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ABSTRACT

Enabling humanoid robots to follow open-vocabulary language instructions is
critical for seamless human-robot interaction, collaborative task execution, and
general-purpose embodied intelligence. While recent advances have improved
low-level humanoid locomotion and robot manipulation, language-conditioned
whole-body control remains a significant challenge. Existing methods often fail
on compositional instructions and sacrifice either motion diversity or physical
plausibility. To address this, we introduce Humanoid-LLA, a Large Language
Action Model that maps natural language commands to physically executable
whole-body motions for humanoid robots. Our approach integrates three core
components: a unified motion vocabulary that aligns human and humanoid motion
primitives into a shared discrete space; a vocabulary-directed controller distilled
from a privileged policy to ensure physical feasibility; and a physics-informed
fine-tuning stage using reinforcement learning with dynamics-aware rewards to
enhance robustness and stability. Extensive evaluations in simulation and on a real
humanoid platform show that Humanoid-LLA delivers strong open-vocabulary
generalization while maintaining high physical fidelity, outperforming existing
language-conditioned controllers in motion naturalness, stability, and execution
success.

1 INTRODUCTION

Recent breakthroughs in Large Language Models (LLMs) (Shao et al. |2024; Bai et al., [2025) have
significantly advanced capabilities in perception, reasoning, and decision making across a wide
range of domains, from code generation to embodied action prediction, such as vision-language-
action (VLA) (Kim et al.;Bjorck et al.,[2025; Liu et al., 2025} Xu et al., |2024) models for navigation
and robotic manipulation. Their success stems from scalable pretraining and discrete representa-
tions that enable complex behaviors to be composed in a data efficient manner. However, while
most successes in embodied VLA have been achieved in robotic manipulation tasks, particularly
those using gripper based systems, transferring these advantages to humanoid whole body control
remains challenging due to the high degree of freedom and complex dynamics inherent in humanoid
robots. Moreover, unlike robot manipulation tasks that can leverage large-scale teleoperated data,
it is difficult and costly to collect substantial amounts of physically executable humanoid motion
data. Naively training on kinematic human motion captures or limited robot datasets often results
in a trade-off between language faithfulness and physical feasibility, especially under real-world
perturbations.

Existing methods mainly rely on motion mimicking framework: learning text—to—human motion
mappings from large human motion—text datasets and then project to robots. While convenient, retar-
geting optimizes in the human motion space, introducing systematic projection and kinematic mis-
match errors that sacrifice precision in robot execution (He et al., 2025} |Yue et al.}|2025). Two-stage
systems add physics-based tracking controllers (e.g., PHC) for post-hoc correction, improving fea-
sibility but not fully recovering fine-grained, language-conditioned accuracy from end to end (Luo
et al.| 2023). End-to-end routes convert human dataset to humanoid datasets, yet offline policies of-
ten miss real-world stochasticity and perturbations, yielding brittle, imprecise behaviors on hardware
(Mao et al.} 2024} Shi et al., 2025)). Distillation frameworks transfer a privileged tracking teacher to a
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text-conditioned student, achieving strong physical fidelity in simulation but compressing semantics
and control into a single VAE—often weakening language grounding and blurring action selection
(Shao et al.| 2025). Across paradigms, a persistent bottleneck remains: the scarcity of high-quality,
diverse, physically grounded humanoid real-robot data, limiting precise language—robot alignment
and motivating robot-centric representations under minimal real-robot supervision.

To addresses the data scarcity challenge, we reformulate humanoid whole-body control as an action
generation problem within a unified human-humanoid motion vocabulary space. The core idea is to
leverage the abundance of text-human motion corpora while maintaining a direct mapping to torque-
level execution on the physical robot. Specifically, we begin by constructing a unified vocabulary
through joint quantization of paired human motions and their retargeted humanoid counterparts,
ensuring that the same discrete token corresponds to the same motion primitive across both embod-
iments. This results in a compact and reusable motion language that (i) benefits from the scalability
of human motion datasets, (ii) remains compatible with humanoid actuation constraints, and (iii)
provides a discrete interface suitable for large language model based reasoning and generation.

Based on this vocabulary, we bridge the semantic and physical gap through a process of vocabu-
lary directed action distillation. First, we train a privileged teacher tracking policy in simulation
to accurately follow dense, retargeted humanoid reference motions with high physical fidelity. This
policy is then distilled into a student controller conditioned on discrete motion tokens instead of con-
tinuous trajectory references. By shifting the control paradigm from dense trajectories to a compact
token sequence, this approach enables the robot to execute actions selected within the vocabulary
space while maintaining dynamic robustness, contact stability, and smooth whole body coordination.

Built upon the aforementioned components, we finally train a Large Language Action Model
(LLA) that maps open vocabulary instructions to the unified motion token sequences. The training
proceeds in two stages. First, we conduct supervised fine-tuning (SFT) on large-scale text human
motion datasets using our unified tokenizer. Optionally, we incorporate a motion chain of thought
prompting strategy to encourage the model to perform structured reasoning before generating mo-
tion tokens. Subsequently, we apply reinforcement learning fine-tuning (RLFT) with feedback from
the humanoid simulation environment. Here, a group relative policy optimization objective rewards
the model for both semantic alignment with the instruction and the physical executability of the
generated token sequences when rolled out by the vocabulary directed controller. This closed loop
training paradigm injects crucial physical priors into the token generation process, ensuring high
linguistic expressivity and motion diversity while maintaining physical feasibility.

Our framework, Humanoid-LLA, therefore integrates language understanding, human motion, and
humanoid robot execution into a cohesive pipeline comprising three key components: (1) a unified
motion vocabulary that semantically aligns motion primitives across human and humanoid embodi-
ments; (2) a vocabulary directed action distillation process that bridges discrete tokens to physically
executable control policies; and (3) a Large Language Action Model (LLA) trained via supervised
fine-tuning on human motion datasets and further refined through reinforcement learning with phys-
ical feedback from the humanoid platform. Extensive evaluations in both simulation and real-world
environments demonstrate compelling open vocabulary generalization capabilities while maintain-
ing high physical fidelity.

‘We summarize our main contributions as follows:

* We present Humanoid-LLA, an end-to-end Large Language—Action Model that enables the
first open-vocabulary text-to-humanoid whole-body control, mapping expressive natural
language directly to executable humanoid actions.

* We introduce a unified motion vocabulary that aligns human and humanoid in latent space,
thus enabling vocabulary-directed humanoid policy distillation and supervised finetuning
Humanoid-LLA with large-scale text-human datasets.

* We further fine-tune Humanoid-LLA by augmenting text-human datasets with large-scale
human motion chain-of-thought and integrating humanoid fidelity feedback from physical
simulation, thereby improving language generalization and execution feasibility.

 Extensive evaluations in physical environments demonstrate that our method outperforms
prior works on both physical feasibility and motion quality, culminating in successful de-
ployment on real humanoid hardware.
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“Walk in a curving figure-eight.”
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The description is "walk in a curving

figure-eight." A figure-eight consists of
two interconnected loops: one typically
curving left and the other right,

LLA meeting at a central point. Each loop
should be treated as an independent
atomic motion since they involve
distinct directional movements. Thus,
the breakdown is:

1. Walk in a leftward curve.

2. Walk in a rightward curve.

3. Turn and walk straight to the center.

\ J

<motion> </motion>
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Figure 1: An illustration of Humanoid-LLA. Given an open-vocabulary instruction (e.g., “walk in a
curving figure-eight”), Humanoid-LLA first use natural language (<think>) to decompose the task,
then generate a sequence of unified motion tokens (<motion>). A vocabulary-directed controller
executes these tokens on the robot, bridging language, a unified human—-humanoid motion vocabu-
lary, and action-level control to yield physically faithful, natural whole-body behaviors.

