it fails to validate against actual427

game rules, rendering the output unusable despite review phases.428

During our GT analysis of MAS traces, we find that many existing verifiers perform only superficial429

checks, despite being prompted to perform thorough verification, such as checking if the code430

compiles or if there are leftover TODO comments. We posit that MAS development should take431

lessons from traditional software development where programmers test their code before committing.432

More rigorous verification is needed, such as using external knowledge, collecting testing output433

throughout generation, and multi-level checks for both low-level correctness and high-level objectives.434

We demonstrate this in an intervention study where adding a high-level task objective verification step435

to ChatDev yields a +15.6% improvement in task success on ProgramDev (details in Appendix H).436

B.1 FC1. Specification Issues437

This category includes failures that arise from deficiencies in the design of the system architecture,438

poor conversation management, unclear task specifications or violation of constraints, and inadequate439

definition or adherence to the roles and responsibilities of the agents.440

We identify five failure modes under this category:441

• FM-1.1: Disobey task specification - Failure to adhere to the specified constraints or442

requirements of a given task, leading to suboptimal or incorrect outcomes.443

• FM-1.2: Disobey role specification - Failure to adhere to the defined responsibilities and444

constraints of an assigned role, potentially leading to an agent behaving like another.445

• FM-1.3: Step repetition - Unnecessary reiteration of previously completed steps in a446

process, potentially causing delays or errors in task completion.447

• FM-1.4: Loss of conversation history - Unexpected context truncation, disregarding recent448

interaction history and reverting to an antecedent conversational state.449

• FM-1.5: Unaware of termination conditions - Lack of recognition or understanding of the450

criteria that should trigger the termination of the agents’ interaction, potentially leading to451

unnecessary continuation.452

B.2 FC2. Inter-Agent Misalignment453

This category includes failures arising from ineffective communication, poor collaboration, conflicting454

behaviors among agents, and gradual derailment from the initial task.455

We identify six failure modes under this category:456

• FM-2.1: Conversation reset - Unexpected or unwarranted restarting of a dialogue, poten-457

tially losing context and progress made in the interaction.458

• FM-2.2: Fail to ask for clarification - Inability to request additional information when459

faced with unclear or incomplete data, potentially resulting in incorrect actions.460

• FM-2.3: Task derailment - Deviation from the intended objective or focus of a given task,461

potentially resulting in irrelevant or unproductive actions.462

• FM-2.4: Information withholding - Failure to share or communicate important data or463

insights that an agent possess and could impact decision-making of other agents if shared.464
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• FM-2.5: Ignored other agent’s input - Disregarding or failing to adequately consider 465

input or recommendations provided by other agents in the system, potentially leading to 466

suboptimal decisions or missed opportunities for collaboration. 467

• FM-2.6: Reasoning-action mismatch - Discrepancy between the logical reasoning process 468

and the actual actions taken by the agent, potentially resulting in unexpected or undesired 469

behaviors. 470

B.3 FC3. Task Verification 471

This category includes failures resulting from premature execution termination, as well as insufficient 472

mechanisms to guarantee the accuracy, completeness, and reliability of interactions, decisions, and 473

outcomes. 474

We identify three failure modes under this category: 475

• FM-3.1: Premature termination - Ending a dialogue, interaction or task before all necessary 476

information has been exchanged or objectives have been met, potentially resulting in 477

incomplete or incorrect outcomes. 478

• FM-3.3: No or incomplete verification - (partial) omission of proper checking or confirma- 479

tion of task outcomes or system outputs, potentially allowing errors or inconsistencies to 480

propagate undetected. 481

• FM-3.3: Incorrect verification - Failure to adequately validate or cross-check crucial 482

information or decisions during the iterations, potentially leading to errors or vulnerabilities 483

in the system. 484
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C Details of Multi-Agent Systems Evaluated485

In this section, we provide details on MAS we evaluated during this study and their performance486

benchmark evaluation.487

Magentic-One
(GAIA)

AG2
(OlympiadBench)

AppWorld
(Test-C)

HyperAgent
(SWE-Bench Lite)

ChatDev
(ProgramDev)

MetaGPT
(ProgramDev)

38.0% 62.0%

59.0% 41.0%

13.3% 86.7%

25.3% 74.7%

33.3% 66.7%

40.0% 60.0%

Success Failure

Figure 5: Failure rates of six popular Multi-Agent LLM Systems with GPT-4o and Claude-3.
Performances are measured on different benchmarks, therefore they are not directly comparable.

C.1 Overview of MAS488

In this study, we evaluated 7 open-source. The architecture and the purpose of the systems is detailed489

in the table blow.490

Table 3: Overview of MAS covered in MAD

MAS Agentic
Architecture Purpose of the System

MetaGPT
[42] Assembly Line Simulating the SOPs of different roles in Software Com-

panies to create open-ended software applications

ChatDev
[5]

Hierarchical
Workflow

Simulating different Software Engineering phases like
(design, code, QA) through simulated roles in a software
engineering company

HyperAgent
[43]

Hierarchical
Workflow

Simulating a software engineering team with a central
Planner agent coordinating with specialized child agents
(Navigator, Editor, and Executor)

AppWorld
[44] Star Topology

Tool-calling agents specialized to utility services (ex:
GMail, Spotify, etc.) being orchestrated by a supervi-
sor to achieve cross-service tasks

AG2
[45]

N/A - Agentic
Framework

An open-source programming framework for building
agents and managing their interactions.

Magentic-One
[11] Star Topology

A generalist multi-agent system designed to autonomously
solve complex, open-ended tasks involving web and file-
based environments across various domains.

OpenManus
[10] Hierarchical

An open-source multi-agent framework designed to facili-
tate the development of collaborative AI agents that solve
real-world tasks. It was inspired by the Manus AI agent.

C.2 Multi-Agent Systems in the Initial Annotation Phase491

MetaGPT. MetaGPT [42] is a multi-agent system that simulates a software engineering company492

and involves agents such as a Coder and a Verifier. The goal is to have agents with domain-493

expertise (achieved by encoding Standard Operating Procedures of different roles into agents prompts)494

collaborativelty solve a programming task, specified in natural language.495
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ChatDev. ChatDev is a generalist multi-agent framework that initializes different agents, each 496

assuming common roles in a software-development company [46]. The framework breaks down the 497

process of software development into 3 phases: design, coding and testing. Each phase is divided 498

into sub-tasks, for example, testing is divided into code review (static) and system testing (dynamic). 499

In every sub-task, two agents collaborate where one of the agents acts as the orchestrator and initiates 500

the interaction and the other acts as an assistant to help the orchestrator achieve the task. The 2 501

agents then hold a multi-turn conversation to achieve the goal stated by the orchestrator ultimately 502

leading to the completion of the task, marked by a specific sentinel by either agents. ChatDev 503

has the following agent roles: CEO, CTO, Programmer, Reviewer and Tester. ChatDev introduces 504

“Communicative Dehallucination”, which encourages the assistant to seek further details about the 505

task over multiple-turns, instead of responding immediately. 506

HyperAgent. HyperAgent [43] is a framework for software engineering tasks organized around 507

four primary agents: Planner, Navigator, Code Editor, and Executor. These agents are enhanced by 508

specialized tools, designed to provide LLM-interpretable output. The Planner communicates with 509

child agents via a standardized message format with two fields: Context (background and rationale) 510

and Request (actionable instructions). Tasks are broken down into subtasks and published to specific 511

queues. Child agents, such as Navigator, Editor, and Executor instances, monitor these queues and 512

process tasks asynchronously, enabling parallel execution and significantly improving scalability and 513

efficiency. For example, multiple Navigator instances can explore different parts of a large codebase 514

in parallel, the Editor can apply changes across multiple files simultaneously, and the Executor can 515

run tests concurrently, accelerating validation. 516

AppWorld. AppWorld is a benchmark, that provides an environment with elaborate mocks of various 517

everyday services like eShopping Website, Music Player, Contacts, Cost-sharing app, e-mail, etc [44]. 518

The benchmark consists of tasks that require executing APIs from multiple services to achieve 519

the end-users tasks. The AppWorld benchmark provides a ReAct based agent over GPT-4o as a 520

strong baseline. We create a multi-agent system over AppWorld derived from the baseline ReAct 521

agent, where each agent specializes in using one of the services mocked in AppWorld, with detailed 522

instructions about the APIs available in that service, and access to the documentation for that specific 523

service. A supervisor agent receives the task instruction to be completed, and can hold one-on-one 524

multi-turn conversations with each of the service-specific agents. The service-agents are instructed 525

to seek clarification with the supervisor, whenever required. The supervisor agent holds access to 526

various information about the human-user, for example, credentials to access various services, name, 527

email-id and contact of the user, etc, which the service-agents need to access the services, and must 528

clarify with the supervisor agent. 529

AG2. AG2 (formerly AutoGen) [47] is an open-source programming framework for building agents 530

and managing their interactions. With this framework, it is possible to build various flexible conversa- 531

tion patterns, integrating tools usage and customizing the termination strategy. 532

C.3 Close-Source MAS 533

In our efforts to build a comprehensive dataset, we also explore popular closed-source platforms that 534

are speculated to function as MAS. A notable example is Manus [48], a general AI agent platform. 535

However, evaluating and incorporating such systems into MAD for fine-grained failure analysis presents 536

significant challenges. Specifically, with systems like Manus, the underlying language model is often 537

not disclosed, and more critically, the platforms may not provide access to full agent execution traces. 538

This lack of transparency into the internal conversational and operational steps makes reliable, detailed 539

failure annotation using MAST infeasible. While we conduct human evaluation of task correctness for 540

some closed-source systems (for instance, Manus achieves a 60% success rate on our ProgramDev 541

benchmark), the absence of comprehensive trace data prevents their inclusion in the primary MAD 542

which focuses on deeply annotated failure dynamics. Our focus for MAD thus remains on systems 543

where such trace analysis can yield robust insights. 544
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D ProgramDev and ProgramDev-v2 Datasets545

