

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HUMANOID-LLA: OPEN-VOCABULARY HUMANOID WHOLE-BODY CONTROL WITH LARGE LANGUAGE ACTION MODEL

Anonymous authors

Paper under double-blind review

ABSTRACT

Enabling humanoid robots to follow open-vocabulary language instructions is critical for seamless human-robot interaction, collaborative task execution, and general-purpose embodied intelligence. While recent advances have improved low-level humanoid locomotion and robot manipulation, language-conditioned whole-body control remains a significant challenge. Existing methods often fail on compositional instructions and sacrifice either motion diversity or physical plausibility. To address this, we introduce **Humanoid-LLA**, a Large Language Action Model that maps natural language commands to physically executable whole-body motions for humanoid robots. Our approach integrates three core components: a unified motion vocabulary that aligns human and humanoid motion primitives into a shared discrete space; a vocabulary-directed controller distilled from a privileged policy to ensure physical feasibility; and a physics-informed fine-tuning stage using reinforcement learning with dynamics-aware rewards to enhance robustness and stability. Extensive evaluations in simulation and on a real humanoid platform show that Humanoid-LLA delivers strong open-vocabulary generalization while maintaining high physical fidelity, outperforming existing language-conditioned controllers in motion naturalness, stability, and execution success.

1 INTRODUCTION

Recent breakthroughs in Large Language Models (LLMs) (Shao et al., 2024; Bai et al., 2025) have significantly advanced capabilities in perception, reasoning, and decision making across a wide range of domains, from code generation to embodied action prediction, such as vision-language-action (VLA) (Kim et al.; Bjorck et al., 2025; Liu et al., 2025; Xu et al., 2024) models for navigation and robotic manipulation. Their success stems from scalable pretraining and discrete representations that enable complex behaviors to be composed in a data efficient manner. However, while most successes in embodied VLA have been achieved in robotic manipulation tasks, particularly those using gripper based systems, transferring these advantages to *humanoid whole body control* remains challenging due to the high degree of freedom and complex dynamics inherent in humanoid robots. Moreover, unlike robot manipulation tasks that can leverage large-scale teleoperated data, it is difficult and costly to collect substantial amounts of *physically executable* humanoid motion data. Naively training on kinematic human motion captures or limited robot datasets often results in a trade-off between language faithfulness and physical feasibility, especially under real-world perturbations.

Existing methods mainly rely on motion mimicking framework: learning text-to-human motion mappings from large human motion–text datasets and then project to robots. While convenient, retargeting optimizes in the human motion space, introducing systematic projection and kinematic mismatch errors that sacrifice precision in robot execution (He et al., 2025; Yue et al., 2025). Two-stage systems add physics-based tracking controllers (e.g., PHC) for post-hoc correction, improving feasibility but not fully recovering fine-grained, language-conditioned accuracy from end to end (Luo et al., 2023). End-to-end routes convert human dataset to humanoid datasets, yet offline policies often miss real-world stochasticity and perturbations, yielding brittle, imprecise behaviors on hardware (Mao et al., 2024; Shi et al., 2025). Distillation frameworks transfer a privileged tracking teacher to a

054 text-conditioned student, achieving strong physical fidelity in simulation but compressing semantics
 055 and control into a single VAE—often weakening language grounding and blurring action selection
 056 (Shao et al., 2025). Across paradigms, a persistent bottleneck remains: the scarcity of high-quality,
 057 diverse, physically grounded humanoid real-robot data, limiting precise language–robot alignment
 058 and motivating robot-centric representations under minimal real-robot supervision.

059 To addresses the data scarcity challenge, we reformulate humanoid whole-body control as an action
 060 generation problem within a unified human-humanoid motion vocabulary space. The core idea is to
 061 leverage the abundance of text-human motion corpora while maintaining a direct mapping to torque-
 062 level execution on the physical robot. Specifically, we begin by constructing a unified vocabulary
 063 through joint quantization of paired human motions and their retargeted humanoid counterparts,
 064 ensuring that the same discrete token corresponds to the same motion primitive across both embodi-
 065 ments. This results in a compact and reusable motion language that (i) benefits from the scalability
 066 of human motion datasets, (ii) remains compatible with humanoid actuation constraints, and (iii)
 067 provides a discrete interface suitable for large language model based reasoning and generation.

068 Based on this vocabulary, we bridge the semantic and physical gap through a process of **vocabu-**
 069 **lary directed action distillation**. First, we train a privileged teacher tracking policy in simulation
 070 to accurately follow dense, retargeted humanoid reference motions with high physical fidelity. This
 071 policy is then distilled into a student controller conditioned on discrete *motion tokens* instead of con-
 072 tinuous trajectory references. By shifting the control paradigm from dense trajectories to a compact
 073 token sequence, this approach enables the robot to execute actions selected within the vocabulary
 074 space while maintaining dynamic robustness, contact stability, and smooth whole body coordination.

075 Built upon the aforementioned components, we finally train a **Large Language Action Model**
 076 (**LLA**) that maps open vocabulary instructions to the unified motion token sequences. The training
 077 proceeds in two stages. First, we conduct supervised fine-tuning (SFT) on large-scale text human
 078 motion datasets using our unified tokenizer. Optionally, we incorporate a motion chain of thought
 079 prompting strategy to encourage the model to perform structured reasoning before generating motion
 080 tokens. Subsequently, we apply reinforcement learning fine-tuning (RLFT) with feedback from
 081 the humanoid simulation environment. Here, a group relative policy optimization objective rewards
 082 the model for both semantic alignment with the instruction and the physical executability of the
 083 generated token sequences when rolled out by the vocabulary directed controller. This closed loop
 084 training paradigm injects crucial physical priors into the token generation process, ensuring high
 085 linguistic expressivity and motion diversity while maintaining physical feasibility.

086 Our framework, **Humanoid-LLA**, therefore integrates language understanding, human motion, and
 087 humanoid robot execution into a cohesive pipeline comprising three key components: (1) a unified
 088 motion vocabulary that semantically aligns motion primitives across human and humanoid embodi-
 089 ments; (2) a vocabulary directed action distillation process that bridges discrete tokens to physically
 090 executable control policies; and (3) a Large Language Action Model (LLA) trained via supervised
 091 fine-tuning on human motion datasets and further refined through reinforcement learning with phys-
 092 ical feedback from the humanoid platform. Extensive evaluations in both simulation and real-world
 093 environments demonstrate compelling open vocabulary generalization capabilities while maintain-
 094 ing high physical fidelity.

095 We summarize our main contributions as follows:

- 096 • We present Humanoid-LLA, an end-to-end Large Language–Action Model that enables the
 097 first open-vocabulary text-to-humanoid whole-body control, mapping expressive natural
 098 language directly to executable humanoid actions.
- 100 • We introduce a unified motion vocabulary that aligns human and humanoid in latent space,
 101 thus enabling vocabulary-directed humanoid policy distillation and supervised finetuning
 102 Humanoid-LLA with large-scale text-human datasets.
- 103 • We further fine-tune Humanoid-LLA by augmenting text–human datasets with large-scale
 104 human motion chain-of-thought and integrating humanoid fidelity feedback from physical
 105 simulation, thereby improving language generalization and execution feasibility.
- 106 • Extensive evaluations in physical environments demonstrate that our method outperforms
 107 prior works on both physical feasibility and motion quality, culminating in successful de-
 108 ployment on real humanoid hardware.

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

User

 "Walk in a curving figure-eight."

 Humanoid
 LLA
 <think>
 The description is "walk in a curving figure-eight." A figure-eight consists of two interconnected loops: one typically curving left and the other right, meeting at a central point. Each loop should be treated as an independent atomic motion since they involve distinct directional movements. Thus, the breakdown is:
 1. Walk in a leftward curve.
 2. Walk in a rightward curve.
 3. Turn and walk straight to the center.
 </think>
 <motion> </motion>

Figure 1: An illustration of Humanoid-LLA. Given an open-vocabulary instruction (e.g., “walk in a curving figure-eight”), Humanoid-LLA first use natural language (<think>) to decompose the task, then generate a sequence of unified motion tokens (<motion>). A vocabulary-directed controller executes these tokens on the robot, bridging language, a unified human–humanoid motion vocabulary, and action-level control to yield physically faithful, natural whole-body behaviors.

2 RELATED WORK

Kinematic Motion Generation. Kinematic motion generation is typically cast as conditional sequence modeling, aiming to synthesize temporally coherent pose trajectories from text, trajectories, or other control signals. Diffusion methods generate diverse, high-quality motions but are costly and hard to control (Tevet et al., 2023; Chen et al., 2023; Zhang et al., 2024; Karunratanakul et al., 2023), while GPT-based approaches improve efficiency and long-horizon consistency but are limited by quantization and data quality (Zhang et al., 2023; Jiang et al., 2024; Ouyang et al., 2025).

Recent works (Yuan et al., 2023; Serifi et al., 2024; Han et al., 2025) introduce physics priors: PhysDiff (Yuan et al., 2023) projects diffusion outputs into physically valid states via simulation, while RobotMDM (Serifi et al., 2024) integrates physical feasibility into training through reward surrogates and RL controllers. These efforts highlight the trade-off between visual fidelity and physical realism. Motivated yet distinct, we employ hierarchical physical rewards to finetune a latent motion generator via RL, and ultimately leverage a tracking policy conditioned on these latents to roll out highly physically feasible humanoid motions in simulation.

Physics-based Character Animation. Physics-based controllers have advanced realistic character animation, with DeepMimic (Peng et al., 2018) pioneering RL-based motion imitation and later works like AMP (Peng et al., 2021) and ASE (Peng et al., 2022) enhancing robustness and compositionality. Recent approaches adopt a generative view, such as MaskedMimic for motion inpainting and MaskedManipulator for goal-conditioned loco-manipulation (Tessler et al., 2024; 2025).

Language-guided character control has emerged as a promising paradigm that bridges semantic expressiveness and physical realism, addressing limitations of purely data-driven text-to-motion synthesis that often produces artifacts like foot sliding or implausible contacts. Physics-simulated characters enforce physical plausibility (Juravsky et al., 2022; 2024; Yao et al., 2024; Truong et al., 2024; Tevet et al.; Wu et al., 2025), with PADL showing natural language as a direct control interface from simple instructions (Juravsky et al., 2022) to complex multi-skill tasks (Juravsky et al., 2024), MoConVQ leveraging pretrained motion codebooks and LLMs (Yao et al., 2024), PDP combining diffusion with physics-based imitation (Truong et al., 2024), and CLOSD introducing closed-loop plan-and-imitate architectures (Tevet et al.). Together, this line of work suggests a unifying framework that integrates linguistic flexibility with physical fidelity in a closed-loop system, motivating our approach.