2 RELATED WORK

Kinematic Motion Generation. Kinematic motion generation is typically cast as conditional se-
quence modeling, aiming to synthesize temporally coherent pose trajectories from text, trajectories,
or other control signals.Diffusion methods generate diverse, high-quality motions but are costly and
hard to control(Tevet et al., [2023} |Chen et al., [2023} Zhang et al., | 2024} |Karunratanakul et al.,|2023)),
while GPT-based approaches improve efficiency and long-horizon consistency but are limited by
quantization and data quality(Zhang et al., 2023} Jiang et al.| [2024; |Ouyang et al., [2025)).

Recent works (Yuan et al., 2023 [Serifi et al., 2024; Han et al.l 2025) introduces physics priors:
PhysDiff (Yuan et al., [2023)) projects diffusion outputs into physically valid states via simulation,
while RobotMDM (Serifi et al., [2024) integrates physical feasibility into training through reward
surrogates and RL controllers. These efforts highlight the trade-off between visual fidelity and
physical realism. Motivated yet distinct, we employ hierarchical physical rewards to finetune a latent
motion generator via RL, and ultimately leverage a tracking policy conditioned on these latents to
roll out highly physically feasible humanoid motions in simulation.

Physics-based Character Animation. Physics-based controllers have advanced realistic charac-
ter animation, with DeepMimic (Peng et al.,|2018)) pioneering RL-based motion imitation and later
works like AMP (Peng et al., 2021) and ASE (Peng et al.,|2022) enhancing robustness and compo-
sitionality. Recent approaches adopt a generative view, such as MaskedMimic for motion inpainting
and MaskedManipulator for goal-conditioned loco-manipulation (Tessler et al.| [2024; 2025)).

Language-guided character control has emerged as a promising paradigm that bridges semantic
expressiveness and physical realism, addressing limitations of purely data-driven text-to-motion
synthesis that often produces artifacts like foot sliding or implausible contacts. Physics-simulated
characters enforce physical plausibility (Juravsky et al., 202252024} |Yao et al.,|2024; Truong et al.,
2024; Tevet et al.;|Wu et al.,[2025)), with PADL showing natural language as a direct control interface
from simple instructions (Juravsky et al.,[2022) to complex multi-skill tasks (Juravsky et al.,|2024),
MoConVQ leveraging pretrained motion codebooks and LLMs (Yao et al., 2024), PDP combining
diffusion with physics-based imitation (Truong et al. |2024), and CLOSD introducing closed-loop
plan-and-imitate architectures (Tevet et al.). Together, this line of work suggests a unifying frame-
work that integrates linguistic flexibility with physical fidelity in a closed-loop system, motivating
our approach.

Real-world Humanoid Whole Body Control. Real-world humanoid whole-body control has pro-
gressed rapidly with sim-to-real RLIFu et al.| (2025); |(Cheng et al.| (2024)); Ji et al.| (2024), teleoper-
ationHe et al.| (2024} 2025), and large-scale retargeting(Yin et al., [2025; ?). Collectively, these
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Figure 2: An overview of Humanoid-LLA. In stage one, we build a unified motion vocabulary
leveraging a large-scale paired human and humanoid motion dataset. With a kinematic humanoid
motion goal and its corresponding vocab retrieval, we distill a vocab-directed humanoid student
controller from a teacher tracking controller. The first two stages enable stage three to acquire
various humanoid feedback directly from physical simulation without decoding, making our LLA
enhanced with high physical fidelity and language generalization.

advances provide strong controllers and data pipelines, yet most approaches decouple motion retar-
geting and control, leaving the semantic-to-physical generation gap open.

Language-conditioned humanoid control tackles this gap by directly linking natural language to
whole-body policies. Large-scale efforts like UH-1 (Mao et al., 2024) and ALMI
advance text—motion corpora and hierarchical tracking but face challenges in real-world deployment.
Shao et al. and RLPF 2025)) enhance policy learning with language
mapping and physics feedback, yet remain limited by language generalization, conservative rewards,
and reduced motion diversity. Overall, these studies highlight the need for unified frameworks that
combine strong language generalization with the ability to generate diverse, expressive motions that
are physically consistent.

3 METHOD

Our framework consists of three tightly connected components: building unified hu-
man-humanoid motion vocabulary (Sec. [3.1), distilling vocabulary-directed policy (Sec.[3.2),
and fine-tuning large language-action model (Sec. [3.3). The first two components serve as es-
sential prerequisites that make the integrated reasoning in the third component possible. Next, we
introduce each component, highlighting its role within the overall framework.

3.1 UNIFIED HUMAN-HUMANOID VOCABULARY

Humanoid Motion Canonicalization. For human motion, prior work commonly adopts SMPL
parameters to form a 263-dimensional representation (Loper et al., 2015}, |Guo et al, [2022)), which
serves as the learning target for generative models. To establish compatibility, we construct an
analogous canonical representation for humanoid motion. Starting from the Unitree G1’s
raw control state q € RTx36 (including root translation, orientation, and joint DoF values), we
apply a mapping f : R36 — R227 that augments kinematic details such as root velocities, 3D
joint positions, and joint velocities. Each frame is thus represented as a structured 227-dimensional
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vector, normalized to a root-centered coordinate system. This canonicalized form aligns with the
human representation, enabling subsequent learning of a unified motion space.

Implicit Partitioning Tokenization. We aim to learn a unified tokenizer that maps human and
retargeted humanoid motions into the same discrete vocabulary, ensuring that identical tokens carry
consistent semantics across modalities. The tokenizer is expected to capture heterogeneous motion
distributions while remaining compact for integration with language models. To this end, we adopt a
VQ-VAE (Van Den Oord et al.,|2017) with implicit partitioning (Ma et al.} 2025), where each latent
vector is split into sub-blocks and quantized by separate codebooks. Concatenating these assign-
ments yields a large effective vocabulary without requiring a single oversized codebook. Beyond
standard self-reconstruction within each modality (Zhao et al.,2025), we additionally enforce cross-
modal reconstruction, such that a token obtained from either modality is decoded into the same
motion primitive. This constraint ensures that identical tokens correspond to equivalent human and
humanoid motions, thereby establishing a semantically unified motion representation.

Cross-embodiment Optimization. We optimize the dual-branch VQ-VAE by combining intra-
modal and cross-modal reconstruction objectives. A sequence of human motion m" € RT*d»
and humanoid motion m* € RT*4r are first encoded into latent features z® = 5human(mh) and
z" = Eopor(m"), which are partitioned into sub-blocks and quantized by multiple codebooks to
yield discrete tokens z" and z". These tokens are then decoded back to the motion space by
modality-specific decoders Dhyman and Digpor, producing both self-reconstructions (m", m") and
cross-reconstructions (™", m"< ). The additional cross-modal reconstruction enforces that the
same token decodes into an equivalent motion across modalities, which is critical for achieving
unified tokenization.