The ProgramDev dataset contains 30 coding problems 1. These tasks are programming challenges,546

such as implementing Tic-Tac-Toe, Chess, or Sudoku, for which abundant solutions and descriptions547

are readily available online. We design ProgramDev with tasks intended to be relatively straightfor-548

ward for MAS, rather than exceptionally difficult, to better isolate specific failure dynamics. We549

later extend this to ProgramDev-v2, a 100-problem dataset developed primarily for the comparative550

analyses of MAS architectures and underlying LLMs presented in Figure 8.551

1https://github.com/multi-agent-systems-failure-taxonomy/MAST/blob/main/traces/
programdev/programdev_dataset.json
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E MAS Failure Modes Correlation 552

We evaluate MAST’s effectiveness based on three key aspects: its generalization to unseen systems 553

and datasets, the balanced distribution of identified failures, and the distinctiveness of its failure 554

categories. This secion details the coreelation analysis. 555

Figure 6 shows low correlations (0.17-0.32). This suggests that the categories capture distinct aspects 556

of MAS failures with limited overlap, supporting the taxonomy’s structure. This distinctiveness is 557

crucial because, as noted in Insight 2, failures with similar surface behaviors can stem from different 558

root causes (e.g., memory management vs. agent coordination). 559

Although MAST’s fine-grained nature helps differentiate root cause, it also poses a challenge for 560

our LLM annotator. Analyzing correlations between specific failure modes (see Appendix E for 561

Figure 7) shows moderate correlations (max of 0.63) between modes with similar symptoms might 562

lead automated evaluators to conflate distinct root causes.
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Figure 8: Comparison on MAST failure modes and categories on ProgramDev-v2 dataset explained
in Section D to analyze LLM choice effect. MetaGPT is used for both cases with GPT-4o and
Claude-3.7-Sonnet on two comparative cases.
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Figure 9: Comparison on MAST failure modes and categories on ProgramDev-v2 dataset explained in
Section D to analyze MAS architecture effect. GPT-4o is used on two comparative cases, one using
ChatDev and the other on MetaGPT.

F Understanding Failures: The Impact of Different LLMs and Agent564

Architectures565

To understand how choices of underlying LLMs and MAS architectures influence failure patterns, we566

analyze results from our MAD, categorized by MAST in the Figures 8 and 9.567

First, we examine the impact of different LLMs by comparing GPT-4o and Claude 3.7 Sonnet within568

the MetaGPT framework on programming tasks Figure 8. Our findings indicate that GPT-4o exhibits569

substantially fewer failures in FC1 (Specification Issues, e.g., disobeying task or role specifications)570

and FC2 (Inter-Agent Misalignment, e.g., issues in coordination or communication) compared to571

Claude 3.7 Sonnet. This suggests GPT-4o may possess stronger capabilities in instruction following572

or aspects of ‘social reasoning’ for agentic collaboration within this setup. However, both models573

show a high number of failures in FC3 (Task Verification), indicating that robust verification remains574

a significant challenge regardless of the LLM used, though GPT-4o has a marginally lower count575

here.576

Next, we investigate the effect of MAS architecture by comparing MetaGPT and ChatDev, both577

using GPT-4o as the underlying LLM, on the ProgramDev-v2 benchmark in Figure 9. We observe578

distinct failure profiles: MetaGPT demonstrates significantly fewer failures in FC1 (Specification579

Issues) and FC2 (Inter-Agent Misalignment) compared to ChatDev. This could imply that MetaGPT’s580

architecture or operational flow is more effective at maintaining adherence to specifications and581

ensuring smoother agent coordination with GPT-4o. Interestingly, despite its stronger performance in582

FC1 and FC2, MetaGPT exhibits a considerably higher number of FC3 (Task Verification) failures583

than ChatDev. This may stem from the fact that in MetaGPT, the adherence to task specifications and584

role specifications ar done mostly through SoPs, demonstrating strong performance in FC1 especially.585

However ChatDev places a higher importance in verification as it is reflected by the specific testing and586

reviewing phases in ChatDev’s archiectural design, causing fewer verification issues. These results587

18



show that both the choice of LLM and the specific design of the MAS architecture critically shape 588

the landscape of potential failures, and improvements likely require a holistic approach considering 589

both aspects. 590
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G Approaches and strategies to improve MASs591

In this section, we discuss some approaches to make MASs more robust to failures. We categorize592

these strategies into two main groups: (i) tactical approaches, (ii) structural strategies. Tactical ap-593

proaches involve straightforward modifications tailored for specific failure modes, such as improving594

the prompts, topology of the network of agents, and conversation management. In Section H, we595

experiment with such approaches in two case studies, and demonstrate that the effectiveness of these596

methods is not consistent. This leads us to consider a second category of strategies that are more597

comprehensive methods with system-wide impacts: strong verification, enhanced communication598

protocols, uncertainty quantification, and memory and state management. These strategies require599

more in-depth study and meticulous implementation, and remain open research topics for future600

exploration. See Table 4 for our proposed mapping between different solution strategies and the601

failure categories.602

G.1 Tactical Approaches603

This category includes strategies related to improving prompts and optimizing agent organization604

and interactions. The prompts of MAS agents should provide clear description of instructions, and605

the role of each agent should be clearly specified (see I.2 as an example) [49, 50]. Prompts can606

also clarify roles and tasks while encouraging proactive dialogue. Agents can re-engage or retry if607

inconsistencies arise, as shown in Appendix I.5 [51]. After completing a complex multi-step task,608

add a self-verification step to the prompt to retrace the reasoning by restating solutions, checking609

conditions, and testing for errors [52]. However, it may miss flaws, rely on vague conditions, or610

be impractical [53]. Moreover, clear role specifications can be reinforced by defining conversation611

patterns and setting termination conditions [45, 54]. A modular approach with simple, well-defined612

agents, rather than complex, multitasked ones, enhances performance and simplifies debugging [55].613

The group dynamics also enable other interesting possibilities of multi-agent systems: different614

agents can propose various solutions [56], discuss their assumptions, and findings (cross-verifications)615

[57]. For instance, in [58], a multi-agent strategy simulates the academic peer review process to616

catch deeper inconsistencies. Another set of tactical approaches for cross verifications consist in617

multiple LLM calls with majority voting or resampling until verification [59, 60]. However, these618

seemingly straightforward solutions often prove inconsistent, echoing our case studies’ findings. This619

underscores the need for more robust, structural strategies, as discussed in the following sections.620

G.2 Structural Strategies621

Apart from the tactical approaches we discussed above, there exist a need for more involved solutions622

that will shape the structure of the MAS at hand. We first observe the critical role of verification623

processes and verifier agents in multi-agent systems. Our annotations reveal that weak or inadequate624

verification mechanisms were a significant contributor to system failures. While unit test generation625

aids verification in software engineering [61], creating a universal verification mechanism remains626

challenging. Even in coding, covering all edge cases is complex, even for experts. Verification varies627

by domain: coding requires thorough test coverage, QA demands certified data checks [62], and628

reasoning benefits from symbolic validation [63]. Adapting verification across domains remains an629

ongoing research challenge.630

A complementary strategy to verification is establishing a standardized communication protocol631

[64]. LLM-based agents mainly communicate via unstructured text, leading to ambiguities. Clearly632

defining intentions and parameters enhances alignment and enables formal coherence checks during633

and after interactions. [65] introduce Multi-Agent Graph Attention, leveraging a graph attention634

mechanism to model agent interactions and enhance coordination. Similarly, [66] propose Attentional635

Communication, enabling agents to selectively focus on relevant information. Likewise, [67] develop636

a learned selective communication protocol to improve cooperation efficiency.637

Another important research direction is fine-tuning MAS agents with reinforcement learning. Agents638

can be trained with role-specific algorithms, rewarding task-aligned actions and penalizing ineffi-639

ciencies. MAPPO [68] optimizes agents’ adherence to defined roles. Similarly, SHPPO [69] uses a640

latent network to learn strategies before applying a heterogeneous decision layer. Optima [70] further641

enhances communication efficiency and task effectiveness through iterative reinforcement learning.642
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On a different note, incorporating probabilistic confidence measures into agent interactions can 643

significantly enhance decision-making and communication reliability. Drawing inspiration from the 644

framework proposed by Horvitz et al. [71], agents can be designed to take action only when their 645

confidence exceeds a predefined threshold. Conversely, when confidence is low, agents can pause 646

to gather additional information. Furthermore, the system could benefit from adaptive thresholding, 647

where confidence thresholds are dynamically adjusted. 648

Although often seen as a single-agent property, memory and state management are crucial for multi- 649

agent interactions, which can enhance context understanding and reduces ambiguity in communication. 650

However, most research focuses on single-agent systems. MemGPT [72] introduces OS-inspired 651

context management for an extended context window, while TapeAgents [73] use a structured, 652

replayable log (“tape”) to iteratively document and refine agent actions, facilitating dynamic task 653

decomposition and continuous improvement. 654

Table 4: Solution Strategies vs. Failure Category in Multi-Agent Systems

Failure Category Tactical Approaches Structural Strategies

Specification Issues Clear role/task definitions, Engage in
further discussions, Self-verification,
Conversation pattern design

Comprehensive verification, Confidence
quantification

Inter-Agent
Misalignment

Cross-verification, Conversation pat-
tern design, Mutual disambiguation,
Modular agents design

Standardized communication protocols,
Probabilistic confidence measures

Task Verification Self-verification, Cross-verification,
Topology redesign for verification

Comprehensive verification & unit test
generation

H Intervention Case Studies 655

In this section, we present the two case studies where we apply some of the tactical approaches. 656

We also present the usage of MAST as a debugging tool, where we measure the failure modes in the 657

system before applying any of the interventions, and then after applying the interventions we discuss 658

below, and show that MAST can guide the intervention process as well as capture the improvements of 659

augmentations. 660

H.1 Case Study 1: AG2 - MathChat 661

In this case study, we use the MathChat scenario implementation in AG2 [47] as our baseline, where a 662

Student agent collaborates with an Assistant agent capable of Python code execution to solve problems. 663

For benchmarking, we randomly select 200 exercises from the GSM-Plus dataset [74], an augmented 664

version of GSM8K [75] with various adversarial perturbations. The first strategy is to improve the 665

original prompt with a clear structure and a new section dedicated to the verification. The detailed 666

prompts are provided in Appendices I.1 and I.2. The second strategy refines the agent configuration 667

into a more specialized system with three distinct roles: a Problem Solver who solves the problem 668

using a chain-of-thought approach without tools (see Appendix I.3); a Coder who writes and executes 669