Real-world Humanoid Whole Body Control. Real-world humanoid whole-body control has progressed rapidly with sim-to-real RLFu et al. (2025); Cheng et al. (2024); Ji et al. (2024), teleoperation He et al. (2024; 2025), and large-scale retargeting (Yin et al., 2025; ?). Collectively, these

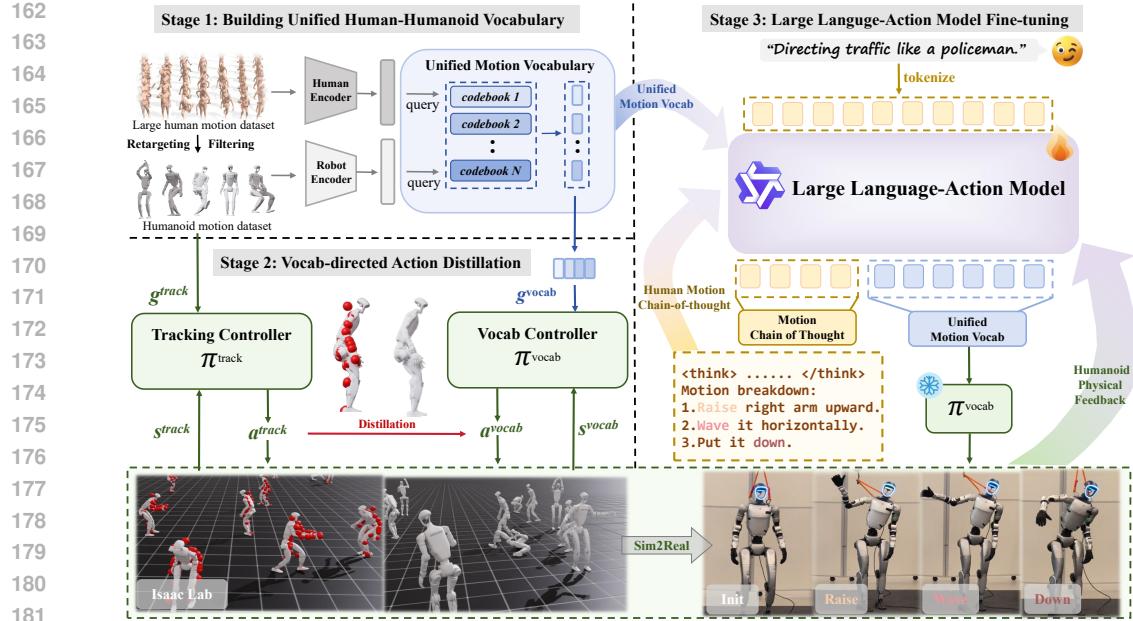


Figure 2: An overview of Humanoid-LLA. In stage one, we build a unified motion vocabulary leveraging a large-scale paired human and humanoid motion dataset. With a kinematic humanoid motion goal and its corresponding vocab retrieval, we distill a vocab-directed humanoid student controller from a teacher tracking controller. The first two stages enable stage three to acquire various humanoid feedback directly from physical simulation without decoding, making our LLA enhanced with high physical fidelity and language generalization.

advances provide strong controllers and data pipelines, yet most approaches decouple motion retargeting and control, leaving the semantic-to-physical generation gap open.

Language-conditioned humanoid control tackles this gap by directly linking natural language to whole-body policies. Large-scale efforts like UH-1 (Mao et al., 2024) and ALMI (Shi et al., 2025) advance text-motion corpora and hierarchical tracking but face challenges in real-world deployment. Shao et al. (Shao et al., 2025) and RLPF (Yue et al., 2025) enhance policy learning with language mapping and physics feedback, yet remain limited by language generalization, conservative rewards, and reduced motion diversity. Overall, these studies highlight the need for unified frameworks that combine strong language generalization with the ability to generate diverse, expressive motions that are physically consistent.

3 METHOD

Our framework consists of three tightly connected components: **building unified human–humanoid motion vocabulary** (Sec. 3.1), **distilling vocabulary-directed policy** (Sec. 3.2), and **fine-tuning large language-action model** (Sec. 3.3). The first two components serve as essential prerequisites that make the integrated reasoning in the third component possible. Next, we introduce each component, highlighting its role within the overall framework.

3.1 UNIFIED HUMAN-HUMANOID VOCABULARY

Humanoid Motion Canonicalization. For human motion, prior work commonly adopts SMPL parameters to form a 263-dimensional representation (Loper et al., 2015; Guo et al., 2022), which serves as the learning target for generative models. To establish compatibility, we construct an analogous canonical representation for humanoid motion. Starting from the Unitree G1’s (Robotics) raw control state $q \in \mathbb{R}^{T \times 36}$ (including root translation, orientation, and joint DoF values), we apply a mapping $f : \mathbb{R}^{36} \rightarrow \mathbb{R}^{227}$ that augments kinematic details such as root velocities, 3D joint positions, and joint velocities. Each frame is thus represented as a structured 227-dimensional

216 vector, normalized to a root-centered coordinate system. This canonicalized form aligns with the
 217 human representation, enabling subsequent learning of a unified motion space.
 218

219 **Implicit Partitioning Tokenization.** We aim to learn a unified tokenizer that maps human and
 220 retargeted humanoid motions into the same discrete vocabulary, ensuring that identical tokens carry
 221 consistent semantics across modalities. The tokenizer is expected to capture heterogeneous motion
 222 distributions while remaining compact for integration with language models. To this end, we adopt a
 223 VQ-VAE (Van Den Oord et al., 2017) with implicit partitioning (Ma et al., 2025), where each latent
 224 vector is split into sub-blocks and quantized by separate codebooks. Concatenating these assign-
 225 ments yields a large effective vocabulary without requiring a single oversized codebook. Beyond
 226 standard self-reconstruction within each modality (Zhao et al., 2025), we additionally enforce cross-
 227 modal reconstruction, such that a token obtained from either modality is decoded into the same
 228 motion primitive. This constraint ensures that identical tokens correspond to equivalent human and
 229 humanoid motions, thereby establishing a semantically unified motion representation.
 230

231 **Cross-embodiment Optimization.** We optimize the dual-branch VQ-VAE by combining intra-
 232 modal and cross-modal reconstruction objectives. A sequence of human motion $\mathbf{m}^h \in \mathbb{R}^{T \times d_h}$
 233 and humanoid motion $\mathbf{m}^r \in \mathbb{R}^{T \times d_r}$ are first encoded into latent features $\mathbf{z}^h = \mathcal{E}_{\text{human}}(\mathbf{m}^h)$ and
 234 $\mathbf{z}^r = \mathcal{E}_{\text{robot}}(\mathbf{m}^r)$, which are partitioned into sub-blocks and quantized by multiple codebooks to
 235 yield discrete tokens $\hat{\mathbf{z}}^h$ and $\hat{\mathbf{z}}^r$. These tokens are then decoded back to the motion space by
 236 modality-specific decoders $\mathcal{D}_{\text{human}}$ and $\mathcal{D}_{\text{robot}}$, producing both self-reconstructions ($\hat{\mathbf{m}}^h$, $\hat{\mathbf{m}}^r$) and
 237 cross-reconstructions ($\hat{\mathbf{m}}^{r \leftarrow h}$, $\hat{\mathbf{m}}^{h \leftarrow r}$). The additional cross-modal reconstruction enforces that the
 238 same token decodes into an equivalent motion across modalities, which is critical for achieving
 239 unified tokenization.
 240

241 The training objective is defined as

$$\mathcal{L} = \mathcal{L}_{\text{intra}} + \alpha \mathcal{L}_{\text{commit}} + \beta \mathcal{L}_{\text{cross}}, \quad (1)$$

242 where $\mathcal{L}_{\text{intra}}$ is the intra-modal reconstruction loss for human and humanoid motions, $\mathcal{L}_{\text{cross}}$ penalizes
 243 discrepancies in cross-modal reconstruction (human-to-humanoid and humanoid-to-human), and
 244 $\mathcal{L}_{\text{commit}}$ is the commitment loss. Balancing coefficients α and β control the trade-off between fidelity
 245 and codebook consistency. Architectural and training details are provided in Appendix C.1.
 246

247 3.2 VOCABULARY-DIRECTED HUMANOID ACTION DISTILLATION

248 With unified motion vocabulary in Sec.3.1, we next bridge the gap between kinematic motion
 249 primitives and physical control through a vocabulary-directed distillation process. Following the
 250 teacher–student paradigm used in recent whole-body controllers(He et al., 2025; Yin et al., 2025;
 251 Tessler et al., 2024), we train a privileged teacher policy to track continuous humanoid-retargeted
 252 motions with high fidelity and then distill its behavior into a vocabulary-directed student policy that
 253 relies on motion tokens. This stage shifts the control input from dense reference trajectories to the
 254 compact motion language of tokens, enabling the humanoid to execute token sequences output by
 255 the language model in Sec.3.3.
 256

257 **Fully-constrained Teacher Controller.** We follow the goal-conditioned reinforcement learning
 258 framework to train a fully-constrained teacher tracking policy π^{track} that tracks dense humanoid-
 259 retargeted reference states. At timestep t , the controller observes humanoid proprioception \mathbf{s}_t and a
 260 goal state $\mathbf{g}_t^{\text{track}}$ comprising kinematic reference motion, and computes target joint positions \mathbf{a}_t for
 261 the PD controller.
 262

263 The teacher proprioception \mathbf{s}_t consists of the current root linear velocity $\dot{\mathbf{p}}_t^{\text{root}} \in \mathbb{R}^3$, root angular
 264 velocity $\omega_t^{\text{root}} \in \mathbb{R}^3$, joint positions $\mathbf{q}_t \in \mathbb{R}^{n_j}$, joint velocities $\dot{\mathbf{q}}_t \in \mathbb{R}^{n_j}$ and the previous action
 265 history $\mathbf{a}_{t-1} \in \mathbb{R}^{n_j}$ with respect to the robot’s local coordinate frame:
 266

$$\mathbf{s}_t = \left[\dot{\mathbf{p}}_t^{\text{root}}, \omega_t^{\text{root}}, \mathbf{q}_t, \dot{\mathbf{q}}_t, \mathbf{a}_{t-1} \right]. \quad (2)$$

267 And for tracking goal observation $\mathbf{g}_t^{\text{track}}$, we track relative body pose instead of absolute poses fol-
 268 lowing previous tracking framework (Liao et al., 2025):
 269

$$\mathbf{g}_t^{\text{track}} = \left[\hat{\mathbf{q}}_{t+1}, \hat{\dot{\mathbf{q}}}_{t+1}, \hat{\mathbf{p}}_{t+1}^{\text{root}} - \mathbf{p}_t^{\text{root}}, \hat{\theta}_{t+1}^{\text{root}} \ominus \theta_t^{\text{root}} \right], \quad (3)$$

270 where \ominus denotes the difference between two rotations. The policy action \mathbf{a}_t is the normalized robot
 271 target joint positions, which are residual targets for nominal joint configuration.
 272

273 For policy training, Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm is used
 274 to maximize the accumulated reward $\mathbb{E}[\sum_{t=1}^T \gamma^{t-1} r_t]$. We design the reward r_t as a weighted sum
 275 of task rewards, regularization and penalty. Details can be found in Appendix C.2.

276 **Vocabulary-directed Student Controller.** After fully-constrained teacher controller is trained,
 277 we distill π^{track} into a vocabulary-directed student policy. Let the unified tokenizer (Sec. 3.1)
 278 provide a motion vocab window $\hat{\mathbf{z}}_{1:T}^{\text{vocab}}$, we aim to train a student policy π^{vocab} that can generate
 279 full body actions satisfying these given motion vocabulary commands. To solve this ambiguity,
 280 we follow Tessler et al. (2024; 2025) and model π^{vocab} as a Conditional Variational Autoencoder
 281 (CVAE) (Kingma & Welling, 2013) consisting of a vocabulary prior ρ , a residual encoder \mathcal{E} and an
 282 action decoder \mathcal{D} . At timestep t , the motion vocab observation of the student controller is:

$$\mathbf{g}_t^{\text{vocab}} = [\mathcal{M}(\mathbf{g}_t^{\text{track}}), \hat{\mathbf{z}}_t^{\text{vocab}}], \quad (4)$$

285 where $\mathcal{M}(\cdot)$ is a random masking function and $\hat{\mathbf{z}}_t^{\text{vocab}}$ is the current motion vocabulary in Sec. 3.1.
 286 The vocabulary prior is modeled as a Gaussian distribution over latents given the observed vocab
 287 constraints:

$$\rho(z_t | \mathbf{s}_t, \mathbf{g}_t^{\text{vocab}}) = \mathcal{N}(\mu^\rho(\mathbf{s}_t, \mathbf{g}_t^{\text{vocab}}), \sigma^\rho(\mathbf{s}_t, \mathbf{g}_t^{\text{vocab}})). \quad (5)$$

288 The encoder \mathcal{E} is modeled as a residual to the prior that outputs a latent distribution given the full-
 289 constraint teacher observation $\mathbf{g}_t^{\text{track}}$ (Yao et al., 2022):
 290

$$\mathcal{E}(z_t | \mathbf{s}_t, \mathbf{g}_t^{\text{track}}) = \mathcal{N}(\mu^\rho(\mathbf{s}_t, \mathbf{g}_t^{\text{vocab}}) + \mu^\mathcal{E}(\mathbf{s}_t, \mathbf{g}_t^{\text{track}}), \sigma^\mathcal{E}(\mathbf{s}_t, \mathbf{g}_t^{\text{track}})). \quad (6)$$

293 Based on the Dataset Aggregation (DAgger) algorithm (Ross et al., 2011), we train π^{vocab} from π^{track}
 294 with motion token labels within the same motion dataset. The training objective is to minimize the
 295 difference between reference action and student action as well as the KL divergence between encoder
 296 distribution $p_\mathcal{E}$ and prior distribution q_ρ :

$$\mathcal{L}_{\pi^{\text{vocab}}} = \|a_t^{\text{track}} - a_t^{\text{vocab}}\|_2^2 + \lambda_{\text{KL}}(p_\mathcal{E}(z_t | \mathbf{s}_t, \mathbf{g}_t^{\text{track}}) \| q_\rho(z_t | \mathbf{s}_t, \mathbf{g}_t^{\text{vocab}})), \quad (7)$$

297 where a_t^{track} is the reference action from π^{track} , a_t^{vocab} is the student action sampled from
 298 $\mathcal{D}(a_t^{\text{vocab}} | \mathbf{s}_t, \mathbf{g}_t^{\text{vocab}})$ and λ_{KL} is the hyperparameter for balancing reconstruction and regularization.
 299 Details can be found in appendix C.2.