The training objective is defined as
L = Linra + Lcommit + BLeross> (1

where Ljy, is the intra-modal reconstruction loss for human and humanoid motions, Loss penalizes
discrepancies in cross-modal reconstruction (human-to-humanoid and humanoid-to-human), and
L commit 18 the commitment loss. Balancing coefficients  and /3 control the trade-off between fidelity
and codebook consistency. Architectural and training details are provided in Appendix [C.T]

3.2 VOCABULARY-DIRECTED HUMANOID ACTION DISTILLATION

With unified motion vocabulary in Sec[3.I] we next bridge the gap between kinematic motion
primitives and physical control through a vocabulary-directed distillation process. Following the
teacher—student paradigm used in recent whole-body controllers(He et al., 2025; |Yin et al., 2025;
Tessler et al., 2024), we train a privileged teacher policy to track continuous humanoid-retargeted
motions with high fidelity and then distill its behavior into a vocabulary-directed student policy that
relies on motion tokens. This stage shifts the control input from dense reference trajectories to the
compact motion language of tokens, enabling the humanoid to execute token sequences output by
the language model in Sec[3.3]

Fully-constrained Teacher Controller. We follow the goal-conditioned reinforcement learning
framework to train a fully-constrained teacher tracking policy 7™ that tracks dense humanoid-
retargeted reference states. At timestep ¢, the controller observes humanoid proprioception s; and a
goal state gi"k comprising kinematic reference motion, and computes target joint positions a; for

the PD controller.

The teacher proprioception s; consists of the current root linear velocity p°® € R3, root angular
velocity wi*® € R3, joint positions q; € R™, joint velocities ¢z € R™ and the previous action
history a;_; € R™ with respect to the robot’s local coordinate frame:

root

St = |:I.)§,00ta wt , dt, élta at—li| . (2)
And for tracking goal observation gi", we track relative body pose instead of absolute poses fol-
lowing previous tracking framework (Liao et al., 2025):

track __
g = [

~ ° ~ Aroot t
Qry1, Qer1, PR — PP 021 © 07 :|v 3
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where © denotes the difference between two rotations. The policy action a; is the normalized robot
target joint positions, which are residual targets for nominal joint configuration.

For policy training, Proximal Policy Optimization (PPO) (Schulman et al., [2017) algorithm is used

to maximize the accumulated reward E[Zthl ¥t~ 1r;]. We design the reward r; as a weighted sum
of task rewards, regularization and penalty. Details can be found in Appendix[C.2]

Vocabulary-directed Student Controller. After fully-constrained teacher controller is trained,
we distill 7 into a vocabulary-directed student policy. Let the unified tokenizer (Sec.
provide a motion vocab window 2%, we aim to train a student policy 7'°°® that can generate
full body actions satisfying these given motion vocabulary commands. To solve this ambiguity,
we follow [Tessler et al. (2024: [2025) and model 7¥°°® as a Conditional Vatiational Autoencoder
(CVAE) (Kingma & Welling| |2013)) consisting of a vocabulary prior p, a residual encoder £ and an

action decoder D. At timestep ¢, the motion vocab observation of the student controller is:
g;/ocab _ |:_/\/l(g;rack)7 Zzocab} , (4)

where M(+) is a random masking function and z{°®® is the current motion vocabulary in Sec.
The vocabulary prior is modeled as a Gaussian distribution over latents given the observed vocab

constraints:

p(zelse, 81°°) = N (1 (51, 81°), 0 (s1,8]°™)) . S)
The encoder £ is modeled as a residual to the prior that outputs a latent distribution given the full-
constraint teacher observation g?aCk (Yao et al., 2022)):

5(2t|5ta g;rack) — N (MP(Sta gzocab) 4 /Jg(sh g;rack)’ O'g(St, g;rack)) . (6)

track

Based on the Dataset Aggregation (DAgger) algorithm (Ross et al.,|2011), we train voeab from
with motion token labels within the same motion dataset. The training objective is to minimize the
difference between reference action and student action as well as the KL divergence between encoder
distribution pg and prior distribution g,:

Lo = [|ay™ — ay*®|[3 + Ak (pe (zelse, 81") || g (2else, 81°)) | 7

where @' is the reference action from 7™k Y@ jg the student action sampled from
D(a}*®|s;, g}°®) and Ay is the hyperparameter for balancing reconstruction and regularization.
Details can be found in appendix [C.2}

3.3 LARGE LANGUAGE-ACTION MODEL

In this section we show how, building upon Sec. and Sec. [3.2] our framework implements an
end-to-end mapping from open-vocabulary and highly abstract language descriptions to physically
executable robot actions without relying on tracking-based retargeting. Sec. [3.2] serves as the key
intermediate: a low-level controller distilled to follow latent motion tokens, seamlessly linking latent
motion token generation and physics-based action execution. The following parts in this section
detail the training of our proposed LLA.

Supervised Fine-tuning with Augmented Human Data. We formulate motion token generation
as an autoregressive, text-conditioned language modeling task, where a motion sequence is repre-
sented as a series of discrete tokens from the unified codebook Z = {(cb; ;) }, with ¢ indexing the
sub-codebook and j the token entry. Given abundant paired human motion—text data, the input is the
textual description w, and the supervision target y = (y1,...,yr) is constructed by concatenating
a MLLM-annotated (Bai et al., 2025) motion chain-of-thought (Shao et al., 2024) with the ground-
truth motion tokens from the pretrained tokenizer. The model is trained with the standard next-token
prediction loss:

L
Lsrr = —E(w,y)~D Zlog Py(ye | w,y<t), 3
=1

where ¢ are the model parameters. This supervised stage establishes a preliminary alignment be-
tween language and motion, while enabling the model to respond by progressing from concise mo-
tion descriptions to richer analytical decomposition and ultimately to motion token generation.



Under review as a conference paper at ICLR 2026

RL Fine-tuning with Humanoid Feedback. Large models are commonly adapted to downstream
tasks with reinforcement learning, resulting in policies that better match task-specific requirements.
We adopt Group Relative Policy Optimization (GRPO) (Shao et al.| [2024), a variant of PPO (Schul-
man et al., [2017) that avoids training a separate critic by sampling a group of candidate outputs
y(E) for each input prompt z, assigning each a scalar reward, and normalizing rewards within the
group to obtain relative advantages. This encourages the policy to prefer better-than-average candi-
dates without requiring an explicit value function. The policy is optimized with a clipped surrogate
objective regularized toward a reference model:

K
1 . ~ . ~
EGRp0(¢) = — ECL Ey(hk)wn.(75 [K E min (Tk Aka ChP(Tké 1- €, 1+ 6) Ak) + ﬁKL LKL) (9)
k=1

where z is the input prompt, y('%) are K sampled candidate sequences, ry, is the likelihood ratio

between the current and reference policies, and A}, is the group-normalized advantage. The KL
term Lg;, constrains the policy to stay close to a reference model. This formulation provides a stable
and efficient way to fine-tune LLA with humanoid feedback, injecting physical priors into token
generation.

Unlike prior work that emphasizes only kinematic fidelity (Ouyang et al., 2025} Yue et al.; 2025)), we
stress the importance of dynamics-level consistency for real-world deployment. RLPF (Yue et al.
2025) employs a binary simulator-tracking reward, which ensures executability but often reduces
motion diversity, as the policy tends to favor conservative behaviors that are easy to track. To
address this, we design a reward scheme that combines high-level distributional objectives with
low-level simulator-based tracking signals, achieving motions that are both physically robust and
expressively varied.