Python code to derive the final answer (see Appendix I.4); a Verifier who reviews the discussion 670

and critically evaluate the solutions, either confirming the answer or prompting further debate (see 671

Appendix I.5). In this setting, only the Verifier can terminate the conversation once a solution is 672

found. See Appendix I.6 for an example of conversation in this setting. To assess the effectiveness 673

of these strategies, we conduct benchmarking experiments across three configurations (baseline, 674

improved prompt, and new topology) using two different LLMs (GPT-4 and GPT-4o). We also 675

perform six repetitions to evaluate the consistency of the results. Table 5 summarizes the results. The 676

second column of Table 5 show that with GPT-4, the improved prompt with verification significantly 677

outperforms the baseline. However, the new topology does not yield the same improvement. A 678

Wilcoxon test returned a p-value of 0.4, indicating the small gain is not statistically significant. With 679

GPT-4o (the third column of Table 5), the Wilcoxon test yields a p-value of 0.03 when comparing 680

the baseline to both the improved prompt and the new topology, indicating statistically significant 681

improvements. These results suggest that refining prompts and defining clear agent roles can reduce 682
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failures. However, these strategies are not universal, and their effectiveness varies based on factors683

such as the underlying LLM.684

H.2 Case Study 2: ChatDev685

ChatDev [5] simulates a multiagent software company where different agents have different role686

specifications, such as a CEO, a CTO, a software engineer and a reviewer, who try to collaboratively687

solve a software generation task. In an attempt to address the challenges we observed frequently688

in the traces, we implement two different interventions. Our first solution is refining role-specific689

prompts to enforce hierarchy and role adherence. For instance, we observed cases where the CPO690

prematurely ended discussions with the CEO without fully addressing constraints. To prevent this,691

we ensured that only superior agents can finalize conversations. Additionally, we enhanced verifier692

role specifications to focus on task-specific edge cases. Details of these interventions are in Section693

J. The second solution attempt involved a fundamental change to the framework’s topology. We694

modified the framework’s topology from a directed acyclic graph (DAG) to a cyclic graph. The695

process now terminates only when the CTO agent confirms that all reviews are properly satisfied,696

with a maximum iteration cutoff to prevent infinite loops. This approach enables iterative refinement697

and more comprehensive quality assurance. We test our interventions in two different benchmarks.698

The first one of them is a custom generated set of 32 different tasks (which we call as ProgramDev-v0,699

which consists of slightly different questions than the ProgamDev dataset we discussed in Section 4)700

where we ask the framework to generate programs ranging from “Write me a two-player chess game701

playable in the terminal” to ”Write me a BMI calculator”. The other benchmark is the HumanEval task702

of OpenAI. We report our results in Table 5. Notice that even though our interventions are successful703

in improving the performance of the framework in different tasks, they do not constitute substantial704

improvements, and more comprehensive solutions as we lay out in Section G.2 are required.705

Table 5: Case Studies Accuracy Comparison. This table presents the performance accuracies (in
percentages) for various scenarios in our case studies. The header rows group results by strategy:
AG2 and ChatDev. Under AG2, GSM-Plus results are reported using GPT-4 and GPT-4o; under
ChatDev, results for ProgramDev and HumanEval are reported. Each row represents a particular
configuration: baseline implementation, improved prompts, and a redesigned agent topology.

Configuration AG2 ChatDev

GSM-Plus (w/ GPT-4) GSM-Plus (w/ GPT-4o) ProgramDev-v0 HumanEval

Baseline 84.75 ± 1.94 84.25 ± 1.86 25.0 89.6
Improved prompt 89.75 ± 1.44 89.00 ± 1.38 34.4 90.3
New topology 85.50 ± 1.18 88.83 ± 1.51 40.6 91.5

H.3 Effect of the interventions on MAST706

After carrying out the aforementioned interventions, we initially inspect the task completion rates as707

in Table 5. However, MAST offers us the opportunity to look beyond the task completion rates, and708

we can investigate the effects of these interventions on the failure mode distribution on these MASs709

(AG2 and ChatDev). As illustrated in Figures 10 and 11, we observe that both of these interventions710

cause a decrease across the different failure modes observed, and it is possible to conclude that711

topology-based changes are more effective than prompt-based changes for both systems. Moreover,712

this displays another usage of MAST, which is as well as an analysis tool after execution, it can serve as713

a debugging tool for future improvements as it shows which failure modes particular augmentations714

to the system can solve or miss, guiding future intervention decisions.715
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Figure 10: Effect of prompt and topology interventions on AG2 as captured by MAST using the
automated LLM-as-a-Judge

Figure 11: Effect of prompt and topology interventions on ChatDev as captured by MAST using the
automated LLM-as-a-Judge

I AG2 - MathChat Scenario 716

I.1 Initial prompt 717

Let’s use Python to solve a math problem. 718

719

Query requirements: 720

You should always use the ’print’ function for the output and use fractions/radical 721

forms instead of decimals. 722

You can use packages like sympy to help you. 723

You must follow the formats below to write your code: 724

725

‘‘‘python 726

# your code 727

‘‘‘ 728

729

First state the key idea to solve the problem. You may choose from three ways to 730

solve the problem: 731

Case 1: If the problem can be solved with Python code directly, please write a 732

program to solve it. You can enumerate all possible arrangements if needed. 733

Case 2: If the problem is mostly reasoning, you can solve it by yourself directly. 734

Case 3: If the problem cannot be handled in the above two ways, please follow this 735

process: 736

1. Solve the problem step by step (do not over-divide the steps). 737

2. Take out any queries that can be asked through Python (for example, any 738

calculations or equations that can be calculated). 739

3. Wait for me to give the results. 740
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4. Continue if you think the result is correct. If the result is invalid or741

unexpected, please correct your query or reasoning.742

743

After all the queries are run and you get the answer, put the answer in \\boxed{}.744

745

Problem:746

I.2 Structured prompt with verification section747

Let’s use Python to tackle a math problem effectively.748

749

Query Requirements:750

1. Output Format: Always utilize the print function for displaying results. Use751

fractions or radical forms instead of decimal numbers.752

2. Libraries: You are encouraged to use packages such as sympy to facilitate753

calculations.754

755

Code Formatting:756

Please adhere to the following format when writing your code:757

‘‘‘python758

# your code759

‘‘‘760

761

Problem-Solving Approach:762

First, articulate the key idea or concept necessary to solve the problem. You can763

choose from the following three approaches:764

Case 1: Direct Python Solution. If the problem can be solved directly using Python765

code, write a program to solve it. Feel free to enumerate all possible766

arrangements if necessary.767

Case 2: Reasoning-Based Solution. If the problem primarily involves reasoning, solve768

it directly without coding.769

Case 3: Step-by-Step Process. If the problem cannot be addressed using the above770

methods, follow this structured approach:771

1. Break down the problem into manageable steps (avoid excessive granularity).772

2. Identify any queries that can be computed using Python (e.g., calculations or773

equations).774

3. Await my input for any results obtained.775

4. If the results are valid and expected, proceed with your solution. If not, revise776

your query or reasoning accordingly.777

778

Handling Missing Data:779

If a problem is deemed unsolvable due to missing data, return \boxed{’None’}.780

Ensure that only numerical values are placed inside the \boxed{}; any accompanying781

words should be outside.782

783

Verification Steps:784

Before presenting your final answer, please complete the following steps:785

1. Take a moment to breathe deeply and ensure clarity of thought.786

2. Verify your solution step by step, documenting each part of the verification787

process in a designated VERIFICATION section.788

3. Once you are confident in your verification and certain of your answer, present789

your final result in the format \boxed{_you_answer_}, ensuring only numbers are790

inside.791

792

Problem Statement:793

I.3 Agent Problem Solver’s System Prompt794

You are Agent Problem Solver, and your role is to collaborate with other agents to795

address various challenges.796

797

For each problem, please follow these steps:798
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1. **Document Your Solution**: Write your solution step by step, ensuring it is 799

independent of the solutions provided by other agents. 800

2. **Engage in Discussion**: Once you have outlined your solution, discuss your 801

approach and findings with the other agents. 802

I.4 Agent Coder’s System Prompt 803

You are Agent Code Executor. You can solve problems only writing commented Python 804

code. 805

806

For each problem, please follow these steps: 807

1. **Develop Your Solution**: Write your solution in Python code, detailing each 808

step independently from the solutions provided by other agents. 809

2. **Utilize SymPy**: Feel free to use the SymPy package to facilitate calculations 810

and enhance your code’s efficiency. 811

3. **Display Results**: Ensure that you **print the final result at the end of your 812

Python code** (e.g., ‘print(_result_)‘). 813

4. **Engage in Discussion**: After obtaining the result from your Python code, 814

discuss your findings with the other agents. 815

816

Always format your Python code within: 817

‘‘‘python 818

# your code here 819

print(_result_) 820

‘‘‘ 821

822

If you wish to execute your code, please indicate this by stating "SUGGESTED NEXT 823

SPEAKER: Agent Code Executor" at the end of your message. 824

I.5 Agent Verifier’s System Prompt 825

You are Agent Verifier. 826

827

Your role is to critically evaluate the solutions proposed by other agents step by 828

step and provide a final solution. 829

1. **Solution Requirement**: Before making any decisions, ensure you have received 830

solutions from both Agent Code Executor and Agent Problem Solver. If either 831

proposed solution is missing, do not draw any conclusions; instead, suggest the 832

next speaker by stating: SUGGESTED NEXT SPEAKER: _suggested_agent_name_. 833

2. **Avoid Assumptions**: Pay attention to the variables provided in the original 834

problem statement versus those assumed by the agents. **Assumed values are not 835

valid for the solution** and can lead to inaccuracies. Never base your solution 836

on assumed values. Always base your solution on the explicitly given variables 837

to ensure correctness. If a problem is deemed unsolvable due to missing 838

information, return: **SOLUTION_FOUND \\boxed{’None’}**. 839

3. **Evaluating Conflicting Solutions**: If different answers are presented during 840

the discussion, choose the most appropriate solution based on your evidence or 841

initiate further discussion to clarify. 842

4. **Final Solution Declaration**: When you are confident about the final solution, 843

return it as follows: **SOLUTION_FOUND \\boxed{_solution_value_here_}**. Ensure 844

that only numerical values are placed inside the \\boxed{}; any accompanying 845

text should be outside. 846

I.6 AG2 - MathChat: an example of conversation with three specialized agents 847

[Agent Verifier] 848

Sara wants to buy herself a new jacket and 2 pairs of shoes. The jacket she wants 849

costs $120 and each pair of shoes cost $100. Sara babysits the neighbor’s kids 850