3.3 LARGE LANGUAGE-ACTION MODEL

300 In this section we show how, building upon Sec. 3.1 and Sec. 3.2, our framework implements an
 301 end-to-end mapping from open-vocabulary and highly abstract language descriptions to physically
 302 executable robot actions without relying on tracking-based retargeting. Sec. 3.2 serves as the key
 303 intermediate: a low-level controller distilled to follow latent motion tokens, seamlessly linking latent
 304 motion token generation and physics-based action execution. The following parts in this section
 305 detail the training of our proposed LLA.

306 **Supervised Fine-tuning with Augmented Human Data.** We formulate motion token generation
 307 as an autoregressive, text-conditioned language modeling task, where a motion sequence is repre-
 308 sented as a series of discrete tokens from the unified codebook $\mathcal{Z} = \{\langle cb_{i,j} \rangle\}$, with i indexing the
 309 sub-codebook and j the token entry. Given abundant paired human motion–text data, the input is the
 310 textual description \mathbf{w} , and the supervision target $\mathbf{y} = (y_1, \dots, y_L)$ is constructed by concatenating
 311 a MLLM-annotated (Bai et al., 2025) motion chain-of-thought (Shao et al., 2024) with the ground-
 312 truth motion tokens from the pretrained tokenizer. The model is trained with the standard next-token
 313 prediction loss:

$$\mathcal{L}_{\text{SFT}} = -\mathbb{E}_{(\mathbf{w}, \mathbf{y}) \sim \mathcal{D}} \sum_{t=1}^L \log P_\phi(y_t | \mathbf{w}, y_{<t}), \quad (8)$$

314 where ϕ are the model parameters. This supervised stage establishes a preliminary alignment be-
 315 tween language and motion, while enabling the model to respond by progressing from concise mo-
 316 tion descriptions to richer analytical decomposition and ultimately to motion token generation.
 317

324 **RL Fine-tuning with Humanoid Feedback.** Large models are commonly adapted to downstream
 325 tasks with reinforcement learning, resulting in policies that better match task-specific requirements.
 326 We adopt Group Relative Policy Optimization (GRPO) (Shao et al., 2024), a variant of PPO (Schul-
 327 man et al., 2017) that avoids training a separate critic by sampling a group of candidate outputs
 328 $y^{(1:K)}$ for each input prompt x , assigning each a scalar reward, and normalizing rewards within the
 329 group to obtain relative advantages. This encourages the policy to prefer better-than-average candi-
 330 dates without requiring an explicit value function. The policy is optimized with a clipped surrogate
 331 objective regularized toward a reference model:

$$\mathcal{L}_{\text{GRPO}}(\phi) = -\mathbb{E}_x \mathbb{E}_{y^{(1:K)} \sim \pi_\phi} \left[\frac{1}{K} \sum_{k=1}^K \min \left(r_k \tilde{A}_k, \text{clip}(r_k; 1 - \epsilon, 1 + \epsilon) \tilde{A}_k \right) \right] + \beta_{\text{KL}} \mathcal{L}_{\text{KL}}, \quad (9)$$

332 where x is the input prompt, $y^{(1:K)}$ are K sampled candidate sequences, r_k is the likelihood ratio
 333 between the current and reference policies, and \tilde{A}_k is the group-normalized advantage. The KL
 334 term \mathcal{L}_{KL} constrains the policy to stay close to a reference model. This formulation provides a stable
 335 and efficient way to fine-tune LLA with humanoid feedback, injecting physical priors into token
 336 generation.

337 Unlike prior work that emphasizes only kinematic fidelity (Ouyang et al., 2025; Yue et al., 2025), we
 338 stress the importance of dynamics-level consistency for real-world deployment. RLPF (Yue et al.,
 339 2025) employs a binary simulator-tracking reward, which ensures executability but often reduces
 340 motion diversity, as the policy tends to favor conservative behaviors that are easy to track. To
 341 address this, we design a reward scheme that combines high-level distributional objectives with
 342 low-level simulator-based tracking signals, achieving motions that are both physically robust and
 343 expressively varied.

344 **Physical Fidelity Reward Design.** The overall reward is a weighted sum of a binary format re-
 345 ward and a continuous physical fidelity reward. The format reward acts as a prerequisite: the
 346 model must first learn *how to answer* (i.e., producing valid structured outputs) before it can ef-
 347 fectively learn *how to answer well* (i.e., generating physically and semantically aligned motions).
 348 Concretely, the format reward checks two requirements: (i) the response must follow a structured
 349 template beginning with `<think>...</think>` and followed by `<motion>...</motion>`;
 350 and (ii) within the motion segment, motion tokens must appear in cyclic sub-codebook order
 351 ($\text{cb0} \rightarrow \text{cb1} \rightarrow \dots \rightarrow \text{cb(N-1)}$ repeatedly). We define it as

$$r_{\text{format}} = \mathbb{I}\{\text{requirements satisfied}\}. \quad (10)$$

352 The physical fidelity reward is composed of a distributional term and a tracking term. The dis-
 353 tributional reward encourages decoded motions to match the distribution of feasible trajectories and
 354 to align semantically with the paired text. Using contrastive encoders $\phi_m(\cdot)$ and $\phi_t(\cdot)$ (Guo et al.,
 355 2022) trained on physically plausible humanoid datasets, we define distributional reward as

$$r_{\text{dist}} = \exp(-\lambda_m \|\phi_m(\mathbf{m}_{\text{gen}}) - \phi_m(\mathbf{m}_{\text{ref}})\|_2) + \exp(-\lambda_t \|\phi_m(\mathbf{m}_{\text{gen}}) - \phi_t(\mathbf{w}_{\text{ref}})\|_2), \quad (11)$$

356 where the two terms measure motion fidelity and semantic fidelity, respectively, and $\lambda_m, \lambda_t > 0$
 357 control sensitivity.

358 The tracking reward measures how well a generated token sequence can be executed in simulation
 359 by the distilled low-level controller (Sec. 3.2). We evaluate the simulated rollout with a position
 360 reward term r_{pos} and an acceleration reward term r_{acc} :

$$r_{\text{track}} = r_{\text{pos}} + r_{\text{acc}} \quad (12)$$

380 Finally, the physical fidelity reward is calculated as $r_{\text{phys}} = r_{\text{dist}} + r_{\text{track}}$. More details are in ap-
 381 pendix C.3.

382 4 EXPERIMENT

384 4.1 EXPERIMENT SETUP

385 **Dataset.** We conduct extensive experiments on the text-annotated subset of the AMASS
 386 dataset (Mahmood et al., 2019; Guo et al., 2022), consisting of 26,846 motion sequences, each

378 Table 1: Quantitative results on text-to-humanoid motion generation. We report R-Precision at top-3.
 379 ↑, ↓, and → indicate that higher is better, lower is better, and closer to the GT is better, respectively.
 380

Methods	FID↓	R-Precision↑	MM-Dist↓	Div.→
Ground Truth	0.00	0.610	3.804	8.238
MDM+Retarget (Tevet et al., 2023)	11.759	0.262	6.599	6.419
OmniH2O (He et al., 2025)	17.159	0.222	8.021	5.868
UH-1 (Mao et al., 2024)	8.682	0.295	5.896	6.749
LangWBC* (Shao et al., 2025)	6.171	0.320	5.587	6.031
Humanoid-LLA (Ours)	2.626	0.447	4.911	7.122

388 Table 2: Physics-based quantitative results. ↑ and ↓ indicate that higher is better, lower is better,
 389 respectively.
 390

Methods	Succ.↑	MPJPE↓	E _{vel} ↓	E _{acc} ↓
OmniH2O (He et al., 2025)	72.2%	73.43	11.78	10.48
UH-1 (Mao et al., 2024)	68.8%	121.51	16.59	14.80
LangWBC* (Shao et al., 2025)	76.0%	—	—	—
RLPF (Yue et al., 2025)	80.0%	140.00	—	—
Humanoid-LLA (Ours)	87.6%	56.43	8.92	7.74

391 paired with 3–4 textual descriptions. For every motion sequence, we employ `mink` (Zakka) to retar-
 392 get human motions into corresponding humanoid motions, resulting in a paired human–humanoid
 393 dataset. The choice of this dataset is motivated by two factors. First, AMASS motions are cap-
 394 tured using high-quality optical motion capture, ensuring low noise and enabling the model to better
 395 learn the latent alignment between motion and language. Second, text-annotated AMASS has been
 396 widely adopted in both human and humanoid motion generation, which ensures standardized and
 397 fair comparison across methods.

400 **Baselines.** To comprehensively demonstrate the advantages of our model in terms of both motion
 401 quality and physical executability for text-to-humanoid, we compare against several state-of-the-art
 402 baselines: 1) **MDM+Retarget** (Tevet et al., 2023) kinematically retargets MDM-generated motion
 403 to humanoid robots. 2) **OmniH2O** (Tevet et al., 2023; He et al., 2025) uses motion diffusion model
 404 to produce kinematic human motions followed by retargeting and an imitation policy to obtain phys-
 405 ical humanoid motions. 3) **UH-1** (Mao et al., 2024) trains a decoder-only transformer to map text
 406 descriptions into humanoid motion with a retargeted humanoid motion-text dataset. 4) **LangWBC**
 407 (Shao et al., 2025) distills a VAE-based policy to simultaneously capture text semantics and sample
 408 actions. 5) **RLPF** (Yue et al., 2025) is a recent approach exploring physical feedback to constrain the
 409 kinematic LLM-based human motion generator, which is also followed by a post-process of motion
 410 retargeting and tracking. Implementation details of baselines are provided in appendix D.2. Besides
 411 text-to-humanoid, refer to appendix D for more experiments and ablation results for building unified
 412 motion vocabulary 3.1 and distilling vocab-directed controller 3.2.

413 **Evaluation Metrics.** Most prior work on text-to-humanoid motion generation (Mao et al., 2024;
 414 Shao et al., 2025; Shi et al., 2025; Yue et al., 2025) reports either low-level physics tracking
 415 metrics or human-motion generation metrics, leaving no unified protocol directly defined on humanoid
 416 robots. To fill this gap, we design an evaluation that combines physics-based tracking measures
 417 with distributional generation metrics computed in humanoid motion space. These two perspectives
 418 jointly capture executability, distributional fidelity, motion–language alignment, and diversity, thus
 419 discouraging models from producing only simple, easily executable motions at the expense of ex-
 420 pressiveness. For the generation side, we report FID to measure distributional similarity against a
 421 physical humanoid motion set obtained by a goal-conditioned tracking policy (i.e., teacher controller
 422 in Sec. 3.2), MM-Dist and R-Precision to assess motion–language alignment, and Diversity (Div.) to
 423 evaluate variability. For the physics side, we measure success rate (Succ.), mean per-joint position
 424 error MPJPE (mm), velocity error E_{vel} (mm/frame) and acceleration error E_{acc} (mm/frame²). More
 425 details are provided in appendix D.3.