Physical Fidelity Reward Design. The overall reward is a weighted sum of a binary format re-
ward and a continuous physical fidelity reward. The format reward acts as a prerequisite: the
model must first learn how to answer (i.e., producing valid structured outputs) before it can ef-
fectively learn how fo answer well (i.e., generating physically and semantically aligned motions).
Concretely, the format reward checks two requirements: (i) the response must follow a structured
template beginning with <think>...</think> and followed by <motion>...</motion>;
and (ii) within the motion segment, motion tokens must appear in cyclic sub-codebook order
(cb0—cbl—...—=cb (N-1) repeatedly). We define it as

Trormat = L{requirements satisfied}. (10)

The physical fidelity reward is composed of a distributional term and a tracking term. The distri-
butional reward encourages decoded motions to match the distribution of feasible trajectories and
to align semantically with the paired text. Using contrastive encoders ¢ (-) and ¢(-) (Guo et al.|
2022) trained on physically plausible humanoid datasets, we define distributional reward as

Tdist = GXP( —Am ”d)m(mgen) - ¢m(mret‘)||2) =+ eXp( — At ||¢)m(mgen) - ¢1(Wret‘)||2)a (11)

where the two terms measure motion fidelity and semantic fidelity, respectively, and A\, Ay > 0
control sensitivity.

The tracking reward measures how well a generated token sequence can be executed in simulation
by the distilled low-level controller (Sec. [3.2). We evaluate the simulated rollout with a position
reward term Ios and an acceleration reward term rocc:

Ttrack = Tpos 1 Tacc (12)

Finally, the physical fidelity reward is calculated as rphys = Tgist + Twrack- More details are in ap-

pendix [C.3]
4 EXPERIMENT

4.1 EXPERIMENT SETUP

Dataset. We conduct extensive experiments on the text-annotated subset of the AMASS
dataset (Mahmood et al., 2019; |Guo et al., [2022), consisting of 26,846 motion sequences, each
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Table 1: Quantitative results on text-to-humanoid motion generation. We report R-Precision at top-3.
1, |, and — indicate that higher is better, lower is better, and closer to the GT is better, respectively.

Methods ‘ FID]  R-Precisionf MM-Dist| Div.—
Ground Truth | 0.00 0.610 3.804 8.238
MDM-+Retarget (Tevet et al.|[2023) | 11.759 0.262 6.599 6.419
OmniH20 (He et al.[[2025) 17.159 0.222 8.021 5.868
UH-1 (Mao et al.||[2024) 8.682 0.295 5.896 6.749
LangWBC* (Shao et al.|[2025) 6.171 0.320 5.587 6.031
Humanoid-LLA (Ours) ‘ 2.626 0.447 4911 7.122

Table 2: Physics-based quantitative results. 1 and | indicate that higher is better, lower is better,
respectively.

Methods | Succ.t MPIPE] Eyl Eucl
OmniH20 (He et al.|[2025) 72.2% 73.43 11.78 10.48
UH-1 (Mao et al.[[2024) 68.8%  121.51 16.59 14.80
LangWBC* (Shao et al.|[2025) | 76.0% - - -
RLPF (Yue et al.|[2025) 80.0%  140.00 — -
Humanoid-LLA (Ours) | 87.6% 56.43 8.92 7.74

paired with 3—4 textual descriptions. For every motion sequence, we employ mink (Zakka) to retar-
get human motions into corresponding humanoid motions, resulting in a paired human—humanoid
dataset. The choice of this dataset is motivated by two factors. First, AMASS motions are cap-
tured using high-quality optical motion capture, ensuring low noise and enabling the model to better
learn the latent alignment between motion and language. Second, text-annotated AMASS has been
widely adopted in both human and humanoid motion generation, which ensures standardized and
fair comparison across methods.

Baselines. To comprehensively demonstrate the advantages of our model in terms of both motion
quality and physical executability for text-to-humanoid, we compare against several state-of-the-art
baselines: 1) MDM+Retarget (Tevet et al.l 2023) kinematically retargets MDM-generated motion
to humanoid robots. 2) OmniH2O (Tevet et al., 2023 He et al., [2025) uses motion diffusion model
to produce kinematic human motions followed by retargeting and an imitation policy to obtain phys-
ical humanoid motions. 3) UH-1 (Mao et al.| [2024) trains a decoder-only transformer to map text
descriptions into humanoid motion with a retargeted humanoid motion-text dataset. 4) LangWBC
(Shao et al.} [2025) distills a VAE-based policy to simultaneously capture text semantics and sample
actions. 5) RLPF (Yue et al.,|2025) is a recent approach exploring physical feedback to constrain the
kinematic LLM-based human motion generator, which is also followed by a post-process of motion
retargeting and tracking. Implementation details of baselines are provided in appendix [D.2] Besides
text-to-humanoid, refer to appendix [D]for more experiments and ablation results for building unified
motion vocabulary [3.T]and distilling vocab-directed controller[3.2]

Evaluation Metrics. Most prior work on text-to-humanoid motion generation (Mao et al.| 2024
Shao et al.|, 2025} |Shi et al.l [2025] |Yue et al.| |2025) reports either low-level physics tracking met-
rics or human-motion generation metrics, leaving no unified protocol directly defined on humanoid
robots. To fill this gap, we design an evaluation that combines physics-based tracking measures
with distributional generation metrics computed in humanoid motion space. These two perspectives
jointly capture executability, distributional fidelity, motion—language alignment, and diversity, thus
discouraging models from producing only simple, easily executable motions at the expense of ex-
pressiveness. For the generation side, we report FID to measure distributional similarity against a
physical humanoid motion set obtained by a goal-conditioned tracking policy (i.e., teacher controller
in Sec.[3.2), MM-Dist and R-Precision to assess motion-language alignment, and Diversity (Div.) to
evaluate variability. For the physics side, we measure success rate (Succ.), mean per-joint position
error MPJPE (mm), velocity error E,.; (mm/frame) and acceleration error E,. (mm/frame?). More
details are provided in appendix
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Table 3: Quantitative results of ablation study.

Methods | FID| R-Precisionf MM-Dist| Div.— || Succ.t MPIPE| Eyl Eul
Humanoid-LLA w/o CoT 10.423 0.270 6.222 6.405 64.90% 90.43 14.11  11.23
Humanoid-LLA w/o RLFT | 5.132 0.331 5.443 6.668 68.64% 78.31 12.12  10.01
Humanoid-LLA w/0 g 4.597 0.342 5.401 6.892 85.33% 61.27 9.31 9.02
Humanoid-LLA w/0 7yack 2.578 0.439 5.013 7.007 76.72% 66.42 10.89  9.77
Humanoid-LLA (Ours) 2.626 0.447 4911 7.122 H 87.6% 56.43 892 8.74

4.2 TEXT-TO-HUMANOID EVALUATION

The results reveal distinct trade-offs among baselines. MDM (Tevet et al.,|2023) generates motions
in the human domain and transfers them to robots via kinematic retargeting, preserving expressive-
ness and diversity but lacking physical fidelity. OmniH20 (He et al., 2025)) adds an imitation policy
to obtain feasible trajectories, yet discrepancies between human and robot action spaces cause fre-
quent tracking failures, and discarding these biases the motion distribution. UH-1 (Mao et al.| [2024)
trains on robot trajectories to decode from a robot-space latent manifold, improving fidelity and
tracking scores while retaining generative capacity, but still falling short for real-world deployment.
LangWBC (Shao et al.,|2025) conditions on both language and control, achieving strong low-level
executability but weaker motion—language alignment. RLPF (Yue et al.l [2025) introduces physical
feedback to constrain motions to the feasible set, but optimizing distributions in the human space
yields suboptimal humanoid alignment.