10 times, earning $5 each time she babysits them. Her parents pay her $10 each 851

time she mows the lawn. If Sara already had $100 saved before she started 852

babysitting, how many times must she mow the lawn before she can afford the 853

jacket and shoes? 854
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855

[Agent Problem Solver]856

First, let’s break down the problem:,857

- The costs are: $120 for the jacket, $100 for each pair of shoes, and she wants 2858

pairs. So the total cost is $120 + 2*$100 = $320,859

- Sara earns $5 each time she babysits, and she has done this 10 times, so she has860

earned $5*10 = $50 from babysitting.861

- Sara also has $100 saved from before.862

- The amount Sara has after babysitting and her savings is $100 + $50 = $150.863

- The amount Sara still needs is the total cost minus what she has, which is $320 -864

$150 = $170.865

- Sara earns $10 for every time she mows the lawn, to determine how many times she866

must do this, we divide the amount she needs by the amount she earns each time:867

$170 / $10 = 17 times.868

So, Sara must mow the lawn 17 times to afford the jacket and shoes.869

870

[Agent Verifier]871

SUGGESTED NEXT SPEAKER: Agent_Code_Executor872

873

[Agent Coder]874

Sure, I’ll write a Python code for the calculation.875

‘‘‘python876

# cost of items877

jacket_cost = 120878

shoes_cost = 100 * 2 # since she wants 2 pairs of shoes879

# total cost of items880

total_cost = jacket_cost + shoes_cost881

# earnings from babysitting882

babysitting_earning = 5 * 10 # $5 each time, done 10 times883

# initial money884

initial_money = 100885

# total money after babysitting886

total_money_after_babysitting = initial_money + babysitting_earning887

# amount still needed888

amount_needed = total_cost - total_money_after_babysitting889

# how much sara earns from mowing each time890

mowing_earning = 10891

# calculate how many times she needs to mow the lawn892

num_times_mowing = amount_needed // mowing_earning # using integer division for893

whole number of times894

# print result895

print(num_times_mowing)896

‘‘‘897

When you execute this, the result should be 17, confirming Agent Problem Solver’s898

solution.899

900

[Agent Verifier]901

exitcode: 0 (execution succeeded)902

Code output: 17903

904

[Agent Problem Solver]905

Agent Code Executor’s Python program has provided the solution - Sara must mow the906

lawn 17 times to afford the jacket and shoes, which supports Agent Problem907

Solver’s proposal. Both paths lead us to the same conclusion, which approves908

the accuracy of our solution.909

Great team work, Agents.910

911

[Agent Verifier]912

SOLUTION_FOUND \\boxed{17}913
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J ChatDev Prompt Interventions 914

J.1 Initial Prompt 915

J.1.1 Programmer 916

"{chatdev_prompt}", 917

"You are Programmer. we are both working at ChatDev. We share a common interest 918

in collaborating to successfully complete a task assigned by a new customer 919

.", 920

"You can write/create computer software or applications by providing a specific 921

programming language to the computer. You have extensive computing and 922

coding experience in many varieties of programming languages and platforms, 923

such as Python, Java, C, C++, HTML, CSS, JavaScript, XML, SQL, PHP, etc,.", 924

"Here is a new customer’s task: {task}.", 925

"To complete the task, you must write a response that appropriately solves the 926

requested instruction based on your expertise and customer’s needs." 927

J.1.2 Code Reviewer 928

"{chatdev_prompt}", 929

"You are Code Reviewer. we are both working at ChatDev. We share a common 930

interest in collaborating to successfully complete a task assigned by a new 931

customer.", 932

"You can help programmers to assess source codes for software troubleshooting, 933

fix bugs to increase code quality and robustness, and offer proposals to 934

improve the source codes.", 935

"Here is a new customer’s task: {task}.", 936

"To complete the task, you must write a response that appropriately solves the 937

requested instruction based on your expertise and customer’s needs." 938

J.1.3 Software Test Engineer 939

"{chatdev_prompt}", 940

"You are Software Test Engineer. we are both working at ChatDev. We share a 941

common interest in collaborating to successfully complete a task assigned by 942

a new customer.", 943

"You can use the software as intended to analyze its functional properties, 944

design manual and automated test procedures to evaluate each software 945

product, build and implement software evaluation test programs, and run test 946

programs to ensure that testing protocols evaluate the software correctly 947

.", 948

"Here is a new customer’s task: {task}.", 949

"To complete the task, you must write a response that appropriately solves the 950

requested instruction based on your expertise and customer’s needs." 951

J.1.4 Chief Executive Officer 952

"{chatdev_prompt}", 953

"You are Chief Executive Officer. Now, we are both working at ChatDev and we 954

share a common interest in collaborating to successfully complete a task 955

assigned by a new customer.", 956

"Your main responsibilities include being an active decision-maker on users’ 957

demands and other key policy issues, leader, manager, and executor. Your 958

decision-making role involves high-level decisions about policy and strategy 959

; and your communicator role can involve speaking to the organization’s 960

management and employees.", 961

"Here is a new customer’s task: {task}.", 962

"To complete the task, I will give you one or more instructions, and you must 963

help me to write a specific solution that appropriately solves the requested 964

instruction based on your expertise and my needs." 965

27



J.1.5 Chief Technology Officer966

"{chatdev_prompt}",967

"You are Chief Technology Officer. we are both working at ChatDev. We share a968

common interest in collaborating to successfully complete a task assigned by969

a new customer.",970

"You are very familiar to information technology. You will make high-level971

decisions for the overarching technology infrastructure that closely align972

with the organization’s goals, while you work alongside the organization’s973

information technology (\"IT\") staff members to perform everyday operations974

.",975

"Here is a new customer’s task: {task}.",976

"To complete the task, You must write a response that appropriately solves the977

requested instruction based on your expertise and customer’s needs."978

J.2 Modified System Prompts979

J.2.1 Programmer980

"{chatdev_prompt}",981

"You are a Programmer at ChatDev. Your primary responsibility is to develop982

software applications by writing code in various programming languages.983

You have extensive experience in languages such as Python, Java, C++,984

JavaScript, and others. You translate project requirements into functional985

and efficient code.",986

"You report to the technical lead or CTO and collaborate with other987

programmers and team members.",988

"Here is a new customer’s task: {task}.",989

"To complete the task, you will write code to implement the required990

functionality, ensuring it meets the customer’s specifications and quality991

standards."992

J.2.2 Software Test Engineer993

"{chatdev_prompt}",994

"You are a Software Test Engineer at ChatDev. Your primary responsibility is995

to design and execute tests to ensure the quality and functionality of996

software products. You develop test plans, create test cases, and report997

on software performance. You identify defects and collaborate with the998

development team to resolve them.",999

"You need to ensure that the software is working as expected and meets the1000

customer’s requirements.",1001

"Check the edge cases and special cases and instances for the task we are1002

doing. Do not miss any cases. Do not suffice with generic and superficial1003

cases.",1004

"You report to the technical lead or CTO and collaborate with programmers and1005

code reviewers.",1006

"Here is a new customer’s task: {task}.",1007

"To complete the task, you will design and implement test procedures, report1008

issues found, and verify that the software meets the customer’s1009

requirements."1010

J.2.3 Code Reviewer1011

"{chatdev_prompt}",1012

"You are a Code Reviewer at ChatDev. Your primary responsibility is to review1013

and assess source code written by programmers. You ensure code quality by1014

identifying bugs, optimizing performance, and enforcing coding standards.1015

You provide constructive feedback to improve software robustness.",1016

"You report to the technical lead or CTO and work closely with programmers.",1017

"Here is a new customer’s task: {task}.",1018

"To complete the task, you will review the code submitted by programmers,1019

identify issues, and suggest improvements to meet quality standards."1020
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J.2.4 Chief Executive Officer 1021

"{chatdev_prompt}", 1022

"You are the Chief Executive Officer (CEO) of ChatDev. Your primary 1023

responsibilities include making high-level decisions about policy and 1024

strategy, overseeing the overall operations and resources of ChatDev, and 1025

acting as the main point of communication between the board and corporate 1026

operations.", 1027

"As the CEO, you have the authority to make final decisions and terminate 1028

conversations when appropriate.", 1029

"Here is a new customer’s task: {task}.", 1030

"To complete the task, you will provide strategic guidance and instructions to 1031

your team, ensuring that the solution meets the customer’s needs and 1032

aligns with the company’s objectives." 1033

J.2.5 Chief Technology Officer 1034

"{chatdev_prompt}", 1035

"You are the Chief Technology Officer (CTO) of ChatDev. Your primary 1036

responsibilities include overseeing all technical aspects of the company. 1037

You establish the company’s technical vision and lead technological 1038

development, ensuring that technology resources align with the company’s 1039

business needs.", 1040

"You report to the CEO and collaborate with other executives to integrate 1041

technology into the company’s strategy.", 1042

"Here is a new customer’s task: {task}.", 1043

"To complete the task, you will develop the technical strategy and guide your 1044

team to ensure the solution meets the customer’s needs and adheres to 1045

technological standards." 1046
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K Examples of Different Failure Modes1047

K.1 Example for FM-1.3 Step repetition, FM-2.1 Conversation reset, FM-1.2 Disobey role1048

specification1049

• MAS: Hyperagent1050

• Task: Matplotlib visualization code bug fix.1051

• What happened: The Navigator internally proposes a solution without communicating it to1052

the Planner. They did not manage to replicate the issue described and started to unrelated1053

steps to find something to edit. At the end the Planner decided to ’Wait for the user’s1054

response’.1055

• Where it went wrong:1056

[...]1057

HyperAgent_matplotlib__matplotlib-23563 - INFO - Planner’s Response: Thought:1058