Table 3: Quantitative results of ablation study.

Methods	FID \downarrow	R-Precision \uparrow	MM-Dist \downarrow	Div. \rightarrow		Succ. \uparrow	MPJPE \downarrow	e_{vel} \downarrow	E_{acc} \downarrow
Humanoid-LLA w/o CoT	10.423	0.270	6.222	6.405		64.90%	90.43	14.11	11.23
Humanoid-LLA w/o RLFT	5.132	0.331	5.443	6.668		68.64%	78.31	12.12	10.01
Humanoid-LLA w/o r_{dist}	4.597	0.342	5.401	6.892		85.33%	61.27	9.31	9.02
Humanoid-LLA w/o r_{track}	2.578	0.439	5.013	7.007		76.72%	66.42	10.89	9.77
Humanoid-LLA (Ours)	2.626	0.447	4.911	7.122		87.6%	56.43	8.92	8.74

4.2 TEXT-TO-HUMANOID EVALUATION

The results reveal distinct trade-offs among baselines. MDM (Tevet et al., 2023) generates motions in the human domain and transfers them to robots via kinematic retargeting, preserving expressiveness and diversity but lacking physical fidelity. OmniH2O (He et al., 2025) adds an imitation policy to obtain feasible trajectories, yet discrepancies between human and robot action spaces cause frequent tracking failures, and discarding these biases the motion distribution. UH-1 (Mao et al., 2024) trains on robot trajectories to decode from a robot-space latent manifold, improving fidelity and tracking scores while retaining generative capacity, but still falling short for real-world deployment. LangWBC (Shao et al., 2025) conditions on both language and control, achieving strong low-level executability but weaker motion–language alignment. RLPF (Yue et al., 2025) introduces physical feedback to constrain motions to the feasible set, but optimizing distributions in the human space yields suboptimal humanoid alignment.

In contrast, our method couples LLM-generated tokens with a vocabulary-directed controller and fine-tunes with humanoid feedback, preserving diversity and expressiveness while substantially boosting physical fidelity. This leads to consistent improvements across both evaluation axes, outperforming prior methods on generation metrics and tracking metrics. Implementation details see appendix C.

4.3 ABLATION STUDIES

We perform ablation studies to assess the contribution of each component of LLA in terms of generation quality and physical fidelity. (1) **Humanoid-LLA w/o CoT**: removes chain-of-thought augmentation and relies solely on raw motion descriptions when generating motion tokens. (2) **Humanoid-LLA w/o RLFT**: replaces the RL fine-tuned model with the SFT-only baseline. (3) **Humanoid-LLA w/o r_{dist}** : excludes the distributional reward while retaining the tracking-based term. (4) **Humanoid-LLA w/o r_{track}** : excludes the tracking reward while retaining the distributional term. The results highlight that each module plays a complementary role, and removing any of them leads to a clear degradation in performance.

5 CONCLUSION

In this work, We present Humanoid-LLA, a unified framework for language-conditioned humanoid control that bridges expressive language and humanoid whole body execution. Our approach addresses the critical challenges of language generalization, physical fidelity and sim-to-real transfer in text-to-humanoid whole body motion generation. Specifically, Humanoid-LLA introduce a unified discrete codebook that aligns human and humanoid motion primitives, effectively bridging large language models and whole body controller. By augmenting large-scale human-motion datasets with vision language model generated annotations and fine-tuning with humanoid physics-based feedback in simulation, our model achieves enhanced language generalization and physical feasibility at execution. Extensive evaluations in physical environments demonstrate that our method outperforms prior works on both physical feasibility and motion quality, culminating in successful deployment on real humanoid hardware. Extending Humanoid-LLA to richer multimodal grounding, longer-horizon planning, and lightweight adaptation remains an important direction.

486

6 STATEMENTS

488 **Ethics statement** We adhere to the ICLR Code of Ethics. This work uses publicly available re-
 489 search datasets and in-lab robot experiments conducted under standard safety protocols (e.g., emer-
 490 gency stop, clearance zones, and supervised operation). No human subjects research, personally
 491 identifiable information, or sensitive biometric data were collected. We followed all dataset licenses
 492 and terms of use, avoided revealing any private or proprietary content, and report results honestly
 493 and transparently.

494 **Reproducibility statement** We will provide all materials needed to reproduce our results: train-
 495 ing and evaluation code, configuration files with hyperparameters, environment specifications
 496 (OS, CUDA/driver, Python/package versions), random seeds, and scripts to download/preprocess
 497 datasets. We will release pretrained checkpoints, evaluation notebooks, and a README enabling
 498 end-to-end replication.

500

REFERENCES

502 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 503 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 504 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 505 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
 506 preprint *arXiv:2502.13923*, 2025.

508 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
 509 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
 510 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.

511 Xin Chen, Biao Jiang, Wen Liu, Zilong Huang, Bin Fu, Tao Chen, and Gang Yu. Executing your
 512 commands via motion diffusion in latent space. In *Proceedings of the IEEE/CVF conference on*
 513 *computer vision and pattern recognition*, pp. 18000–18010, 2023.

515 Xuxin Cheng, Yandong Ji, Junming Chen, Ruihan Yang, Ge Yang, and Xiaolong Wang. Expressive
 516 whole-body control for humanoid robots. *arXiv preprint arXiv:2402.16796*, 2024.

517 Thomas Flayols, Andrea Del Prete, Patrick Wensing, Alexis Mifsud, Mehdi Benallegue, and Olivier
 518 Stasse. Experimental evaluation of simple estimators for humanoid robots. In *2017 IEEE-RAS*
 519 *17th International Conference on Humanoid Robotics (Humanoids)*, pp. 889–895. IEEE, 2017.

521 Zipeng Fu, Qingqing Zhao, Qi Wu, Gordon Wetzstein, and Chelsea Finn. Humanplus: Humanoid
 522 shadowing and imitation from humans. In *Conference on Robot Learning*, pp. 2828–2844. PMLR,
 523 2025.

524 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
 525 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF conference on*
 526 *computer vision and pattern recognition*, pp. 5152–5161, 2022.

527 Gaoge Han, Mingjiang Liang, Jinglei Tang, Yongkang Cheng, Wei Liu, and Shaoli Huang. Reindif-
 528 fuse: Crafting physically plausible motions with reinforced diffusion model. In *2025 IEEE/CVF*
 529 *Winter Conference on Applications of Computer Vision (WACV)*, pp. 2218–2227. IEEE, 2025.

531 Tairan He, Zhengyi Luo, Wenli Xiao, Chong Zhang, Kris Kitani, Changliu Liu, and Guanya Shi.
 532 Learning human-to-humanoid real-time whole-body teleoperation. In *2024 IEEE/RSJ Interna-*
 533 *tional Conference on Intelligent Robots and Systems (IROS)*, pp. 8944–8951. IEEE, 2024.

534 Tairan He, Zhengyi Luo, Xialin He, Wenli Xiao, Chong Zhang, Weinan Zhang, Kris M Kitani,
 535 Changliu Liu, and Guanya Shi. Omnih2o: Universal and dexterous human-to-humanoid whole-
 536 body teleoperation and learning. In *Conference on Robot Learning*, pp. 1516–1540. PMLR, 2025.

538 Mazeyu Ji, Xuanbin Peng, Fangchen Liu, Jialong Li, Ge Yang, Xuxin Cheng, and Xiaolong Wang.
 539 Exbody2: Advanced expressive humanoid whole-body control. *arXiv preprint arXiv:2412.13196*,
 2024.

540 Biao Jiang, Xin Chen, Wen Liu, Jingyi Yu, Gang Yu, and Tao Chen. Motiongpt: Human motion as
 541 a foreign language. *Advances in Neural Information Processing Systems*, 36, 2024.
 542

543 Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. Padl: Language-directed physics-
 544 based character control. In *SIGGRAPH Asia 2022 Conference Papers*, pp. 1–9, 2022.
 545

546 Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. Superpadl: Scaling language-
 547 directed physics-based control with progressive supervised distillation. In *ACM SIGGRAPH 2024*
 548 *Conference Papers*, pp. 1–11, 2024.
 549

550 Korrawe Karunratanakul, Konpat Preechakul, Supasorn Suwajanakorn, and Siyu Tang. Guided
 551 motion diffusion for controllable human motion synthesis. In *Proceedings of the IEEE/CVF*
 552 *International Conference on Computer Vision*, pp. 2151–2162, 2023.
 553

554 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 555 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 556 vision-language-action model. In *8th Annual Conference on Robot Learning*.
 557

558 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 559 *arXiv:1312.6114*, 2013.
 560

561 Qiayuan Liao, Zhongyu Li, Akshay Thirugnanam, Jun Zeng, and Koushil Sreenath. Walking in
 562 narrow spaces: Safety-critical locomotion control for quadrupedal robots with duality-based opti-
 563 mization. In *2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*,
 564 pp. 2723–2730. IEEE, 2023.
 565

566 Qiayuan Liao, Takara E Truong, Xiaoyu Huang, Guy Tevet, Koushil Sreenath, and C Karen Liu.
 567 Beyondmimic: From motion tracking to versatile humanoid control via guided diffusion. *arXiv*
 568 *e-prints*, pp. arXiv–2508, 2025.
 569

570 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 571 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. In
 572 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4122–4134, 2025.
 573

574 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 575 a skinned multi-person linear model. *ACM Transactions on Graphics (TOG)*, 34(6):1–16, 2015.
 576

577 Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al. Perpetual humanoid control for real-
 578 time simulated avatars. In *Proceedings of the IEEE/CVF International Conference on Computer*
 579 *Vision*, pp. 10895–10904, 2023.
 580

581 Chuofan Ma, Yi Jiang, Junfeng Wu, Jihan Yang, Xin Yu, Zehuan Yuan, Bingyue Peng, and Xiao-
 582 juan Qi. Unitok: A unified tokenizer for visual generation and understanding. *arXiv preprint*
 583 *arXiv:2502.20321*, 2025.
 584

585 Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
 586 AMASS: Archive of motion capture as surface shapes. In *International Conference on Computer*
 587 *Vision*, pp. 5442–5451, October 2019.
 588

589 Jiageng Mao, Siheng Zhao, Siqi Song, Tianheng Shi, Junjie Ye, Mingtong Zhang, Haoran Geng,
 590 Jitendra Malik, Vitor Guizilini, and Yue Wang. Learning from massive human videos for universal
 591 humanoid pose control. *arXiv preprint arXiv:2412.14172*, 2024.
 592

593 Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
 594 Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
 595 Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
 596 learning environments. *IEEE Robotics and Automation Letters*, 8(6):3740–3747, 2023. doi:
 597 10.1109/LRA.2023.3270034.
 598

599 Runqi Ouyang, Haoyun Li, Zhenyuan Zhang, Xiaofeng Wang, Zheng Zhu, Guan Huang, and Xin-
 600 gang Wang. Motion-r1: Chain-of-thought reasoning and reinforcement learning for human mo-
 601 tion generation. *arXiv preprint arXiv:2506.10353*, 2025.
 602

594 Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
 595 guided deep reinforcement learning of physics-based character skills. *ACM Transactions On*
 596 *Graphics (TOG)*, 37(4):1–14, 2018.

597 Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: Adversarial
 598 motion priors for stylized physics-based character control. *ACM Transactions on Graphics (ToG)*,
 599 40(4):1–20, 2021.

600 Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale
 601 reusable adversarial skill embeddings for physically simulated characters. *ACM Transactions On*
 602 *Graphics (TOG)*, 41(4):1–17, 2022.

603 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 604 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 605 models from natural language supervision. In *International conference on machine learning*, pp.
 606 8748–8763. PmLR, 2021.

607 Unitree Robotics. Unitree g1 humanoid robot. <https://www.unitree.com/g1>. Accessed:
 608 2025-09-07.

609 Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
 610 tured prediction to no-regret online learning. In *Proceedings of the fourteenth international con-
 611 ference on artificial intelligence and statistics*, pp. 627–635. JMLR Workshop and Conference
 612 Proceedings, 2011.