In contrast, our method couples LLM-generated tokens with a vocabulary-directed controller and
fine-tunes with humanoid feedback, preserving diversity and expressiveness while substantially
boosting physical fidelity. This leads to consistent improvements across both evaluation axes, out-
performing prior methods on generation metrics and tracking metrics. Implementation details see

appendix [C]
4.3 ABLATION STUDIES

We perform ablation studies to assess the contribution of each component of LLA in terms of gen-
eration quality and physical fidelity. (1) Humanoid-LLA w/o CoT: removes chain-of-thought
augmentation and relies solely on raw motion descriptions when generating motion tokens. (2)
Humanoid-LLA w/o RLFT: replaces the RL fine-tuned model with the SFT-only baseline. (3)
Humanoid-LLA w/o rgi: excludes the distributional reward while retaining the tracking-based
term. (4) Humanoid-LLA w/o r,ck: excludes the tracking reward while retaining the distribu-
tional term. The results highlight that each module plays a complementary role, and removing any
of them leads to a clear degradation in performance.

5 CONCLUSION

In this work, We present Humanoid-LLA, a unified framework for language-conditioned humanoid
control that bridges expressive language and huamanoid whole body execution. Our approach ad-
dresses the critical challenges of language generalization, physical fidelity and sim-to-real transfer in
text-to-humanoid whole body motion generation. Specifically, Humanoid-LLA introduce a unified
discrete codebook that aligns human and humanoid motion primitives, effectively bridging large lan-
guage models and whole body controller. By augmenting large-scale human-motion datasets with
vision language model generated annotations and fine-tuning with humanoid physics-based feed-
back in simulation, our model achieves enhanced language generalization and physical feasibility at
execution. Extensive evaluations in physical environments demonstrate that our method outperforms
prior works on both physical feasibility and motion quality, culminating in successful deployment
on real humanoid hardware. Extending Humanoid-LLA to richer multimodal grounding, longer-
horizon planning, and lightweight adaptation remains an important direction.
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6 STATEMENTS

Ethics statement We adhere to the ICLR Code of Ethics. This work uses publicly available re-
search datasets and in-lab robot experiments conducted under standard safety protocols (e.g., emer-
gency stop, clearance zones, and supervised operation). No human subjects research, personally
identifiable information, or sensitive biometric data were collected. We followed all dataset licenses
and terms of use, avoided revealing any private or proprietary content, and report results honestly
and transparently.

Reproducibility statement We will provide all materials needed to reproduce our results: train-
ing and evaluation code, configuration files with hyperparameters, environment specifications
(OS, CUDA/driver, Python/package versions), random seeds, and scripts to download/preprocess
datasets. We will release pretrained checkpoints, evaluation notebooks, and a README enabling
end-to-end replication.
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A  OVERVIEW

In this document, we provide expanded technical details, additional experiments, and extended dis-
cussions that complement and elaborate on the main paper. Specifically, Sec. [C] offers a detailed
account of our implementation, covering the unified human—humanoid tokenization and codebook
construction, the token-conditioned control policy with action distillation to torque-level actuation,
and the Large Language—Action Model interface and training procedure; we also clarify settings
required to reproduce baseline methods. Sec. [D|reports the robot system setup, metric definitions,
and a comprehensive suite of experiments and ablations, and further illustrates generalization with
additional textual results and motion visualizations; it also summarizes the accompanying video. Fi-
nally, Sec. @extends the discussion of limitations and failure cases and outlines directions for future
work. Through this supplementary material, we aim to provide a more complete view of Humanoid-
LLA, clarify practical nuances for replication, and furnish additional evidence of robustness and
versatility.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

The Large Language Models were used only for English writing assistance such as grammar, word-
ing, and minor stylistic edits to author-written text. The LLM did not contribute to research ideation,
method design, experiments, analysis or citation selection. All technical content is authored and ver-
ified by the authors, who take full responsibility for the paper’s contents. The LLM is not an author.

C SUPPLEMENTARY TECHNICAL DETAILS

C.1 DETAILS OF UNIFIED HUMAN-HUMANOID TOKENIZATION.

Humanoid Motion Canonicalization Details. We preprocess raw G1 humanoid trajectories with
T frames, each frame represented as

z = [p €R®, ¢ €RY, dy € R¥], t=0,...,T —1. (13)
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Algorithm 1 Humanoid Motion Canonicalization
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Figure Al: Diagram of detailed unified tokenizer architecture and training procedure.

We thus produce (T — 1) frames of 227-dimensional canonicalized humanoid motion representation
per sequence (see Algorithm [I)).

Tokenizer Training Details.

To enforce embodiment-agnostic tokenization, we adopt a dual-

branch VQ-VAE adapted from Zhang et al.| (2023) where human and humanoid motions are en-
coded separately but quantized through shared codebooks. As shown in Fig. [AT] given sequences
m" € RT*dr and m" € RT*4r modality-specific encoders produce latents z", z*, which are quan-
tized into tokens 2", 2. Decoders then reconstruct both intra- and cross-modal motions. The corre-
sponding objectives are

Linga = ||m" — /" + |m" — @],  Leoss = [[m" — 0™y + [m" — @™y,  (14)
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where cross-reconstruction ensures that shared tokens decode into semantically consistent motions
across embodiments.

Each encoder—decoder is a temporal convolutional network with depth 3, dilation growth rate 3, and
downsampling factor 22. The latent space has 512 dimensions, evenly partitioned into 8 sub-chunks
of 64 dimensions, each quantized by a codebook of size 64. Training is conducted on text-annotated
AMASS with batch size 256. We use AdamW (Ir=2 x 10~%, betas (0.9,0.99), weight decay 10’4)
to optimize the tokenizer training. Both training and evaluation are run on a single NVIDIA RTX
4090 GPU.

C.2 DETAILS OF VOCABULARY-DIRECTED ACTION DISTILLATION

Details of Tracking Controller Reward Design. As shown in Tab. We train the fully con-
strained teacher 7K with PPO using a composite reward that combines normalized tracking terms
(as exponential scores) with lightweight regularization and hard-limit penalties. Tracking targets are
defined in the robot’s local frame and computed as relative position and orientation error to reduce
drift. Unless noted, all errors are normalized so that weights are comparable across terms.

Table Al: Reward table for the fully-constrained teacher controller

Term Weight Term Weight
Task (tracking; exp(—«|| - ||2) forms)
Root position 0.5 Root rotation 0.5
Body position 1.0 Body rotation 1.0
Body linear velocity 1.0 Body angular velocity 0.5
DoF position 2.0 DoF velocity 0.2
Penalty (hard limits / self-contact)
Torque limits —-1.0 DoF position limits -5.0
DoF velocity limits -5.0 Self-contact —0.1
Regularization (L2 costs)
Lower-body action rate —-0.4 Upper-body action rate —0.1
Torque —1x10~* DoF acceleration —1x107°

Domain Randomization. To improve robustness under deployment, we adopt a broad range of
randomization during policy training, including varying ground friction, joint damping, sensor la-
tency, and external perturbations. With online adaptation of the teacher to randomized conditions,
the distilled tokens encode transferable primitives rather than brittle overfits.