To address this issue, we need to understand the root cause of the ’1059

Line3D’ object not having the ’_verts3d’ attribute. This error typically1060

occurs when the data passed to the plot function is invalid or when1061

there’s an issue with the 3D rendering. Let’s start by examining the1062

code and reproducing the issue.1063

[...]1064

HyperAgent_matplotlib__matplotlib-23563 - INFO - Planner’s Response: Thought:1065

To address this issue, we need to understand the root cause of the ’1066

Line3D’ object not having the ’_verts3d’ attribute. This error typically1067

occurs when the data passed to the plot function is invalid or when1068

there’s an issue with the 3D rendering. Let’s start by examining the1069

code and reproducing the issue.1070

[...]1071

Intern Name: Codebase Editor1072

Subgoal: Please prepare a response for the user with the following content:1073

1. Explain the identified issue and recommend updating matplotlib to version1074

3.5.1 or later.1075

2. Provide a modified version of their code that attempts to work around the1076

issue.1077

3. Suggest an alternative plotting method using scatter plots instead of1078

lines.1079

[...]1080

HyperAgent_matplotlib__matplotlib-23563 - INFO - Inner-Navigator-Assistant’s1081

Response: Thought: To find the implementation of the ‘Line3D‘ class and1082

understand how the ‘_verts3d‘ attribute is set and used, I will take1083

the following steps:1084

1. Search for the ‘Line3D‘ class in the matplotlib codebase using the ‘1085

code_search‘ tool. [...]1086

HyperAgent_matplotlib__matplotlib-23563 - INFO - Inner-Navigator-Assistant’s1087

Response: Thought: To find the implementation of the ‘Line3D‘ class and1088

understand how the ‘_verts3d‘ attribute is set and used, I will take1089

the following steps:1090

1. Search for the ‘Line3D‘ class in the matplotlib codebase using the ‘1091

code_search‘ tool.1092

[...]1093

K.2 Example for FM-1.5 Unaware of stopping conditions1094

• MAS: AG21095

• Task: Solving a mathematical problem1096

• What happened: The solution is correct. The mathproxyagent keeps asking to continue1097

even if it was clear that the problem was unsolvable.1098

• Where it went wrong:1099

[...]1100
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[Assistant] This problem is a reasoning problem. The information provided in 1101

the problem statement does not give any specifics about the amount of 1102

ribbon Monica has or the size of the gift bows. Therefore, this problem 1103

cannot be solved with the information provided. More context or 1104

information is needed, such as \"Monica has 120 inches of ribbon\" or \" 1105

Each bow uses X inches of ribbon\"." 1106

[mathproxyagent] Continue. Please keep solving the problem until you need to 1107

query. (If you get to the answer, put it in \\boxed{}.) 1108

[Assistant] In the current problem, I don’t have enough information to solve 1109

the problem. [...] 1110

[mathproxyagent] Continue. Please keep solving the problem until you need to 1111

query. (If you get to the answer, put it in \\boxed{}.) 1112

[Assistant] I’m sorry, but I really need more information to solve this 1113

problem. 1114

[mathproxyagent] Continue. Please keep solving the problem until you need to 1115

query. (If you get to the answer, put it in \\boxed{}.) 1116

[...] 1117

K.3 Example for FM-2.3 Task derailment 1118

• MAS: AG2 1119

• Task: Solving a mathematical problem. 1120

• What happened: The answer was given the the question. The agents solved another 1121

problem. 1122

• Where it went wrong: 1123

[mathproxyagent] Let’s use Python to solve a math problem. [...] Courtney 1124

attended a concert and reported that the audience was 48 in number. 1125

However, Kelly went to the same concert and said that Courtney had made 1126

the mistake of overstating the number of people in attendance by 20%. If 1127

Kelly was right, 40 people really attended the concert. What was the 1128

audience size according to Courtney?" 1129

[assistant] First, the key idea here is calculating [...] 1130

‘‘‘python 1131

import sympy as sp 1132

C = 48 # Courtney’s estimation 1133

R = sp.Symbol(’R’) # real audience number 1134

# equation using the information given by Kelly 1135

equation = sp.Eq(C, R + 0.2 * R) 1136

real_audience = sp.solve(equation, R)[0] 1137

print(f\"The real audience was: {real_audience}\") 1138

‘‘‘ 1139

We subtract the estimated audience size from the real audience size to find 1140

the number of people Courtney overstated. 1141

‘‘‘python 1142

overstated = C - real_audience 1143

print(f\"The number of people Courtney overstated is: {overstated}\") 1144

‘‘‘ 1145

[...] 1146

[assistant] [...] So, the final answer is \\boxed{8}. 1147

K.4 Example for FM-2.2 Fail to ask for clarification 1148

• MAS: AppWorld 1149

• Task: Give a 5-star rating to all songs in my Spotify playlists. 1150

• What happened: The agent used the password as token. 1151

• Where it went wrong: 1152

[...] 1153

[Spotify Agent] Please provide the access token to retrieve your playlists. 1154
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[Supervisor Agent] I need to get the Spotify access token from the1155

supervisor app. Let’s retrieve the account credentials to find the1156

access token. print(apis.supervisor.show_account_passwords())1157

[...]1158

K.5 Example for FM-3.2 No or incomplete verification,1159

• MAS: AG21160

• Task: Mathematical problem solving1161

• What happened: Confused the number of fish with the cost of them.1162

• Where it went wrong:1163

[mathproxyagent] [...] Scarlett found an aquarium for $10.00 at a yard sale.1164

At the pet store, she bought 2 bags of rocks for $2.50 each and 31165

pieces of coral at $2.00 apiece. She bought 20 fish and she needed fish1166

food that cost $2.00. How much did she spend?1167

[assistant] [... ] fish_cost = 20.00 [...] total_cost = aquarium_cost + 2*1168

rock_cost + 3*coral_cost + fish_cost + fish_food_cost [...] print(1169

total_cost)1170

[mathproxyagent] 43.01171

[assistant] So, Scarlett spent a total of $43.00. So, the answer is \\boxed1172

{43}.1173

K.6 Example for FM-2.3 Task derailment, FM-3.2 No or incomplete verification.1174

• MAS: AG21175

• Task: Solving a mathematical problem.1176

• What happened: Found the solution correctly, then it decides to answer to another problem.1177

• Where it went wrong:1178

[mathproxyagent] [...] John goes to the market with $10,000 in his pocket.1179

He buys 3 goats for $500 each and 2 cows for $1500 each. He also1180

considers buying a horse for $2000 but decides against it. How much1181

money did he spend at the market?1182

[...]1183

[assistant] Great, the total spent by John on buying goats and cows is $4500.1184

To find the remaining money John had after his purchases, we subtract1185

the total spent from the initial amount of money he had. [...] This code1186

will output how much money John had left after he made his purchases at1187

the market.1188

[...]1189

[assistant] So, John has $\\boxed{5500}$ left after he made his purchases at1190

the market.1191

K.7 Example for FM-3.2 No or incomplete verification1192

• MAS: AG21193

• Task: Solving a mathematical problem.1194

• What happened: They did not verify the answer. They counted one number more even if1195

the numbers were listed. They did not verify the result even if it was straightforward.1196

• Where it went wrong:1197

[mathproxyagent] [...] Sally received the following scores on her math1198

quizzes: 50, 80, 80, 60, 40, 90, 100, 70, and another score that is1199

forgotten. If the mean score is 70, what’s the forgortten score?1200
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[assistant] The mean of a set of numbers is the sum of the numbers divided 1201

by the quantity of the numbers. In this case, the mean score is 70, this 1202

means that the total sum of the scores, including the forgotten one, 1203

divided by the total quantity of the quizzes (which is 9 + 1 = 10), is 1204

70. [...] From which, we can calculate the forgotten score like this: 1205

forgotten score = 70 * 10 - sum of scores [...] 1206

[mathproxyagent] Continue. Please keep solving the problem until you need to 1207

query. (If you get to the answer, put it in \\boxed{}.) 1208

[...] 1209

[assistant] Therefore, the forgotten score is \\boxed{130}. 1210

K.8 Example for FM-1.2 Disobey role specification, FM-2.4 Information withholding 1211

• MAS: HyperAgent 1212

• Task: Solving a bug of matplotlib. 1213

• What happened: The Navigator thinks also about possible solutions (not required) but then 1214

it does not communicate it to the Planner. At certain point the Executor states ’The above 1215

output is just an example’ but the Planner thinks that the test are passed ’Thank you for 1216

running the test and providing the results’. 1217

• Where it went wrong: 1218

[...] 1219

HyperAgent_matplotlib__matplotlib-25433 - INFO - Inner-Navigator-Assistant’s 1220

Response: Thought: [...] To work around this issue, a possible solution 1221

is to update [...] Here’s an example of how you can modify the code to 1222

achieve this: [...] In this modified code, the ‘onchanged‘ function 1223

updates the slider value and then calls ‘pyplot.draw()‘ to redraw the 1224

figure. This should prevent the input to the widgets from being blocked. 1225

HyperAgent_matplotlib__matplotlib-25433 - INFO - Navigator->Planner: Here 1226

are the code snippets for the RangeSlider and Button classes from the ‘ 1227

lib/matplotlib/widgets.py‘ file: [...] 1228

K.9 Example for FM-1.1 Disobey task specification, FM-3.3 Incorrect verification 1229

• MAS: MetaGPT 1230

• Task: Implementing chess. 1231

• What happened: Missing coverage of movement restrictions for non-pawn pieces in initial 1232

tests, and lack of verification for complete chess rules. 1233

• Where it went wrong: 1234

2025-01-12 14:46:45.578 | INFO | metagpt.roles.role:_act:391 - Alice( 1235

SimpleCoder): to do SimpleWriteCode(SimpleWriteCode) 1236

‘‘‘python 1237

def main(): 1238

import itertools 1239

class ChessPiece: 1240

def __init__(self, color, name): 1241

self.color = color 1242

self.name = name 1243

def __str__(self): 1244

return f"{self.color[0]}{self.name[0]}" 1245

def valid_moves(self, position, board): 1246

moves = [] 1247

if self.name == "Pawn": 1248

direction = 1 if self.color == "White" else -1 1249

forward = (position[0] + direction, position[1]) 1250

if 0 <= forward[0] <= 7 and board[forward[0]][forward[1]] is 1251

None: 1252

moves.append(forward) 1253

if position[0] == (6 if self.color == "White" else 1): # 1254

Starting position 1255
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double_forward = (position[0] + 2 * direction, position1256