613 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 614 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

615 Clemens Schwarke, Mayank Mittal, Nikita Rudin, David Hoeller, and Marco Hutter. Rsl-rl: A
 616 learning library for robotics research. *arXiv preprint arXiv:2509.10771*, 2025.

617 Agon Serifi, Ruben Grandia, Espen Knoop, Markus Gross, and Moritz Bächer. Robot motion dif-
 618 fusion model: Motion generation for robotic characters. In *SIGGRAPH asia 2024 conference*
 619 *papers*, pp. 1–9, 2024.

620 Yiyang Shao, Xiaoyu Huang, Bike Zhang, Qiayuan Liao, Yuman Gao, Yufeng Chi, Zhongyu Li,
 621 Sophia Shao, and Koushil Sreenath. Langwbc: Language-directed humanoid whole-body control
 622 via end-to-end learning. *arXiv preprint arXiv:2504.21738*, 2025.

623 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 624 Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
 625 open language models. *arXiv preprint arXiv:2402.03300*, 2024.

626 Jiyuan Shi, Xinzhe Liu, Dewei Wang, Ouyang Lu, Sören Schwertfeger, Fuchun Sun, Chenjia Bai,
 627 and Xuelong Li. Adversarial locomotion and motion imitation for humanoid policy learning.
 628 *arXiv preprint arXiv:2504.14305*, 2025.

629 Chen Tessler, Yunrong Guo, Ofir Nabati, Gal Chechik, and Xue Bin Peng. Maskedmimic: Uni-
 630 fied physics-based character control through masked motion inpainting. *ACM Transactions on*
 631 *Graphics (TOG)*, 43(6):1–21, 2024.

632 Chen Tessler, Yifeng Jiang, Erwin Coumans, Zhengyi Luo, Gal Chechik, and Xue Bin Peng.
 633 Maskedmanipulator: Versatile whole-body control for loco-manipulation. *arXiv preprint*
 634 *arXiv:2505.19086*, 2025.

635 Guy Tevet, Sigal Raab, Setareh Cohan, Daniele Reda, Zhengyi Luo, Xue Bin Peng, Amit Haim
 636 Bermano, and Michiel van de Panne. Cload: Closing the loop between simulation and diffu-
 637 sion for multi-task character control. In *The Thirteenth International Conference on Learning*
 638 *Representations*.

639 Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano.
 640 Human motion diffusion model. In *The Eleventh International Conference on Learning Repre-
 641 sentations*, 2023.

648 Takara Everest Truong, Michael Piseno, Zhaoming Xie, and Karen Liu. Pdp: Physics-based char-
 649 acter animation via diffusion policy. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–10,
 650 2024.

651

652 Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances in*
 653 *neural information processing systems*, 30, 2017.

654 Yan Wu, Korrawe Karunratanakul, Zhengyi Luo, and Siyu Tang. Uniphys: Unified plan-
 655 ner and controller with diffusion for flexible physics-based character control. *arXiv preprint*
 656 *arXiv:2504.12540*, 2025.

657

658 Xinyu Xu, Yizheng Zhang, Yong-Lu Li, Lei Han, and Cewu Lu. Humanvla: Towards vision-
 659 language directed object rearrangement by physical humanoid. *Advances in Neural Information*
 660 *Processing Systems*, 37:18633–18659, 2024.

661 Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. Controlvae: Model-based learning of
 662 generative controllers for physics-based characters. *ACM Transactions on Graphics (TOG)*, 41
 663 (6):1–16, 2022.

664 Heyuan Yao, Zhenhua Song, Yuyang Zhou, Tenglong Ao, Baoquan Chen, and Libin Liu. Moconvq:
 665 Unified physics-based motion control via scalable discrete representations. *ACM Transactions on*
 666 *Graphics (TOG)*, 43(4):1–21, 2024.

667

668 Kangning Yin, Weishuai Zeng, Ke Fan, Zirui Wang, Qiang Zhang, Zheng Tian, Jingbo Wang, Jiang-
 669 miao Pang, and Weinan Zhang. Unitracker: Learning universal whole-body motion tracker for
 670 humanoid robots. *arXiv preprint arXiv:2507.07356*, 2025.

671 Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided human
 672 motion diffusion model. In *Proceedings of the IEEE/CVF international conference on computer*
 673 *vision*, pp. 16010–16021, 2023.

674

675 Junpeng Yue, Zepeng Wang, Yuxuan Wang, Weishuai Zeng, Jiangxing Wang, Xinrun Xu, Yu Zhang,
 676 Sipeng Zheng, Ziluo Ding, and Zongqing Lu. RI from physical feedback: Aligning large motion
 677 models with humanoid control. *arXiv preprint arXiv:2506.12769*, 2025.

678 Kevin Zakka. Mink: Python inverse kinematics based on mujoco, july 2024. *URL* <https://github.com/kevinzakka/mink>, 10.

679

680 Jianrong Zhang, Yangsong Zhang, Xiaodong Cun, Shaoli Huang, Yong Zhang, Hongwei Zhao,
 681 Hongtao Lu, and Xi Shen. T2m-gpt: Generating human motion from textual descriptions with
 682 discrete representations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 683 *Pattern Recognition (CVPR)*, 2023.

684

685 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei
 686 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *IEEE transac-*
 687 *tions on pattern analysis and machine intelligence*, 46(6):4115–4128, 2024.

688

689 Haoyu Zhao, Sixu Lin, Qingwei Ben, Minyue Dai, Hao Fei, Jingbo Wang, Hua Zou, and Junting
 690 Dong. Smap: Self-supervised motion adaptation for physically plausible humanoid whole-body
 691 control. *arXiv preprint arXiv:2505.19463*, 2025.

692

693

694

695

696

697

698

699

700

701

702	APPENDIX	
703		
704		
705	A Overview	14
706		
707	B The Use of Large Language Models (LLMs)	14
708		
709	C Supplementary Technical Details	14
710	C.1 Details of Unified Human-Humanoid Tokenization.	14
711	C.2 Details of vocabulary-directed Action Distillation	16
712	C.3 Details of Large Language-Action Model	17
713		
714		
715	D Additional Experiments and Results	18
716	D.1 Details of Robot System Setup	18
717	D.2 Implementation of Baselines	18
718	D.3 Details of Evaluation Metrics	19
719	D.4 Additional Experiments and Ablations	21
720	D.5 Additional Text-to-Humanoid Visualization	22
721		
722		
723	E Extended Limitation and Discussions	22
724		
725		
726		
727	A OVERVIEW	
728		
729		
730	In this document, we provide expanded technical details, additional experiments, and extended dis-	
731	cussions that complement and elaborate on the main paper. Specifically, Sec. C offers a detailed	
732	account of our implementation, covering the unified human–humanoid tokenization and codebook	
733	construction, the token-conditioned control policy with action distillation to torque-level actuation,	
734	and the Large Language–Action Model interface and training procedure; we also clarify settings	
735	required to reproduce baseline methods. Sec. D reports the robot system setup, metric definitions,	
736	and a comprehensive suite of experiments and ablations, and further illustrates generalization with	
737	additional textual results and motion visualizations; it also summarizes the accompanying video. Fi-	
738	nally, Sec. E extends the discussion of limitations and failure cases and outlines directions for future	
739	work. Through this supplementary material, we aim to provide a more complete view of <i>Humanoid-</i>	
740	<i>LLA</i> , clarify practical nuances for replication, and furnish additional evidence of robustness and	
741	versatility.	
742	B THE USE OF LARGE LANGUAGE MODELS (LLMs)	
743		
744	The Large Language Models were used only for English writing assistance such as grammar, word-	
745	ing, and minor stylistic edits to author-written text. The LLM did not contribute to research ideation,	
746	method design, experiments, analysis or citation selection. All technical content is authored and ver-	
747	ified by the authors, who take full responsibility for the paper’s contents. The LLM is not an author.	
748		
749	C SUPPLEMENTARY TECHNICAL DETAILS	
750		
751	C.1 DETAILS OF UNIFIED HUMAN-HUMANOID TOKENIZATION.	
752		
753	Humanoid Motion Canonicalization Details. We preprocess raw G1 humanoid trajectories with	
754	T frames, each frame represented as	
755		

$$x_t = [p_t \in \mathbb{R}^3, q_t \in \mathbb{R}^4, d_t \in \mathbb{R}^{29}], \quad t = 0, \dots, T-1. \quad (13)$$

756 **Algorithm 1** Humanoid Motion Canonicalization

757 1: **Input:** Raw trajectory $\{x_t\}_{t=0}^{T-1}$ with positions p_t , orientations q_t , DoFs d_t

758 2: **Output:** Canonicalized motion representation $\{f_t\}_{t=0}^{T-2}$

759 3: Downsample $\{x_t\}$ from 50 Hz to 20 Hz ▷ Resampling to align with human representation

760 4: **for** $t \leftarrow 0$ **to** $T - 1$ **do**

761 5: $r_t \leftarrow \text{rotvec}(q_t)$

762 6: $J_t \leftarrow \{j_t^k \in \mathbb{R}^3\}_{k=1}^{32}$ via FK

763 7: **end for** ▷ Calculate forward kinematics for G1

764 8: $h_{\text{floor}} \leftarrow \min_{t,k} j_{t,z}^k$

765 9: **for** $t \leftarrow 0$ **to** $T - 1$ **do**

766 10: $p_t \leftarrow p_t - [0, 0, h_{\text{floor}}]^\top$ ▷ Floor alignment

767 11: **end for**

768 12: **for** $t \leftarrow 0$ **to** $T - 1$ **do**

769 13: $p_t \leftarrow p_t - [p_{0,x}, p_{0,y}, 0]^\top$

770 14: **end for**

771 15: $a \leftarrow (j_0^{\text{RHip}} - j_0^{\text{LHip}}) + (j_0^{\text{RShoulder}} - j_0^{\text{LShoulder}})$

772 16: $\hat{a} \leftarrow a/\|a\|$

773 17: $\hat{f}_0 \leftarrow \frac{(0, 0, 1) \times \hat{a}}{\|(0, 0, 1) \times \hat{a}\|}$

774 18: $q_{\text{align}} \leftarrow \text{Quat}(\hat{f}_0 \mapsto +X)$

775 19: **for** $t \leftarrow 0$ **to** $T - 1$ **do**

776 20: $p_t \leftarrow \text{Rot}(q_{\text{align}}) p_t$

777 21: $q_t \leftarrow q_{\text{align}} \otimes q_t$

778 22: **end for** ▷ Root normalization

779 23: **for** $t \leftarrow 0$ **to** $T - 2$ **do**

780 24: $\omega_t \leftarrow r_{t+1} - r_t$ ▷ root angular velocity

781 25: $v_t \leftarrow p_{t+1} - p_t$ ▷ root linear velocity

782 26: $\Delta J_t \leftarrow J_{t+1} - J_t$ ▷ joint velocities

783 27: $f_t \leftarrow [\omega_t, v_t, \text{vec}(J_t), d_t, \text{vec}(\Delta J_t)]$

784 28: **end for** ▷ Canonicalized motion representation

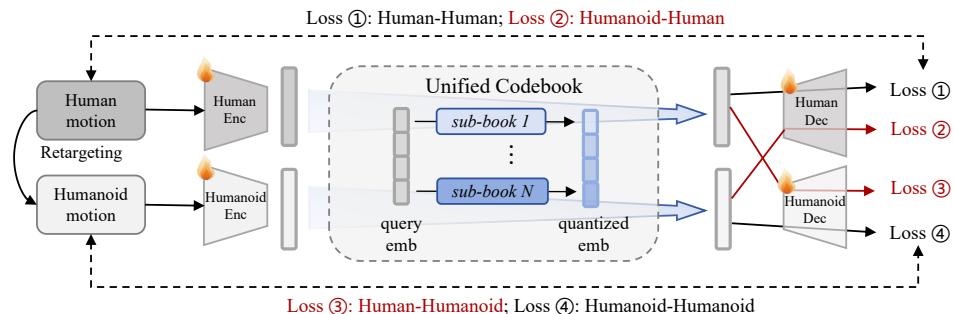


Figure A1: Diagram of detailed unified tokenizer architecture and training procedure.