Tracking Controller Training Details. We train the tracking controller 7" with on-policy PPO
(Schwarke et al., 2025) using online data collection at a 50 Hz control rate (physics d¢ = 0.005s,
action hold/decimation = 4) and 10 s episodes in NVIDIA Isaac Lab (Mittal et al., 2023). Each iter-
ation collects 24 policy steps per environment (=~ 0.48 s of experience) across up to 16,384 parallel
environments on a flat plane, yielding up to 24 x N, transitions per update. To improve robustness,
we apply domain randomization at startup (friction/restitution buckets, joint default pose pertur-
bations, and anchor-body CoM shifts) and inject intermittent external pushes during rollouts by
directly setting linear/angular velocities at random intervals between 1-3 s (linear £0.5m/s in z/y,
+0.2m/s in z; angular £0.52 rad /s roll/pitch, £0.78 rad/s yaw). Motion-conditioned commands
are loaded from trajectories and sampled with an adaptive time-binning curriculum: the motion
timeline is discretized into bins whose sampling probabilities are proportional to recent failure rates,
smoothed with a short non-causal kernel (kernel size 3, A = 0.8) and updated by an exponential
moving average (o = 0.001) with a small uniform mixture (ratio 0.1); when an episode terminates
or a clip ends, time indices are resampled according to this distribution, and root/joint states are
jittered and clipped to soft limits before continuing. PPO optimization uses clipping € = 0.2, learn-
ing rate 10~3 with an adaptive schedule driven by a desired KL of 0.01, 5 learning epochs over 4
mini-batches per update, value loss coefficient 1.0 with value clipping enabled, entropy coefficient
0.005, discount v = 0.99, GAE )\ = 0.95, and max gradient norm 1.0; advantages use GAE and are
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standardized. A low-frequency variant scales rollout length with the control period and exponenti-
ates -y and \ to keep the effective per-second discount unchanged. All experiments are trained on 2
NVIDIA Geforce RTX 4090 48G GPUs with 30,000 iterations.

Vocab Controller Training Details. We implement the vocabulary-directed student as a condi-
tional VAE whose components are: an encoder £, a Transformer prior p, and an action decoder D.
At each step, the input is assembled from (i) masked tracking-goal poses (ii) 512-d motion vocab-
ulary embedding, and (iii) a self-observation token. Each stream passes through normalized MLPs
(clamp = 5) to produce 512-d tokens; visibility masks are mapped to the attention mask. The prior is
a 4-layer, 4-head Transformer (feed-forward 1024, dropout 0.1) that parameterizes a Gaussian over
the latent; the encoder provides a residual refinement MLP to this prior. The decoder is an MLP
with layers 1024-1024-512 (ReLU, tanh head) that outputs normalized joint targets conditioned on
the latent and current self-observation.

Training follows a teacher—student data-aggregation scheme: the student acts with masking enabled,
a privileged tracking teacher supplies action labels, and we optimize an action reconstruction objec-
tive with a KL regularizer (annealed from 10~% to 102 between epochs 3000 and 6000). We use
1024 parallel environments, 32-step rollouts, batch size 4096, 6 mini-epochs, Adam with learning
rate 2x 1075, and gradient clipping at 50.0. The target pose is visible with probability 0.1, and the
vocab embedding is visible with probability 1.0 when present. At inference, latent noise is set to
zero for deterministic control. All experiments are trained and inferenced on 2 NVIDIA Geforce
RTX 4090 48G GPUs.

Sim-to-Real Observation State Estimation. Following prior works (Flayols et al., |2017; [Liao
et al.}|[2023;2025)) , we estimate root linear velocity p™° by combining a momentum observer with
an Extended Kalman Filter over base pose, velocity, and Inertial Measurement Unit biases. This fil-
tering ensures that both teacher and student policies operate on physically plausible proprioception,
closing the sim-to-real gap.

C.3 DETAILS OF LARGE LANGUAGE-ACTION MODEL

Human Data Augmentation. Previous work (Ouyang et al.| 2025) has highlighted that the spar-
sity and abstractness of text annotations in the AMASS dataset limit unified modeling of motion and
language. Designing denser, decomposable, and more specific annotations can significantly enhance
motion understanding. Motivated yet distinct from (Ouyang et al.| (2025, which employs LLMs to
generate densified textual descriptions, we leverage the multimodal large model Qwen2.5-VL (Bai
et al.,|2025)) to jointly process textual descriptions and rendered motion sequences. This enables us
to obtain more accurate chain-of-thought (CoT) annotations, since a single high-level abstract de-
scription may correspond to multiple plausible motions, many of which do not align with the actual
motion instance. These motion CoTs are then employed during the supervised fine-tuning stage to
provide preliminary alignment between motions and language.

Supervised Fine-tuning (SFT) Details. We fine-tune Qwen2.5-3B-Instruct on our augmented hu-
man motion dataset. The original text annotations are used as part of prompts, while the motion
Chain-of-Thought (CoT) together with the corresponding motion tokens serve as ground-truth re-
sponses. The model is trained autoregressively with cross-entropy loss. Training is conducted with
batch size 32, learning rate 1x 10~%, weight decay 0.01, and the AdamW optimizer (8 = (0.9, 0.98))
on 8 NVIDIA GPUs. We adopt a cosine scheduler with 100 warm-up steps, gradient clipping at 1.0,
and mixed-precision training in bfloat16.

Implementation of RL Fine-tuning. We further fine-tune the model with reinforcement learning
using the GRPO algorithm. Training is performed with batch size 64, consisting of 8 prompts
per batch and 8 sampled responses per prompt, with gradient accumulation over micro-batches of
4. The maximum prompt and generation lengths are set to 512 and 1024, respectively. We use the
memory-efficient AdamW optimizer with learning rate 1 x 10~°, weight decay 0.01, and (31, B2) =
(0.9,0.999), along with gradient clipping at 1.0 and a cosine learning rate schedule decayed to
1 x 10~°. The clipped objective adopts ¢ = 0.2 and includes a KL regularization term with 3 =
0.001 against the SFT model as reference. The weighting coefficients in equation[IT]are set as \,,, =
At = 10. We calculate 7pos = exp (—0.005 MPJPE) , 7cc = exp (—0.05Ey) in equation The
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Figure A2: Visualization of Human Motion Chain of Thought augmentation based on Qwen2.5-VL.

contrastive motion encoder ¢,,, and text encoder ¢; in equation [ T]are trained following|Guo et al.
(2022) on a tracking-based retargeted AMASS dataset, where only successfully tracked sequences
are retained. The training is also conducted on 8 NVIDIA H20 GPUs.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 DETAILS OF ROBOT SYSTEM SETUP

Our real humanoid hardware is built on the Unitree G1 humanoid platform (Robotics)), as shown in
Fig.[A3] The G1 stands 1320 mm tall, weighs about 35 kg with battery, and provides 6 DOF per leg
and 7 DOF per arm, with a maximum arm payload of 3 kg. It is powered by a 9000 mAh detachable
battery that supports around 2 hours of operation. The knee joint could achieve up to 139 N-m torque
with a joint movement space of 0—165°, complemented by other flexible joints including the waist
(Z: £155°, X: £45°, Y: £30°), the hip (P: £154°, R: —30° to +170°, Y: £158°), and the wrist
(P: £92.5°, Y: £92.5°), ensuring both stability and dexterity in whole-body control. We deploy our
motion policies on the controller inference presented by (Liao et al.,|2025). All deployment code is
written in C++ and optimized for realtime execution, which achieved full-state estimation at 500 Hz
using a low-level generalized momentum observer. The policy inference frequency is 100 Hz, en-
abling reliable real-time control of the robot during dynamic locomotion and manipulation tasks
while ensuring smooth integration between state estimation and policy execution.