[1])1257

if board[double_forward[0]][double_forward[1]] is None:1258

moves.append(double_forward)1259

# Add more piece logic here1260

return moves1261

[...]1262

def test_knight_valid_moves(setup_board):1263

board = setup_board1264

# Place a knight on the board1265

board.board[0][1] = ChessPiece("White", "Knight")1266

# Test if knight can move to a valid position1267

assert board.move_piece(get_position(’b1’), get_position(’c3’)) == True1268

def test_bishop_valid_moves(setup_board):1269

board = setup_board1270

# Place a bishop on the board1271

board.board[0][2] = ChessPiece("White", "Bishop")1272

# Test if bishop can move diagonally1273

assert board.move_piece(get_position(’c1’), get_position(’a3’)) == True1274

def test_rook_valid_moves(setup_board):1275

board = setup_board1276

# Place a rook on the board1277

board.board[0][0] = ChessPiece("White", "Rook")1278

# Test if rook can move vertically1279

assert board.move_piece(get_position(’a1’), get_position(’a4’)) == True1280

def test_queen_valid_moves(setup_board):1281

board = setup_board1282

# Place a queen on the board1283

board.board[0][3] = ChessPiece("White", "Queen")1284

# Test if queen can move diagonally1285

assert board.move_piece(get_position(’d1’), get_position(’f3’)) == True1286

def test_king_valid_moves(setup_board):1287

board = setup_board1288

# Place a king on the board1289

board.board[0][4] = ChessPiece("White", "King")1290

# Test if king can move one square in any direction1291

assert board.move_piece(get_position(’e1’), get_position(’e2’)) == True1292

[...]1293

K.10 Example for FM-2.6 Reasoning-action mismatch1294

• MAS: HyperAgent1295

• Task: Solving a bug of pylint.1296

• What happened: Initially, the navigator has already found the solution but it tells other1297

things to planner.1298

• Where it went wrong:1299

[...]1300

HyperAgent_pylint-dev__pylint-6506 - INFO - Inner-Navigator-Assistant’s1301

Response: Thought: The ‘_config_initialization‘ function in ‘pylint/1302

config/config_initialization.py‘ is responsible for parsing the command-1303

line arguments and configuration files for Pylint. It looks like the1304

unrecognized ‘-Q‘ option is being handled in the following section:1305

1306

‘‘‘python1307

# Check if there are any options that we do not recognize1308

unrecognized_options: list[str] = []1309

for opt in parsed_args_list:1310

if opt.startswith(\"--\"):1311

unrecognized_options.append(opt[2:])1312

elif opt.startswith(\"-\"):1313

unrecognized_options.append(opt[1:])1314

if unrecognized_options:1315
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msg = \", \".join(unrecognized_options) 1316

linter.add_message(\"unrecognized-option\", line=0, args=msg) 1317

raise _UnrecognizedOptionError(options=unrecognized_options) 1318

‘‘‘ 1319

1320

This code checks the parsed command-line arguments for any unrecognized 1321

options, and if found, it adds a message to the linter and raises an ‘ 1322

_UnrecognizedOptionError‘ exception. 1323

1324

The issue mentioned in the GitHub report is that the traceback is being 1325

printed, which is not the expected behavior. The expected behavior 1326

should be to print a more user-friendly error message, similar to what 1327

the top part of the output already provides. 1328

1329

To resolve this issue, I would suggest modifying the exception handling in 1330

the ‘_config_initialization‘ function to catch the ‘ 1331

_UnrecognizedOptionError‘ exception and print a more user-friendly error 1332

message instead of the full traceback. 1333

1334

Final Answer: 1335

The root cause of the issue is in the ‘pylint/config/config_initialization. 1336

py‘ file, where the ‘_config_initialization‘ function is responsible for 1337

parsing the command-line arguments and configuration files. When an 1338

unrecognized option is found, the function raises an ‘ 1339

_UnrecognizedOptionError‘ exception, which is causing the full traceback 1340

to be printed. 1341

1342

To resolve this issue, the ‘_config_initialization‘ function should be 1343

modified to catch the ‘_UnrecognizedOptionError‘ exception and print a 1344

more user-friendly error message instead of the full traceback. Here’s 1345

an example of how the code could be updated: 1346

1347

‘‘‘python 1348

try: 1349

linter._parse_configuration_file(config_args) 1350

except _UnrecognizedOptionError as exc: 1351

msg = \"Unrecognized option(s) found: {}\\nUsage: pylint [options] 1352

modules_or_packages\".format(\", \".join(exc.options)) 1353

print(msg, file=sys.stderr) 1354

sys.exit(2) 1355

‘‘‘ 1356

1357

This change would ensure that the user sees a clear and concise error 1358

message when an unrecognized option is passed, without the full 1359

traceback. The exit code of 2 is also a more appropriate exit code for 1360

this type of error, as it indicates a command-line argument issue. 1361

HyperAgent_pylint-dev__pylint-6506 - INFO - Navigator->Planner: The file 1362

responsible for handling command-line arguments in Pylint is ‘pylint/ 1363

config/config_initialization.py‘. The function responsible for handling 1364

command-line arguments is ‘_config_initialization‘ in this file. 1365

1366

Here’s the key code snippet from this function: 1367

1368

‘‘‘python 1369

def _config_initialization( 1370

linter: PyLinter, 1371

args_list: list[str], 1372

reporter: reporters.BaseReporter | reporters.MultiReporter | None = None, 1373

1374

config_file: None | str | Path = None, 1375

verbose_mode: bool = False, 1376

) -> list[str]: 1377

# ... 1378

# Now we parse any options from the command line, so they can override 1379

# the configuration file 1380
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parsed_args_list = linter._parse_command_line_configuration(args_list)1381

# ...1382

‘‘‘1383

1384

This function is responsible for parsing command-line arguments and setting1385

options accordingly. It calls the ‘_parse_command_line_configuration‘1386

method of the ‘PyLinter‘ class to parse the command-line arguments.1387

1388

The ‘_parse_command_line_configuration‘ method is not shown in the provided1389

code snippet, but it is likely defined in the ‘pylint/lint/pylinter.py‘1390

file.1391

1392

Here’s the key code snippet from the ‘pylint/lint/pylinter.py‘ file:1393

1394

‘‘‘python1395

class PyLinter:1396

# ...1397

def _parse_command_line_configuration(self, args_list: list[str]) ->1398

list[str]:1399

# implementation of command line argument parsing1400

pass1401

‘‘‘1402

1403

This method is responsible for parsing the command-line arguments and1404

returning a list of parsed arguments.1405

HyperAgent_pylint-dev__pylint-6506 - INFO - Planner’s Response: Thank you1406

for the information. Now that we have identified the relevant files and1407

functions, let’s investigate how we can modify the error handling to1408

provide a more user-friendly message for unrecognized options.1409

[...]1410

K.11 Example for FM-2.5 Ignored other agent’s input, FM-3.3 Incorrect verification,1411

• MAS: Multi-Agent Peer Review1412

• Task: Solving a mathematical problem.1413

• What happened: The solution presented by another agent is correct. The agent acknowl-1414

edges that but ignores this fact and does not detect that there is contradiction with its own1415

solution.1416

• Where it went wrong:1417

[...]1418

[user] Can you solve the following math problem? A painter needed to paint1419

12 rooms in a building. Each room takes 7 hours to paint. If he already1420

painted 5 rooms, how much longer will he take to paint the rest? Explain1421

your reasoning. Your final answer should be a single numerical number,1422

in the form \\boxed{answer}, at the end of your response.1423

[assistant] To determine how much longer the painter will take to paint the1424

rest of the rooms, we need to find the number of hours it will take to1425

paint the remaining 7 rooms.\n\nSince each room takes 7 hours to paint,1426

the painter will need a total of 7 * 7 = <<7*7=49>>49 hours to paint all1427

7 rooms.\n\nHowever, the painter has already painted 5 rooms, which1428

means he has completed 5 * 7 = <<5*7=35>>35 hours of work.\n\nTherefore,1429

the painter will need an additional 49 - 35 = <<49-35=14>>14 hours to1430

paint the remaining 7 rooms.\n\nThus, the painter will take 14 more1431

hours to finish the rest of the rooms. \n\nThe answer is therefore \\1432

boxed{14}.1433

[user] Here is a solution from another agent: \n\n Since each room takes 71434

hours to paint, the painter needs a total of 7 x 12 = <<7*12=84>>841435

hours to paint all 12 rooms.\nSince he has already finished painting 51436

rooms, he has 84 - (7 x 5) = <<84-(7*5)=49>>49 hours left to complete1437

the painting of the remaining rooms.\nTherefore, the painter will take1438

49 more hours to paint the rest of the rooms. \n\n\\boxed{49}.\n\n1439

Please examine this agent’s reasoning process step by step and offer1440
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feedback on its reasoning. You can rate your confidence in your feedback 1441

on a scale from 1-10, where 10 indicates the highest level of 1442

confidence. 1443

[assistant] I would rate my confidence in my feedback as a 10.\n\nFeedback 1444

on the other agent’s reasoning process:\n1. The agent correctly starts 1445

by determining the total number of hours required to paint all 12 rooms. 1446

Each room takes 7 hours to paint, so 7 x 12 = 84 hours is the correct 1447

total.\n2. The agent acknowledges that the painter has already finished 1448

painting 5 rooms and calculates the total number of hours spent on those 1449

5 rooms as 7 x 5 = 35. This calculation is correct.\n3. However, the 1450

agent makes a calculation error when subtracting the hours already spent 1451

from the total hours required. The correct calculation should be 84 - 1452

35 = 49, not 84 - (7 x 5) = 49. \n4. The agent correctly concludes that 1453

the painter will take 49 more hours to paint the rest of the rooms.\n\ 1454

nOverall, the agent’s reasoning process is mostly correct, but there is 1455

a calculation error in subtracting the hours already spent from the 1456

total hours required. 1457

[...] 1458

[assistant] Based on the given information and considering the correct 1459

solutions and feedback provided by the other agents, the answer to the 1460

math problem is that the painter will take an additional 14 hours to 1461

paint the rest of the rooms.\n\nTherefore, the final answer is \\boxed 1462

{14}. 1463

[...] 1464

K.12 Example for FM-1.4 Loss of conversation history 1465

• MAS: HyperAgent 1466

• Task: Solving a scikit-learn bug. 1467

• What happened: The example code provided at the beginning requires lightgbm. The 1468