We thus produce $(T - 1)$ frames of 227-dimensional canonicalized humanoid motion representation per sequence (see Algorithm 1).

Tokenizer Training Details. To enforce embodiment-agnostic tokenization, we adopt a dual-branch VQ-VAE adapted from Zhang et al. (2023) where human and humanoid motions are encoded separately but quantized through shared codebooks. As shown in Fig. A1, given sequences $\mathbf{m}^h \in \mathbb{R}^{T \times d_h}$ and $\mathbf{m}^r \in \mathbb{R}^{T \times d_r}$, modality-specific encoders produce latents $\mathbf{z}^h, \mathbf{z}^r$, which are quantized into tokens $\hat{\mathbf{z}}^h, \hat{\mathbf{z}}^r$. Decoders then reconstruct both intra- and cross-modal motions. The corresponding objectives are

$$\mathcal{L}_{\text{intra}} = \|\mathbf{m}^h - \hat{\mathbf{m}}^h\|_1 + \|\mathbf{m}^r - \hat{\mathbf{m}}^r\|_1, \quad \mathcal{L}_{\text{cross}} = \|\mathbf{m}^h - \hat{\mathbf{m}}^{h \leftarrow r}\|_1 + \|\mathbf{m}^r - \hat{\mathbf{m}}^{r \leftarrow h}\|_1, \quad (14)$$

810 where cross-reconstruction ensures that shared tokens decode into semantically consistent motions
 811 across embodiments.

812 Each encoder-decoder is a temporal convolutional network with depth 3, dilation growth rate 3, and
 813 downsampling factor 2^2 . The latent space has 512 dimensions, evenly partitioned into 8 sub-chunks
 814 of 64 dimensions, each quantized by a codebook of size 64. Training is conducted on text-annotated
 815 AMASS with batch size 256. We use AdamW (lr= 2×10^{-4} , betas (0.9, 0.99), weight decay 10^{-4})
 816 to optimize the tokenizer training. Both training and evaluation are run on a single NVIDIA RTX
 817 4090 GPU.

819 C.2 DETAILS OF VOCABULARY-DIRECTED ACTION DISTILLATION

820 **Details of Tracking Controller Reward Design.** As shown in Tab. A1, We train the fully con-
 821 strained teacher π^{track} with PPO using a composite reward that combines normalized tracking terms
 822 (as exponential scores) with lightweight regularization and hard-limit penalties. Tracking targets are
 823 defined in the robot’s local frame and computed as relative position and orientation error to reduce
 824 drift. Unless noted, all errors are normalized so that weights are comparable across terms.

825 Table A1: Reward table for the fully-constrained teacher controller

Term	Weight	Term	Weight
Task (tracking; $\exp(-\alpha \ \cdot\ _2)$ forms)			
Root position	0.5	Root rotation	0.5
Body position	1.0	Body rotation	1.0
Body linear velocity	1.0	Body angular velocity	0.5
DoF position	2.0	DoF velocity	0.2
Penalty (hard limits / self-contact)			
Torque limits	-1.0	DoF position limits	-5.0
DoF velocity limits	-5.0	Self-contact	-0.1
Regularization (L2 costs)			
Lower-body action rate	-0.4	Upper-body action rate	-0.1
Torque	-1×10^{-4}	DoF acceleration	-1×10^{-5}

826 **Domain Randomization.** To improve robustness under deployment, we adopt a broad range of
 827 randomization during policy training, including varying ground friction, joint damping, sensor la-
 828 tency, and external perturbations. With online adaptation of the teacher to randomized conditions,
 829 the distilled tokens encode transferable primitives rather than brittle overfits.

830 **Tracking Controller Training Details.** We train the tracking controller π^{track} with on-policy PPO
 831 (Schwarke et al., 2025) using online data collection at a 50 Hz control rate (physics $dt = 0.005$ s,
 832 action hold/decimation = 4) and 10 s episodes in NVIDIA Isaac Lab (Mittal et al., 2023). Each iteration
 833 collects 24 policy steps per environment (≈ 0.48 s of experience) across up to 16,384 parallel
 834 environments on a flat plane, yielding up to $24 \times N_{\text{env}}$ transitions per update. To improve robustness,
 835 we apply domain randomization at startup (friction/restitution buckets, joint default pose per-
 836 turbations, and anchor-body CoM shifts) and inject intermittent external pushes during rollouts by
 837 directly setting linear/angular velocities at random intervals between 1–3 s (linear ± 0.5 m/s in x/y ,
 838 ± 0.2 m/s in z ; angular ± 0.52 rad/s roll/pitch, ± 0.78 rad/s yaw). Motion-conditioned commands
 839 are loaded from trajectories and sampled with an adaptive time-binning curriculum: the motion
 840 timeline is discretized into bins whose sampling probabilities are proportional to recent failure rates,
 841 smoothed with a short non-causal kernel (kernel size 3, $\lambda = 0.8$) and updated by an exponential
 842 moving average ($\alpha = 0.001$) with a small uniform mixture (ratio 0.1); when an episode terminates
 843 or a clip ends, time indices are resampled according to this distribution, and root/joint states are
 844 jittered and clipped to soft limits before continuing. PPO optimization uses clipping $\epsilon = 0.2$, learning
 845 rate 10^{-3} with an adaptive schedule driven by a desired KL of 0.01, 5 learning epochs over 4
 846 mini-batches per update, value loss coefficient 1.0 with value clipping enabled, entropy coefficient
 847 0.005, discount $\gamma = 0.99$, GAE $\lambda = 0.95$, and max gradient norm 1.0; advantages use GAE and are

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 9999

standardized. A low-frequency variant scales rollout length with the control period and exponentiates γ and λ to keep the effective per-second discount unchanged. All experiments are trained on 2 NVIDIA Geforce RTX 4090 48G GPUs with 30,000 iterations.

Vocab Controller Training Details. We implement the vocabulary-directed student as a conditional VAE whose components are: an encoder \mathcal{E} , a Transformer prior ρ , and an action decoder \mathcal{D} . At each step, the input is assembled from (i) masked tracking-goal poses (ii) 512-d motion vocabulary embedding, and (iii) a self-observation token. Each stream passes through normalized MLPs (clamp = 5) to produce 512-d tokens; visibility masks are mapped to the attention mask. The prior is a 4-layer, 4-head Transformer (feed-forward 1024, dropout 0.1) that parameterizes a Gaussian over the latent; the encoder provides a residual refinement MLP to this prior. The decoder is an MLP with layers 1024–1024–512 (ReLU, tanh head) that outputs normalized joint targets conditioned on the latent and current self-observation.

Training follows a teacher–student data-aggregation scheme: the student acts with masking enabled, a privileged tracking teacher supplies action labels, and we optimize an action reconstruction objective with a KL regularizer (annealed from 10^{-4} to 10^{-2} between epochs 3000 and 6000). We use 1024 parallel environments, 32-step rollouts, batch size 4096, 6 mini-epochs, Adam with learning rate 2×10^{-5} , and gradient clipping at 50.0. The target pose is visible with probability 0.1, and the vocab embedding is visible with probability 1.0 when present. At inference, latent noise is set to zero for deterministic control. All experiments are trained and inference on 2 NVIDIA Geforce RTX 4090 48G GPUs.

Sim-to-Real Observation State Estimation. Following prior works (Flayols et al., 2017; Liao et al., 2023; 2025), we estimate root linear velocity $\dot{\mathbf{p}}^{\text{root}}$ by combining a momentum observer with an Extended Kalman Filter over base pose, velocity, and Inertial Measurement Unit biases. This filtering ensures that both teacher and student policies operate on physically plausible proprioception, closing the sim-to-real gap.

C.3 DETAILS OF LARGE LANGUAGE-ACTION MODEL

Human Data Augmentation. Previous work (Ouyang et al., 2025) has highlighted that the sparsity and abstractness of text annotations in the AMASS dataset limit unified modeling of motion and language. Designing denser, decomposable, and more specific annotations can significantly enhance motion understanding. Motivated yet distinct from Ouyang et al. (2025), which employs LLMs to generate densified textual descriptions, we leverage the multimodal large model Qwen2.5-VL (Bai et al., 2025) to jointly process textual descriptions and rendered motion sequences. This enables us to obtain more accurate chain-of-thought (CoT) annotations, since a single high-level abstract description may correspond to multiple plausible motions, many of which do not align with the actual motion instance. These motion CoTs are then employed during the supervised fine-tuning stage to provide preliminary alignment between motions and language.

Supervised Fine-tuning (SFT) Details. We fine-tune Qwen2.5-3B-Instruct on our augmented human motion dataset. The original text annotations are used as part of prompts, while the motion Chain-of-Thought (CoT) together with the corresponding motion tokens serve as ground-truth responses. The model is trained autoregressively with cross-entropy loss. Training is conducted with batch size 32, learning rate 1×10^{-4} , weight decay 0.01, and the AdamW optimizer ($\beta = (0.9, 0.98)$) on 8 NVIDIA GPUs. We adopt a cosine scheduler with 100 warm-up steps, gradient clipping at 1.0, and mixed-precision training in bfloat16.

Implementation of RL Fine-tuning. We further fine-tune the model with reinforcement learning using the GRPO algorithm. Training is performed with batch size 64, consisting of 8 prompts per batch and 8 sampled responses per prompt, with gradient accumulation over micro-batches of 4. The maximum prompt and generation lengths are set to 512 and 1024, respectively. We use the memory-efficient AdamW optimizer with learning rate 1×10^{-5} , weight decay 0.01, and $(\beta_1, \beta_2) = (0.9, 0.999)$, along with gradient clipping at 1.0 and a cosine learning rate schedule decayed to 1×10^{-6} . The clipped objective adopts $\epsilon = 0.2$ and includes a KL regularization term with $\beta = 0.001$ against the SFT model as reference. The weighting coefficients in equation 11 are set as $\lambda_m = \lambda_t = 10$. We calculate $r_{\text{pos}} = \exp(-0.005 \text{MPJPE})$, $r_{\text{acc}} = \exp(-0.05 \text{E}_{\text{acc}})$ in equation 12. The

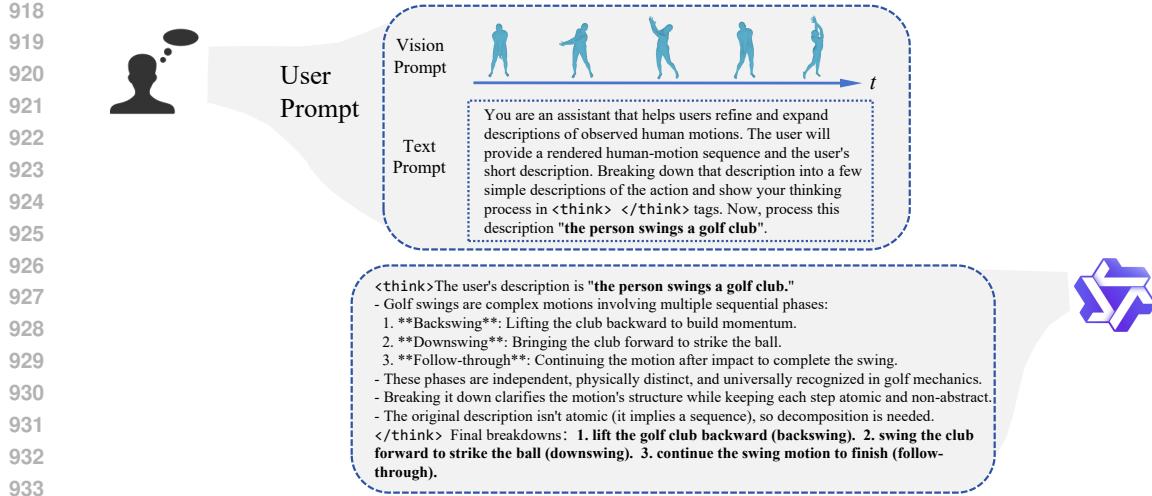


Figure A2: Visualization of Human Motion Chain of Thought augmentation based on Qwen2.5-VL.

contrastive motion encoder ϕ_m and text encoder ϕ_t in equation 11 are trained following Guo et al. (2022) on a tracking-based retargeted AMASS dataset, where only successfully tracked sequences are retained. The training is also conducted on 8 NVIDIA H20 GPUs.