D.2 IMPLEMENTATION OF BASELINES

For a fair comparison with the baselines introduced in Sec. ] we unify the evaluation metrics and
protocols across all methods. To measure generation metrics, we adopt the motion and text encoders
described in [C.3] The implementation details for each baseline are outlined as follows:

MDM-+Retarget We employ the MDM (Tevet et al., | 2023)) model pretrained on the HumanML3D
(Guo et al.,[2022) dataset to generate human motions. Since MDM outputs joint positions rather than
SMPL parameters, we apply an IK-based optimization to regress SMPL parameters from joint posi-
tions, using a learning rate of 10~ for 100 iterations per generated sequence. The resulting SMPL
sequences are then retargeted to humanoid motions via an optimization-based method proposed in
H20 (He et al.| 2024])). As this baseline does not involve physical simulation, we report only gener-
ation metrics.

OmniH20 We implement OmniH20O (He et al.| |2025) to track MDM+Retarget-generated hu-
manoid motion sequences within a physics simulator. Following the evaluation protocol mentioned
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Weight:35kg+

IZI Battery Life: 2h

B> Arm Max Load: 3kg
IT] Height : 1320mm
© Width : 450mm

{s} Single Arm DOF : 7

{8} Single Leg DOF : 6

Figure A3: Details about Unitree G1 Robot.

in [He et al.| (2025)), we report physics-based tracking metrics computed over all sequences, rather
than only the successfully tracked ones. After tracking, all trajectories are collected to compute
generation metrics.

UH-1 We implement UH-1 (Mao et al.l [2024) on our physically-retargeted humanoid motion
dataset, which is collected by mink retargeting and our teacher controller tracking [3.2] We first
train the humanoid motion generator based on T2M-GPT (Zhang et al., [2023), then leverage goal-
conditioned RL to track these generated output. Generation metrics and physics metrics are reported
following the same calculation paradigm as in in the implementation of OmniH20.

LangWBC We reproduce LangWBC (Shao et al., [2025)) by using a prior-free C-VAE student (no
prior network) and a frozen CLIP text encoder (Radford et al.,[2021) to jointly encode language and
proprioception and decode normalized joint targets. For policy distillation we use the same teacher
controller in Sec.[3.2]

RLPF For RLPF (Yue et al., 2025])), we report the physics-based metrics of the RLPF-PHC variant,
as its experimental setup and evaluation protocol are most comparable to other baselines. We do not
include generation metrics, since RLPF evaluates them in the human motion domain, whereas our
evaluation is defined directly on humanoid motions.

D.3 DETAILS OF EVALUATION METRICS

We provide details of the metrics used for text-to-humanoid evaluation. Metrics are divided into two
categories: generation-side metrics (Guo et al., 2022} [Zhang et al., [2023)), which measure semantic
alignment and distributional fidelity, and physics-based tracking metrics (Luo et al.| [2023), which
assess physical executability in simulation.

Let G = {(wl(g ), Trzl(»‘(’))}f»\]:f’1 denote the generated (text, motion) pairs, and 7 = {(wj(.t), m§t))}§v;1
denote the ground-truth test pairs. We denote the text encoder by ¢, (-) and the motion encoder by
®m(-). Motion inputs are standardized before encoding using dataset mean and standard deviation:

m—p

m = ; 5)
g

where (i, o are the precomputed dataset mean and std.

Generation-side metrics.
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* Embeddings and pairwise distances. For NV paired samples, compute text and motion

embeddings:

t7:¢t(wl)7 m7:¢’m(m7)7 7’:177Na (16)
and form the Euclidean distance matrix D € RV*¥ ag

Dyj = \Jmax (= 26T m; + |1l + [m; 13, 0). a7)

* R-Precision@Fk. Measures whether the ground-truth motion for each text query is among
the & nearest neighbors. Let D; (1) < D; (2) < - - - be the sorted distances in row i. Define

1, D;; <D,

]Ii _ b i,i > g (k) 18

* {0, otherwise, (18)

where D; ; is the distance to its paired motion. Then

1

R-Precision@k = — L k. 19

recision N ; ik (19)

* Matching score. The average diagonal distance reflects text—-motion alignment:

1

MatchingScore = N z_: D; ;. (20)

* Diversity. Measures intra-set variability of motion embeddings. Sample 7" unordered pairs

{(proar)}i=s:
1z
Diversity = T E lmp,. —mg, ||2- (1)

* Fréchet Inception Distance (FID). Compares generated vs. ground-truth motion embed-
ding distributions. For mean and covariance

1 Y R
= ;:1 m;, = N1 ;21 (m; —p)(m; —p) ', (22)
the FID is
FID(T,G) = [l — pgll3 + Tr(Es + 8¢ — 2(5:%,)"/?). (23)

Physics-based tracking metrics.

* Success rate (Succ). Fraction of sequences tracked without falling or excessive deviation:
1 X . .
Suce = §H[mtax 17 = JP)ly < 0.5m|, (24)

where Jt(i) and jt(L) denote reference and simulated joint positions.

* Mean Per-Joint Position Error (MPJPE). Average distance between predicted and refer-
ence joint positions:

N T J
1
MPJPE:TTJZZZU() JI2 25)
i=1 t=1 j=1
* Velocity error (Fy,). Discrepancy in per-joint velocities:

B = NTJZZZHJ(” T |l2. (26)

i=1 t=1 j=1

* Acceleration error (F,.). Discrepancy in per-joint accelerations:

N T J
1 i) 50
Epe = WZZZHJM — |- 27)

i=1 t=1 j=1
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Table A2: Human motion reconstruction results. /N denotes the number of sub-codebooks, and K
the number of entries per sub-codebook. 7, |, and — indicate that higher is better, lower is better,
and closer to the dataset is better, respectively.

Methods \ FID| TOP-11 TOP-21 TOP-31 Diversity—  MM-Dist|
T2M-GPT | 0.112+001 05005903 0.692%002  (.789F:002  9.723+066 3 056+-009
Ours (N=4, K=64) | 0.077%000 507003  (699*003 () 793+003 g g45+=098 3 (05+-008
Ours (N=8, K=32) | 0.032%+:000  (.509+003 (702002 (796+002 95635063 9 98p+-008

Ours (N=8, K=128) | 0.018%:000  (.509+002  702%+:002 () 796+002 g 579+=084 9 ggo+.009
Ours (N=16, K=64) | 0.005%000  (.510%:003  (.703%+003  (.797+003 g 434%.069 9 gGg+-009

Ours W/0 Leross 0.041+:000 . 508+003 (0.700%+002 (.794%002 9 488+ 072 2 gg7+009
Ours (N=8, K=64) | 0.021%000 (511003 (. 703+002 (796002 9555+056 2 978+ 009

Table A3: Humanoid motion reconstruction evaluation results. N denotes the number of sub-
codebooks, and K the number of entries per sub-codebook. T, |, and — indicate that higher is
better, lower is better, and closer to the dataset is better, respectively.