agents decides to substitute this with a model inside scikit-learn. But then the agent comes 1469

back to lightgbm as the last interactions do not exist. 1470

• Where it went wrong: 1471

[...] 1472

HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-Executor- 1473

Assistant’s Response: Thought: Let’s run the provided code snippet to 1474

test the modified ‘ColumnTransformer‘ implementation. 1475

Action: 1476

‘‘‘bash 1477

python -c \" 1478

import numpy as np 1479

import pandas as pd 1480

from lightgbm import LGBMClassifier 1481

from sklearn.compose import ColumnTransformer 1482

from sklearn.impute import SimpleImputer 1483

from sklearn.pipeline import Pipeline 1484

from sklearn.preprocessing import RobustScaler 1485

[...] 1486

HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-Executor- 1487

Assistant’s Response: Ah, I see the issue - the code you provided 1488

requires the ‘lightgbm‘ library, which is not installed in the current 1489

environment. Let me modify the code to use a library that is more 1490

readily available. 1491

[...] 1492

import numpy as np 1493

import pandas as pd 1494

from sklearn.linear_model import LogisticRegression 1495

from sklearn.compose import ColumnTransformer 1496

from sklearn.impute import SimpleImputer 1497

from sklearn.pipeline import Pipeline 1498

from sklearn.preprocessing import RobustScaler 1499

[...] 1500
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HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-Executor-1501

Assistant’s Response: It seems there is an issue with the scikit-learn1502

installation in the current environment. The error message indicates1503

that the ‘sklearn.__check_build._check_build‘ module is not found, which1504

suggests that the scikit-learn package has not been built correctly.1505

[...]1506

‘‘‘bash1507

pip uninstall scikit-learn -y1508

pip install scikit-learn1509

‘‘‘1510

[...]1511

HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-Executor-1512

Assistant’s Response: Excellent, the scikit-learn package has been1513

successfully reinstalled. Let’s now try running the modified test code1514

again.1515

Action:1516

‘‘‘bash1517

python -c \"1518

import numpy as np1519

import pandas as pd1520

from sklearn.linear_model import LogisticRegression1521

from sklearn.compose import ColumnTransformer1522

from sklearn.impute import SimpleImputer1523

from sklearn.pipeline import Pipeline1524

from sklearn.preprocessing import RobustScaler1525

[...]1526

‘‘‘1527

HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Executor->Planner: The1528

issue here is that the ‘lightgbm‘ library is not installed, and the ‘1529

scikit-learn‘ installation was not built correctly. We have already1530

resolved the ‘scikit-learn‘ issue by reinstalling it. However, we still1531

need to install the ‘lightgbm‘ library.1532

Here’s the modified code snippet to install ‘lightgbm‘:1533

‘‘‘bash1534

pip install lightgbm1535

‘‘‘1536

[...]1537

K.13 Example for FM-3.1 Premature termination1538

• MAS: HyperAgent1539

• Task: Solving a Flask bug.1540

• What happened: The editor claimed an edit that was not made.1541

• Where it went wrong:1542

[...]1543

HyperAgent_pallets__flask-4992 - INFO - Inner-Editor-Assistant’s Response:1544

Thought: Now that I have located the ‘from_file()‘ method, I can proceed1545

with making the requested modifications. I’ll use the editor function1546

to replace the entire method with the updated version.1547

Action:1548

‘‘‘python1549

patch = ’’’1550

def from_file(1551

self,1552

filename: str,1553

load: t.Callable[[t.IO[t.Any]], t.Mapping],1554

silent: bool = False,1555

mode: str = \"r\",1556

) -> bool:1557

[...]1558

HyperAgent_pallets__flask-4992 - INFO - Inner-Editor-Assistant’s Response:1559

Thought: The modification has been successfully applied to the ‘1560
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from_file()‘ method in the ‘src/flask/config.py‘ file. The changes 1561

include [...] 1562

[...] 1563

HyperAgent_pallets__flask-4992 - INFO - Inner-Executor-Assistant’s Response: 1564

Thought: The test script failed because the ‘from_file()‘ method does 1565

not recognize the ‘mode‘ parameter, indicating that the modification to 1566

the method has not been applied yet. We need to ensure that the method 1567

has been updated correctly before running the test script again. 1568

[...] 1569
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NeurIPS Paper Checklist1570

1. Claims1571

Question: Do the main claims made in the abstract and introduction accurately reflect the1572

paper’s contributions and scope?1573

Answer: [Yes]1574

Justification: The main claims presented in the abstract and introduction accurately represent1575

the contributions and scope, as these sections were written after completing all other parts1576

of the manuscript. References to the materials supporting the claims are directly mentioned1577

within the relevant sections.1578

Guidelines:1579

• The answer NA means that the abstract and introduction do not include the claims1580

made in the paper.1581

• The abstract and/or introduction should clearly state the claims made, including the1582

contributions made in the paper and important assumptions and limitations. A No or1583

NA answer to this question will not be perceived well by the reviewers.1584

• The claims made should match theoretical and experimental results, and reflect how1585

much the results can be expected to generalize to other settings.1586

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1587

are not attained by the paper.1588

2. Limitations1589

Question: Does the paper discuss the limitations of the work performed by the authors?1590

Answer: [Yes]1591

Justification: We mention in the introduction and Section 4 that the taxonomy may not be1592

comprehensive and we further discuss this aspect in the conclusion.1593

Guidelines:1594

• The answer NA means that the paper has no limitation while the answer No means that1595

the paper has limitations, but those are not discussed in the paper.1596

• The authors are encouraged to create a separate ”Limitations” section in their paper.1597

• The paper should point out any strong assumptions and how robust the results are to1598

violations of these assumptions (e.g., independence assumptions, noiseless settings,1599

model well-specification, asymptotic approximations only holding locally). The authors1600

should reflect on how these assumptions might be violated in practice and what the1601

implications would be.1602

• The authors should reflect on the scope of the claims made, e.g., if the approach was1603

only tested on a few datasets or with a few runs. In general, empirical results often1604

depend on implicit assumptions, which should be articulated.1605

• The authors should reflect on the factors that influence the performance of the approach.1606

For example, a facial recognition algorithm may perform poorly when image resolution1607

is low or images are taken in low lighting. Or a speech-to-text system might not be1608

used reliably to provide closed captions for online lectures because it fails to handle1609

technical jargon.1610

• The authors should discuss the computational efficiency of the proposed algorithms1611

and how they scale with dataset size.1612

• If applicable, the authors should discuss possible limitations of their approach to1613

address problems of privacy and fairness.1614

• While the authors might fear that complete honesty about limitations might be used by1615

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1616

limitations that aren’t acknowledged in the paper. The authors should use their best1617

judgment and recognize that individual actions in favor of transparency play an impor-1618

tant role in developing norms that preserve the integrity of the community. Reviewers1619

will be specifically instructed to not penalize honesty concerning limitations.1620

3. Theory assumptions and proofs1621

40



Question: For each theoretical result, does the paper provide the full set of assumptions and 1622

a complete (and correct) proof? 1623

Answer: [Yes] 1624

Justification: The paper primarily offers practical results and insights (see Sections The 1625

Multi-Agent Systems Dataset MAD and The Multi-Agent System Failure Taxonomy MAST). 1626

The dataset is open-sourced, and the construction of the taxonomy is clearly explained 1627

and supported by statistical documentation. Additionally, the code used to replicate the 1628

experiments is also made available, ensuring that anyone can reproduce the results. 1629

Guidelines: 1630

• The answer NA means that the paper does not include theoretical results. 1631

• All the theorems, formulas, and proofs in the paper should be numbered and cross- 1632

referenced. 1633

• All assumptions should be clearly stated or referenced in the statement of any theorems. 1634

• The proofs can either appear in the main paper or the supplemental material, but if 1635

they appear in the supplemental material, the authors are encouraged to provide a short 1636

proof sketch to provide intuition. 1637

• Inversely, any informal proof provided in the core of the paper should be complemented 1638

by formal proofs provided in appendix or supplemental material. 1639

• Theorems and Lemmas that the proof relies upon should be properly referenced. 1640

4. Experimental result reproducibility 1641

Question: Does the paper fully disclose all the information needed to reproduce the main ex- 1642

perimental results of the paper to the extent that it affects the main claims and/or conclusions 1643

of the paper (regardless of whether the code and data are provided or not)? 1644

Answer: [Yes] 1645

Justification: The paper primarily offers practical results and insights (see Sections The 1646

Multi-Agent Systems Dataset and The Multi-Agent System Failure Taxonomy). The dataset 1647

is open-sourced, and the construction of the taxonomy is clearly explained and supported by 1648

statistical documentation. Additionally, the code used to replicate the experiments is also 1649

made available, ensuring that anyone can reproduce the results. 1650

Guidelines: 1651

• The answer NA means that the paper does not include experiments. 1652

• If the paper includes experiments, a No answer to this question will not be perceived 1653

well by the reviewers: Making the paper reproducible is important, regardless of 1654

whether the code and data are provided or not. 1655

• If the contribution is a dataset and/or model, the authors should describe the steps taken 1656

to make their results reproducible or verifiable. 1657

• Depending on the contribution, reproducibility can be accomplished in various ways. 1658

For example, if the contribution is a novel architecture, describing the architecture fully 1659

might suffice, or if the contribution is a specific model and empirical evaluation, it may 1660

be necessary to either make it possible for others to replicate the model with the same 1661

dataset, or provide access to the model. In general. releasing code and data is often 1662

one good way to accomplish this, but reproducibility can also be provided via detailed 1663

instructions for how to replicate the results, access to a hosted model (e.g., in the case 1664

of a large language model), releasing of a model checkpoint, or other means that are 1665

appropriate to the research performed. 1666

• While NeurIPS does not require releasing code, the conference does require all submis- 1667

sions to provide some reasonable avenue for reproducibility, which may depend on the 1668

nature of the contribution. For example 1669

(a) If the contribution is primarily a new algorithm, the paper should make it clear how 1670

to reproduce that algorithm. 1671

(b) If the contribution is primarily a new model architecture, the paper should describe 1672

the architecture clearly and fully. 1673
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the dataset).1677
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Answer: [Yes]1687
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sections, the data and the code used in this manuscript are fully open sourced.1689
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benchmark).1697