D ADDITIONAL EXPERIMENTS AND RESULTS

D.1 DETAILS OF ROBOT SYSTEM SETUP

Our real humanoid hardware is built on the Unitree G1 humanoid platform (Robotics), as shown in Fig. A3. The G1 stands 1320 mm tall, weighs about 35 kg with battery, and provides 6 DOF per leg and 7 DOF per arm, with a maximum arm payload of 3 kg. It is powered by a 9000 mAh detachable battery that supports around 2 hours of operation. The knee joint could achieve up to 139 N·m torque with a joint movement space of 0–165°, complemented by other flexible joints including the waist (Z: ±155°, X: ±45°, Y: ±30°), the hip (P: ±154°, R: −30° to +170°, Y: ±158°), and the wrist (P: ±92.5°, Y: ±92.5°), ensuring both stability and dexterity in whole-body control. We deploy our motion policies on the controller inference presented by (Liao et al., 2025). All deployment code is written in C++ and optimized for realtime execution, which achieved full-state estimation at 500 Hz using a low-level generalized momentum observer. The policy inference frequency is 100 Hz, enabling reliable real-time control of the robot during dynamic locomotion and manipulation tasks while ensuring smooth integration between state estimation and policy execution.

D.2 IMPLEMENTATION OF BASELINES

For a fair comparison with the baselines introduced in Sec. 4, we unify the evaluation metrics and protocols across all methods. To measure generation metrics, we adopt the motion and text encoders described in C.3. The implementation details for each baseline are outlined as follows:

MDM+Retarget We employ the MDM (Tevet et al., 2023) model pretrained on the HumanML3D (Guo et al., 2022) dataset to generate human motions. Since MDM outputs joint positions rather than SMPL parameters, we apply an IK-based optimization to regress SMPL parameters from joint positions, using a learning rate of 10^{-1} for 100 iterations per generated sequence. The resulting SMPL sequences are then retargeted to humanoid motions via an optimization-based method proposed in H2O (He et al., 2024). As this baseline does not involve physical simulation, we report only generation metrics.

OmniH2O We implement OmniH2O (He et al., 2025) to track MDM+Retarget-generated humanoid motion sequences within a physics simulator. Following the evaluation protocol mentioned

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

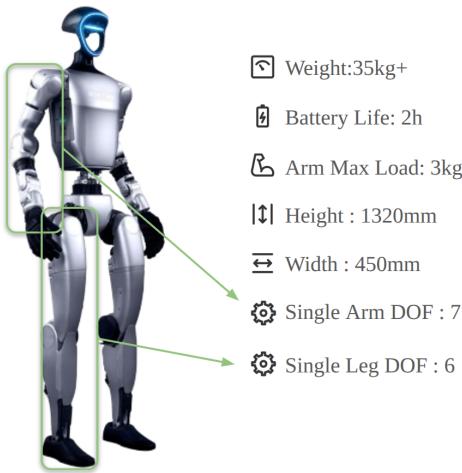


Figure A3: Details about Unitree G1 Robot.

in He et al. (2025), we report physics-based tracking metrics computed over all sequences, rather than only the successfully tracked ones. After tracking, all trajectories are collected to compute generation metrics.

UH-1 We implement UH-1 (Mao et al., 2024) on our physically-retargeted humanoid motion dataset, which is collected by mink retargeting and our teacher controller tracking 3.2. We first train the humanoid motion generator based on T2M-GPT (Zhang et al., 2023), then leverage goal-conditioned RL to track these generated output. Generation metrics and physics metrics are reported following the same calculation paradigm as in in the implementation of OmniH2O.

LangWBC We reproduce LangWBC (Shao et al., 2025) by using a prior-free C-VAE student (no prior network) and a frozen CLIP text encoder (Radford et al., 2021) to jointly encode language and proprioception and decode normalized joint targets. For policy distillation we use the same teacher controller in Sec. 3.2.

RLPF For RLPF (Yue et al., 2025), we report the physics-based metrics of the RLPF-PHC variant, as its experimental setup and evaluation protocol are most comparable to other baselines. We do not include generation metrics, since RLPF evaluates them in the human motion domain, whereas our evaluation is defined directly on humanoid motions.

D.3 DETAILS OF EVALUATION METRICS

We provide details of the metrics used for text-to-humanoid evaluation. Metrics are divided into two categories: generation-side metrics (Guo et al., 2022; Zhang et al., 2023), which measure semantic alignment and distributional fidelity, and physics-based tracking metrics (Luo et al., 2023), which assess physical executability in simulation.

Let $\mathcal{G} = \{(w_i^{(g)}, m_i^{(g)})\}_{i=1}^{N_g}$ denote the generated (text, motion) pairs, and $\mathcal{T} = \{(w_j^{(t)}, m_j^{(t)})\}_{j=1}^{N_t}$ denote the ground-truth test pairs. We denote the text encoder by $\phi_t(\cdot)$ and the motion encoder by $\phi_m(\cdot)$. Motion inputs are standardized before encoding using dataset mean and standard deviation:

$$\tilde{m} = \frac{m - \mu}{\sigma}, \quad (15)$$

where μ, σ are the precomputed dataset mean and std.

Generation-side metrics.

1026
1027 • **Embeddings and pairwise distances.** For N paired samples, compute text and motion
1028 embeddings:
1029
$$t_i = \phi_t(w_i), \quad m_i = \phi_m(\tilde{m}_i), \quad i = 1, \dots, N, \quad (16)$$

1030 and form the Euclidean distance matrix $D \in \mathbb{R}^{N \times N}$ as

1031
$$D_{ij} = \sqrt{\max(-2t_i^\top m_j + \|t_i\|_2^2 + \|m_j\|_2^2, 0)}. \quad (17)$$

1032 • **R-Precision@ k .** Measures whether the ground-truth motion for each text query is among
1033 the k nearest neighbors. Let $D_{i,(1)} \leq D_{i,(2)} \leq \dots$ be the sorted distances in row i . Define
1034

1035
$$\mathbb{I}_{i,k} = \begin{cases} 1, & D_{i,i} \leq D_{i,(k)}, \\ 0, & \text{otherwise,} \end{cases} \quad (18)$$

1036 where $D_{i,i}$ is the distance to its paired motion. Then

1037
$$\text{R-Precision}@k = \frac{1}{N} \sum_{i=1}^N \mathbb{I}_{i,k}. \quad (19)$$

1038 • **Matching score.** The average diagonal distance reflects text–motion alignment:

1039
$$\text{MatchingScore} = \frac{1}{N} \sum_{i=1}^N D_{i,i}. \quad (20)$$

1040 • **Diversity.** Measures intra-set variability of motion embeddings. Sample T unordered pairs
1041 $\{(p_r, q_r)\}_{r=1}^T$:

1042
$$\text{Diversity} = \frac{1}{T} \sum_{r=1}^T \|m_{p_r} - m_{q_r}\|_2. \quad (21)$$

1043 • **Fréchet Inception Distance (FID).** Compares generated vs. ground-truth motion embed-
1044 ing distributions. For mean and covariance

1045
$$\mu = \frac{1}{N} \sum_{i=1}^N m_i, \quad \Sigma = \frac{1}{N-1} \sum_{i=1}^N (m_i - \mu)(m_i - \mu)^\top, \quad (22)$$

1046 the FID is

1047
$$\text{FID}(\mathcal{T}, \mathcal{G}) = \|\mu_t - \mu_g\|_2^2 + \text{Tr}(\Sigma_t + \Sigma_g - 2(\Sigma_t \Sigma_g)^{1/2}). \quad (23)$$

1048 Physics-based tracking metrics.

1049 • **Success rate (Succ).** Fraction of sequences tracked without falling or excessive deviation:

1050
$$\text{Succ} = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left[\max_t \|J_t^{(i)} - \hat{J}_t^{(i)}\|_2 < 0.5 \text{ m} \right], \quad (24)$$

1051 where $J_t^{(i)}$ and $\hat{J}_t^{(i)}$ denote reference and simulated joint positions.

1052 • **Mean Per-Joint Position Error (MPJPE).** Average distance between predicted and refer-
1053 ence joint positions:

1054
$$\text{MPJPE} = \frac{1}{NTJ} \sum_{i=1}^N \sum_{t=1}^T \sum_{j=1}^J \|J_{t,j}^{(i)} - \hat{J}_{t,j}^{(i)}\|_2. \quad (25)$$

1055 • **Velocity error (E_{vel}).** Discrepancy in per-joint velocities:

1056
$$E_{\text{vel}} = \frac{1}{NTJ} \sum_{i=1}^N \sum_{t=1}^T \sum_{j=1}^J \|\dot{J}_{t,j}^{(i)} - \hat{\dot{J}}_{t,j}^{(i)}\|_2. \quad (26)$$

1057 • **Acceleration error (E_{acc}).** Discrepancy in per-joint accelerations:

1058
$$E_{\text{acc}} = \frac{1}{NTJ} \sum_{i=1}^N \sum_{t=1}^T \sum_{j=1}^J \|\ddot{J}_{t,j}^{(i)} - \hat{\ddot{J}}_{t,j}^{(i)}\|_2. \quad (27)$$

1080 Table A2: Human motion reconstruction results. N denotes the number of sub-codebooks, and K
 1081 the number of entries per sub-codebook. \uparrow , \downarrow , and \rightarrow indicate that higher is better, lower is better,
 1082 and closer to the dataset is better, respectively.

Methods	FID \downarrow	TOP-1 \uparrow	TOP-2 \uparrow	TOP-3 \uparrow	Diversity \rightarrow	MM-Dist \downarrow
T2M-GPT	0.112 \pm .001	0.500 \pm .003	0.692 \pm .002	0.789 \pm .002	9.723 \pm .066	3.056 \pm .009
Ours (N=4, K=64)	0.077 \pm .000	0.507 \pm .003	0.699 \pm .003	0.793 \pm .003	9.645 \pm .098	3.005 \pm .008
Ours (N=8, K=32)	0.032 \pm .000	0.509 \pm .003	0.702 \pm .002	0.796 \pm .002	9.563 \pm .063	2.986 \pm .008
Ours (N=8, K=128)	0.018 \pm .000	0.509 \pm .002	0.702 \pm .002	0.796 \pm .002	9.579 \pm .084	2.982 \pm .009
Ours (N=16, K=64)	0.005 \pm .000	0.510 \pm .003	0.703 \pm .003	0.797 \pm .003	9.434 \pm .069	2.968 \pm .009
Ours w/o $\mathcal{L}_{\text{cross}}$	0.041 \pm .000	0.508 \pm .003	0.700 \pm .002	0.794 \pm .002	9.488 \pm .072	2.987 \pm .009
Ours (N=8, K=64)	0.021 \pm .000	0.511 \pm .003	0.703 \pm .002	0.796 \pm .002	9.555 \pm .056	2.978 \pm .009

1093 Table A3: Humanoid motion reconstruction evaluation results. N denotes the number of sub-
 1094 codebooks, and K the number of entries per sub-codebook. \uparrow , \downarrow , and \rightarrow indicate that higher is
 1095 better, lower is better, and closer to the dataset is better, respectively.