Methods | FIDJ TOP-11 TOP-21 TOP-31 Diversity—  MM-Dist].
T2M-GPT | 0.1835002 4755003 06615002 (.758%002  10.804F093  3.425%008
Ours (N=4, K=64) | 0.082%:001  (.484%:003  (g73+:002 (771002 10 g05+09 3 .338+:008
Ours (N=8, K=32) | 0.037£900  (.491%003  (679%:003  (,776+:002  10577+003 3 307+008

Ours (N=8, K=128) | 0.016F900  (.492%003  (680+003 (0 777+:002  10537E094 3 991+008
Ours (N=16, K=64) | 0.006%:000  (.492+:003  (gg1%:003  ( 778+:003 10 53+:080 3 988+008

Ours w/0 Leross 0.011+000 . 492+003 (g g81+003 (778+003 1063109 3,285+ 008
Ours (N=8, K=64) | 0.023%*990 0.490+003 0.678+003 0.776+002 10.671+0%° 3.301+008

D.4 ADDITIONAL EXPERIMENTS AND ABLATIONS

Experiments and Ablation on Unified Tokenizer. To demonstrate the effectiveness of our
implicit-partitioning tokenizer for fine-grained joint quantization of human and humanoid motion,
we compare against T2M-GPT (Zhang et al.||2023)), a representative baseline in motion quantization.
We further ablate the number of sub-codebooks and the number of entries per sub-codebook, and we
evaluate the effect of omitting the cross-reconstruction loss Loss. The evaluation of human motion
reconstruction, humanoid motion reconstruction, human-to-humanoid motion reconstruction are all
based on the implementation of Zhang et al|(2023). We show these experimental results in table[A2]
[Adland [Adl

Results show that increasing the number of sub-codebooks and enlarging per-codebook capacity
reduce quantization error. Compared with single-codebook quantization, implicit partitioning pro-
duces a more fine-grained discrete latent space under the same total token budget. As reported in
Table removing the cross-reconstruction term L5 in Eq. equation [I] substantially degrades
the human-to-humanoid reconstruction metric, demonstrating that the cross-modal objective is es-
sential for assigning the same discrete token to semantically equivalent motion primitives across
embodiments. Based on these ablations, we adopt 8 sub-codebooks with 64 entries each for our
unified motion tokenizer; this configuration serves as the foundation for the motion—language joint

modeling in Sec.

Ablations on Vocabulary-directed Action Distillation Table [A3] studies three key components
of the vocabulary-directed student: a VAE latent, a Transformer prior, and random mask training.
Replaceing the VAE to MLP causes the largest drop in executability and accuracy: success falls
from 95.2/86.1% (train/test) to 93.8/84.6%, while MPJPE degrades markedly (39.86 — 59.24
train; 49.69 — 68.57 test), and E,../ Eye increase (train: 6.88/6.13 —8.31/7.37; test: 9.23/8.18 —
11.73/10.84). Dropping the prior also hurts but less severely: success 94.1/85.3% and MPJPE
48.72/59.91, indicating the prior supplies helpful dynamics regularization under token guidance.
Eliminating the mask leads to the lowest test success (83.5%) and higher errors (MPJPE 61.83,
Eae = 9.98, Eye = 9.02), suggesting that masking mitigates overfitting to dense teacher signals
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Table A4: Human-to-Humanoid motion reconstruction evaluation results. N denotes the number of
sub-codebooks, and K the number of entries per sub-codebook. 1, |, and — indicate that higher is
better, lower is better, and closer to the dataset is better, respectively.

Methods \ FID| TOP-17 TOP-21 TOP-31 Diversity—  MM-Dist|,
T2M-GPT | 0.381001  0.460%002  0.6425002  0.741002  10.689F082  3.540%007
Ours (N=4, K=64) 0.227%+:002  (0.468+:003  (.655+003 (754003 10687083 3 445+008
Ours (N=8, K=32) 0.182+:002  (.470%:003 (57003 755E002 10 777E 109 3 450+-007

Ours (N=8, K=128) | 0.107%001  0.476%002  (.665+092  (.764%+:002  10.704+099  3.387+007
Ours (N=16, K=64) | 0.084%:001  (.480+:003  (.668+003  (.766%+:002  10.701+060  3.377+.007

Ours w/o Leross 25.044+028  0.074+001  (.138%+:002 (. 192+ 002 g 230+ 048 g 192+.009
Ours (N=8, K=64) 0.153+:002 0. 477+002  665+002 (7625002 10736102 3.396+006

Table A5: Ablations on Vocabulary-directed Action Distillation.

HumanML3D-Train HumanML3D-Test
Methods | Succt MPIPE| Eucl Ewl || Succt MPIPE| Eiol Ewll
Ours Tracking Controller | 95.2% 39.86 6.88 6.13 || 86.1% 49.69 9.23 8.18
Ours w/o VAE 93.8% 59.24 8.31 7.37 84.6% 68.57 11.73  10.84
Ours w/o prior 94.1% 48.72 8.19 7.28 85.3% 59.91 9.56 8.71
Ours w/o mask 92.9% 51.32 8.62 7.58 83.5% 61.83 9.98 9.02
\

Humanoid-LLA (Ours) | 95.0% 46.84 8.04 6.86 || 87.6% 56.43 892 7.74

and encourages reliance on discrete tokens. Overall, the vocabulary-directed student approaches
the teacher’s success while accepting slightly higher pose errors. After integrating the student into
the full RL pipeline, Humanoid-LLA surpasses the teacher in test success (87.6% vs. 86.1%) and
further reduces Fyec/Fve to 8.92/7.74.

D.5 ADDITIONAL TEXT-TO-HUMANOID VISUALIZATION

We include extra visualization results in the simulation and the real world in this material. More
visualization can be found in the supplementary video.

E EXTENDED LIMITATION AND DISCUSSIONS

In this work, we present the first end-to-end Large Language—Action Model for physical-fidelity,
open- vocabulary humanoid control, mapping expressive natural language directly to executable
humanoid actions. Through comparative experiments, we identify considerable areas where our
model can be further improved, as outlined below:

Longer-Horizon Memory and Planning. Our LLA reasons over token sequences within a mod-
est temporal window, which limits plan consistency across complex tasks. A natural extension
is to couple Humanoid-LLA with a hierarchical planner that maintains a persistent memory (e.g.,
key—value token cache or episode summaries) and proposes subgoals that the vocabulary-directed
controller can realize, improving stability and global coherence over minutes-long activities.

Richer Multimodal Grounding. We condition primarily on text (and optionally visual renders),
while real deployments benefit from audio cues (speech prosody), gaze/pose of humans, and tactile
events. Extending the tokenizer with cross-modal slots (speech/vision/touch tokens) could align
linguistic intent with environmental context, enabling disambiguation.

Personalization and Style Control. Different users may prefer distinct motion styles or safety
margins. Conditioning tokens on user embeddings (or few-shot style exemplars) can produce per-
sonalized motions while preserving safety. A style—safety Pareto controller could expose inter-
pretable dials (conservativeness, speed, energy) without retraining.
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“Walk along a curving path, adjusting direction smoothly.”

Figure A4: Visualization results in Mujoco.

“Step in wide arcs while circling slowly, arms gently outstretched for balance,
creating a smooth flowing spiral path.”

Figure AS: Visualization results in Mujoco.

Scaling Data and Benchmarks. Our unified tokenizer aligns human and humanoid motions; scal-
ing paired data with richer captions and hard negative text-motion pairs should improve semantic
precision. We also advocate benchmarks that jointly score distributional quality and physics on
robots, preventing degenerate solutions that optimize only one axis.
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“Goose step forward like a soldier.”

Figure A6: Visualization results in the real world.
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