• The instructions should contain the exact command and environment needed to run to1698

reproduce the results. See the NeurIPS code and data submission guidelines (https:1699

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1700

• The authors should provide instructions on data access and preparation, including how1701

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1702

• The authors should provide scripts to reproduce all experimental results for the new1703

proposed method and baselines. If only a subset of experiments are reproducible, they1704

should state which ones are omitted from the script and why.1705

• At submission time, to preserve anonymity, the authors should release anonymized1706

versions (if applicable).1707

• Providing as much information as possible in supplemental material (appended to the1708

paper) is recommended, but including URLs to data and code is permitted.1709

6. Experimental setting/details1710

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1711

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1712

results?1713

Answer: [Yes]1714

Justification: Although, there is no model trained in this work, the details on how the1715

taxonomy is created, what are the data sources, how the dataset is curated, and which1716

parts are used in developing the taxonomy in what manners, and how the LLM-as-a-Judge1717

pipeline is built and tested are explained in Section 3.1718

Guidelines:1719

• The answer NA means that the paper does not include experiments.1720

• The experimental setting should be presented in the core of the paper to a level of detail1721

that is necessary to appreciate the results and make sense of them.1722

• The full details can be provided either with the code, in appendix, or as supplemental1723

material.1724

7. Experiment statistical significance1725

42

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: Does the paper report error bars suitably and correctly defined or other appropriate 1726

information about the statistical significance of the experiments? 1727

Answer: [Yes] 1728

Justification: Table 2 and Table 5 reports an array of metrics and the confidence intervals 1729

measured during the experiments. 1730

Guidelines: 1731

• The answer NA means that the paper does not include experiments. 1732

• The authors should answer ”Yes” if the results are accompanied by error bars, confi- 1733

dence intervals, or statistical significance tests, at least for the experiments that support 1734

the main claims of the paper. 1735

• The factors of variability that the error bars are capturing should be clearly stated (for 1736

example, train/test split, initialization, random drawing of some parameter, or overall 1737

run with given experimental conditions). 1738

• The method for calculating the error bars should be explained (closed form formula, 1739

call to a library function, bootstrap, etc.) 1740

• The assumptions made should be given (e.g., Normally distributed errors). 1741

• It should be clear whether the error bar is the standard deviation or the standard error 1742

of the mean. 1743

• It is OK to report 1-sigma error bars, but one should state it. The authors should 1744
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error rates). 1749

• If error bars are reported in tables or plots, The authors should explain in the text how 1750

they were calculated and reference the corresponding figures or tables in the text. 1751

8. Experiments compute resources 1752

Question: For each experiment, does the paper provide sufficient information on the com- 1753

puter resources (type of compute workers, memory, time of execution) needed to reproduce 1754

the experiments? 1755

Answer: [Yes] 1756

Justification: The experiments in this study explicitly mention the MAS frameworks and 1757

LLMs used in the creation of MAD in Table 1. All of these LLMs are proprietary LLMs that 1758

require API calls to operate, and we do not use any GPU resources for these LLMs and 1759

MAS frameworks powered by these LLMs. 1760

Guidelines: 1761

• The answer NA means that the paper does not include experiments. 1762

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, 1763

or cloud provider, including relevant memory and storage. 1764

• The paper should provide the amount of compute required for each of the individual 1765

experimental runs as well as estimate the total compute. 1766

• The paper should disclose whether the full research project required more compute 1767

than the experiments reported in the paper (e.g., preliminary or failed experiments that 1768

didn’t make it into the paper). 1769

9. Code of ethics 1770

Question: Does the research conducted in the paper conform, in every respect, with the 1771

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines? 1772

Answer: [Yes] 1773

Justification: We obey the the Code of Ethics, including the ones concerning the Dataset 1774

and Benchmark Track submissions. 1775

Guidelines: 1776

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics. 1777
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• If the authors answer No, they should explain the special circumstances that require a1778

deviation from the Code of Ethics.1779

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1780

eration due to laws or regulations in their jurisdiction).1781

10. Broader impacts1782

Question: Does the paper discuss both potential positive societal impacts and negative1783

societal impacts of the work performed?1784

Answer: [Yes]1785

Justification: The paper talks about the broader potential impacts of the paper on the1786

progress of further development and open communication on the development of Multi-1787

Agent Systems in Section 1 and Section F. The paper talks minimally on negative soicetal1788
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• The answer NA means that there is no societal impact of the work performed.1792

• If the authors answer NA or No, they should explain why their work has no societal1793

impact or why the paper does not address societal impact.1794

• Examples of negative societal impacts include potential malicious or unintended uses1795

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations1796

(e.g., deployment of technologies that could make decisions that unfairly impact specific1797
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to particular applications, let alone deployments. However, if there is a direct path to1800

any negative applications, the authors should point it out. For example, it is legitimate1801

to point out that an improvement in the quality of generative models could be used to1802

generate deepfakes for disinformation. On the other hand, it is not needed to point out1803

that a generic algorithm for optimizing neural networks could enable people to train1804

models that generate Deepfakes faster.1805

• The authors should consider possible harms that could arise when the technology is1806

being used as intended and functioning correctly, harms that could arise when the1807

technology is being used as intended but gives incorrect results, and harms following1808

from (intentional or unintentional) misuse of the technology.1809
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strategies (e.g., gated release of models, providing defenses in addition to attacks,1811

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from1812

feedback over time, improving the efficiency and accessibility of ML).1813

11. Safeguards1814

Question: Does the paper describe safeguards that have been put in place for responsible1815

release of data or models that have a high risk for misuse (e.g., pretrained language models,1816

image generators, or scraped datasets)?1817

Answer: [NA]1818

Justification: The paper poses no such risks.1819

Guidelines:1820

• The answer NA means that the paper poses no such risks.1821

• Released models that have a high risk for misuse or dual-use should be released with1822

necessary safeguards to allow for controlled use of the model, for example by requiring1823
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safety filters.1825

• Datasets that have been scraped from the Internet could pose safety risks. The authors1826

should describe how they avoided releasing unsafe images.1827

• We recognize that providing effective safeguards is challenging, and many papers do1828

not require this, but we encourage authors to take this into account and make a best1829

faith effort.1830
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12. Licenses for existing assets 1831

Question: Are the creators or original owners of assets (e.g., code, data, models), used in 1832

the paper, properly credited and are the license and terms of use explicitly mentioned and 1833

properly respected? 1834

Answer: [NA] 1835

Justification: The paper does not use existing assets. 1836

Guidelines: 1837

• The answer NA means that the paper does not use existing assets. 1838

• The authors should cite the original paper that produced the code package or dataset. 1839

• The authors should state which version of the asset is used and, if possible, include a 1840

URL. 1841

• The name of the license (e.g., CC-BY 4.0) should be included for each asset. 1842

• For scraped data from a particular source (e.g., website), the copyright and terms of 1843

service of that source should be provided. 1844
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• For existing datasets that are re-packaged, both the original license and the license of 1849

the derived asset (if it has changed) should be provided. 1850

• If this information is not available online, the authors are encouraged to reach out to 1851

the asset’s creators. 1852

13. New assets 1853

Question: Are new assets introduced in the paper well documented and is the documentation 1854

provided alongside the assets? 1855

Answer: [Yes] 1856

Justification: The dataset and code the paper released are fully public and open-sourced 1857

under CC-BY-4.0 license. 1858

Guidelines: 1859

• The answer NA means that the paper does not release new assets. 1860

• Researchers should communicate the details of the dataset/code/model as part of their 1861

submissions via structured templates. This includes details about training, license, 1862

limitations, etc. 1863

• The paper should discuss whether and how consent was obtained from people whose 1864

asset is used. 1865

• At submission time, remember to anonymize your assets (if applicable). You can either 1866

create an anonymized URL or include an anonymized zip file. 1867

14. Crowdsourcing and research with human subjects 1868

Question: For crowdsourcing experiments and research with human subjects, does the paper 1869

include the full text of instructions given to participants and screenshots, if applicable, as 1870

well as details about compensation (if any)? 1871

Answer: [NA] 1872

Justification: The paper does not involve crowdsourcing nor research with human subjects. 1873

Guidelines: 1874

• The answer NA means that the paper does not involve crowdsourcing nor research with 1875

human subjects. 1876

• Including this information in the supplemental material is fine, but if the main contribu- 1877

tion of the paper involves human subjects, then as much detail as possible should be 1878

included in the main paper. 1879

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, 1880

or other labor should be paid at least the minimum wage in the country of the data 1881

collector. 1882
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15. Institutional review board (IRB) approvals or equivalent for research with human1883

subjects1884

Question: Does the paper describe potential risks incurred by study participants, whether1885

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1886

approvals (or an equivalent approval/review based on the requirements of your country or1887

institution) were obtained?1888

Answer: [NA]1889

Justification: The paper does not involve crowdsourcing nor research with human subjects.1890

Guidelines:1891

• The answer NA means that the paper does not involve crowdsourcing nor research with1892

human subjects.1893

• Depending on the country in which research is conducted, IRB approval (or equivalent)1894

may be required for any human subjects research. If you obtained IRB approval, you1895

should clearly state this in the paper.1896

• We recognize that the procedures for this may vary significantly between institutions1897

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1898

guidelines for their institution.1899

• For initial submissions, do not include any information that would break anonymity (if1900

applicable), such as the institution conducting the review.1901

16. Declaration of LLM usage1902

Question: Does the paper describe the usage of LLMs if it is an important, original, or1903

non-standard component of the core methods in this research? Note that if the LLM is used1904

only for writing, editing, or formatting purposes and does not impact the core methodology,1905

scientific rigorousness, or originality of the research, declaration is not required.1906

Answer: [Yes]1907

Justification: The core method development in this research does not involve LLMs. But we1908

have LLM-as-a-Judge (the LLM annotator) as the core part of our methodology as detailed1909

in Section ??.1910

Guidelines:1911

• The answer NA means that the core method development in this research does not1912

involve LLMs as any important, original, or non-standard components.1913

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1914

for what should or should not be described.1915
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