Methods	FID \downarrow	TOP-1 \uparrow	TOP-2 \uparrow	TOP-3 \uparrow	Diversity \rightarrow	MM-Dist \downarrow
T2M-GPT	0.183 \pm .002	0.475 \pm .003	0.661 \pm .002	0.758 \pm .002	10.804 \pm .093	3.425 \pm .008
Ours (N=4, K=64)	0.082 \pm .001	0.484 \pm .003	0.673 \pm .002	0.771 \pm .002	10.805 \pm .096	3.338 \pm .008
Ours (N=8, K=32)	0.037 \pm .000	0.491 \pm .003	0.679 \pm .003	0.776 \pm .002	10.577 \pm .003	3.307 \pm .008
Ours (N=8, K=128)	0.016 \pm .000	0.492 \pm .003	0.680 \pm .003	0.777 \pm .002	10.537 \pm .094	3.291 \pm .008
Ours (N=16, K=64)	0.006 \pm .000	0.492 \pm .003	0.681 \pm .003	0.778 \pm .003	10.653 \pm .080	3.288 \pm .008
Ours w/o $\mathcal{L}_{\text{cross}}$	0.011 \pm .000	0.492 \pm .003	0.681 \pm .003	0.778 \pm .003	10.631 \pm .093	3.285 \pm .008
Ours (N=8, K=64)	0.023 \pm .000	0.490 \pm .003	0.678 \pm .003	0.776 \pm .002	10.671 \pm .089	3.301 \pm .008

1107 D.4 ADDITIONAL EXPERIMENTS AND ABLATIONS

1109 **Experiments and Ablation on Unified Tokenizer.** To demonstrate the effectiveness of our
 1110 implicit-partitioning tokenizer for fine-grained joint quantization of human and humanoid motion,
 1111 we compare against T2M-GPT (Zhang et al., 2023), a representative baseline in motion quantization.
 1112 We further ablate the number of sub-codebooks and the number of entries per sub-codebook, and we
 1113 evaluate the effect of omitting the cross-reconstruction loss $\mathcal{L}_{\text{cross}}$. The evaluation of human motion
 1114 reconstruction, humanoid motion reconstruction, human-to-humanoid motion reconstruction are all
 1115 based on the implementation of Zhang et al. (2023). We show these experimental results in table A2,
 A3 and A4.

1117 Results show that increasing the number of sub-codebooks and enlarging per-codebook capacity
 1118 reduce quantization error. Compared with single-codebook quantization, implicit partitioning
 1119 produces a more fine-grained discrete latent space under the same total token budget. As reported in
 1120 Table A4, removing the cross-reconstruction term $\mathcal{L}_{\text{cross}}$ in Eq. equation 1 substantially degrades
 1121 the human-to-humanoid reconstruction metric, demonstrating that the cross-modal objective is es-
 1122 sential for assigning the same discrete token to semantically equivalent motion primitives across
 1123 embodiments. Based on these ablations, we adopt 8 sub-codebooks with 64 entries each for our
 1124 unified motion tokenizer; this configuration serves as the foundation for the motion–language joint
 1125 modeling in Sec. 3.3.

1126 **Ablations on Vocabulary-directed Action Distillation** Table A5 studies three key components
 1127 of the vocabulary-directed student: a VAE latent, a Transformer prior, and random mask training.
 1128 Replaceing the VAE to MLP causes the largest drop in executability and accuracy: success falls
 1129 from 95.2/86.1% (train/test) to 93.8/84.6%, while MPJPE degrades markedly (39.86 \rightarrow 59.24
 1130 train; 49.69 \rightarrow 68.57 test), and $E_{\text{acc}}/E_{\text{vel}}$ increase (train: 6.88/6.13 \rightarrow 8.31/7.37; test: 9.23/8.18 \rightarrow
 1131 11.73/10.84). Dropping the prior also hurts but less severely: success 94.1/85.3% and MPJPE
 1132 48.72/59.91, indicating the prior supplies helpful dynamics regularization under token guidance.
 1133 Eliminating the mask leads to the lowest test success (83.5%) and higher errors (MPJPE 61.83,
 $E_{\text{acc}} = 9.98$, $E_{\text{vel}} = 9.02$), suggesting that masking mitigates overfitting to dense teacher signals

1134 Table A4: Human-to-Humanoid motion reconstruction evaluation results. N denotes the number of
 1135 sub-codebooks, and K the number of entries per sub-codebook. \uparrow , \downarrow , and \rightarrow indicate that higher is
 1136 better, lower is better, and closer to the dataset is better, respectively.

1137

Methods	FID \downarrow	TOP-1 \uparrow	TOP-2 \uparrow	TOP-3 \uparrow	Diversity \rightarrow	MM-Dist \downarrow
T2M-GPT	0.381 \pm .001	0.460 \pm .002	0.642 \pm .002	0.741 \pm .002	10.689 \pm .082	3.540 \pm .007
Ours (N=4, K=64)	0.227 \pm .002	0.468 \pm .003	0.655 \pm .003	0.754 \pm .003	10.687 \pm .083	3.445 \pm .008
Ours (N=8, K=32)	0.182 \pm .002	0.470 \pm .003	0.657 \pm .003	0.755 \pm .002	10.777 \pm .109	3.450 \pm .007
Ours (N=8, K=128)	0.107 \pm .001	0.476 \pm .002	0.665 \pm .002	0.764 \pm .002	10.704 \pm .099	3.387 \pm .007
Ours (N=16, K=64)	0.084 \pm .001	0.480 \pm .003	0.668 \pm .003	0.766 \pm .002	10.701 \pm .060	3.377 \pm .007
Ours w/o $\mathcal{L}_{\text{cross}}$	25.044\pm.028	0.074\pm.001	0.138\pm.002	0.192\pm.002	6.230\pm.048	8.192\pm.009
Ours (N=8, K=64)	0.153\pm.002	0.477\pm.002	0.665\pm.002	0.762\pm.002	10.736\pm.102	3.396\pm.006

1146

1147

Table A5: Ablations on Vocabulary-directed Action Distillation.

1148

1149

Methods	HumanML3D-Train				HumanML3D-Test			
	Succ \uparrow	MPJPE \downarrow	E _{acc} \downarrow	E _{vel} \downarrow	Succ \uparrow	MPJPE \downarrow	E _{acc} \downarrow	E _{vel} \downarrow
Ours Tracking Controller	95.2%	39.86	6.88	6.13	86.1%	49.69	9.23	8.18
Ours w/o VAE	93.8%	59.24	8.31	7.37	84.6%	68.57	11.73	10.84
Ours w/o prior	94.1%	48.72	8.19	7.28	85.3%	59.91	9.56	8.71
Ours w/o mask	92.9%	51.32	8.62	7.58	83.5%	61.83	9.98	9.02
Humanoid-LLA (Ours)	95.0%	46.84	8.04	6.86	87.6%	56.43	8.92	7.74

1155

1156

1157

and encourages reliance on discrete tokens. Overall, the vocabulary-directed student approaches the teacher’s success while accepting slightly higher pose errors. After integrating the student into the full RL pipeline, **Humanoid-LLA** surpasses the teacher in test success (87.6% vs. 86.1%) and further reduces $E_{\text{acc}}/E_{\text{vel}}$ to 8.92/7.74.

1162

1163

D.5 ADDITIONAL TEXT-TO-HUMANOID VISUALIZATION

1164

1165

We include extra visualization results in the simulation and the real world in this material. More visualization can be found in the supplementary video.

1166

1167

E EXTENDED LIMITATION AND DISCUSSIONS

1168

1169

In this work, we present the first end-to-end Large Language–Action Model for physical-fidelity, open- vocabulary humanoid control, mapping expressive natural language directly to executable humanoid actions. Through comparative experiments, we identify considerable areas where our model can be further improved, as outlined below:

1170

1171

1172

1173

Longer-Horizon Memory and Planning. Our LLA reasons over token sequences within a modest temporal window, which limits plan consistency across complex tasks. A natural extension is to couple Humanoid-LLA with a hierarchical planner that maintains a persistent memory (e.g., key-value token cache or episode summaries) and proposes subgoals that the vocabulary-directed controller can realize, improving stability and global coherence over minutes-long activities.

1174

1175

1176

1177

1178

1179

Richer Multimodal Grounding. We condition primarily on text (and optionally visual renders), while real deployments benefit from audio cues (speech prosody), gaze/pose of humans, and tactile events. Extending the tokenizer with cross-modal slots (speech/vision/touch tokens) could align linguistic intent with environmental context, enabling disambiguation.

1180

1181

1182

1183

1184

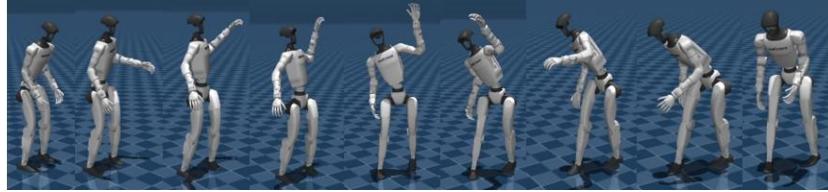
1185

1186

1187

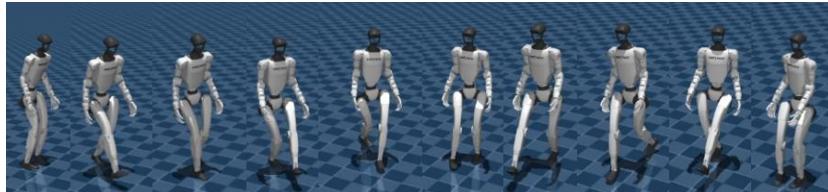
Personalization and Style Control. Different users may prefer distinct motion styles or safety margins. Conditioning tokens on user embeddings (or few-shot style exemplars) can produce personalized motions while preserving safety. A style–safety Pareto controller could expose interpretable dials (conservativeness, speed, energy) without retraining.

1188
1189
1190
1191
1192
1193
1194



1195 “A person swings his left arm over head as if he is spiking a volleyball.”

1196
1197
1198
1199
1200
1201
1202

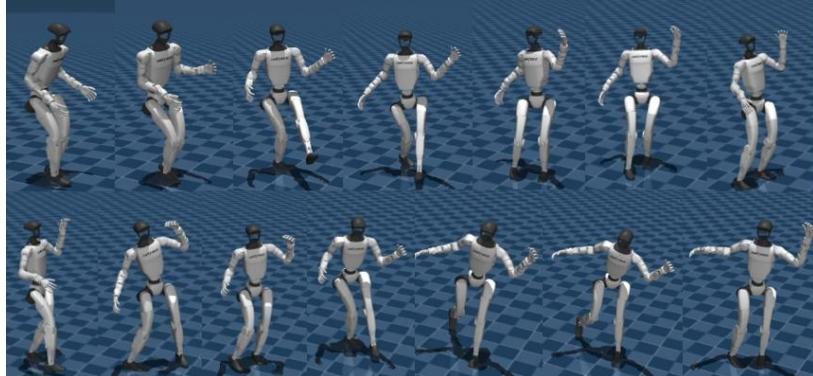


1203 “Walk along a curving path, adjusting direction smoothly.”

1204
1205

Figure A4: Visualization results in Mujoco.

1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218



1219 “Step in wide arcs while circling slowly, arms gently outstretched for balance,
1220 creating a smooth flowing spiral path.”

1221

1222
1223

Figure A5: Visualization results in Mujoco.

1224
1225
1226
1227
1228

Scaling Data and Benchmarks. Our unified tokenizer aligns human and humanoid motions; scaling paired data with richer captions and hard negative text–motion pairs should improve semantic precision. We also advocate benchmarks that jointly score distributional quality and physics on robots, preventing degenerate solutions that optimize only one axis.

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

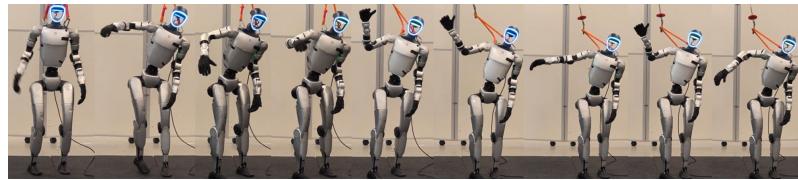
1264

1265

1266

1267

1268



“Directing traffic like a policeman.”

1269

1270

1271

1272

1273

1274

“Goose step forward like a soldier.”

1275

1276

1277

Figure A6: Visualization results in the real world.

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295